
Thesis for The Degree of Licentiate of Engineering

Deterministic, Explainable and Resource-Efficient
Stream Processing for Cyber-Physical Systems

Dimitrios Palyvos-Giannas

Division of Networks and Systems
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2019

Deterministic, Explainable and Resource-Efficient Stream Process-
ing for Cyber-Physical Systems

Dimitrios Palyvos-Giannas

Copyright ©2019 Dimitrios Palyvos-Giannas
except where otherwise stated.
All rights reserved.

Technical Report No 200L
ISSN 1652-876X
Department of Computer Science & Engineering
Division of Networks and Systems
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2019.

ii

“But how could you live
and have no story to tell?”

— Fyodor Dostoevsky

iv

Abstract

We are undeniably living in the era of big data, where people and machines
generate information at an unprecedented rate. While processing such data
can provide immense value, it can prove especially challenging because of the
data’s Volume, Variety and Velocity. Velocity can be particularly important
in environments that need to respond to incoming data in near real-time,
such as cyber-physical systems. In such cases, the batch processing paradigm,
which requires all data to be persistently stored and available, might not be
appropriate. Instead, it can be desirable to perform stream processing, where
unbounded datasets of streaming data are processed in an online manner,
generating results quickly and thus significantly benefiting applications with
strict latency requirements. However, it can be challenging for stream processing
to provide the same guarantees and ease-of-use as traditional batch processing
systems. This thesis studies ways to alleviate this by introducing techniques that
make stream processing more predictable, explainable, and resource-efficient.

In the first part of the thesis, we study determinism, which can guarantee
predictable and reproducible results in stream processing, regardless of the
runtime system characteristics. We present Viper, a module for stream pro-
cessing frameworks that provides determinism with a minimal performance
impact. In the second part, we study fine-grained data provenance, which links
each streaming result with the inputs that led to its generation. Fine-grained
data provenance can help make stream processing easier to understand and
debug. Additionally, it can reduce storage and transmission costs by allowing
to maintain only the essential input data. We propose the GeneaLog framework
that provides fine-grained data provenance in stream processing with minimal
overhead. In the third part of the thesis, we explore scheduling and its use
in stream processing for controlling resource allocation and achieving specific
performance goals. We develop Haren, a framework that can be integrated into
stream processing frameworks, providing custom thread scheduling capabilities.
We study Haren’s efficiency and its facilities that allow a user to control the
resource allocation of a streaming system. We evaluate all three proposed
frameworks with relevant streaming use cases from the real-world and illustrate
their efficiency and ease-of-use.

Keywords

Stream Processing, Provenance, Determinism, Scheduling

Acknowledgment

Ralph Waldo Emerson writes that “our chief want in life, is somebody who
shall make us do what we can”. Thus, I cannot begin this thesis without
acknowledging my supervisor, Vincenzo Massimiliano Gulisano. I would like to
thank him for his guidance, his strong belief in me and his insistence to always
aim higher. Most of all, I would like to thank him for always having an open
mind, for taking the time to listen and for being understanding when he really
needed to. At the same time, I would like to express my genuine gratitude to my
co-supervisor, Marina Papatriantafilou, for her patience, insightful suggestions,
and her continuous assistance in all part of my studies.

Moreover, I would like to give special thanks to Yiannis, Ivan and Iosif for
their invaluable advice about research, the Ph.D. experience and — why not

— life in general. I remember reading somewhere that regular breaks increase
productivity, so thank you, Hannah, Georgia, Christos, Valentin, Fazeleh, and
Thomas for frequently dropping by my office to discuss everything and nothing.
More than that, interactions with everyone in the division have helped me
grow both personally and professionally, so I would like to thank all my close
colleagues. Thank you, Adones, Ali, Aljoscha, Amir, Aras, Bastian, Bei, Beshr,
Babis, Carlo, Elena, Elad, Joris, Karl, Katerina, Magnus, Nasser, Olaf, Oliver,
Philippas, Romaric, Thomas P., Tomas, Valentin T., and Wissam. I would also
like to thank all the administrative staff for making my day-to-day life easier,
and especially the people I interact directly with: Eva, Marianne, and Rebecca.

I wish to acknowledge the financial support by the Swedish Research
Council (Vetenskapsr̊adet), project “HARE: Self-deploying and Adaptive Data
Streaming Analytics in Fog Architectures”, with grant number 2016-03800.

Last, but by no means least, I would like to thank the people who made all
this possible. My wonderful parents, who made countless sacrifices to ensure
that I would be able to follow the path I wanted. My lovely sister, who was
always there to bother support me. My fantastic friends, both in Sweden and
in Greece, for making my free time much more enjoyable. And, of course, my
incredible partner, Pinelopi for her love, support, and unlimited patience.

Dimitris Palyvos-Giannas
Göteborg, October 2019

vii

List of Publications

Appended publications

This thesis is based on the following publications:

[A] I. Walulya, D. Palyvos-Giannas, Y. Nikolakopoulos, V. Gulisano, M. Pap-
atriantafilou, and P. Tsigas “Viper: A Module for Communication-Layer
Determinism and Scaling in Low-Latency Stream Processing”
Future Generation Computer Systems, vol. 88, pp. 297-308, 2018.

[B] D. Palyvos-Giannas, V. Gulisano, and M. Papatriantafilou “GeneaLog:
Fine-Grained Data Streaming Provenance in Cyber-Physical Systems”
In submission to Journal Parallel Computing.

[C] D. Palyvos-Giannas, V. Gulisano, and M. Papatriantafilou “Haren: A
Framework for Ad-Hoc Thread Scheduling Policies for Data Streaming
Applications”
Proceedings of the 13th ACM International Conference on Distributed
and Event-based Systems, 2019, pp. 19-30.

ix

x

Other publications

The following publications were published during my PhD studies, or are
currently in submission/under revision. However, they are not appended to this
thesis, due to contents overlapping that of appended publications or contents
not related to the thesis.

[a] D. Palyvos-Giannas, V. Gulisano, and M. Papatriantafilou “GeneaLog:
Fine-Grained Data Streaming Provenance at the Edge”
Proceedings of the 19th International Middleware Conference, Rennes,
France, 2018, pp. 227–238.

Contents

Abstract v

Acknowledgement vii

List of Publications ix

1 Overview 1
1.1 Introduction . 1
1.2 Processing Big Data . 3

1.2.1 Batch Processing . 3
1.2.2 Stream Processing . 3
1.2.3 Processing Infrastructure 4

1.3 Aspects of Stream Processing 5
1.3.1 Parallel Processing . 6
1.3.2 Predictable and Explainable Stream Processing 7
1.3.3 Scheduling . 9

1.4 Research Problems . 10
1.4.1 Parallelism and Determinism 10
1.4.2 Fine-Grained Data Provenance in Streaming 10
1.4.3 Customizable Thread Scheduling 11

1.5 Thesis Contributions . 11
1.5.1 Communication-Layer Determinism 11
1.5.2 Low-Overhead Streaming Provenance 12
1.5.3 Custom Scheduling for Streaming Systems 12

1.6 Conclusions and Future Work 12

2 Viper: A Module for Communication-Layer Determinism and
Scaling in Low-Latency Stream Processing 15
2.1 Introduction . 16
2.2 System Model . 17

2.2.1 Data Streaming . 17
2.2.2 Parallelism, determinism and syntactic transparency . . 18
2.2.3 Streaming operators’ performance metrics 20

2.3 Operator- vs communication-layer determinism 20

xi

xii CONTENTS

2.3.1 Limitations of operator-layer determinism 21
2.3.2 Additional potential benefits from determinism provision-

ing in the SPE-communication-layer 23
2.4 The Viper module . 23

2.4.1 Viper as an SPE module: Apache Storm use case 24
2.4.1.1 Overheads of operator-layer determinism in

Apache Storm 25
2.4.1.2 Additional overheads - sharing tuples 26
2.4.1.3 Integration of the Viper module 27

2.5 Evaluation . 27
2.5.1 Intra-Node Parallel Analysis - Setup 28
2.5.2 Intra-Node Parallel Analysis - Scalability 28

2.5.2.1 Operator pos rep 29
2.5.2.2 Operator new seg 31
2.5.2.3 Operator zero speed 33
2.5.2.4 Discussion on Power Consumption 34

2.5.3 Inter-Node Distributed Parallel Analysis - Setup 35
2.5.4 Inter-Node Distributed Parallel Analysis - Scalability . . 36

2.6 Related work . 36
2.7 Conclusions . 38

3 GeneaLog: Fine-Grained Data Streaming Provenance in Cyber-
Physical Systems 39
3.1 Introduction . 40
3.2 Preliminaries . 41
3.3 Problem definition . 43
3.4 Linking sink and source tuples 45

3.4.1 GeneaLog’s instrumented operators 45
3.4.2 Traversal of the contribution graph 47

3.5 Intra-task provenance . 48
3.5.1 SU implementation using standard operators 49

3.6 From intra-task to inter-task provenance 50
3.7 Explicit inter-task provenance 50

3.7.1 MU implementation using standard operators 53
3.8 Implicit inter-task provenance 54
3.9 Evaluation . 55
3.10 Related Work . 65
3.11 Conclusions and future work 66

4 Haren: A Framework for Ad-Hoc Thread Scheduling Policies
for Data Streaming Applications 67
4.1 Introduction . 68
4.2 Preliminaries . 69
4.3 Goals and system model . 71

4.3.1 System model . 71
4.4 Overview . 73

4.4.1 Inter-thread and intra-thread scheduling 74
4.4.2 Architecture . 75

4.5 Execution Task (TE) . 76

CONTENTS xiii

4.6 Scheduling Task (TS) . 78
4.7 Evaluation . 82

4.7.1 Experiments setup . 82
4.7.2 Scheduling Policies . 83
4.7.3 Single-Class Scheduling 85
4.7.4 Multi-Class Scheduling 87

4.8 Related work . 89
4.9 Conclusions and future work 90

xiv CONTENTS

List of Figures

1.1 Different types of parallelism. 7

2.1 Streaming application part of the Linear Road benchmark [1],
presented together with a sample centralized continuous query
implementing its semantics and its parallel counterpart. 18

2.2 Parallel query run by an SPE with operator-layer determinism. 20
2.3 Parallel query run by an SPE with communication-layer deter-

minism. 23
2.4 Storm Worker with two instances of the A2 operator (and the

instances of its merge-sorting operator A2-M) deployed in it. To
ensure determinism, a dedicated thread is required for merge-
sorting the tuples fed to each operator instance. 25

2.5 Storm Worker with two instances of the A2 operator connected
by the Viper module. 26

2.6 Operator pos rep performance evaluation. 30
2.7 Costs of the operators deployed for Communication-layer (CL)

and Operator-layer (OL) when 6 instances of operator pos rep

are deployed in a Worker. 31
2.8 Operator new seg performance evaluation. 32
2.9 Costs of the operators deployed for Communication-layer (CL)

and Operator-layer (OL) when 6 instances of operator new seg

are deployed in a Worker. 33
2.10 Operator zero speed performance evaluation. 34
2.11 Costs of the operators deployed for Communication-layer (CL)

and Operator-layer (OL) when 6 instances of operator zero speed

are deployed in a Worker. 35
2.12 Distributed and parallel analysis performed by each Meter Con-

centrator Unit to validate and aggregate deterministically the
data gathered from the Smart Meters up to the Energy Utility. 36

2.13 Throughput and latency results for the distributed and parallel
validation and aggregation query for Communication-layer and
Operator-layer determinism. 37

3.1 Sample continuous query. 43

xv

xvi LIST OF FIGURES

3.2 Sample query with arrows for the sink tuple’s contribution graph. 44
3.3 Representation of meta-attributes (pointers) U1, U2 and N set

by the instrumented Map, Aggregate and Join operators. For
simplicity, we show only the meta-attributes set by each operator,
thus ignoring dangling pointers. 46

3.4 Sample query and execution from Figure 3.1 showing meta-
attributes U1, U2 and N as set by GeneaLog’s instrumented
operators. 47

3.5 SU operator (A) and its implementation using standard opera-
tors (B). 49

3.6 Representation of the input and output streams defined by the
MU operator (Def. 9) . 51

3.7 Distributed deployment of the sample query (Figure 3.1) showing
how additional SU and MU operators are added for explicit
provenance depending on the query’s and the extra MU operator
deployment decisions. 52

3.8 Implementation of the MU operator’s semantics using the stan-
dard operators defined in § 3.2. 53

3.9 Representation of meta-attributes (pointers) U1, U2 and N set
by the instrumented Send and Receive operators for implicit
inter-task provenance (for a sample tuple and its contribution
graph). 54

3.10 Allocation of Query Q1 operators to task / nodes for the Apache
Flink SPE. 56

3.11 A) Query Q2. B) Sink tuples’ contribution graph, with 8 input
tuples. C,D) Allocation of operators to task / nodes. 57

3.12 A) Query Q3. B) Sink tuples’ contribution graph, with 192
input tuples on average. C,D) Allocation of operators to task /
nodes. 58

3.13 A) Query Q4. B) Sink tuples’ contribution graph, with 24 input
tuples. C,D) Allocation of operators to task / nodes. 59

3.14 Performance of single-node/single-task deployments in Liebre
(a) and single-node/multi-task deployments in Apache Flink (b). 60

3.15 Performance of multi-node/multi-task deployments for Liebre
(a) and Apache Flink (b). 61

3.16 Time required to traverse the contribution graph for each out-
put tuple using explicit provenance. Note the different x-axes
between the figures. 62

3.17 Time required to traverse the contribution graph for each output
tuple using implicit provenance. Note that Q1 is deployed in
two tasks, only one of which traverses the contribution graph. . 63

3.18 Scalability study for the stopped vehicles query. 63
3.19 Scalability study for the accident detection query. 63
3.20 Scalability study for the blackout detection query. 64
3.21 Scalability study for the anomaly detection query. 64

4.1 Sample query composed by two operators (plus one Ingress and
one Egress) that sums the values carried by each tuple and then
computes the max for such sum over a fixed window of 10 minutes. 69

LIST OF FIGURES xvii

4.2 Alternation of TE (execution task) and TS (scheduling task)
during the runtime execution of Haren. 74

4.3 APIs coupling Haren, the user and the SPE instance. 75
4.4 Comparison of the performance of four single-class scheduling

policies. 84
4.5 Complete overheads of scheduling task TS 85
4.6 Overheads of the sequential part of TS 86
4.7 Algorithm 3 overhead for different P 86
4.8 Multi-Class Scenario 1 (steady state) 87
4.9 Multi-Class Scenario 2 (dynamic – high load) 88

xviii LIST OF FIGURES

1

Overview

1.1 Introduction

The late 1970s saw the introduction of the concept of a database machine, a
dedicated computer to store and process data [2, 3]. A few years later, in 1984,
the Teradata corporation surprised the market with the introduction of the
DBC/1012 database machine, which could store and process up to a terabyte
(1012 bytes) of information by taking advantage of multiple CPUs and hard
disks [4]. Thirty years later, in 2014, the world would need 1 billion(!) of these
machines to store all of its data. By 2018 this figure was 33 billion and it is
expected to reach 175 billion (or 175 zettabytes) by 2025 [5].

It is undeniable that we are living in the era of “Big Data”. In 2017, The
Economist wrote that “The world’s most valuable resource is no longer oil,
but data” [6]. A chilling confirmation of this statement came a few months
later when the Cambridge Analytica scandal illustrated how one could take
advantage of big data to swing the minds of voters in multiple elections [7].
Similarly to oil, which is not particularly useful before it is extracted from the
ground, big data is not useful before it is processed. In this thesis, we focus on
ways to process such data efficiently and quickly. However, before discussing
processing, we need to clarify what big data is and how it can be useful.

The Identity of Big Data

Although there is no single definition of big data, it generally refers to “the
increase in the volume of data that are difficult to store, process and analyze
through traditional database technologies” [8]. Big data has four main charac-
teristics, referred to as the four V’s [9]: (i) Volume, which is at the petabyte
scale, ruling out traditional databases and requiring new storage techniques, (ii)
Variety, which refers to heterogeneous data points which can include text, audio,
video, position reports etc, (iii) Velocity, which refers to the fast rate of arrival
of such data and (iv) Value, which is contained within the massive datasets
and can be extracted by combining the individual data points. Paraphrasing
the above, big data is “too big, too fast or too hard for traditional databases to
process” [10]. But where does this data come from?

1

2 CHAPTER 1. OVERVIEW

One of the primary sources of big data is individuals and their online
interactions. The World Wide Web and social networks such as Facebook and
Twitter are significant contributors to the generation of big data. In 2019,
more than 500 hours of video were uploaded to YouTube every minute [11].
Facebook’s more than 2.32 billion users have shared more than 219 billion
photos in a network of more than 140 billion friend connections [12,13]. This
data generation from individuals is expected to increase even further. It is
estimated that, by 2025, the average person will have a digital data engagement
over 4900 times per day, which translates to one interaction every 18 seconds [5].

Apart from online user interactions, another important source of big data
are applications related to the Internet of Things (IoT). The IoT is about
embedding numerous sensors in a multitude of everyday machines and devices,
from smartphones and tablets to washing machines and refrigerators, bus stops
and aircraft engines. These sensors collect vast amounts of heterogeneous data,
for example geographical, logistical, health, and environmental. This data can
provide great insights, enabling smarter services and more efficient processes.
By 2030 there are expected to be one trillion IoT sensors, making them one
of the most significant sources of big data. An essential characteristic of this
data is that it is usually very noisy. In particular, there might be only very few
critical events that need to be distinguished among thousands of data points,
introducing further challenges in the analysis of such datasets [14].

The Value of Big Data

Regardless of where they originate, the analysis of big data can be extremely
valuable in a myriad of applications. For example, big data was an essential
contributor to the “boom” in Artificial Intelligence research that we are ex-
periencing today [15]. Although many of the now-popular machine learning
algorithms were already known, there was a lack of high-quality training data
to make them useful. As companies like Google, Facebook, Microsoft, and
Twitter started capturing and analyzing big datasets, it became possible to
make revolutionary advancements in areas such as image and speech recognition,
spam detection and text translation using machine learning techniques [16].
Nowadays, a large number of companies are taking advantage of big data
to train the next generation of machine learning algorithms powering novel
technologies such as self-driving cars.

Another example of the value of big data is the analysis of social network
interactions, which can not only provide insights about behaviors and desires
of individuals but also societies as a whole. Companies with access to vast
amounts of user data, such as Google and Facebook, take advantage of this to
correctly predict which advertisement will be most effective on an individual
level. Apart from such use cases, social networks can potentially act as “social
sensors”, which can be utilized to create early warning systems by detecting
unusual events (e.g., earthquakes) based on the real-time user behaviors [17].
Social network data can also be used in monitoring systems, giving live feedback
about the behaviors and opinions of their users [14].

In the field of IoT and cyber-physical systems, data is not only useful for
analysis purposes but also for making real-time decisions. In smart grids, for
example, sensors (smart meters) in houses and businesses report electricity

1.2. PROCESSING BIG DATA 3

consumption values in real-time. The operator can then query these reports to
detect events such as blackouts or power surges [18–20]. Long-term power data
can assist in planning future expansions or reductions of the grid. Furthermore,
the cyber-physical system itself can take real-time corrective measures. For
example, it can balance the power generation based on the current consumption,
reducing redundancy and waste [14].

1.2 Processing Big Data

The real value of big data shines when we can extract insights from it through
quick and efficient processing. Here, we discuss two prevalent processing models
for big data, namely batch and stream processing, as well as the processing
infrastructure that is required to support them.

1.2.1 Batch Processing

The MapReduce model was developed to process vast amounts of raw informa-
tion such as crawled Web pages and transform them into useful representations,
such as graph structures of Web documents [21]. MapReduce was innovative
for its time because it could process datasets of huge Volume by combining
hundreds or thousands of machines and parallelizing the computation. It
significantly reduced the complexity of big data processing by hiding issues
such as fault tolerance, load balancing, and data distribution and led the
way for a myriad of big data processing frameworks such as Hadoop [22] and
Spark [23]. Similarly to traditional database systems, these big data processing
frameworks adopted the batch processing model. This model assumes that the
data, although vast in size, is bounded and it is persistently stored somewhere,
available for processing. Batch processing proved immensely successful, as
it allowed processing data at the petabyte scale with very high throughput.
However, there are limitations of batch processing that make it inadequate
for an increasing number of modern use-cases. In this thesis, we focus on a
different processing paradigm, called stream processing, which aims to address
these limitations.

1.2.2 Stream Processing

The Velocity attribute of big data implies that, to maximize its value, such data
needs to be analyzed immediately as it streams from its sources [24]. This can
be crucial in cyber-physical systems such as industrial manufacturing machines
which need to react to their environment in near real-time [5,25]. The batch
processing model, which includes relational databases and big data processing
frameworks, is not capable of coping with such online processing requirements.
In that model, the data is first stored and indexed and then queried by users
in a polling fashion, leading to high latency results. These limitations illustrate
the need for a different processing model, specially adapted to online data
processing. This model is referred to as stream processing.

Stream processing frameworks are specialized tools for online data processing.
They do not require all data to be persistently stored but, instead, can analyze
unbounded datasets of streaming data in an online manner. In contrast with

4 CHAPTER 1. OVERVIEW

the batch processing model, where data is queried only when the user explicitly
asks for it, stream processing frameworks continuously process incoming data
as it arrives [26]. This enables low latency results (down to milliseconds), giving
the opportunity for faster insights and decision making.

Stream processing has been studied since the beginning of the 2000s and
the academia proposed stream processing frameworks such as Aurora [27] and
Borealis [28]. Nowadays, companies that deal with big data are also actively
utilizing stream processing with their own frameworks. Notable examples
include Google’s DataFlow [29], Facebook’s Puma, Stylus and Swift [30],
Twitter’s Storm and Heron [30,31] and LinkedIn’s Samza [32]. Some of these
frameworks are published as open-source, available for anyone to use and study.
Additionally, there is a multitude of other open-source streaming frameworks,
the most noteworthy of which is Apache Flink [33].

1.2.3 Processing Infrastructure

Cloud computing is a technology tightly coupled with big data generation
and processing. It is the realization of “computing as a utility” and it has
arguably shaped the way people design and use applications. “The Cloud” has
many definitions, including Software as a Service (SaaS), Platform as a Service
(PaaS) and Infrastructure as a Service (IaaS). These definitions cover high-level
applications such as Gmail as well as much lower-level infrastructure such as
hardware equipment that can be rented by the hour [8]. In this thesis, we
consider cloud computing to be any hardware and software resources offered to
the public in a pay-as-you-go model. This kind of computing was revolutionary
when it first appeared because it removed the obligation to purchase and
maintain expensive data-center infrastructure for purposes such as hosting web
applications or processing massive amounts of data. Instead, the necessary
infrastructure is provided by a cloud provider, and the cloud user pays only
for the resources she consumes. More specifically, cloud computing has three
main characteristics [34]: (i) the illusion of infinite computing resources, (ii) no
up-front costs, and (iii) scaling on demand (and being charged accordingly).
The third characteristic is especially important because it removes the costs
associated with over or under-provisioning (i.e., having more or fewer resources
than necessary) [35]. Related to this is the “cost associativity” of the cloud,
which means that, in many cases, it costs the same to run one cloud instance
for 1000 hours or 1000 instances for one hour. This makes cloud computing
especially attractive for massively parallel data analytics applications. All of
the above have made cloud computing a desirable paradigm for many big data
analytics applications. However, as the volume and velocity of data increases
at an unprecedented rate, it brings the cloud computing model to its limits,
illustrating the need for hybrid, decentralized computational models [5].

Today, broad access to smartphones and various Internet-of-Things devices
empowers individuals to generate more data than ever. Running streaming
analytics on such data can be very valuable for extracting insights and also
making real-time decisions [25]. However, as the number of connected devices
grows rapidly every year, the established cloud-computing paradigm is reaching
its limits. With a predicted 29 billion connected devices by 2022 [36], it is
starting to become infeasible to transfer all raw data captured by such devices

1.3. ASPECTS OF STREAM PROCESSING 5

to the cloud for processing. Even if the communication infrastructure follows
the growth in the number of devices, much of the raw data captured by end-
devices such as smartphones and IoT sensors is uninteresting, and thus it
would be inefficient to utilize communication links and resources to transfer
them to a remote cloud [37, 38]. Instead, it would be much more preferable
to pre-process the data as close as possible to the sources and only transmit
relevant information to the cloud for further processing.

Edge computing (also referred to as fog computing [39] or cloudlets [40])
tries to address this challenge by moving the processing closer to the end
devices, in nodes such as routers, switches or base stations [25]. Thus, edge
computing aims to increase the capabilities and responsibilities at the edges of
the network, reducing the computational load at the core, which includes cloud
data centers and the accompanying communication infrastructure. Because
data processing in edge computing takes place in nodes at most a few hops
away from the end device, it opens the possibility of much lower latency results.
These low-latency capabilities can be especially important in cyber-physical
systems which need to respond in real-time to changes in the environment
and cannot afford to wait for the duration of a round-trip communication to a
remote cloud [25,37].

In stream processing, in particular, the edge layer can be used to provide a
hierarchical distribution of the computation. It can facilitate analytics strategies
where edge nodes pre-process, pre-filter, aggregate, and encode data generated
in end-devices before transmitting it to the cloud [41–43]. Such processing
can remove a lot of the noise in the input (i.e., large amounts of unimportant
events) and possibly provide stronger privacy guarantees by not transmitting
sensitive information to remote cloud servers [38, 40, 44, 45]. Moreover, in
certain applications, computations that are unsuitable for end-devices (e.g.,
smartphones) due to middleware or hardware limitations can be offloaded to
edge nodes instead. This provides all the advantages mentioned above together
with a reduction of the energy consumption of battery-powered end-devices [25].
In contrast to the cloud, edge nodes communicate only with end-devices in their
proximity and are thus location-aware. This opens new exciting opportunities
for smart aggregation and privacy enforcing features [40,46,47]. For example,
a camera in a connected vehicle that detects an accident can notify the nearest
base station which in turn may notify the drivers of nearby cars.

Along with the opportunities, edge architectures present new research and
engineering challenges. The nodes deployed in such architectures are often
heterogeneous and resource-constrained. Thus, it is essential to take this
heterogeneity into account, providing appropriate programming models with
support for both task and data-level parallelism, able to take advantage of
multiple processing units [48, 49]. Additionally, the hardware constraints at
the edge demand lightweight software and algorithms that do not overwhelm
the available resources [25,39].

1.3 Aspects of Stream Processing

In this section, we discuss various aspects of stream processing that are studied
in the thesis. The stream processing paradigm deals with processing streams

6 CHAPTER 1. OVERVIEW

of unbounded data. This is done by processing frameworks called Stream
Processing Engines (SPEs). An SPE runs one or multiple streaming queries.
A streaming query is a directed graph of operators connected through streams.
A stream is a (potentially infinite) sequence of objects, possibly sharing the
same schema. An operator is the basic processing unit in stream processing,
ingesting one or more streams, processing the data items in an online manner
and producing one or more streams as output. Special Ingress operators (also
called Sources or Spouts [33,50]) deliver the streams to the streaming query.
The final results are handled by Egress operators (also called Sinks [33]).

Streaming systems aim to process unbounded data streams in an online
manner. For this reason, their main Quality-of-Service (QoS) goals are low
latency and high throughput [51]. Latency in stream processing generally
refers to the amount of time it takes until an input object produces a result.
Throughput refers to the rate of streaming data that can be ingested by the
streaming query per unit of time. Streaming systems might also set additional,
extra Quality-of-Service goals such as memory consumption, balanced load or
utilization, depending on application-specific requirements [52,53].

1.3.1 Parallel Processing

Modern streaming systems take advantage of multi-core and distributed archi-
tectures to cope with the increasing data volume and velocity, by parallelizing
their computations whenever possible. Parallelization refers to splitting the
computation and assigning different tasks to separate computational units. In
streaming, there are two main methods of parallelization: task parallelization
and data parallelization [51]. Task parallelization refers to running different,
independent operators in parallel whereas data parallelization (or operator
fission [54]) is about running multiple identical instances of a single operator
on different subsets of the data in parallel. In both cases, the parallel instances
run independently, either on different CPU cores or even on different machines.

Figure 1.1 shows an overview of the different kinds of parallelism. In task
parallelism, independent operators run in parallel (B, C in the figure). Pipeline
parallelism is a subset of task parallelism, where the parallel operators have
a producer-consumer relationship (A, B in the figure). In data parallelism, a
splitter partitions the input data, which is then processed by multiple identical
parallel operator instances (A1, A2 in the figure). The splitter’s strategy defines
how the data is distributed to the different parallel instances (see [51] for an
overview of splitting strategies). Finally, the parallel input streams are merged
into a single stream by a merger, which can also enforce in-order delivery of
the tuples to the downstream operator. Both the splitter and the merger can
be either distinct operators or integrated into the processing operator logic.

Data parallelization can be especially useful if the velocity of the data
arriving at an operator (i.e., its arrival rate) exceeds that operator’s maximum
processing speed. In such a case, the Quality-of-Service of the whole streaming
pipeline might start to degrade. More specifically, since the operator will not
be able to process data quickly enough, its input queue(s) will start growing in
size, leading to an increase in the latency of its output tuples. This latency
increase will cascade downstream, potentially increasing the overall latency
of the streaming pipeline. Moreover, if the system uses a backpressure [55]

1.3. ASPECTS OF STREAM PROCESSING 7

B

D

C

A

(a) Task parallelism.

A B

(b) Pipeline parallelism.

A1

merger

A2

splitter

(c) Data parallelism.

Figure 1.1: Different types of parallelism.

mechanism, the upstream operators will slow down to match the speed of the
bottleneck operator, thus decreasing the throughput of the system. Using
data parallelization, the operator’s input stream is partitioned and, instead of
one operator instance processing the whole input, multiple identical instances
of the operator process different parts of it. Since each instance processes
less data individually, enough parallel instances can potentially eliminate the
performance bottleneck, improving the Quality-of-Service of the streaming
pipeline. Special care needs to be taken when parallelizing stateful operators
so that they end up with a self-contained state.

Applications that rely on parallelism require a synchronization mechanism,
so that parallel threads access and alter shared state safely [56]. The simplest
form of this is coarse-grained synchronization, where locks are used to synchro-
nize large parts of the functionality. Applications such as stream processing,
which have strict throughput and latency requirements, require more advanced,
fine-grained synchronization. Non-blocking synchronization methods are of
particular interest since they do not rely on locks but take advantage of build-in
atomic operations of the system (e.g., Compare-And-Swap). Such methods can
have the desirable characteristic of lock-freedom, guaranteeing that at least one
of the parallel thread will always be making progress.

1.3.2 Predictable and Explainable Stream Processing

The increasing demand for stream processing from academia, industry, and
individuals means that more and more analysts - many of which are not experts
in stream processing - are required to write streaming queries. For an analyst,
the transition from a traditional database to a streaming system is not always
straightforward because of the inherently temporal nature of streaming. Even
simple database queries such as “compute the average electricity consumption
per city” become more complicated in the streaming context because the analyst
has to consider timing issues such as windowing, event, and processing times
and delayed or out-of-order data [29]. This can make it difficult for non-experts
to understand the results of streaming programs and especially challenging to
write and debug streaming queries [57]. Additionally, prototyping and testing
streaming applications can also be more difficult because the data is flowing
and thus it might not always be possible to run a new version of the query on
the same data to verify correctness [30].

The above trends indicate a need for streaming systems that are explainable
and present users with easily understandable results. Additionally, streaming
systems need to be predictable and offer some degree of reproducibility [58].
There are attempts to mitigate these issues by bringing streaming systems

8 CHAPTER 1. OVERVIEW

closer to a relational model where streams and tables are treated as “two sides
of the same coin” [59]. Here, we discuss two orthogonal approaches that can
increase understanding and predictability in streaming pipelines: provenance
and determinism.

Explaining and Filtering Data Through Provenance

The proliferation of stream processing, together with the growing size and
complexity of streaming pipelines makes it very desirable to be able to explain
their results. For example, social networks such as Twitter or Facebook heavily
rely on streaming pipelines to quickly detect events when their users start to talk
about them, acting as social sensors [17,30]. These events can have a significant
societal and political impact, making it critical to assess their correctness and
trustworthiness [60]. Similar requirements exist for streaming systems deployed
in mission-critical scenarios (e.g., detecting fires) in cyber-physical systems.

One technique for achieving this is provenance. In general, provenance is
“any information that describes the production process of an end product” [61].
In streaming systems, in particular, we are usually interested in fine-grained data
provenance, which traces every output event to the input events that contributed
to it. A streaming system that provides fine-grained data provenance can
explain precisely how its results came to be, easing debugging and making
the system more explainable. Moreover, provenance allows the system to
store the source data that led to the generation of important events, enabling
reproducibility and reducing data storage and transmission requirements.

Fine-grained data provenance can be especially crucial in cyber-physical
systems such as sensor networks [60]. One use of provenance in such systems is
to explain critical events and allow further investigation. A relevant example
could be a smart grid system which uses a streaming pipeline to produce alerts
for blackouts if multiple homes report zero consumption during the same time
window. In case of such an alert, the human operator would need to quickly
find out which smart meters from which houses reported loss of power, in order
to take the necessary steps to alleviate the issue. This goal could be easily
achieved with fine-grained data provenance, which would be able to report the
exact measurements that generated the blackout alert.

Another issue with modern cyber-physical systems is that they generate
vast amounts of data. A modern vehicle senses dozens of gigabytes per day [62],
jet engines can generate a terabyte of data per 24-hour period [63] and au-
tonomous cars are expected to produce over three terabytes of data per hour [5].
Depending on the application, it can be costly or even infeasible to store or
transmit all this data to the cloud for processing. One alternative is to process
the data locally (or delegate the processing to edge nodes) and use provenance
to store and transmit only noteworthy inputs (i.e., those which led to the
generation of critical events), removing unwanted “noise” from the data [38].

Achieving Predictability through Determinism

Apart from being explainable, being predictable can also be very beneficial for a
streaming system by making it easier to understand and debug streaming queries.
One way to achieve predictability is to guarantee deterministic processing. In

1.3. ASPECTS OF STREAM PROCESSING 9

a nutshell, deterministic processing implies that, for a specific input, the
streaming system always produces the same output.

In stream processing, data is pushed through a directed graph of operators.
Depending on the execution model, some or all of these operators can execute in
parallel. Similarly to traditional parallel programs, non-deterministic behavior
can arise merely due to the parallel processing and the data interleavings during
runtime. This can happen even if there is nothing inherently non-deterministic
in the program logic itself [64]. For example, an operator might be receiving
data from multiple parallel streams, either from parallel instances of another
operator or from different operators. If the system does not explicitly enforce
determinism, the interleavings of the input tuples to that operator might differ
between executions, depending on runtime characteristics (e.g., scheduling
decisions, processing load). Consequently, the operator might produce different
outputs for the same input, exhibiting non-deterministic behavior. Such
behavior can complicate debugging and make it more difficult to reason about
streaming programs.

We mainly focus on external-determinism or determinacy, where successive
program executions with the same input always produce the same final output,
regardless of the runtime characteristics of the system. A streaming system
can guarantee deterministic processing if two requirements are met. First,
determinacy needs to be satisfied for every operator, meaning that, for the
same input sequence, each operator will produce the same output sequence.
Second, determinacy needs to be satisfied for the data flows between the
operators so that the sequences of objects in these input streams is always
the same, regardless of runtime characteristics such as the parallelism degree.
As discussed later in the thesis, the trade-offs of determinism are degraded
performance and programmability [64]. In this thesis, we study ways to
minimize such drawbacks by enforcing determinism more efficiently.

1.3.3 Scheduling

As stream processing pipelines move closer to the edge and run in possibly
resource-constrained devices, it becomes more and more important to efficiently
utilize all available computational resources. At the same time, both edge and
cloud processing nodes can run heterogeneous applications with vastly different
priorities and Quality-of-Services requirements, making it critical to prioritize
specific computations compared to others. These aspects indicate the need for
a way to control resource allocation in data processing. Such control can be
achieved with careful scheduling.

In general, scheduling refers to the process of assigning specific units of
work to specific resources. In stream processing, in particular, we identify two
main types of scheduling: resource scheduling and thread scheduling. Resource
scheduling or operator placement deals with picking where each processing unit
(i.e., streaming operator) is deployed and can be used to provide better load
balancing and reduce communication cost, which in turn can improve other
Quality-of-Service metrics such as latency and throughput [53, 65]. Thread
scheduling is orthogonal to the resource scheduling and much more fine-grained,
choosing which computation to prioritize inside each processing group [52]. This

10 CHAPTER 1. OVERVIEW

thesis focuses on utilizing thread scheduling to achieve specific performance goals
and satisfy the Quality-of-Service goals of heterogeneous streaming queries.

1.4 Research Problems

1.4.1 Parallelism and Determinism

As the volume and velocity of streaming data increases, data parallelization
becomes critical for a streaming system to achieve the desired Quality-of-
Service [51,66–68]. However, parallelization comes with its own set of conflicting
goals. On one hand, parallelization performs best when there is minimal
synchronization, and the parallel instances of the operators work independently
as much as possible. On the other hand, correctness in the form of determinism
increases the synchronization requirements of the system [64,69,70]. This is
because, to ensure determinism, not only do operator implementations need to
be deterministic, but there also needs to be a consistent ordering of their input
tuples. The ordering requirement is especially important when such operators
are fed by multiple parallel input streams. To ensure determinism in such cases,
the tuples from all input streams need to be sorted in timestamp order before
they can be processed by the next operator. In some SPEs, sorting is done
at the Operator-Level by dedicated merge-sorting operators [71, 72]. However,
such operators can negatively affect performance, defeating the purpose of data
parallelization. Additionally, the need for adding such operators to the queries
conflicts with the desire for syntactic transparency which would allow a query
to be parallelized with minimal or no configuration from the user [73]. Thus,
our first research question is “Can we achieve highly-parallel and deterministic
processing in streaming transparently, while minimizing the performance impact
of determinism?”

1.4.2 Fine-Grained Data Provenance in Streaming

As discussed in § 1.3.2, fine-grained data provenance can be beneficial in
streaming systems, allowing the user to verify correctness, easing debugging
and maintaining relevant source data related to critical events [57,61,74]. Fine-
grained data provenance in streaming needs to link every output tuple back
to the source tuples that contributed to it. However, due to the potentially
high volume and velocity of the data, provenance is an intrinsically heavy
operation. This implies that the performance of a streaming application can
be limited by the efficiency of its provenance capture [60]. State-of-the-art
approaches for streaming provenance use instrumented operators that enrich
tuples with provenance specific annotations that allow the linking of output to
source tuples to occur [60]. However, these annotations can grow arbitrarily
large, putting pressure on the system’s memory. Additionally, these methods
require the maintenance of all source data for some time, which can further
add to the memory and processing requirements. Because of the above, these
state-of-the-art approaches can be prohibitive in applications maintaining large
states or applications that need to run in resource-constrained devices, such
as those deployed at the edge of cyber-physical systems [25,39,75]. Thus, our

1.5. THESIS CONTRIBUTIONS 11

second research question is “Can we maintain fine-grained data provenance in
streaming systems with minimal processing and memory overhead?”

1.4.3 Customizable Thread Scheduling

Careful scheduling can prove particularly useful in modern SPEs, enabling better
utilization of system resources and improving the Quality-of-Service [27, 53, 65,
76]. Thread scheduling, in particular, gives fine-grained control for prioritizing
specific computations and achieving precise Quality-of-Service goals [52]. Over
the years, there has been extensive research in thread scheduling, leading to
many techniques for optimizing particular performance metrics [27, 77–81].
However, custom thread scheduling techniques for streaming have mostly
remained research prototypes. Widely adopted SPEs such as Apache Flink [33]
or Apache Storm [50] offer no option for custom thread scheduling. Instead,
they rely on the operating system to schedule their processing threads. This
is because thread scheduling involves many low-level details and is difficult to
implement efficiently and correctly. Additionally, scheduler implementations
are usually bound to a specific SPE, making it difficult to extend or port to
other SPEs. Unfortunately, relying on the operating system for scheduling
is not always ideal. The operating system lacks application-awareness, i.e.,
it is unaware of the various Quality-of-Service goals of the streaming queries,
potentially leading to sub-optimal performance. These issues give rise to our
third research question: Can we provide resource-efficient and application-aware
scheduling for streaming systems?

1.5 Thesis Contributions

1.5.1 Communication-Layer Determinism

We begin this work in Chapter 2 by tackling the first research question regard-
ing highly parallel stream processing with determinism guarantees, which was
introduced in § 1.4.1. We propose a modular and transparent method to guar-
antee determinism in parallel stream processing without sacrificing efficiency.
To achieve this, we replace the traditional dedicated merge-sort operators with
a new technique. In particular, we build upon the ScaleGate [82] data structure
which, in contrast with previous approaches, relies on lock-free synchronization
to merge-sort the parallel streams. Moreover, ScaleGate allows us to move
the enforcement of determinism from the Operator (Application) Layer to
the Communication (Middleware) Layer, providing the opportunity for much
higher performance. We distill our efforts in the implementation of the Viper
module, which can be integrated into SPEs, providing determinism facilities
transparently to the user with a minimal performance impact. We evaluate
this technique in realistic scenarios from vehicular networks and smart grid
systems and observe significant benefits in the Quality-of-Service (throughput
and latency) as well as in the energy efficiency of the system.

12 CHAPTER 1. OVERVIEW

1.5.2 Low-Overhead Streaming Provenance

In the second part of the thesis, in Chapter 3, we answer the second re-
search question and present GeneaLog, a new technique for fine-grained data
provenance in deterministic streaming applications. GeneaLog advances the
state-of-the-art by not requiring variable-length annotations for provenance
capture. Instead, it uses small, fixed-size annotations, reducing the memory
overhead of provenance. Additionally, it removes the requirement for tem-
porary storage or transmission of all the source data by taking advantage of
the memory management of the process to distinguish source tuples that are
actually important for provenance. Lastly, it gives the option to distribute the
provenance computation to separate nodes. We evaluate a fully implemented
prototype of GeneaLog in two different SPEs using real-world queries and
study its performance and scalability characteristics, observing considerable
improvements (sometimes more than an order of magnitude) compared to the
state-of-the-art.

1.5.3 Custom Scheduling for Streaming Systems

In Chapter 4, the last part of the thesis, we answer the third research question
by exploring the scheduling problem in stream processing. In particular, we
focus on thread-scheduling, i.e., choosing the allocation of the CPU threads to
the streaming operators in order to meet specific performance goals. Instead of
dedicating a thread for every streaming operator and delegating the scheduling
task to the operating system, we study application-level thread scheduling,
where the streaming system is responsible for its scheduling decisions. We distill
the abstractions needed to quickly implement diverse scheduling policies in an
SPE as well as the primitives that the SPE needs to support for this to occur.
Moreover, we use our observations to design and implement Haren, a general
scheduler for streaming systems. Haren can be integrated into a streaming
system and offer custom thread scheduling facilities with minimal effort from
the user. We thoroughly evaluate Haren with different scheduling policies using
hardware that can be deployed at the edge of cyber-physical systems, where
correct scheduling decisions can be of paramount importance [81]. We observe
that Haren manages to meet the goals of a variety of scheduling policies and,
in many cases, outperforms the dedicated threads approach.

1.6 Conclusions and Future Work

This thesis studies several optimizations for stream processing with a focus on
cyber-physical systems. In this age of big data of high volume, velocity, and
variety, we present techniques to make stream processing systems deterministic
and explainable without sacrificing resource-efficiency. We propose and evaluate
three fully implemented prototypes, Viper, GeneaLog, and Haren, which ad-
vance the state-of-the-art in determinism, provenance, and scheduling in stream
processing, respectively. In particular, Viper reduces the communication and
synchronization costs of parallel operator instances within an SPE and boosts
the scale-up potential of streaming queries, being able to increase throughput
up to 70% and reduce the energy consumption by half. GeneaLog provides

1.6. CONCLUSIONS AND FUTURE WORK 13

fine-grained data provenance in streaming with minimal overhead in both
intra and inter-node deployments, greatly outperforming the state-of-the-art.
Lastly, Haren easily integrates into an SPE and allows the implementation
of user-defined thread scheduling policies with minimal effort, enforcing these
policies efficiently by parallelizing the work and outperforming other, widely
used approaches.

In future work, it would be interesting to explore further how to take advan-
tage of the heterogeneous architectures present at the edge of cyber-physical
systems, using GPUs and other accelerators to improve stream processing.
Additionally, elasticity at the edge is an important direction that needs to be
explored further, allowing to add or remove processing power in the form of
edge nodes depending on the processing requirements. Finally, location-aware
processing is an exciting direction, along with better visualization techniques
of stream processing that would further aid in understanding and debugging
streaming pipelines.

14 CHAPTER 1. OVERVIEW

	Abstract
	Acknowledgement
	List of Publications
	Overview
	Introduction
	Processing Big Data
	Batch Processing
	Stream Processing
	Processing Infrastructure

	Aspects of Stream Processing
	Parallel Processing
	Predictable and Explainable Stream Processing
	Scheduling

	Research Problems
	Parallelism and Determinism
	Fine-Grained Data Provenance in Streaming
	Customizable Thread Scheduling

	Thesis Contributions
	Communication-Layer Determinism
	Low-Overhead Streaming Provenance
	Custom Scheduling for Streaming Systems

	Conclusions and Future Work

	Viper: A Module for Communication-Layer Determinism and Scaling in Low-Latency Stream Processing
	Introduction
	System Model
	Data Streaming
	Parallelism, determinism and syntactic transparency
	Streaming operators' performance metrics

	Operator- vs communication-layer determinism
	Limitations of operator-layer determinism
	Additional potential benefits from determinism provisioning in the SPE-communication-layer

	The Viper module
	Viper as an SPE module: Apache Storm use case
	Overheads of operator-layer determinism in Apache Storm
	Additional overheads - sharing tuples
	Integration of the Viper module

	Evaluation
	Intra-Node Parallel Analysis - Setup
	Intra-Node Parallel Analysis - Scalability
	Operator pos_rep
	Operator new_seg
	Operator zero_speed
	Discussion on Power Consumption

	Inter-Node Distributed Parallel Analysis - Setup
	Inter-Node Distributed Parallel Analysis - Scalability

	Related work
	Conclusions

	GeneaLog: Fine-Grained Data Streaming Provenance in Cyber-Physical Systems
	Introduction
	Preliminaries
	Problem definition
	Linking sink and source tuples
	GeneaLog's instrumented operators
	Traversal of the contribution graph

	Intra-task provenance
	SU implementation using standard operators

	From intra-task to inter-task provenance
	Explicit inter-task provenance
	MU implementation using standard operators

	Implicit inter-task provenance
	Evaluation
	Related Work
	Conclusions and future work

	Haren: A Framework for Ad-Hoc Thread Scheduling Policies for Data Streaming Applications
	Introduction
	Preliminaries
	Goals and system model
	System model

	Overview
	Inter-thread and intra-thread scheduling
	Architecture

	Execution Task (TE)
	Scheduling Task (TS)
	Evaluation
	Experiments setup
	Scheduling Policies
	Single-Class Scheduling
	Multi-Class Scheduling

	Related work
	Conclusions and future work

