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Modeling colloidal nanoparticles:
From growth to deposition

Joakim Löfgren
Department of Physics

Chalmers University of Technology

Abstract

In recent decades metal nanoparticles (NPs) have been the subject of intense research.
The interest stems from the NPs physicochemical properties that can be conveniently
tuned through, e.g., their size, shape or composition. A good example is the selective
absorption of electromagnetic radiation exhibited by gold nanorods, which is lever-
aged for applications in sensing and medicine. In order to realize the full potential of
technologies reliant on NPs and ensure fitness for commercial use, facile fabrication
methods that allow for a high degree of shape and size control are required. For this
purpose, wet-chemistry-based synthesis in which colloidal NPs self-assemble into a
targeted morphology have emerged as promising candidates. Development and refine-
ment of synthesis protocols is, however, hampered by a lack of theoretical understand-
ing of the complex chemical environment in NP solutions. As a result, experimental
workers are often left to rely on intuition. This applies not only to the growth process
itself, but also later down the processing chain, e.g., during NP deposition.

This thesis aims to address two problem areas relating to NP growth and deposition
where current models need improvement. The first such area concerns the descrip-
tion of ionic and molecular adsorption on the surface of metal NPs. We show how
combining thermodynamic modeling, density functional theory and experimental data
can lead to more realistic NP shape predictions. A closely related subject is the growth
mechanism of anisotropic gold nanorods, which has been a subject of debate for almost
the three decades. Here, we consider possible avenues through which shape anisotropy
can arise using insight frommolecular dynamics simulations. The second problem area
is the description of forces between NPs and nearby surfaces, which is relevant, e.g, for
applications reliant on NP deposition. A model based on Derjaguin-Landau-Verwey-
Overbeek theory is developed that describes how the shape and composition of a sur-
face affects particle deposition.

Keywords: colloidal nanoparticles, gold, anisotropic, nanorods, modeling, density func-
tional theory, thermodynamics, dispersive interactions, van derWaals, deposition, DLVO
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1
Introduction

Nanoscience is defined as the study and development of systems having one or more
dimensions lying in the range of 1 to 100 nm. At this length scale quantum mechani-
cal effects can lead to new or altered properties of a material that do not manifest on
macroscopic scales.

Historically, the use of nanoscale systems long predates any theory or systematic
attempt at understanding the underlying phenomena, as evidenced, e.g., in the stained
glass of church windows, resulting from the interaction of light with nanoparticles
present in the glass [2]. Only with the advent of modern physics during the 20th cen-
tury has theoretical understanding, manufacturing and precise manipulation of such
systems become possible. Today, nanoscience constitutes an enormous research field
with applications ranging from consumer grade products to next generation technolo-
gies in electronics [3–6], medicine [7–9] and renewable energy systems [10–12].

1.1 Metal nanoparticles
Metal nanoparticles (NPs) represent a prominent family of nanosystems, consisting of
solid particles of various shapes where all dimensions are in the nanometer range. In
applications, NPs can assume a multitude of roles, e.g., functioning as building blocks,
delivery agents, catalysts, sensing devices or therapeutic agents. Below, we elaborate
on these uses and discuss how they relate to different NP properties. Extra emphasis is
put on the effect of physical properties such as shape, size, composition, that can con-
veniently be tuned during fabrication. Indeed, the versatility offered by such “handles”
is one of the primary driving forces behind the extensive research into NPs.

For the use of NPs as building blocks or delivery agents, the reactivity of its surface,
or more precisely the propensity of atoms and molecules to adsorb on the surface is one

1



Chapter 1. Introduction

a) b) c)

Figure 1.1: Various nanomaterials and their applications. a) Hydrogen sorption in Pd
enables the development of hydrogen sensing devices. b) The tunable optical properties
of Au nanorods can be used for cancer treatment. c) Carbon nanotubes have excellent
mechanical properties that can enhance the strength of materials.

of the most important considerations. Adsorbed molecules can act as linkers between
nanoparticles to build circuits [13, 14] or as carriers that pharmaceuticals can “piggy-
back” onto and create drug delivery systems [15–17]. While the origin of metal surface
reactivity can be surprisingly subtle in many cases [18], computational methods can
nowadays aid us in understanding and predicting its dependence on parameters such
as NP shape and composition.

An oft-mentioned fact about NPs is the high surface-to-volume ratio found in a sam-
ple of NPs compared to an otherwise equivalent bulk sample. The usefulness of having
a large amount of surface area is easy to appreciate if we consider heterogenous cataly-
sis, where the use of NPs has been actively studied since the middle of the 20th century
[19]. Here, transient binding of reactants to catalytically active sites on the NP surface
gives rise to new reaction pathways that can lower the reaction energy barrier. NP-
based catalysts thus have the potential to greatly expedite reactions due to the large
amounts of surface area exposed.

Another large group of applications are enabled by the scattering, adsorption or emit-
ting of electromagnetic radiation by NPs. Within the context of this thesis, a highly
relevant example is provided by gold nanorods (Fig. 1.1b). Like silver [20], gold NPs ex-
hibit strong localized surface plasmon resonances (LSPRs) that allow them to efficiently
absorb incoming light in certain frequency windows [21]. In the case of nanorods, the
shape anisotropy leads to a splitting of the LSPR into one longitudinal and one transver-
sal mode. The frequency of the longitudinal resonance mode is tunable through the
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1.2. Challenges for nanotechnology

aspect ratio of the rod, providing control over the optical response of the rod. This is
the basis of photothermal cancer therapy where nanorods are targeted at a tumor and
subsequently irradiated at the LSPR frequency. The adsorbed light is then given off as
heat to the environment, resulting in the destruction of the cancer cells [22, 23]. In a
similar vein, Pd NP have been investigated as a means for building hydrogen sensors.
The construction of such sensors is crucial for the use of hydrogen as a renewable en-
ergy source since fuel leakage can easily lead to volatile mixtures of hydrogen and air.
The key idea is that hydrogen can be stored in the interstitial sites of Pd (Fig. 1.1b).
The amount of hydrogen stored depends on the partial pressure of hydrogen in the
surrounding gas-phase, and any changes resulting from a sudden release of hydrogen
can be detected as shift in the peak of the NPs LSPR spectrum [24].

1.2 Challenges for nanotechnology
Despite the potential of NP-based technologies, many of the applications are still in
their infancy. There is thus no shortage of challenges that have to be addressed before
they can be adopted for widespread use. One challenge concerns up-scaling; industrial
production requires cost-effective manufacturing processes while historically NPs have
been created in specialized laboratories using time-consuming methods and expensive
materials. In the recent decades, top-downmethods have emerged as a scalable route to
obtaining nanomaterials for use in, e.g., electronics. They are, however, less suited for
NPs since they often rely on surface modification via lithography. On the other hand,
bottom-up, wet chemical synthesis offers a simple way of obtaining NPs where prop-
erties of the products such as size, shape and composition are tunable through various
synthesis parameters and components. A key issue here, however, is the lack of the-
oretical understanding concerning the synthesis processes themselves. Consequently
improvements to protocols are mainly due to heuristics and ad hoc experimentation
rather than the result of a rational design process, an approach that is ultimately lim-
ited.

From a societal perspective, there are also safety issues regarding nanotechnology
as a whole, including toxicity, environmental pollution and the development of nano-
material-basedweaponry. For instance, the interactions of NPs with complex biological
environments such as the inside of a human body are in general not well understood.
The small size of the particles facilitates transport through the body and provides a
large available surface for interactions with surrounding biomolecules. Indeed, studies
have concluded that NPs entering the human body through the airways [25] or gastro-
intestinal tract [26] can be taken up in the blood circulation and distributed to various
organs via the liver and the spleen. The clearance rate of NPs from the body depends on
the specific particle properties and may proceed via different mechanisms [27]. Long
term retention of NPs leads to concerns regarding, e.g., cell damage as the result of
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Chapter 1. Introduction

excess generation of reactive oxygen species due to the presence of the particles [28].
There is thus a need for detailed experimental as well as theoretical studies with regards
to the interactions in the interfacial region between NP surface and organic molecules.

1.3 Thesis aim and outline
The overarching goal of this thesis is to help bridge the gap between theoretical mod-
eling and application for a number of topics related to the challenges described in
Sect. 1.2. Most prominently featured are issues related to adsorption of molecules and
ions at metal surfaces, where the importance of properly accounting for dispersive in-
teractions and solvation effects is investigated in Papers I and II. From a more technical
perspective, the incorporation of dispersive interactions into density functional theory
(DFT), which is extensively used throughout the first two papers, is described in Paper
V. While the ability to model NP surfaces from first-principles methods such as DFT is
extremely useful in modeling the growth of NPs, the length and time scales involved
often necessitate the use of other methods, e.g., molecular dynamics (MD) in order to
gain a more complete understanding. This is the case for gold nanorod growth, where
the origin of their anisotropy and the growth mechanism has been under debate for al-
most two decades. Here, Paper III presents a critical review of recent modeling efforts,
primarily based on MD. Finally, in Paper IV, another step upwards in the length and
time scales is taken as the modeling of NP deposition is addressed using Derjaguin-
Landau-Verwey-Overbeek (DLVO) theory.

A background on colloidal NPs including a brief historical perspective, fabrication
methods, stability, and optical properties is provided in Chapter 2. In particular, a gen-
eral overview of wet-chemical synthesis of NPs via seed-mediated growth is provided
and subsequently exemplified by the synthesis of gold nanorods. Chapter 3 begins with
an overview of various aspects of colloidal modeling and relevant methodology. The
next two sections provide background for the two principal modeling aspects most rel-
evant for the thesis. The first such aspect is the thermodynamics of surfaces and NP
shape prediction, where a detailed account is also provided for how to combine the de-
rived expression with DFT. The second aspect concerns interparticle and surface forces,
focusing on DLVO theory. Since DFT calculations play a central role in this thesis, the
underlying theory is presented separately in Chapter 4. Here, an important topic is
that of dispersion-corrections, which play a prominent role in several of the appended
papers, which are summarized in Chapter 5.
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2
Colloidal nanoparticles

Elements combine and change into compounds. But that’s all of
life, right? It’s the constant, it’s the cycle. It’s solution,
dissolution. Just over and over and over. It is growth, then decay,
then transformation.

Walter White

2.1 Historical highlights
The scientific study of colloidal NPs began in the 1850s with Michael Faraday, who was
interested in the optical properties of thin gold sheets [29]. As a by-product of this
research he obtained a gold sol and began a systematic investigation of colloidal gold
created from the reduction of a solution of gold chloride by phosphorus. He deduced,
among other things, that the characteristic red tint of the sol was due to the interaction
of light with suspended gold particles invisible to the naked eye [29]. Colloid science as
a whole, however, did not start to pick up momentum until the end of the 19th century.
In particular regarding NPs there are several highlights from this period. The first
synthesis of colloidal silver from reduction of silver citrate by iron(II) citrate was carried
out in 1889 by Lea [30]. Building on the work of Faraday, Zsigmondy invented the
nucleus method in 1905 for the synthesis of gold sols [31]. Chloroauric acid (HAuCl4)
was reduced by white phosphorus creating a solution of NPs seeds 1–3 nm in diameter.
To obtain larger NPs a growth solution was prepared in a vial and initially kept separate
from the seeds. This growth solution containedmore gold salt, which was reduced with
formaldehyde. Addition of the seeds to this growth solution resulted in the formation
of gold NPs 8 to 9 nm in diameter. Conceptually, Zsigmondy’s method is a predecessor
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Chapter 2. Colloidal nanoparticles

to much of modern colloidal NP synthesis that follow the same logic of letting seed
particles grow into a target morphology.

Significant advancements were also made on the theoretical side. The rapid motion
undergone by suspended colloidal particles and their stability against gravity was ex-
plained in terms of Brownian motion by Einstein [32] and Smoluchowski [33]. The
optical properties of metal sols were elucidated by Mie [34] and Gans [35], who de-
rived shape-dependent expressions for the scattering and absorption of incident light
by the particles from Maxwell’s equations, providing an explanation for the observa-
tions made by Faraday some fifty years earlier.

2.2 Fabrication methods
Fabrication of nanomaterials is often categorized as being either top-down or bottom-
up. A top-down method starts from a bulk sample and then successively removes ma-
terial until the desired shape or form is obtained as done in, for instance, optical or
electron lithography. Conversely, bottom-up fabrication is the assembly of a nanoma-
terial from smaller constituent pieces. Both categories of nanofabrication have their
distinct advantages and limitations, but only bottom-up, wet-chemistry approaches
will be dealt with here since they provide the most facile route to obtaining NPs while
top-down methods are more suitable for, e.g., surface patterning [36].

There are two principal approaches to bottom-up fabrication: gas-phase and wet-
chemical (liquid-phase) synthesis. A gas-phase method starts from a precursor which
is evaporated, forming an intermediate state containing monomers¹. Nucleation in this
intermediate state then leads to primary particles that form NPs, e.g., by coalescing
[37]. The resulting colloid of solid particles suspended in a gas is known as an aerosol.
Liquid-phase synthesis processes follow a similar pattern. A precursor is created, for
instance by dissolution of a solid, and an intermediate state of monomers is produced
from chemical reactions. Nucleation in the monomer solution then leads to primary
particles that subsequently form NPs through e.g., diffusive growth [38]. Generally,
gas-phase routes yield very pure product particles with minimal by-products, and scale
better than their liquid-phase relatives. When it comes to the fabrication of anisotropic
shapes, however, wet-chemical synthesis is the superior approach.

One example of a wet-chemical synthesis protocol has already been encountered,
namely Zsigmondy’s nuclear method described in the previous section. Another rele-
vant example is the Turkevich method [39], which is one of the most commonly em-
ployed protocols for the synthesis of spherical gold NPs². A solution of chloroauric
acid is heated to its boiling point and then a solution of sodium citrate (Na3C6H5O7) is
added. The sodium citrate will act both to reduce the gold and as a capping agent for

¹In this text, a monomer refers to a unit of the precursor compound that supplies the growth.
²It can also be used to obtain silver NPs.
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2.2. Fabrication methods

the subsequently formed NPs, electrostatically stabilizing them against agglomeration
by forming a negatively charged surface layer.

2.2.1 Seeded growth

Shape-controlled wet-chemical synthesis of metal NPs is perhaps most easily achieved
based on the concept of seeded, or seed-mediated, growth. Much like in Zsigmondy’s
nucleus method, the key characteristic of seeded growth is the preparation of a NP
seed solution, which is later added to a separately prepared growth solution in order
to achieve the desired product. The decoupling of the nucleation and growth stages
allows for better control over size and shape of the final particles, at the cost of a more
laborious synthesis process compared to one-pot protocols. Modern seeded growth be-
gan with the synthesis of gold nanorods in 2001 by Murphy and coworkers [40], who
also demonstrated that it could be used to achieve greater size control when synthe-
sizing spherical gold NPs [41]. Following the same general principles, seed-mediated
growth protocols have since been reported for a variety of other metals such as Ag, Pd,
Pt, and Cu [42–44]. In a typical seeded growth protocol the seed solution will consist of
a metal salt, a reducing agent and a capping (stabilizing) agent (Fig. 2.1) to prevent ag-
gregation of the seeds and possibly alter the surface energetics to expose certain facets.
The growth solution has the same basic ingredients but different compounds may be
used depending on the goal of the synthesis. For instance, another type of metal salt
may be used if bimetallic structures are targeted [45]. Furthermore, the growth solu-
tion reducing agent must be sufficiently weak to prevent nucleation of additional seeds.
This allows for metal ions to be reduced in a catalytic reaction near the surface of the
seeds [40]. The resulting growth of the pre-existing seeds can then be guided towards
anisotropic shapes by adding a second capping agent. In practice, the basic synthesis
recipe described here is often augmented with additives or co-surfactants in order to
improve yield, monodispersity or to achieve different shapes. In terms of the growth
stage, one can distinguish between one-step and multi-step protocols [46]. The latter
are characterized by several iterated growth cycles, during whichmore growth solution
is added to aliquots drawn from the current seed/growth solution mix.

Deciphering the precise role played by the various ingredients is very difficult as
they may vary on a method-to-method basis and synergistic effects can make the in-
dividual impact of a compound hard to disentangle from the whole. The descriptions
provided above, while intuitive, are too simplistic to adequately account for the myriad
permutations of seeded growth protocols.
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     Metal salt 1
Cappring agent 1

Reducing agent 1

Nanoparticle seeds

     Metal salt 2
Cappring agent 2

Reducing agent 2

Monomers Nanoparticles

Seed solution

Growth solution Product

Add seeds

Figure 2.1: A general outline for seed-mediated growth protocols. Decoupling the nu-
cleation and growth stages by separately synthesizing seeds and then adding them to a
growth solution of monomers allows for more precise shape and size control. Depend-
ing on the desired outcome, metal salt and capping agents can vary between the two
solutions. The growth solution reducing agent is constrained by the requirement that
no additional nucleation take place.

2.3 Gold nanorods

Gold nanorods are the most extensively studied synthesis products of seed-mediated
growth owing to their physicochemical properties, spurring research into a multitude
of potential applications in, e.g., drug delivery, cancer therapy and sensing. Further-
more, they also pose a very interesting problem from a theoretical perspective with
many questions that remain unanswered regarding, e.g., the origin of the symmetry
breaking event that occurs in the evolution from spherical seeds to nanorods. As the
first seeded growth method to gain widespread popularity it is also particularly appro-
priate as a concrete illustration of the generalized description presented in Sect. 2.2.1.
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2.3. Gold nanorods

2.3.1 Synthesis
Turning to the actual nanorod synthesis procedure, it should be noted that since its
advent many variations of the original protocol have spawned that try to improve,
e.g., yield or control over the AR. The latter is especially important since it allows for
tuning the plasmonic response (Sect. 2.4). Rather than providing an exhaustive list of
all possibilities, focus will be on the original three-step protocol by Murphy [40] and
the nowadays more commonly employed silver-assisted one-step protocol [47].

Three-step protocol (P-1). This protocol follows the general seeded growth pro-
cedure outlined in Fig. 2.1. The seeds are prepared by reducing HAuCl4with ice-cold
sodiumborohydride³ (NaBH4) and adding (trisodium) citrate to stabilize the seeds against
aggregation. In the growth solution the reduction of HAuCl4is instead accomplished
with ascorbic acid (AA) in the presence of CTAB surfactant (Fig. 2.2). A concentration
of around 0.1M CTAB is required in order to obtain nanorods, which is 100 times more
than the first CMC, 1.0mM, of CTAB at room temperature [48]. The rods are grown
iteratively in three steps and the final solution must be left for several hours to attain
maximal growth. The rods thus synthesized are oriented along [110] and have a penta-
twinned structure. In an idealized model the side facets are all {100} (Fig. 2.3a), but in
practice a mix between {100} and {110} is often found [49]. The rod termination has a
pyramidal structure and consists of {111} facets (Fig. 2.3). The AR ranges between 10 to
25 and the length of a fully grown rod can be in the lower micron range [50] (Fig. 2.4).
A significant shortcoming with the P-1 protocol is that the initial yield of nanorods
by shape is only about 5% before purification. It turns out there is a simple way of
obtaining nanorods in high yield by a few straightforward modifications to P-1.
Silver-assisted protocol (P-2). In this synthesis protocol, CTAB replaces sodium cit-

rate as the capping agent in the seed solution and silver nitrate (AgNO3) is added in
small amounts to the growth solution (Fig. 2.2). Nanorods are subsequently grown in
a single step, yielding rods with ARs that can be precisely varied between 2 to 5 by
changing the silver concentration. The overall dimensions of these rods are signifi-
cantly smaller compared to the P-1 rods, with typical rod lengths under 100 nm [50].
Furthermore, the nanorods have an octagonal cross-section and are single-crystalline
rather than penta-twinned. While no broad consensus has been achieved with regards
to the faceting, several studies suggest the presence of high-index prism facets such as
{520} [51], or possibly a mix between such facets and {100}/{110} [52]. The termination
is truncated pyramidal and exposes a mix of alternating {111} and {110} facets. Many
attempts at further improvement of the silver-assisted growth protocol have beenmade
by introducing various additives such as organic molecules and acids. A notable exam-
ple is the introduction of a co-surfactant in the form of sodium oleate (NaOl), which
has been observed to produce nanorods with a 99.5% yield and tunable AR [53]. Inter-

³Due to the quick reaction kinetics of NaBH4, a lower temperature is necessary to obtain a controlled
reaction.
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Chapter 2. Colloidal nanoparticles
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Figure 2.2: Chemical structural formulas and names of the compounds used in the
seeded growth of gold nanorods via either the P-1 or the P-2 protocol. In a P-2 synthe-
sis, the CTAB replaces citrate as the stabilizing agent in the seed solution and a small
amount of silver nitrate is added to the growth solution.
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Figure 2.3: Proposed models, including cross-sections views, for the faceting of gold
nanorods. a) The three-step protocol yields penta-twinned nanorods with a pyrami-
dal termination. b) For the silver-assisted protocol, a single-crystalline structure with
an octagonal cross-section is obtained. Different models have been proposed for the
faceting, shown here is one based on high-index {520} prism facets.
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2.4. Optical properties

estingly, the amount of CTAB required for this synthesis is around three times lower
than what is commonly used for nanorod synthesis.

Figure 2.4: The products of a P-1 synthesis imaged at an angle using a scanning electron
microscope [54]. Note that in addition to high-aspect ratio gold nanorods, a variety of
other shapes is obtained as well.

2.4 Optical properties
Much of the scientific interest in NPs stems from the fact that they can exhibit LSPR,
giving rise to shape-dependent absorption and scattering. Given sufficient understand-
ing of the correlation between particle shape and the synthesis parameters, the optical
properties of the NPs can thus be controlled. As previously mentioned, the mathemat-
ical theory of interaction between light and colloidal particles started with Mie in 1908
[34], who derived analytical expressions describing the absorption and scattering of
small spherical particle using classical electromagnetic theory. Only a brief summary
of some especially pertinent results will be given here, for a more complete treatment
the reader is referred to, e.g., [55]. The LSPR can be understood as a collective oscilla-
tion of electrons close to the surface of a NP that is excited by an external electric field
(Fig. 2.5). The electrons behave similarly to a harmonic oscillator under the influence of
a harmonic external force and there exists a certain resonance frequency, for which the
amplitude attains a maximum⁴. Consequently, light propagating through a NP sol will
be absorbed and scattered by the particles. After traversing a length 𝐿, the intensity of
the light will have decayed according to the Beer-Lambert law

𝐼 (𝐿) = 𝐼0 exp(−𝜌𝑁𝐶ext𝐿), (2.1)

⁴A more apt analogy would be that of a damped driven harmonic oscillator in order to take the
plasmon decay into account.
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Chapter 2. Colloidal nanoparticles
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Figure 2.5: A schematic illustration of a localized surface plasmon resonance in a NP.
An external electromagnetic wave with the right frequency can a excite a collective
oscillation of the electron cloud near the surface of the particle.

where 𝐼0 is the initial intensity, 𝜌𝑁 the number density, and 𝐶ext the so-called extinction
cross section, which is defined as the sum of the absorption and scattering cross sections
𝐶ext = 𝐶ads + 𝐶sca. In the case of an electromagnetic wave incident on a spherical
particle of radius 𝑎 and surrounded by a dielectric medium, Maxwell’s equations can
be solved and cross sections can be respresented in terms of infinite series. These are
very laborious to compute, but in the Rayleigh-limit where the scattering particle is
assumed to be smaller than the wavelength 𝜆 of the incident light simple formulas can
be found. Assuming the particles are immersed in a medium with dielectric constant
𝜖𝑚 and the external field has wavenumber 𝑘 = 2𝜋/𝜆 they read

𝐶abs = 4𝜋𝑘𝑎3Im { 𝜖 − 𝜖𝑚
𝜖 + 2𝜖𝑚

} (2.2)

and

𝐶sca =
8𝜋
3 𝑘3𝑎6 ( 𝜖 − 𝜖𝑚

𝜖 + 2𝜖𝑚
)
2
. (2.3)

Maximum extinction is achieved if the denominator |𝜖 + 2𝜖𝑚| in Eqs. (2.2) and (2.3)
is minimized. Assuming Im{𝜖(𝜔)} varies slowly around the minimum, the condition
becomes

Re{𝜖(𝜔)} = −2𝜖𝑚. (2.4)

Frequencies for which this relation is satisfied are termed LSPR frequencies.
Further insight into the behavior of these oscillatory modes can be gained by as-

suming a free electron gas model for the conduction electrons in the metal NP. The
dielectric function 𝜖(𝜔) is then given by

𝜖(𝜔) = 1 − 𝜔2𝑝
𝜔2 + 𝑖𝛾𝜔 , (2.5)
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2.4. Optical properties

where 𝜔𝑝 is the plasma frequency and 𝛾 a damping factor. Substitution of Eq. (2.5) into
the plasmon resonance condition Eq. (2.4) shows that maximum extinction will occur
for frequencies that satisfy

𝜔max = 𝜔𝑝√2𝜖𝑚 + 1. (2.6)

From this equation it is clear that the location of the plasmon resonance depends on the
dielectric environment of the particle and it is this effect that forms the theoretical basis
for the use of plasmonic NPs in sensing applications. Mie’s work was later extended

Wavelength
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tin
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      mode
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    mode
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Figure 2.6: A schematic illustration of the extinction spectrum of a spheroidal NP for
two different aspect ratios. The anisotropy causes the plasmonic resonance of the par-
ticle to split into a transversal and a longitudinal mode. As the aspect ratio increase the
longitudinal resonance peak is redshifted, while only a small blueshift is observed for
the transversal peak.

by Gans, who considered the more general case of ellipsoidal particles [35]. This result
is of particular interest since an ellipsoid with axes 𝑎 > 𝑏 = 𝑐, i.e. a prolate spheroid,
can be used to approximate a nanorod for which no analytical formulas are otherwise
available. Note that the scattering will now depend on the orientation of the rod with
respect to the incident electromagnetic wave. To describe colloidal nanorods it is thus
appropriate to assume an ensemble of randomly oriented prolate spheroids and then
calculate the average cross section yielding

⟨𝐶ext⟩ =
2𝜋𝑉 𝜖3/2𝑚

3𝜆 ∑
𝑖∈{𝑎,𝑏,𝑐}

(𝜖/𝑃𝑖)2
(Re{𝜖} + ((1 − 𝑃𝑖)/𝑃𝑖)𝜖𝑚)2 + Im{𝜖}2

. (2.7)
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Chapter 2. Colloidal nanoparticles

Here, 𝑉 is the volume of a spheroid and 𝑃𝑖 are shape-dependent factors given in terms
of the eccentricity 𝑒 = √(𝑎2 − 𝑏2)/𝑎2 with

𝑃𝑎 =
1 − 𝑒2
𝑒2 ( 1

2𝑒 log (
1 + 𝑒
1 − 𝑒 ) − 1) (2.8)

and

𝑃𝑏 = 𝑃𝑐 =
1 − 𝑃𝑎

2 . (2.9)

Equation (2.7) yields extinction spectra that display two peaks. The single plasmon res-
onance found for a spherical particle is thus split into two resonances, corresponding
to one transverse and one longitudinal mode, respectively. It is interesting to study
the spectral shift of the resonances as a function of the aspect ratio AR = 𝑎/𝑏 of the
spheroids (Fig. 2.6). While the transverse mode is largely unaffected except for a minus-
cule blueshift, the longitudinal mode experiences a large redshift as the AR increases.
This behavior is indeed experimentally observed for real gold nanorods, and the tun-
ability of the longitudinal resonance peak is one of the main driving forces behind the
extensive research surrounding gold nanorods as it holds the key to many applications.

14



3
Elements of nanoparticle modeling

Due to the vast number of different time and length scales found among processes
relevant in NP modeling, there is an equally vast number of methods available for their
study. Rather than giving an overview of the field ¹ this chapter focuses on two specific
elements of NP modeling relevant for the thesis. The first such element concerns the
shape adopted by a NP in equilibrium and the related area of surface thermodynamics.
In particular, this element forms the conceptual basis for Papers I and II and has major
implications for Paper III. The second element concerns the description of interparticle
forces, which govern colloidal stability and, by extension, deposition. This element thus
represents the theoretical foundation for Paper IV.

3.1 Equilibrium shapes of nanoparticles
The thermodynamic equilibrium shape of a NP can be determined by means of a Wulff
construction [57]. Consider a particle of a crystalline material 𝑀 consisting of facets 𝑖
with surface normals 𝑛𝑖 with associated miller indices {(ℎ𝑖𝑘𝑖𝑙𝑖)}𝑖=1,2,…, surface free ener-
gies 𝛾𝑖 ≡ 𝛾[𝑀(ℎ𝑖𝑘𝑖𝑙𝑖)], areas 𝐴𝑖, and distances to the crystal center ℎ𝑖. The total volume
of the particle is given by

𝑉 = ∑
𝑖

1
3ℎ𝑖𝐴𝑖. (3.1)

The total free energy of the particle can be decomposed into contributions from the
bulk and the surface

𝐺 = 𝐺bulk [𝑀] +∑
𝑖
𝛾𝑖𝐴𝑖. (3.2)

¹The curious reader is referred to the review by Barnard[56].
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Chapter 3. Elements of nanoparticle modeling

The equilibrium shape of a particle can be found be minimizing 𝐺 under the constraint
of constant volume, introduced through a Lagrange multiplier [58],

𝛿(𝐺 − 𝜆𝑉 ) = 𝛿𝐺bulk [𝑀] +∑
𝑖
𝛿 (𝛾𝑖𝐴𝑖 −

𝜆
3ℎ𝑖𝐴𝑖) = 0. (3.3)

In this equation, the first term vanishes since the volume is fixed and consequently the
variation can only vanish if the terms in the summation independently vanish. This
proves the Gibbs-Wulff theorem

ℎ𝑖 = constant × 𝛾𝑖. (3.4)

This equation tells us that the equilibrium shape, or Wulff shape, is given by the set of
points

𝒲 = {𝒙 ∶ 𝒙 ⋅ 𝒏𝑖 ≤ 𝛾 [𝒏𝑖] for all 𝒏𝑖} . (3.5)

The term Wulff construction is often used interchangeably with Wulff shape, and we
shall make no distinction between the two in this text.

3.2 A thermodynamic model of adsorption
On an atomic level, adsorption refers to a processwhere any number atoms ormolecules,
the adsorbates, becomes bonded to a surface, the adsorbent. Adsorption is often catego-
rized as either chemisorption when a chemical bond is formed between adsorbate and
surface, or physisorption when the adsorbate is weakly bonded to the surface through
van der Waals interactions. The goal of this section is to establish a thermodynamic
model of adsorption that leads to a computable expression for the free energy. This
enables e.g., prediction of the phase stability of a given surface system as a function of
its environment, which, through the Wulff construction described above, also includes
NPs. A pivotal role is played by atomistic simulation methods, which provide the total
energies needed as input to the model.

Consider the interfacial region between an elemental crystal ² 𝑀 and a source of
potential adsorbate molecules or atoms 𝑋 . The surface 𝑀(ℎ𝑘𝑙) is assumed to be flat,
single crystalline and initially without defects. The nature of the source, including
phase, composition and properties such as dilution, is left unspecified for the moment.
To account for adsorption, we write the surface free energy in Eq. (3.5) as

𝛾 [𝑀(ℎ𝑘𝑙) ∶ 𝑁𝑋𝑋] = 𝛾 [𝑀(ℎ𝑘𝑙)] + Δ𝛾 [𝑀(ℎ𝑘𝑙) ∶ 𝑁𝑋𝑋] , (3.6)

where the first term on the right hand side is the clean surface free energy, and the
second term represents the change in free energy induced by adsorption of 𝑁𝑋 units

²The restriction to monatomic crystals is not strictly necessary but simplifies the discussion.
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3.2. A thermodynamic model of adsorption

of 𝑋 . We refer to this last term as the surface free energy of adsorption. To find an
expression for this unknown quantity, we can represent a non-dissociative adsorption
event (Fig. 3.1) as a reaction ³

𝑀 (ℎ𝑘𝑙) + 𝑋 −→ 𝑀 (ℎ𝑘𝑙) ∶ 𝑋 . (3.7)

Surface

Source

M(hkl)

X

M(hkl) : X

Adsorption

Figure 3.1: Non-dissociative adsorption on the surface of a material𝑀 in contact with a
source of molecules 𝑋 . This can be regarded as a reaction bringing the isolated surface
andmolecules together in an adsorbed state. The free energy of the reaction determines
if it is endothermic or exothermic.

It is useful to generalize this reaction to allow for the possibility of a surface reconstruc-
tion. In addition to structural changes, the number of𝑀 atoms in the interfacial region
can then also undergo a change 𝑁𝑀 → 𝑁𝑀 + Δ𝑁𝑀 upon adsorption of 𝑁𝑋 molecules.
This net change can be expressed asΔ𝑁𝑀 = 𝑁𝑎−𝑁𝑣 , where𝑁𝑎 is the number of adatoms
and 𝑁𝑣 is the number of vacancies. The reaction is then written in stoichiometric form
as

𝑁𝑀𝑀(ℎ𝑘𝑙) + 𝑁𝑋𝑋
𝐴Δ𝛾−−−−→ (𝑁𝑀 + Δ𝑁𝑀 )𝑀 (ℎ𝑘𝑙) ∶𝑁𝑋𝑋 − Δ𝑁𝑀𝑀, (3.8)

where a change in free energy per area unit Δ𝛾 ≡ Δ𝛾 [𝑀(ℎ𝑘𝑙) ∶ 𝑁𝑋𝑋 ] has been intro-
duced that when multiplied by the area gives the total change in Gibbs free energy Δ𝐺

³In the case of dissociative adsorption when the source consists of molecules 𝑋𝑌 the dissociation
must be included in the adsorption process. For example, if 𝑋 = 𝑌 the reaction becomes𝑀(ℎ𝑘𝑙)+ 1

2𝑋2 −→
𝑀(ℎ𝑘𝑙) ∶ 𝑋 .
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Chapter 3. Elements of nanoparticle modeling

associated with the reaction. The change in surface free energy is obtained by taking
the free energy difference of the right and left-hand side of Eq. (3.8) and dividing by the
area, leading to

Δ𝛾 [𝑀(ℎ𝑘𝑙) ∶ 𝑁𝑋𝑋] = 1
𝐴 (𝐺 [𝑀(ℎ𝑘𝑙) ∶ 𝑁𝑋𝑋] −

𝐺 [𝑀(ℎ𝑘𝑙)] − Δ𝑁𝑀𝜇 [𝑀] − 𝑁𝑋𝜇 [𝑋]) .
(3.9)

The terms on the right-hand side of Eq. (3.9) represent, going from left to right, the
free energy of the surface with adsorbates, the free energy of the clean surface, the
net change in 𝑀 atoms Δ𝑁𝑀 times the chemical potential of the bulk 𝜇 [𝑀], and the
number of adsorbates 𝑁𝑋 times the chemical potential of the molecules 𝜇 [𝑋]. Here,
the bulk and the source are regarded as reservoirs with associated chemical potentials
that measure their propensity to exchange matter with the interfacial region.

It is often convenient to write 𝜇𝑋 relative to a standard state 𝜇∘ [𝑋],
𝜇 [𝑋] = 𝜇∘ [𝑋] + 𝑘𝐵𝑇 ln 𝑎 [𝑋] . (3.10)

The definition of the adsorbate activity 𝑎 [𝑋] in the above expression, as well as the
choice of the standard state, depends on the nature of the reservoir.

3.2.1 Realization using DFT
Our thermodynamic model of adsorption on surfaces, and consequently also on NPs by
virtue of Eq. (3.5), is now in principle fully defined by Eqs. (3.6), (3.9), and (3.10). Due
the complicated electronic structure of the interfacial region between a crystal and an
adsorbate, a quantum mechanical treatment of the system is often necessary to obtain
accurate results. As discussed in the beginning of this chapter, DFT is the method of
choice for such calculations. However, the energies computed using DFT correspond
the electronic energy contribution in a vacuum, and hence additional models and ap-
proximations must be introduced if we are to calculate the surface free energies in
Eq. (3.6).

First, we shall assume that the temperature does not deviate significantly from 𝑇 𝑟 =
298.15 K, i.e. room temperature. This means that vibrational contributions to the free
energy are small and the free energy of a solid 𝑀𝑠 can be well-represented by DFT.
Accordingly, we prescribe the solid an absolute free energy 𝐺[𝑀𝑠] ≈ 𝐸DFT [𝑀𝑠]. The
first three terms on the right hand side of Eq. (3.9) can then be accurately determined
from DFT calculations.

The remaining, and most challenging, problem pertains to the calculation of the ad-
sorbate chemical potential appearing in Eq. (3.9). Rather than attempting a general
treatment, we shall consider two different approaches and illustrate them for appli-
cations relevant to this thesis. The first approach is to combine DFT with statistical
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3.2. A thermodynamic model of adsorption

mechanics, which will be illustrated for the case of dissociative adsorption from the
gas-phase, which is relevant for Paper I. The second approach is to combine DFT with
experimental data, which will be illustrated for aqueous halide adsorption, which is
relevant for Paper II and to a lesser extent Paper III.

Gas-phase adsorption: combining DFT with statistical mechanics

The dissociative adsorption of a gas-phase dimer 𝑋2 can be described by the reaction
𝑀+ 1

2𝑋2 ⟶ 𝑀 ∶𝑋 and the chemical potential of𝑋 appearing in Eq. (3.9) is accordingly

given by
1
2𝜇[𝑋2]. If we assume 𝑋2 behaves like an ideal gas, analytical expressions for

the various free energy contributions can be derived from statistical mechanics [59].
By definition 𝜇[𝑋2] = 𝐻[𝑋2] − 𝑇𝑆[𝑋2]⁴ where the enthalpy can be written as

𝐻[𝑋2] = 𝐸elec[𝑋2] + 𝐸ZPE[𝑋2] + ∫
𝑇

0
𝐶𝑃𝑑𝑇 . (3.11)

Here, we have separated out the electronic and the ionic ZPE contribution to the to-
tal energy, the former will be calculated using DFT. The heat capacity in the integral
in Eq. (3.11) receives contributions from translational, rotational, vibrational, and elec-
tronic degrees of freedom, although the electronic contribution is typically neglected.
For brevity the explicit form of these terms is not given; except for the vibrational terms,
which require that the ionic vibrational energies of the system are known, they can be
immediately evaluated. Additionally, as we shall see, the vibrational part of the full
adsorption free energy can often be neglected, in which case no vibrational calculation
is needed. The same considerations apply to the entropy, which we write relative to its
value at a reference pressure conventionally chosen as 𝑝∘ = 1 bar as

𝑆[𝑋2](𝑇 , 𝑝) = −𝑘𝐵 log ( 𝑝
𝑝∘) + 𝑆∘[𝑋2](𝑇 , 𝑝∘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑆trans+𝑆rot+𝑆vib
(3.12)

Putting Eqs. (3.11) and (3.12) together, the chemical potential can be brought into the
form

𝜇[𝑋2](𝑇 , 𝑝) = 𝐸elec[𝑋2] + 𝜇∘vib[𝑋2](𝑇 ) + 𝜇∘trans,rot[𝑋2](𝑇 ) − 𝑘𝐵𝑇 log ( 𝑝
𝑝∘) . (3.13)

Here, the vibrational contributions, including the ZPE, have been grouped together in
𝜇∘vib[𝑋2]. The remaining contributions at reference pressure, which mainly consists of
a translational and rotational component, are collected in 𝜇∘trans,rot[𝑋2]. We are now in

⁴Note the use of the commonly applied “lazy” notation for thermodynamic quantities 𝑄 where 𝑄
and 𝜕𝑄/𝜕𝑁 are both written with capital letters and the right form has to be inferred from the context.
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Chapter 3. Elements of nanoparticle modeling

a position to consider the full surface free energy of adsorption given in Eq. (3.9) again,
where for simplicity it assumed that no reconstruction of surface takes place. We now
make the approximation

𝐴Δ𝛾 [𝑀(ℎ𝑘𝑙) ∶ 𝑁𝑋𝑋] =𝐺[𝑀(ℎ𝑘𝑙) ∶ 𝑁𝑋𝑋] − 𝐺[𝑀(ℎ𝑘𝑙)] − 𝑁𝑋
1
2𝜇[𝑋2]

≈𝐸DFT[𝑀(ℎ𝑘𝑙) ∶ 𝑁𝑋𝑋] − 𝐸DFT[𝑀(ℎ𝑘𝑙)]−
1
2 (𝐸DFT[𝑋2] + 𝜇∘trans,rot[𝑋2](𝑇 ) − 𝑘𝐵𝑇 log ( 𝑝

𝑝∘)) ,
(3.14)

the validity of which relies on error-cancellation of similar terms between the compos-
ite surface-adsorbate system as well as the clean surface and gas-phase molecules taken
together. For instance, it can be argued that the difference in vibrational free energy
between a surface with adsorbates and the clean version of that surface plus gaseous
adsorbates is small [60].

Equation (3.14) provides us with a way of predicting the stability of gas-phase adsor-
bate structures on any crystalline surface using only 0 K DFT total energies as input,
yet depends on both temperature and pressure through the two last terms.

Aqueous ion adsorption: combining DFT with experimental data

Aqueous ions are one of the more challenging types of adsorbates to describe accu-
rately. The additional interactions and degrees of freedom introduced by the presence
of the solvent make a treatment in terms of statistical mechanics difficult and cause
performance issues if explicitly included in DFT calculations. This section delineates
an alternative approach based on a combination of experimental data with DFT calcu-
lations. The advantage of this approach is that it allows us to completely avoid the use
of DFT for solvated and ionized adsorbate states. The key idea is to find a reference
bulk system that is well-described by DFT and contains the ion of interest and then
use experimental free energies to connect it to the desired adsorbate state. This type
of consistent combining scheme was introduced by Persson et. al., who focused on the
description of metal oxides [61]. The scheme presented here is, in essence, a variation
of their approach. While a detailed description is given for the case of aqueous halide
adsorption, extension to other ionic species is straightforward.

Experimental free energies are tabulated for a standard state under reference con-
ditions and thus correspond to the first term in Eq. (3.10). Here, the comprehensive
thermodynamic data set procured and corrected by Hunenberger and Reif [62] will be
used. The conventional standard state is that of an ideal molar solution under refer-
ence conditions 𝑃 ∘ = 1 bar and 𝑐∘ = 1M, and the ∘-superscript will be used to denote
values at these conditions. Note that standard values of thermodynamic quantities can
still be a function of temperature, which applies in particular to 𝜇∘, while experimental
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3.2. A thermodynamic model of adsorption

values are often tabulated only at room temperature 𝑇 𝑟 = 298.15 K. Accordingly, when
(𝑐, 𝑃 , 𝑇 ) = (𝑐∘, 𝑃 ∘, 𝑇 𝑟 ), a •-superscript will be used instead.

Now we let 𝑋−
aq for 𝑋 ∈ {F,Cl,Br, I}, and assume that the halide solution is ideal,

which means that the activity coefficient Υ is unity. The activity on the right-hand side
of Eq. (3.10) is then reduced to

𝑎 [𝑋−
aq] = Υ [𝑋−

aq]
𝑐 [𝑋−

aq]
𝑐∘ ≈ 𝑐 [𝑋−

aq]
𝑐∘ . (3.15)

The notation used in this section closely follows that of Hunenberger and Reif [62]
and is succinctly summarized in Fig. 3.2. Note the distinction between reaction and
formation energies. The former are free energy differences between two states, e.g.,
gaseous ion and solvated ion, and denoted Δ𝑟𝐺 while the latter measure the difference
between a state and the elemental state of the halogen and are denoted Δ𝑓𝐺. In this
context, the elemental state refers to the naturally occurring state of the ion, which for
the halogens is

1
2𝑋el = F2(g), Cl2(g), Br2(l), I2(s).

The task is now to connect the experimental formation reaction energies to the total
DFT energies. As we have previously argued, the energy of solids are well-described by
DFT under, or close to, ambient conditions. Consequently, we can assign DFT energies
to the absolute enthalpies of an alkali-halide salt𝑀𝑋𝑠 and the corresponding pure alkali
metal. The absolute enthalpy of a halogen 𝑋 in its elemental state can now be fixed if
we insist that the reactions in Fig. 3.2 all proceed with the correct experimental reaction
energies

𝐻 • [𝑋el] = 𝐸DFT [NaXs] − 𝐸DFT [Nas] − Δ𝑓𝐻 •
exp [NaX𝑠] . (3.16)

The absolute enthalpy of an aqueous halide ion is then simply obtained as

𝐻 • [𝑋−
aq] = 𝐻 • [𝑋el] + Δ𝑓𝐻 •

exp [𝑋−
aq] . (3.17)

The standard chemical potential can now be approximated according to

𝜇∘ [𝑋−
aq] = 𝐻 ∘ [𝑋−

aq] (𝑇 ) − 𝑇𝑆∘exp [𝑋−
aq] (𝑇 ) ≈ 𝐻 • [𝑋−

aq] − 𝑇𝑆•exp [𝑋−
aq] . (3.18)

The approximation here consists of neglecting the individual functional dependencies
of𝐻 • and 𝑆•exp on temperature, however, an exact equality holds when 𝑇 = 𝑇 𝑟 . It follows
from Eqs. (3.10), (3.15), and (3.17) that the chemical potential at any concentration can
be calculated as

𝜇 [𝑋−
aq] = 𝜇∘ [𝑋−

aq] + 𝑘𝐵𝑇 log (𝑐 [𝑋
−
aq]

𝑐∘ ) . (3.19)
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Figure 3.2: Notation for free energies and reactions relating to the formation and disso-
lution of alkali-halide salts. The alkali species are denoted by𝑀 and the halogens by 𝑋 .
In their elemental, i.e. naturally occurring state, the formation energy of a species 𝑀
or 𝑋 is by definition zero. Formation energies for all other states can then be measured
relative to the elemental state and denoted Δ𝑓𝐺. In going from the elemental state to a
final state, we can pass through one or more intermediate states which are connected
by reaction energies Δ𝑟𝐺.

The final expression for the surface free energy of adsorption, see Eq. (3.14), of a halide
as approximated using our combining scheme is

Δ𝛾 [𝑀(ℎ𝑘𝑙) ∶ (𝑁𝑋𝑋−
aq)] ≈

1
𝐴 (𝐸DFT [𝑀(ℎ𝑘𝑙) ∶ 𝑁𝑋𝑋]−

𝐸DFT [𝑀(ℎ𝑘𝑙)] − 𝑁𝑋 (Φ [𝑀(ℎ𝑘𝑙)] + 𝜇 [𝑋−
aq])) .

(3.20)

Here, the DFT calculation for a charged slab implied by the first term on the right in
Eq. (3.9) is avoided and replacedwith the energy of a neutral system 𝐸DFT [𝑀(ℎ𝑘𝑙) ∶ 𝑁𝑋]
using a thermodynamic cycle [63] that implies subtracting an appropriate multiple of
the work function Φ [𝑀(ℎ𝑘𝑙)] of the clean surface.

It is important to note that, since we want to avoid explicit inclusion of water in
the DFT calculations, all interactions between surface and solvent are neglected in the
two first terms on the right-hand side of Eq. (3.20). In Paper II, the effect of neglecting
these surface-solvent interactions is investigated by comparing the results obtained
from conventional DFT without and with an implicit solvent model [64, 65].
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3.3. Interparticle forces and DLVO theory

3.3 Interparticle forces and DLVO theory
This section presents another element of modeling colloidal NPs, namely that of the
forces acting between NPs themselves, rather than between the atoms on the surface
of a single NP as in the previous sections of this chapter. A closely related concept is
that of colloidal stability. In the context of colloidal science this term is not used in the
thermodynamic sense of a system state that minimizes the appropriate thermodynamic
potential.⁵ Rather, it refers to a thermodynamically metastable state in which the sys-
tem has become kinetically trapped. In this state the discrete phase remains dispersed
in the continuous phase without settling or precipitating, a condition which requires
the particles to obey Brownian dynamics. In practice, most colloids do settle and reach
thermodynamic equilibrium over time. The rate of this process can vary dramatically,
milk settles over a span of a few weeks while sols can remain intact for years.

Restricting the discussion to the case where the discrete phase consists of particles
with mass 𝑚, a limiting size for the Brownian regime can be obtained [66]. Consider
the distribution of particles at height ℎ in a continuous medium of density 𝜌𝑚. In equi-
librium this distribution follows Boltzmann statistics with weights determined by the
gravitational potential energy

𝑃(ℎ) ∝ exp (−𝑚𝑔ℎ𝑘𝐵𝑇
). (3.21)

Accordingly, the distribution has a mean value ⟨ℎ⟩ = 𝑘𝐵𝑇/𝑚𝑔. Assuming the particles
are spherical with radius 𝑎 and density 𝜌, they are suspended if ⟨ℎ⟩ > 2𝑎, which solving
for 𝑎 and adjusting the density to include buoyancy yields

𝑎 < ( 3𝑘𝐵𝑇
8𝜋𝑔(𝜌 − 𝜌𝑚)

)
1/4

. (3.22)

For, e.g., gold particles in water under ambient conditions this requirement yields an
upper limit of 𝑎 ≲ 0.5 𝜇m. Note, however, that even if a suspension initially contains
only particles of dimensions consistent with Eq. (3.21), the criterion may still be vio-
lated. This occurs if the attractive interparticle forces in the systems are stronger than
their repulsive counterparts, in which case neighboring particle adhere to each other
and coalesce or form aggregates that settle when they reach the limiting size.

The twomost important types of interactions in colloids are vdW interactions, which
are attractive, and EDL interactions, which can be either repulsive or attractive de-
pending on the nature of the colloid. In DLVO theory, which is historically the most
successful theory of colloidal stability, the total force between two colloidal particles is
simply taken as the sum of the forces derived from the vdW and EDL interactions. In

⁵This would imply a phase separation between the discrete and continuous phases of the colloid.
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the next two sections, we consider each of these two contributions separately and then
describe in Sect. 3.3.3 how approximations for the combined DLVO interaction energy
of convex bodies can be found.

3.3.1 van der Waals interactions
The driving force behind adhesion of colloidal particles comes from dispersive inter-
actions, which are long-ranged, attractive, and present in all atomic systems. These
interactions can, at least partially, be understood in terms of a semi-classical picture:
quantum mechanical charge fluctuations create an instantaneous dipole in an atom 𝐴,
which subsequently induces an aligned, instantaneous dipole in a neighboring atom 𝐵.
The result is an interaction between the two induced dipoles𝐴𝐵 that is always favorable
and decays as 1/𝑟6. The true origin of dispersive interactions is, however, purely quan-
tummechanical and the reader is referred to Appendix A for amore detailed discussion.
Dispersive interactions are often referred to as van-der-Waals (vdW) interactions, al-
though some authors use this term to also include dipole-induced dipole (Debye) and
dipole-dipole (Keesom) interactions. In contrast to the dispersive interactions, the De-
bye and Keesom interactions can be adequately described by classical physics [67]. In
this section the terms vdW and dispersive interactions are used synonymously.

The total vdW energy resulting from two interacting bodies ℬ1,ℬ2, assuming that
the microscopic contribution from an interacting atomic pair follows the asymptotic
1/𝑅6 form, is given by

𝑈 vdw = − ∑
𝐼 ∈ℬ1

∑
𝐽∈ℬ2

𝐶 𝐼 𝐽6
𝑅6𝐼 𝐽

, (3.23)

where 𝐶 𝐼 𝐽6 are coefficients that determine the strength of the interaction between two
atoms 𝐼 , 𝐽 at a fixed separation 𝑅𝐼 𝐽 . In the limit of large bodies, a continuum treatment
of the vdW interaction allows for the derivation of closed-form analytic expression for
the total energy in a few important cases. We assume that the bodies are composed
of the same atomic building blocks with number density 𝜌 and interaction coefficient
𝐶6. In the continuum limit Eq. (3.23) can then be cast as a double integral over the two
bodies,

𝑈 vdw = −∫ℬ1
𝑑𝑹1 ∫ℬ2

𝑑𝑹2𝜌2
𝐶6

|𝑹1 − 𝑹2|6
. (3.24)

There are three important special cases for which the above integration can be carried
out analytically to obtain a closed-form expression for the interaction energy. The
first and simplest case is that of two infinite flat plates separated by a distance 𝑑 . The
interaction energy per unit area is then given by

𝑢vdw𝑓 (𝑑) = − 𝐴𝐻
12𝜋𝑑2 . (3.25)
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3.3. Interparticle forces and DLVO theory

Here, 𝐴ℎ = 𝜋2𝜌2𝐶6 is known as the Hamaker constant, in honor of H. C. Hamaker who
was among the first to explore dispersive interactions between macroscopic bodies.
Next we consider two interacting spheres, for which Hamaker famously derived [68]

𝑈 vdw𝑠 = − 𝐴ℎ
6 ( 2𝑎1𝑎2

𝑑2 + 2𝑑(𝑎1 + 𝑎2)
+ 2𝑎1𝑎2
𝑑2 + 2(𝑎1 + 𝑎2) + 4𝑎1𝑎2

+

log ( 𝑑2 + 2𝑑(𝑎1 + 𝑎2)
𝑑2 + 2(𝑎1 + 𝑎2) + 4𝑎1𝑎2

)) ,
(3.26)

for spheres of radii 𝑎1, 𝑎2 and shortest separation 𝑑 . If we let the radius of one of the
spheres tend to infinity an expression for the interaction of a single sphere with radius
𝑎 with an infinite flat surface is obtained as a bonus

𝑈 vdw
𝑠𝑓 (𝑑) = −𝐴𝐻

6 (𝑎𝑑 + 𝑎
𝑑 + 2𝑎 + log ( 𝑑

𝑑 + 2𝑎)) . (3.27)

3.3.2 Electrostatic interactions
In order to stabilize the colloidal particles against aggregation or coalescence the net
inter-particle forces must be repulsive. One way to stabilize the particles is via so-
called electrostatic stabilization⁶, where the surface charge of the particles is tuned so
that they repel each other.

There are many pathways through which a particle surface can acquire a net charge.
These include, for instance, adsorption of a charged species, dissociation of a surface
species into charged fragments as well as the build-up of a positive or negative excess
of electrons at the surface. Once the surface has become charged, oppositely charged
species are attracted towards it forming an electric double layer.

Limiting the discussion to colloidal particles in ionic solutions, which is the setting
relevant for wet-chemical synthesis processes, an illustrative derivation of the electro-
static interaction between two charged spherical particles is provided below. Detailed
accounts can be found in elementary textbooks on electrolyte solutions [69]. The dou-
ble layer charge distribution gives rise to an electric surface potential 𝜙 that can be
obtained from the Poisson equation

Δ𝜙 (𝒓) = −𝜌(𝒓). (3.28)

In equilibrium, the concentrations of each ionic species 𝑗 with bulk concentration 𝑛0𝑗
and charge 𝑞𝑗 follow Boltzmann statistics. Combined with Eq. (3.28) this results in the

⁶Another option is steric stabilization, where polymers are grafted onto the particle surface. As two
particles approach each other, an overlap region is created in which the confinement of the polymers
leads to a loss of configurational entropy that manifests as a repulsive force.
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PB equation
𝑑2𝜙
𝑑𝑥2 = − 1

𝜖0𝜖𝑟
∑
𝑗
𝑞𝑗𝑐∞𝑗 𝑒−𝑞𝑗𝜙/(𝑘𝐵𝑇 ), (3.29)

where 𝜖 = 𝜖0𝜖𝑟 and 𝜖𝑟 is the dielectric constant of the medium. Since the electric poten-
tial also appears in the Boltzmann factors in Eq. (3.29), the PB equation is non-linear
and no closed-form analytic solutions are available. A common approximation is the
Debye-Hückel linearization, obtained by Taylor expanding the Boltzmann factors to sec-
ond order yielding the LPBE

Δ𝜙 (𝒓) = 𝜅2𝜙 (𝒓) . (3.30)

Here, the Debye screening length

𝜅−1 =
√

𝜖𝑘𝐵𝑇
∑𝑗 𝑛0𝑗 𝑞2𝑗

, (3.31)

was introduced, which provides a measure of the effective range of the electrostatic in-
teraction in an electrolyte. The LPBE can be solved exactly for some simple systems, the
most important example of which is an electrolyte surrounded by two infinite parallel
plates at separation 𝑑 . Hogg, Healy, and Fuerstenau [70] showed, assuming constant
surface potentials 𝜙1 and 𝜙2 on the plates, that an analytic expression can be derived
not only for the electrostatic potential, but also for the total interaction energy per unit
area

𝑢edl𝑓 (𝑑) = 𝜖0𝜖𝑟𝜅
2 (𝜙21 + 𝜙22) (1 − coth(𝜅𝑑) + 2𝜙1𝜙2

𝜙21 + 𝜙22
cosech(𝜅𝑑)) . (3.32)

This is often referred to as the Hogg-Healy-Fuerstenau formula [70]. The reason that
the two-plate system is of special importance is because it allows for the derivation
of approximate interaction expressions for arbitrary convex geometries using the Der-
jaguin approximation, which will be discussed in the next section. First, we remark that
the error in the electric potential introduced as a result of using the LPBE is 𝒪(𝜙3) for
symmetric electrolytes, i.e. if the valences of the anions and cations are equal 𝑧1 = 𝑧2,
but 𝒪(𝜙2) if the electrolyte is asymmetric (𝑧1 ≠ 𝑧2). To see the significance of this,
we observe that from Eq. (3.29) the range of validity for the linearization is 𝑞𝜙 ≪ 𝑘𝐵𝑇 ,
which for monovalent ions in room temperature translates to 𝜙 ≪ 25mV. Now, for
symmetric electrolytes it has been noted that the LPBE yields decent results even if
𝜙 ≈ 25mV [70], but due to the increased approximation error the same cannot be said
for the asymmetric case. Hence, in practice one is often forced to solve the non-linear
PB equation for asymmetric electrolytes, which is the case, e.g., in Paper IV.

Even when the LPBE is not valid, however, it is still straightforward to obtain the
two-plate interaction energy if the PB equation can be solved numerically. In this case,
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3.3. Interparticle forces and DLVO theory

we note that the disjoining-pressure Π of the plates is given by the sum of the osmotic
and electromagnetic pressures according to

Π(𝑑) = 𝑘𝐵𝑇 ∑
𝑗
𝑐0𝑗 (𝑒−𝑞𝑗𝜙𝑑/(𝑘𝐵𝑇 ) − 1) − 𝜖0𝜖𝑟

2
𝑑2𝜙𝑑
𝑑𝑥2 . (3.33)

The total total interaction energy can subsequently be obtained by integration

𝑢edl𝑓 (𝑑) = ∫
∞

𝑠=𝑑
Π(𝑠)𝑑𝑠. (3.34)

3.3.3 Surface element integration
As alluded to in the previous section, theDerjaguin approximation can be used to obtain
the total DLVO interaction energy between two arbitrary convex bodies, given that the
interaction energy for two corresponding infinite, parallel plates with the same bound-
ary conditions can be calculated at any separation. More precisely, given the distance
of closest separation 𝐷 of two arbitrary convex bodiesℬ1,ℬ2, can be approximated as

𝑈 (𝐷) = 𝑔(𝜿1, 𝜿2) ∫
∞

𝑠=𝐷
𝑢tot𝑓 (𝑠)𝑑𝑠 (3.35)

where 𝑢tot𝑓 = 𝑢vdw𝑓 +𝑢edl𝑓 is the total DLVO energy of the two-plate system (see Eqs. (3.25)
and (3.34)) and 𝑔 is a geometric factor that depends on the principal curvatures 𝜿1, 𝜿2
of the two surfaces 𝒮1,2 = 𝜕ℬ1,2. Despite the usefulness of the Derjaguin approxima-
tion in finding analytic expressions for the DLVO interaction between a wide range
of important geometries [67], it suffers from critical limitations. More precisely, the
distance of closest approach and characteristic range of the DLVO interaction must be
small compared to the radii of curvature of both the surfaces [71].

For the specific case of a convex body interacting with an infinite flat plate, a more
accurate method of obtaining the interaction energy was proposed by Bhattacharjee
and Elimelech [72] termed SEI. Indeed, it was shown that using SEI, the exact vdW
interaction (Eq. (3.27)) was recovered and that the EDL interaction calculated based
on the Hogg-Healy-Fuerstenau solution Eq. (3.32) matched results from finite element
solutions of the PB equation within the linear regime.

To formulate the SEI method, we consider an infinite flat plate𝒜 and a convex body
𝒮 , with corresponding surface elements 𝑑𝑨 = 𝒌𝑑𝐴 and 𝑑𝑺 = 𝒏𝑑𝑆, where 𝒌 and 𝒏
are the respective surface normals. Contributions to the total interaction energy are
then computed for each surface element of 𝒮 as 𝑑𝑈 = 𝑑𝑺 ⋅ 𝒌𝑢𝑓 (𝑠), where 𝑠 is the local
separation between 𝑑𝑺 and 𝒜 . Accordingly, the total interaction energy is

𝑈 (𝐷) = ∫𝒮 𝑑𝑺 ⋅ 𝒌𝑢tot𝑓 (𝑠) = ∫𝒜 𝑑𝐴 𝒏 ⋅ 𝒌
|𝒏 ⋅ 𝒌|𝑢

tot
𝑓 (𝑠) (3.36)
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where 𝐷 is the distance of closest approach between 𝒮 and𝒜 . Subsequent work by the
same authors extended the SEI method to the more general case of two convex bodies
[73], and while it still constitutes an improvement over the Derjaguin approximation,
the predicted energies are in this more general case only accurate when the charac-
teristic interaction range is short. For instance, the exact Hamaker expression for the
vdW interaction between two spheres given in Eq. (3.26) is not reproduced but rather
the SEI value tend towards the exact value as the ratio between the radii increases, i.e.
when approaching the sphere-plate limit. The SEI method is the basis of the model
implemented in Paper IV to evaluate the efficacy of pre-patterned Ni structures on a
SiO2 substrate in attracting citrate-stabilized Au NPs.
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4
First-principles calculations

”But, gentlemen, that’s not physics.”

Ceylonese parrot nominated as chairman for all seminars on
quatum mechanics in Göttingen 1927.

All properties of a system of interacting, non-relativistic particles are in principle
determined by its many-body state |Φ(𝑡)⟩, which is obtained as a solution to the time-
dependent Schrödinger equation

𝑖ℏ 𝜕
𝜕𝑡 |Φ(𝑡)⟩ = 𝐻 |Φ(𝑡)⟩ , (4.1)

where𝐻 is the Hamilton operator of the system. The spectrum of this operator, defined
by the eigenvalue equation

𝐻 |Ψ⟩ = 𝐸 |Ψ⟩ , (4.2)

corresponds to the allowed energies 𝐸 of the system. Equation (4.2) is often referred
to as the time-independent Schrödinger equation. The eigenstates |Ψ⟩ may be used as
a basis for an expansion of an arbitrary many-body state, but for many applications it
is sufficient to know the ground state of the system i.e. the lowest eigenvalue 𝐸0 of 𝐻
and its associated eigenstate |Ψ0⟩.

For a system consisting of 𝑁 electrons and 𝑀 atomic nuclei, the position-space rep-
resentation of the Hamilton operator in Hartree atomic units (ℏ = 𝑒 = 𝑚𝑒 = 4𝜋𝜖0 = 1)
is given by
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𝐻 =

𝑇
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
− 1
2

𝑁
∑
𝑖
∇2𝑖 +

𝑉int
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑁
∑
𝑖=1

𝑁
∑
𝑗>𝑖

1
||𝒓𝑖 − 𝒓𝑗 ||

𝑉ext
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−

𝑁
∑
𝑖=1

𝑀
∑
𝐼=1

𝑍𝑖
|𝒓𝑖 − 𝑹𝐼 |

− 1
2

𝑀
∑
𝐼=1

∇2𝐼
𝑀𝐼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑇ion

+
𝑀
∑
𝐼=1

𝑀
∑
𝐽>𝐼

𝑍𝐼𝑍𝐽
||𝑹𝐼 − 𝑹𝐽 ||⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐸nn

(4.3)

where 𝑀𝐼 , 𝑍𝐼 , 𝑹𝐼 denote the mass, charge and position of the nuclei, respectively, and
𝒓𝑖 are the positions of the electrons. Exact solutions to Eq. (4.2) are only possible for
1-body systems or 2-body systems that can be reduced into 1-body problems, as is the
case of an isolated hydrogen atom. In all other cases, we must resort to approximations
and numerical solutions. If the approximations giving rise to a certain method are of
such nature that the resulting equations are free from adjustable physical parameters,
the method is customarily referred to as an ab initio or first-principles method.

A common approximation for manymethods seeking to solve Eq. (4.2) for the Hamil-
ton operator in Eq. (4.3) is to make use of the fact that the nuclei are much heavier than
the electrons. For the electrons this means that they see the nuclei as charges frozen in
their instantaneous location, hence the nuclear kinetic energy term can be dropped and
the ion-ion repulsion 𝐸𝑛𝑛 simply amounts to a constant shift of the Hamilton operator.
This is known as the Born-Oppenheimer approximation [74] and allows us to write a
simplified electronic Hamilton operator

𝐻e = 𝑇 + 𝑉int + 𝑉ext. (4.4)

With the spin variables suppressed, the time-independent Schrödinger equation for the
electrons now reads

𝐻𝑒Ψ𝑒({𝒓𝑖}; {𝑹𝐼 }) = 𝐸𝑒Ψ𝑒({𝒓𝑖}; {𝑹𝐼 }) (4.5)

and the total energy is 𝐸tot = 𝐸𝑒 + 𝐸𝑛𝑛. Similarly, we can write a separate Schrödinger
equation for the nuclei, which can then be regarded asmoving in amean-field generated
by the electrons. Here, a full quantum mechanical treatment is often not necessary
and the nuclei can be regarded as classical particles moving in the potential 𝐸tot({𝑹𝐼 })
obtained by solving the electronic problem Eq. (4.5) and often referred to as the potential
energy surface. The force on a nuclei 𝐼 is given by

𝑭𝐼 = − 𝜕
𝜕𝑹𝐼

𝐸tot({𝑹𝐼 }) = −⟨Ψ |||
𝜕𝐻
𝜕𝑹𝐼

||| Ψ⟩ − 𝐸 𝜕
𝜕𝑹𝐼

⟨Ψ|Ψ⟩
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0 if basis is complete

. (4.6)
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This is known as the Hellmann-Feynman theorem and evaluation of the first term in
Eq. (4.6) shows that the forces on the ions are simply the electrostatic forces due to
the electronic charge distribution. Numerical solutions to the Schrödinger equation
are typically based on a basis expansion of the wavefunction (Sect. 4.1.5), however, and
only a finite number of such functions can be included. In this case, the derivative
in the second term in Eq. (4.6) is not zero if the basis functions depend on the ionic
positions. As a result the ions experience so-called Pulay forces that need to be corrected
for according to Eq. (4.6).

Despite greatly simplifying the original problem, Eq. (4.4) further theoretical devel-
opment is required to obtain equations can be solved, at least numerically.

4.1 Density functional theory
Density functional theory (DFT) is one of the cornerstones of modern computational
materials physics and provides a way of solving the Schrödinger equation to a high
degree of accuracy with an efficiency that makes calculations involving several hun-
dreds of atoms tractable on modern supercomputers. As alluded to by the name, the
electronic density plays a fundamental role in this theory and is defined in terms of the
many-body electronic wavefunction from Eq. (4.4) as

𝑛(𝒓) = ∫ 𝑑𝒓2…𝑑𝒓𝑁 |Ψ(𝒓, 𝒓2, … , 𝒓𝑁 )|2 (4.7)

where the subscript has been dropped from Ψ𝑒 and the parametric dependence on the
nuclear coordinates has been suppressed.

4.1.1 The Hohenberg-Kohn theorems
The theoretical foundation of DFT rests on the shoulders of two theorems proved by
Hohenberg and Kohn (HK) in 1964 [75]. We shall be content with giving a concise sum-
mary of them here, for a more detailed account readers are referred to one the many
textbooks covering the topic [76, 77]. For a stationary, interacting, non-degenerate
system of electrons there is a one-to-one mapping between 𝑉ext, |Ψ0⟩ and 𝑛(𝒓). Conse-
quently, the ground state is a functional of the ground state density, which is denoted
|Ψ[𝑛]⟩. This functional is unique and takes the same form regardless of 𝑉ext, provided
that 𝑉int does not change. This implies in turn that the ground state expectation value
of any observable is also a functional of the density

𝑂[𝑛] = ⟨Ψ[𝑛]| 𝑂 |Ψ[𝑛]⟩ . (4.8)

Of particular interest is the ground state energy
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𝐸[𝑛] = ⟨Ψ[𝑛]| 𝐻𝑒 |Ψ[𝑛]⟩ = ⟨Ψ[𝑛]| 𝑇 + 𝑉int |Ψ[𝑛]⟩ + 𝐸ext (4.9)

where the the external energy functional

𝐸ext[𝑛] = ∫ 𝑑𝒓 𝑛(𝒓)𝑉ext(𝒓). (4.10)

has been defined. The total energy functional in Eq. (4.9) can be shown to obey a
variational principle with a minimum corresponding to the true ground state density,
i.e.

𝐸[𝑛] < 𝐸[𝑛′] , ∀𝑛′ ≠ 𝑛 (4.11)

An appealing feature of these results is that the unwieldy many-body wavefunction in
bypassed favor of the electronic ground state density, a scalar function of only three
variables. Note however, that the HK theorems are pure existence theorems and do not
contain a recipe for constructing an explicit expression for 𝐸[𝑛] that would allow for
determination the ground-state energy and other observables.

4.1.2 Kohn-Sham theory
Kohn-Sham (KS) theory provides us with a way of leveraging the Hohenberg-Kohn
theorems to derive a practical scheme for determining the ground state density of a
system [78]. It rests on the non-trivial assumption that a system of interacting electrons
can be mapped onto a system of fictitious, non-interacting electrons in such a way that
the ground-state electron density is the same for the two systems. This new system is
typically referred to as the KS auxiliary system and its existence has not been proved
for the general case; rather it is typically justified from a practical perspective by the
remarkable success of KS theory in predicting many material properties. Since the KS
system is non-interacting, it can be described by a set of single-particle, Schrödinger-
like equations

[−12∇
2 + 𝑉KS(𝒓)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≡𝐻KS

Ψ𝑖(𝒓) = 𝜖𝑖Ψ𝑖(𝒓). (4.12)

The density is then simply 𝑛(𝒓) = ∑𝑖 𝑓𝑖|Ψ𝑖(𝒓)|2, where 𝑓𝑖 is the occupation number of
orbital 𝑖. Here, 𝑉KS is an effective potential for which a useful expression can be derived
by decomposing the energy functional for the KS system according to

𝐸KS = 𝑇𝑠[𝑛] + 𝐸H[𝑛] + 𝐸xc[𝑛] + 𝐸ext[𝑛] (4.13)

where the very first term is the kinetic energy functional
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𝑇𝑠[𝑛] = −12 ∑𝑖
𝑓𝑖Ψ𝑖(𝒓)∇2Ψ𝑖(𝒓). (4.14)

The interactions of the original many-body problem, other than those coming from the
external potential, are reflected by the interacting KS density in the other two terms
𝐸𝐻 and 𝐸xc. The first of these terms is the Hartree energy functional

𝐸𝐻 [𝑛] =
1
2 ∫ 𝑑𝒓 𝑑𝒓′ 𝑛(𝒓)𝑛(𝒓

′)
|𝒓 − 𝒓′| . (4.15)

The last term 𝐸xc in Eq. (4.13) is known as the exchange-correlation functional and is
defined to contain all many-body effects such that the ground state density of the KS
system will indeed be equal to that of the original interacting system. By using the
Hohenberg-Kohn variational principle for 𝐸KS, a set of independent electron equations
of the form Eq. (4.12) is obtained with

𝑉KS = ∫ 𝑑𝒓′ 𝑛(𝒓′)
|𝒓 − 𝒓′|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝑉𝐻 (𝒓)

+ 𝛿𝐸xc
𝛿𝑛(𝒓)⏟
≡𝑉xc(𝒓)

+𝑉ext(𝒓). (4.16)

Once the KS equations in (4.12) have been solved the ground state energy can be cal-
culated as

𝐸0 = ∑
𝑖
𝑓𝑖𝜖𝑖 − 𝐸𝐻 [𝑛(𝒓)] − ∫ 𝑑𝒓 𝑛(𝒓)𝑉xc(𝒓) + 𝐸xc[𝑛]. (4.17)

4.1.3 Approximating the exchange-correlation functional
The ground state energy as calculated from the KS system as in Eq. (4.17) is exact pro-
vided that exact expressions for all terms in Eq. (4.16) are known. This is, however,
not the case for the exchange-correlation functional 𝐸xc, which was defined to capture
all the many-body effects not included by the other terms. 𝐸xc constitutes the major
source of approximation in DFT.

Short of neglecting 𝐸xc altogether, the simplest approach we can take is the local
density approximation (LDA), in which a differential volume 𝑑𝒓 is assumed to give a
contribution to the total exchange-correlation energy equal to the energy density of a
homogeneous electron gas (HEG) having density 𝑛(𝒓) so that

𝐸LDA
xc = ∫ 𝑑𝒓 𝑛(𝒓)𝜖LDA

xc [𝑛(𝒓)], (4.18)

where 𝜖LDA
xc is the HEG energy density. Note that this expression is purely local in the

sense that 𝐸LDA
xc is the sum of point-wise evaluated contributions. A natural extension
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is to consider also variations in the density i.e., make use of the gradient |∇𝑛(𝒓)| and
possibly higher order derivatives, referred to as a generalized-gradient approximation
(GGA)

𝐸GGA
xc = ∫ 𝑑𝒓 𝑛(𝒓)𝜖GGA

xc [𝑛(𝒓), |∇𝑛(𝒓)|, |∇2𝑛(𝒓)|, …]. (4.19)

Such approximations are termed semi-local to indicate that the contributions, while
still evaluated at a point, take the infinitesimal environment into account through the
inclusion of density derivatives. A popular GGA-type method is the Perdew-Burke-
Ernzerhof (PBE) functional [79], which takes into account first-order variations of the
density.

4.1.4 Dispersion-corrections
Amajor shortcoming of local or semi-local exchange-correlation functional is that they
do not account for dispersive interactions. These interactions are inherently non-local
and thus connect the electron density at different points in space. Therefore, from the
functional forms Eqs. (4.18) and (4.19) of LDA and GGA-type functionals it is apparent
that they by definition cannot include non-local effects.

A simple and efficient approach to include dispersive interactions is theDFT-Dmethod
[80], which in its most basic form introduces an interatomic pair potential with the cor-
rect asymptotic 1/𝑟6-form to the total DFT energy 𝐸0 in Eq. (4.17),

𝐸DFT-D0 = 𝐸0 +∑
𝐼 𝐽

𝐶 𝐼 𝐽6
𝑅6𝐼 𝐽

. (4.20)

The 𝐶6-coefficients appearing in this equation are fitted to dispersive interactions be-
tween molecules calculated using quantum-chemistry methods. There are many draw-
backs to this method [81]: the 𝐶6-coefficients are agnostic to the local environment,
there is no screening, only the first order correction to the vdW energy is taken into
account (see Appendix A), and the correct short-range vdW behavior is not reproduced.
While the two latter deficiencies are addressed to some extent in later incarnations of
the method [82, 83], it is still fundamentally semi-empirical in nature since it relies
on the availability of accurate values for the 𝐶6-coefficients. For many systems, in
particular molecular ones, this level of treatment may prove sufficient, but since vdW
interaction are typically weak even small inaccuracies can yield results that are qual-
itatively wrong. Several other dispersion-correction methods are available that suffer
these drawbacks to varying degrees [84–86].
An ab initio approach to the problem is provided by the van der Waals density func-
tional (vdW-DF) framework. The underlying theory has a long history and is quite
involved, hence only a brief overview is given here and the curious reader is referred
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to more detailed accounts [87, 88]. The vdW-DF framework has given birth to a family
of functionals that can be written in the general form

𝐸vdW-DF
xc [𝑛] = 𝐸GGA𝑥 [𝑛] + 𝐸LDA𝑐 [𝑛] + 𝐸nl𝑐 [𝑛]. (4.21)

Each family member is thus the sum of the exchange part of a suitably chosen GGA
companion functional, local LDA correlation and a non-local correlation functional.
The latter functional can be written

𝐸nl𝑐 [𝑛] = 1
2 ∫ 𝑑𝒓 𝑑𝒓′ 𝑛(𝒓)𝐾(𝒓, 𝒓′)𝑛(𝒓′) (4.22)

and accounts for the dispersive interactions. Here, the integration kernel 𝐾(𝒓, 𝒓′) con-
tains information about how strongly two density regions interact depending on their
spatial separation and the asymmetry of their response. While approximations are
made in deriving Eqs. (4.21) and (4.22), no adjustable parameters with physical sig-
nificance, akin to the 𝐶6 coefficients of the DFT-D method, are introduced and hence
vdW-DF constitutes a genuine first-principles method. It should also be clarified that
while the larger vdW-DF framework accounts for many-body dispersion effects, ap-
proximations made in deriving the actual functional Eq. (4.22) limit the inclusion of
such effects to length scales corresponding to typical binding distances. This is easily
overlooked since Eq. (4.22) has the form of a double summation and the information
about screening is effectively hidden in the kernel [88].

A practical problem encountered when implementing a vdW-DF functional is that
straightforward numerical evaluation of the six-dimensional integral Eq. (4.22) is much
too costly. To bring the computational effort required to a manageable level, a method
due to Román-Pérez and Soler can be employedwhere the kernel is effectively tabulated
in terms of two parameters. The non-nocal energy can subsequently be calculated by
fast Fourier transforms and three-dimensional integrations [89]. This is the subject of
Paper II, which describes a reference implementation in the form of a C-library that
make vdW-DF functionals available to an interfacing DFT code.

Two of most most prolific vdW-DF family members are vdW-DF1 [90]

𝐸vdW-DF1
xc [𝑛] = 𝐸revPBE𝑥 [𝑛] + 𝐸LDA𝑐 [𝑛] + 𝐸nl(1)𝑐 [𝑛], (4.23)

and vdW-DF2 [91]

𝐸vdW-DF2
xc [𝑛] = 𝐸PW86r𝑥 [𝑛] + 𝐸LDA𝑐 [𝑛] + 𝐸nl(2)𝑐 [𝑛]. (4.24)

Note that the non-local correlation functionals used above differ slightlywith regards to
an underlying approximation and are consequently accompanied by different exchange
functionals. For vdW-DF1 the conventional choice is the revised version of PBE by
Zhang-Yang (revPBE) [92] and for vdW-DF2 it is the refitted Perdew-Wang functional
(PW86r) [93]. A more recent addition to the family is vdW-DF-cx [94]
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𝐸vdW-DF-cx
xc [𝑛] = 𝐸LV-PW86r𝑥 [𝑛] + 𝐸LDA𝑐 [𝑛] + 𝐸nl(1)𝑐 [𝑛]. (4.25)

The new feature is an exchange companion termed LV (Langreth-Vosko)-PW86r that
utilizes concepts from the vdW-DF framework also for the description of the exchange
contribution. In Paper I, the use of vdW-DF-cx was crucial in obtaining accurate results
for inter-chain and surface-chain vdW interactions of thiols on gold, while maintaining
a good description of the surface. Indeed, it has been demonstrated that vdW-DF-cx
yields excellent agreement with experimental values for many bulk properties of a large
set of solids [95].

4.1.5 Solving the Kohn-Sham equations
Given a suitable approximation for the exchange-correlation functional the KS equa-
tions (4.12) remain to be solved, a formidable challenge in itself. From Eqs. (4.12) and
(4.16) it is seen that 𝑉KS, which naturally must be known in order for the KS equations
to be completely specified, depends on the density, which in turn cannot be known
before the KS equations have been solved. To progress from this circular situation,
a self-consistent approach must be taken in solving the equations. This means that a
reasonable starting density is constructed, usually from atomic orbitals, and used to de-
termine 𝑉KS so that the KS equations may be solved. The states |Ψ𝑖⟩ thus obtained are
then combined into a new density and the whole process is repeated iteratively until
convergence, according to some judiciously chosen criterion, is achieved.

To actually solve the KS set of single-particle equations Eq. (4.12), a common ap-
proach is to expand the orbitals in terms of a basis ℬ for the Hilbert space

|Ψ⟩ = ∑
𝑏
⟨𝑏|Ψ⟩ |𝑏⟩ , (4.26)

where the sum extends over all 𝑏 ∈ ℬ and the orbital index 𝑖 has been dropped for
convenience. Substituting this expressions into Eq. (4.12) and multiplying from the left
with |𝑏′⟩ yields

∑
𝑏
⟨𝑏′ | 𝐻KS | 𝑏⟩ ⟨𝑏|Ψ⟩ = 𝜖∑

𝑏
⟨𝑏′|𝑏⟩ ⟨𝑏|Ψ⟩ , (4.27)

which has the form of a generalized matrix eigenvalue problem

𝑯KS𝜳 = 𝜖𝑺𝜳, (4.28)

where
𝑯KS = [⟨𝑏′ | 𝐻KS | 𝑏⟩]𝑏,𝑏′∈ℬ
𝜳 = [⟨𝑏|Ψ⟩]𝑏∈ℬ
𝑺 = [⟨𝑏′ | 𝑏⟩]𝑏,𝑏′∈ℬ

.
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By only including a finite number of elements in the basis expansion (4.26) the problem
can be solved numerically and if the basis set is furthermore orthogonal, the overlap
matrix 𝑺 reduces to the identity matrix and an ordinary eigenvalue problem is obtained.
What basis set to choose depends on the problem at hand, since even if any orthonormal
set can in principle be used, the resulting computational effort can vary significantly.

4.1.6 Periodic systems and plane waves
For a system with periodic boundary conditions, such as a crystal, the wavefunction
can be expanded in terms of plane waves and Bloch’s theorem asserts that for energy
eigenfunctions this expansion takes the form [96]

|Ψ𝒌⟩ = ∑
𝑮

𝑐𝒌+𝑮 |𝒌 + 𝑮⟩ , (4.29)

where 𝑮 is a reciprocal lattice vector and |𝒌⟩ represents a plane wave state, i.e. ⟨𝒓|𝒌⟩ ∼
𝑒𝑖𝒌⋅𝒓 . The wave vector 𝒌 is continuous and arbitrary but can be restricted to lie in the
first Brillouin zone. Note that for molecules and other systems with no inherent peri-
odicity, it can be artificially introduced by periodically inserting mirror images of the
systemwith enough separation that any interaction between them effectively vanishes.

Using the notation for the matrix elements introduced in the previous section, the
overlap matrix 𝑺 is equal to the unit matrix since plane waves are orthogonal. Further-
more, given the Fourier expansion for the periodic potential

𝑉KS(𝒓) = ∑
𝑮

𝜈𝑮𝑒𝑖𝑮⋅𝒓 , (4.30)

the matrix elements of the KS Hamilton operator can be written

⟨𝒌 + 𝑮′ | 𝐻KS | 𝒌 + 𝑮⟩ = 1
2 |𝒌 + 𝑮|2 𝛿𝑮𝑮′ + 𝜈𝑮−𝑮′ . (4.31)

The expansion is truncated by choosing a kinetic energy cutoff for the plane waves
according to |𝒌 + 𝑮| = √2𝐸cut, thus providing a simple, systematicway of improving the
accuracy in a DFT calculation. Other advantages of plane wave expansions include the
absence of Pulay forces¹, numerical efficiency due to the use of fast Fourier transforms,
and the orthogonality of the basis.

Themajor issue with plane wave expansions lies in the description of the atomic core
region, where the kinetic energy of the electrons is high and the wave function varies
rapidly. This implies that, due to their delocalized nature, an extremely high number
of plane waves would be required to accurately represent the electronic density in this

¹This is only true as long as the cell metric does not change and thus Pulay forces and stresses have
to be corrected for during unit cell relaxations.
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region. The situation can be remedied by introducing a so-called pseudopotential [77],
which makes use of the fact that it is typically only the valence electrons, and not the
core electrons, that participate in the chemical bonding. Accordingly, the pseudopo-
tential is modified to achieve smoother variations of the wavefunction within the core
region while still reproducing the correct all-electron wave function outside. This re-
sults in a dramatic decrease in the plane wave cutoff 𝐸cut required for convergence and
makes plane wave expansions feasible for practical calculations. The trade-off is one of
introducing additional complexity; pseudopotentials need to be explicitly constructed
for all atomic species involved and the size of the core region needs to be chosen ap-
propriately. Pseudopotentials come in one of two different flavors: norm-conserving or
ultrasoft, where the latter require lower cutoff energies. Ultrasoft pseudopotential have
furthermore been shown to emerge naturally from the more rigorous framework of
projector augmented waves (PAW) [97, 98]. Here, a linear transformation for converting
between a valence and all-electron description is defined and different levels of treat-
ment with regards to the core electrons are possible. For most practical purposes the
initial core electron configuration for which the PAW potential was generated is kept
throughout the calculation in what is called the frozen core approximation [99].

Another problem that emerges in periodic DFT calculations is that many properties,
such as the total energy of the system, are given in terms of integrals over the first
Brillouin zone (BZ) of the system

𝐼 = Ω
(2𝜋)3

occ
∑
𝑛
∫
BZ

𝑑𝒌 𝐼𝑛(𝒌), (4.32)

where 𝐼 denotes some property, Ω the unit cell volume and the summation runs over all
occupied bands. To numerically evaluate the 𝒌-space integral, it is replaced by a sum-
mation over a finite amount of 𝒌-points sampled from the Brillouin zone. A common
sampling method is the Monkhorst-Pack scheme [100] where 𝑀1 × 𝑀2 × 𝑀3 𝒌-points
lie on an equidistant grid aligned with the reciprocal lattice vectors 𝒃𝑖 according to the
rule

𝒌 = 𝑥1𝒃1 + 𝑥2𝒃2 + 𝑥3𝒃3 with 𝑥𝑖 =
2𝑚𝑖 − 𝑀𝑖 − 1

2𝑀𝑖
, 𝑚𝑖 ∈ {1, 2, … ,𝑀𝑖} . (4.33)

Furthermore, by properly weighting the terms in the summation approximating the
integral Eq. (4.32), only those BZ 𝒌-points that are inequivalent under the symmetries
of the space group need to be included².

²The set of all such point is referred to as the irreducible Brillouin zone.
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5
Summary of appended papers

5.1 Paper I
This paper originated as a means of gauging the accuracy of vdW-DF-cx (Sect. 4.1.4)
in describing the prototypical chemisorption of molecules with long alkyl chains on
a noble metal surface. In this context, earlier functionals in the vdW-DF family such
as vdW-DF1 were underperforming due to gross overestimation of lattice constants,
especially for the late transition metals Ag and Au. As a candidate system for the in-
vestigations, alkanethiolates on Au{111} were deemed particularly interesting, due to
earlier work having failed to reproduce experimentally observed, vdW-related effects
such as lying-down phases. The topic of thiolated monolayers on crystalline surfaces
furthermore constitutes a technologically relevant system in its own right. The idea
was thus to study the role of dispersive interaction in transitions between the experi-
mentally observed low coverage lying-down phases andmore dense standing up phases
of the system using an ab initio thermodynamics model (Sect. 3.2).

The vdW-DF-cx functional was found to provide an excellent description, not only
for the dispersive interactions but also the gold surface. Indeed, vdW-DF-cx offers sig-
nificant improvement over the PBE values for both lattice constant and clean surface
energy. Furthermore, lying-down phases, characterized by chemisorbed thiolates that
lie almost parallel to the surface were revealed to be thermodynamically stable for alkyl
chains with two or more methylene units. With increasing gas-phase chemical poten-
tial a transition to a standing-up phase was observed (Fig. 5.1). The most significant
finding was that these transitions emerge due to a competition between alkyl chain-
chain and chain-surface interactions. More precisely, the chain-surface interactions
vary more steeply with the chain length, and the calculated interaction strength was
shown to be in very good agreement with experimental data.
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Figure 5.1: Phase stability curves for adsorption of gas-phase alkanethiolates on gold as
a function of either the relative chemical potential of the adsorbates or, assuming ultra
high vacuum conditions, the temperature. a) For methylthiolates only the clean surface
and a dense monolayer are stable. b) For hexanethiolates an intermediate phase is also
found where the alkyl chains are almost perpendicular to the surface due to dispersive
interactions.

5.2 Paper II
Synthesis of colloidal NPs typically occurs in a rich chemical environment where the
complex interplay between dissolved salts and surfactants with the NP surface is inte-
gral to determining the outcome. Whereas surfactants with long alkyl chains were the
subject of study in Paper I, small adsorbates in the form of halide ions are the subject
of the present paper.

As commonly occurring counterions in metal salts and crystalline phases of charged
surfactants, such as CTAB, halides are almost always present in colloidal NP synthe-
sis to some extent. In particular, Br– and I– are known to bind to metal surfaces in
aqueous solution under ambient conditions and experimental evidence amassed over
the years indicates that they often play a crucial role in determining the outcome of
the synthesis. Accurate theoretical description of halide adsorption on metal surfaces
under experimentally relevant conditions is thus of paramount importance if rational
design of wet-chemical synthesis protocols is to be achieved. To this end, we address
some of the technical as well as conceptual challenges that one is faced with in the
DFT description of halide adsorption on Au and Pd surfaces. The major hurdle in this
endeavor revolves around the treatment of solvation effects since explicitly including
water molecules in a DFT calculation is computationally very expensive. We describe
a thermodynamic model where DFT calculations are combined with experimental data
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Figure 5.2: Wulff shapes for halide adsorption on Pd NPs under typical synthesis condi-
tions of 0.1M adsorbate concentration and ambient temperature and pressure. In a-d)
results are shown for the small particle limit where only low-index facets are exposed
by the NPs, while in the large particle limit e)-h) high-index facets are included. As
we progress down the halogen group where {100} is stabilized at the expense of more
open facets for small particles. The effect is not large enough, however, to change the
stable shape to a nanocube. Note that I– is left here due to convergence issues with the
implicit solvation model.

to obtain a correct reference state for the solvated halide ions and explore the use of
an implicit solvation model to incorporate surface-solvent interactions. Equipped with
this model we show that equilibrium NP shapes can be be predicted as a function of the
halide concentration ¹. The shape prediction is based on generalized Wulff construc-
tions, which extend the regular Wulff construction to also include twinned particles.

From a more technical perspective, the importance of incorporating dispersive in-
teractions at the DFT level is also highlighted. For instance, it is shown that they bring
surface energies closer to experimental data and that qualitative as well as quantitative
differences compared to conventional GGA-based functionals can be observed in the
energetic ordering of different facets. It is furthermore established that surface-solvent
interactions can significantly alter surface energies in a non-predictable fashion. Put

¹Experimentally, this is the principal control parameter, yet the dependence of the adsorption energy
on the concentration is often neglected in DFT studies.
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together, these observations illustrate limitations in the transferability of results gar-
nered from, e.g., PBE-based DFT studies of adsorption in vacuum to solvated systems.

5.3 Paper III
As demonstrated in Paper II, shape prediction for isotropic nanoparticles that are ther-
modynamic products can be satisfactorily modeled using first-principles methods. The
growth of anisotropic nanoparticles, on the other hand, is typically heavily influenced
by kinetics and prediction of the synthesis product requires a detailed knowledge of
the reaction pathway. This is very much the case for the growth of gold nanorods,
and in this paper we present a critical review of the current state of nanorod modeling
and understanding of their growth mechanism. Due to the length and time scales in-
volved, one must go beyond DFT to reach relevant system sizes, and the last few years
have seen several investigations published based on MD simulations. Through these
simulation, new light has been shed on the micellar structure assumed by CTAB on
the surface of the nascent rods, which could potentially hold the key to understanding
the growth. A large portion of our review is thus devoted to a discussion of these re-
sults and their implications, both in the light of experimental data and MD simulations
carried out within our own group.
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Figure 5.3: Quatitative landscape of micellar structures of CTAB on gold obtain-
able in MD simulations by varying the CTAB surface concentration and interdigina-
tion of the initial bilayer configuration. In additon to cyldrical micilles, bilayers and
hemispherically-capped monolayers exist, illustrating the importance of the surface
concentration and constraints imposed by kinetics. Growth models where a particular
phase is assumed to prevail a priori should thus be met with caution.

A key discussion point is the surface phase diagram of CTAB on gold as a function of
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concentration, as recent claims hold that CTAB forms cylindricalmicelles on the surface
rather than bilayers as has often been assumed. The presence of cylindrical micelles on
a surface opens up for the possibility of monomers reaching the underlying surface by
diffusing through channels located between neighboring cylinders. The existence of a
facet-dependent anisotropy in one or more of the properties of the cylindrical micelles
could then explain the subsequent anisotropy in the growth from a spherical particle to
a rod. Indeed, the width of the channel openings has been proposed as such a property,
but we argue that no systematic trend can be established when the CTAB concentra-
tion is varied. In fact, variation of the concentration leads to a landscape of micellar
structures that, in addition to cylinders, features bilayers, spherical micelles and mono-
layers capped by hemispheres. We then proceed to discuss how anisotropic growth
could arise given this more nuanced micellar landscape, including the possibility of a
facet-dependence in the transition from a bilayer to a cylindrical shape.

5.4 Paper IV
An important aspect ofmodeling colloidal NPs concerns interparticle interactions, which
are largely determined by what happens at the particle surface yet cannot be treated
at the DFT level due to the upward shift in length and time scales. From an applica-
tions point of view, the ability to accurately describe the forces, both between NPs and
between NP and the surfaces of a surrounding device, is important because it holds
the key to rational system design. This work presents a joint theoretical and experi-
mental contribution in this area, where a modeling framework based on DLVO theory
is introduced for the purpose of systematically improving colloidal deposition setups.
The main focus is on systems where depositing NPs need to be guided towards cer-
tain parts of a device. This is relevant, e.g., in the field of molecular electronics where
guided deposition of particles interlinked by molecules enables parallel assembly of
molecular circuits. To provide a common basis for the theoretical and experimental
work, we consider a model system where citrate-stabilized AuNPs are guided towards
pre-patterned, nanosized features (nanofeatures) on a SiO2 substrate.

The first part of the paper concerns the selection of optimal materials. It is found that
AuNPs can be preferentially directed towards Ni-covered features on a surface. This is
rationalized in terms of the high Hamaker constant for Ni and the fact that Ni surfaces
are positively charged under the experimental conditions. As a result, the electrostatic
double layer interaction with the negatively charged AuNPs is attractive. The opposite
behavior is observed for the clean SiO2 substrate and hence deposition will only oc-
cur on the Ni-coated parts of the sample. Within our modeling framework, the choice
of material for the nanofeatures can be be quantified in terms of the surface deposi-
tion potential, representing the lower potential threshold for which particle deposition
is probable. The second part of the article deals with the geometry of the nanofea-
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Chapter 5. Summary of appended papers

tures and its optimization for NP capture. We show that it is possible to systematically
improve the chances of successfully capturing a nanoparticle, starting from a simple
nanofeature design consisting of two parallel bars that are subsequently turned into
forklift-shaped structures (Fig. 5.4). Optimal choices for the design parameters of the
features can be predicted within our framework and the results agree reasonably well
with experimental data.

Figure 5.4: Successive improvements of a nanosized feature designed to capture
nanoparticles. Starting from two parallel bars a) the sides can be extended to form
a forklift-shaped structure b). In the final step the corners are cut away c), allowing a
depositing to achieve greater proximity to the attractive nanofeature surfaces. Optimal
choices of the design parameters can be determined using the our proposed framework
based on DLVO theory.

In terms of the DLVO-based analysis, our framework work avoids two approxima-
tions that are commonly found in theoretical studies of deposition, namely the lin-
earization of the Poisson-Boltzmann equation and the Derjaguin approximation. In-
stead, a computationally efficient approach to evaluating the electrostatic double layer
interactions from numerical solutions to the non-linear Poisson-Boltzmann equation
is presented. This allows us to take into account the asymmetric nature of the citrate
electrolyte as well as surface potentials that extend beyond the linear regime. De-
parture from the Derjaguin approximation in favor of the surface element integration
method allows us to represent interactions between surfaces also when their separation
becomes comparable to the Debye length. The computational methodology is further-
more made available in terms of an extensible code written in Python.

5.5 Paper V
Dispersive interactions play a prominent role in this thesis. In particular for surface
systems it has been argued (Paper I, Paper II) that incorporating non-local interactions
is important for obtaining accurate results with DFT calculations. Here, a rigorous ap-
proach is provided by the vdW-DF framework and its associated functionals, which
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5.5. Paper V

have not been widely available since the non-trivial implementation has had to be re-
peated for each individual DFT code. In this work we seek to remedy this situation
via the introduction of libvdwxc, a C-library that provides DFT codes with easy and
efficient access to all vdW-DF family functionals. More precisely, the library computes
the non-local vdW-DF correlation energy (Eq. (4.22)) given the density and its gradient
as input from the interfacing DFT code. To obtain a specific vdW-DF functional, the
non-local correlation energy thus obtained must be combined with the exchange part
of the corresponding companion GGA functional and LDA correlation.

Due to the six-dimensional nature of the non-local correlation integral (Eq. (4.22)),
direct integration is not viable. Instead, libvdwxc employs the method of Román-
Pérez and Soler [89]. Briefly, the kernel is represented in terms of radial functions on a
two-dimensional grid and spline-based interpolations are used to obtain high accuracy.
The non-local correlation can then be computed using the convolution theorem, which
reduces the six-dimensional integration to a summation over three-dimensional inte-
grals. Several Fourier transforms must be calculated during this process, which limits
the overall scaling of the method to 𝒪(𝑛 log 𝑛) where 𝑛 is the number of real-space grid
points used.

The accuracy of the library is benchmarked over the S22 set of dimers² and good
agreement with corresponding implementations in VASP and Quantum Espresso is
obtained. Furthermore, parallelization is available through MPI; the scaling of paral-
lel calculations with respect to the number of cores is measured for a ligand-protected
AuNP consisting of 2424 atoms. It is found that the evaluation of the non-local corre-
lation energy is generally efficient enough to not impose any additional limitations on
system size compared to DFT calculations with conventional semi-local functionals.

²The data set consists of 22 dimers that generally exhibit dispersion and/or hydrogen bonding, with
reference energies from accurate quantum chemical calculations.
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A
Origin of the dispersive interaction

Each half of the cosmic breath, moved by a void.

Vektor, Terminal Redux: Recharging the Void

The origin of dispersive interactions and their asymptotic 1/𝑅6-dependence can be
demonstrated from elementary quantummechanics, without appealing to classical con-
cepts or amodel system, by considering the interaction between twowell-separated hy-
drogen atoms. A coordinate system according to Fig. A.1 is defined, where the nuclei
𝑎, 𝑏 have a relative displacement 𝑹 and the electrons are displaced from their respec-
tive parent nucleus by 𝒓1 and 𝒓2. The full non-relativistic, electronic Hamiltonian can
be expressed as the sum of the Hamiltonians of each isolated atom plus an interaction
term

𝐻 = − 1
2𝒑

21 −
1
𝑟1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝐻𝑎

− 1
2𝒑

22 −
1
𝑟2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝐻𝑏

+ ( 1𝑅 + 1
𝑟12

− 1
𝑟1𝑏

− 1
𝑟2𝑎

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝑉

. (A.1)

The idea is now to treat 𝑉 as a perturbation on the Hamiltonian𝐻0 = 𝐻𝑎+𝐻𝑏 . Using the
familiar labels (𝑛, 𝑙, 𝑚) for the hydrogen atom quantum numbers, the energy eigenstates
of the unperturbed Hamiltonian have the form

|𝑝(0)⟩ = |𝑛𝑙𝑚⟩𝑎 ⊗ |𝑛′𝑙′𝑚′⟩𝑏 ≡ |𝑛𝑙𝑚⟩ |𝑛′𝑙′𝑚′⟩ , (A.2)

where 𝑝 = (𝑛, 𝑙, 𝑚, 𝑛′, 𝑙′, 𝑚′) is a compound index and the (0) superscript indicates that
the kets are only exact eigenstates for 𝐻0 and not the full interacting Hamiltonian. The
corresponding eigenvalues are
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Appendix A. Origin of the dispersive interaction

a bR

r1 r2

+

--

+ zO

Figure A.1: Coordinate system used in the derivation of the dispersive interaction be-
tween two hydrogen atoms. The origin is taken to coincide with nucleus 𝑎 and the
𝑧-axis is parallel to the relative displacement vector of the nuclei. Note that the dis-
placement vector for the second electron is given relative to the parent nucleus rather
than the origin.

⟨𝑝(0) || 𝐻0 || 𝑝(0)⟩ = ⟨𝑛𝑙𝑚 | 𝐻𝑎 | 𝑛𝑙𝑚⟩ + ⟨𝑛′𝑙′𝑚′ | 𝐻𝑏 | 𝑛′𝑙′𝑚′⟩ ≡ 𝐸(0)𝑛,𝑛′ (A.3)

and in particular the ground state energy is given by 𝐸(0)11 = −1Ha¹. The next step is to
write a multipole expansion of the perturbing potential by summing Taylor expansions
of the individual terms in 𝑉 . For the interaction of the first nuclei and the second
electron:

1
𝑟2𝑎

= 1
|𝑹 + 𝒓2|

= 1
𝑅 + 𝑹 ⋅ 𝒓2

𝑅3 + higher order terms. (A.4)

The other terms have similar expansions and upon summation of the results it is ap-
parent that the monopole terms cancel as expected for neutral atoms. Furthermore,
assuming that the atoms are well separated, i.e., 𝑅 >> 𝑎0 where 𝑎0 is the Bohr radius,
only the dipole term in Eq. (A.4) needs to be retained. The final expression is, after
some algebra,

𝑉 ≈ 1
𝑅3 (𝑥1𝑥2 + 𝑦1𝑦2 − 2𝑧1𝑧2) . (A.5)

The first order perturbation of the ground state energy is now evaluated as

𝑊1 =
1
𝑅3 ⟨100 | 𝑥1𝑥2 + 𝑦1𝑦2 − 2𝑧1𝑧2 | 100⟩ = 0 (A.6)

due to parity since |100⟩ is even and 𝑉 is odd. The second order perturbation cannot be
exactly evaluated but is given by the series

¹1 Hartree (Ha) is equal to 2Ry = 27.21138602(17) eV
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𝑊2 = ∑
𝑛′,𝑛≠1

∑
𝑙′,𝑚′
𝑙 ,𝑚

|⟨100| ⟨100 | 𝑉 | 𝑛𝑙𝑚⟩ |𝑛′𝑙′𝑚′⟩|2

𝐸(0)11 − 𝐸(0)𝑛𝑛′
, (A.7)

where it is apparent that each term is negative and scales like 1/𝑅6. It follows that
to leading order the ground state energy of two well-separated neutral atoms can be
written

𝐸0 = 𝐸(0)11 + 𝑊2 = −1 − 𝐶6
𝑅6 , (A.8)

where 𝐶6 is an unknown coefficient that needs to be calculated numerically. In con-
clusion, the correction 𝑊2 describes a dipole-dipole type interaction, stemming from
the electrostatic coupling the atoms experience in each others proximity. This is cus-
tomarily referred to as the van der Waals interaction and results in a negative shift
of the ground state energy. Since neither atom has a net dipole moment, the van der
Walls interaction can be thought of as an induced dipole-induced dipole interaction as
typically presented in literature. This simplified picture can, however, be misleading
since it gives an impression that the phenomenon is time-dependent, when the above
derivation shows that this is clearly not the case.
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