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This paper presents an approach for testing safety PLC logic in a virtual environment, using the 10CO
testing relation as validation criteria. Manufacturing companies more and more rely on virtual
commissioning to reduce the physical commissioning time by testing and debugging the PLC logic of the
nominal behavior prior to physical commissioning. However, safety PLC logic testing is still carried out on
real systems manually. This manual practice of safety logic validation hinders industry to exploit the full
potential of virtual commissioning to reduce the physical commissioning time. The proposed approach
assists manufacturing companies in the validation of safety PLC logic using a simulation model before the
factory acceptance testing phase. Using the proposed approach, a simulation model can be used to test the
safety PLC logic and prepare better for the factory acceptance testing phase, hence, further reduction in
physical commissioning time can be achieved.

© 2019 CIRP.

1 Introduction

Manufacturing companies opt for more automated solutions by
introducing robots and other automated machines, which has
positively affected the production rate and product quality. To
achieve an automated solution, these machines are controlled by
PLCs (Programmable Logic Controllers), which are typically
manually programmed and thus prone to human errors. The
errors found in the programs are corrected during the physical
commissioning of the production system, hence causing delays in
the commissioning of the production system. According to [1],
about seventy percent of the physical commissioning time is
consumed in correcting errors of the PLC code.

To counter this problem, virtual commissioning is being used by
several manufacturing companies prior to physical commission-
ing. For virtual commissioning, simulation and modeling engineers
first create a (complete) simulation model of a production system.
The specification documents that are used to create the simulation
model are a combination of formal and informal descriptions.

After modeling, the PLC code related to the nominal behavior of
different machines is created and tested using the simulation
model. The testing and validation of the PLC code helps in reducing
the physical commissioning time [2,3], due to rectification of errors
before physical commissioning.
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In addition to reduced physical commissioning time [2,3], a
robust simulation model is gained as a byproduct, which can be
used to test future modifications. Testing modifications initially in
the virtual environment helps in determining the behavior of a
production system in a safe way, as modifications made directly on
a physical system might cause production disruption and or
equipment damage.

Many different concepts and approaches to virtual commis-
sioning exist [4-7], and have shown great promise when it comes
to reducing the physical commissioning time. However, testing and
validation of the safety PLC code is typically still carried out on the
real production system. To harvest the full potential of virtual
commissioning, testing and validation of the safety PLC logic in a
virtual environment using a simulation model warrants further
investigation.

In many companies, the engineering staff is not involved in
creating the PLC code. Instead, third-party contractors create the
PLC code including the safety PLC code. Therefore, it is difficult to
confirm anything until the factory acceptance testing is carried out.
On many occasions, even after the factory acceptance testing,
errors can still be found in the PLC code. These errors are often
corrected after the delivery of the production cell, hence adding
more time to the physical commissioning.

Due to the problems associated with the third party validation
procedure, the safety PLC code validation procedure needs
amendment so that the physical commissioning time can be
further reduced. Also, in order to ensure that the production cell
conforms to the required specifications, the testing and validation
procedure should be made transparent for the manufacturing
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company personnel. The current validation procedure performed
during the factory acceptance test is based solely on visual
inspection using checklists, which requires days and sometimes
weeks at the contractor's location [8].

The checklists used by the manufacturing company during the
factory acceptance test are expressed in natural language. Natural
language descriptions can lead to false validation of PLC code as it
can be interpreted differently. Also, only assessing behavioral
equivalence by visual inspection is not enough, since minor but
important errors can be overlooked by the engineers. The visual
inspection procedure can be strengthened by formally testing
safety properties.

In [9] is discussed the importance of formal specifications for
safety PLC program verification but not testing and validation.
Validating certain safety aspects based on formally specified tests
will result in a more robust PLC code as the errors related to the use
of natural language can be avoided. The use of natural language
apart from interpretation issues also limits the computer
algorithms to auto-generate tests.

Model-based testing [10] is an approach in which a model of an
implementation undergoes a series of tests to find errors. If the
implementation conforms to the specification, the test is passed,
else it fails. In the case of safety PLC code, the safety code will be the
implementation which undergoes testing. There are two ways to
carry out model-based testing, offline or online.

In online testing, tests are developed and run during the test
execution on a system, whereas in offline testing, test cases are
developed before and are executed later on the system under test.

In offline model-based testing, issues of state-space explosion
and handling of non-determinism are intrinsic [11]. But to test
safety PLC logic in a virtual environment, offline model-based
testing is the most suited option as the production system is not yet
commissioned physically. Also, the concept of virtual commis-
sioning revolves around a simulation model, hence online testing
would not fit in this case.

The literature does not, to the best of the authors’ knowledge,
include any approach that incorporates offline model-based
testing for validation of safety PLC logic using a simulation model.

1.1 Contribution

In this paper, an approach to test and validate the safety PLC
logic based on model-based testing is presented. The proposed
setup, illustrated in Fig. 1 consists of a safety PLC, a standard PLC, a
test initiation software, and a simulation model. The tests are
initiated in the simulation model via the test initiation software,
which also makes the decision about whether the executed test has
either passed or failed. After the initiation of a test, the sequence of
nominal actions is disrupted in the simulation model, which
updates the input—output values in both the standard PLC and the
safety PLC. Based on this new status of the input-output from the
safety PLC, the test initiation software determines if the executed
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Fig. 1. Proposed setup.

test passed or failed. The approach is aimed to support safety PLC
logic validation before the factory acceptance testing phase to
further cut down physical commissioning time. Using the
proposed approach, the engineers will be more prepared and
probably spend less time during factory acceptance testing, due to
prior testing of the safety PLC logic in the virtual environment.

1.2 Outline

This paper is structured in the following way. In Section 2,
virtual commissioning practices are briefly described, together
with some future possibilities. In Section 3, the background of
industrial practice regarding PLC safety logic validation is detailed.
Section 4 details the model-based testing approach. Section 5
presents the proposed approach for safety logic validation in a
virtual environment. Section 6 concludes the paper with some
potential future work directions.

2 Virtual commissioning

The concept virtual commissioning was introduced to cut down
physical commissioning time [2,3]. There are three key elements
essential for a virtual commissioning setup: a simulation model of
the production system; a programmable logic controller (PLC) that
interacts with and controls the simulation model; and an emulator
that interconnects the PLC and the simulation model.

To build a simulation model, different proprietary software
such as Process Simulate [12], Delmia [13] etc., can be used.
Typically, simulation models are built to the level of sensors and
actuators [ 14], the idea is to capture the behavior of a production
system's relevant parts that would be appropriate for PLC control.
The modeling details may vary depending on the expertise and
requirements of the company. The goal is to fix the PLC code errors
before the physical commissioning, so that the time spent during
real commissioning can be cut down.

The PLC is a device that runs a program to control a physical
production system. The PLC program can be broadly classified into
two categories: PLC code for nominal aspects e.g. welding, gluing
etc., and PLC code for safety aspects e.g. emergency stops, collision
detection etc. Typically for virtual commissioning, companies
implement and test PLC code related to nominal aspects with an
assumption that the simulation model built in the first step of
virtual commissioning exhibits the actual behavior. Based on this
assumption, developing and testing the PLC code against the model
allows the engineers to find and correct errors.

The emulator is required to establish a connection between the
PLC and the simulation model, since it is not possible to connect
inputs and outputs physically to a PLC during virtual commission-
ing due to the absence of real devices. The solution comes in the
shape of an emulator e.g. Simba-box. After setting up the
connections via the emulator, mapping of the signals is carried
out. Details regarding setting up the connections, mapping the
signals, etc., are given in [15].

In the typical approach of virtual commissioning, the complete
PLC code is tested on a simulation model first and then the tested
PLC code is implemented directly on a production system. Another
approach, Hybrid commissioning [16], deals with a step-wise
commissioning of the physical system. Hybrid commissioning is a
configuration in which a simulation model and a physical system
are simultaneously connected to a PLC. The idea is to commission
the physical system in steps, rather than commissioning all
equipment simultaneously.

For hybrid commissioning, first the simulation model is tested
with the PLC and then each component, i.e. actuator and sensor, of
the simulation model is replaced by its real counterpart [17]. This
step-wise testing of different sub-systems of the physical
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production system in a hybrid manner is useful in terms of finding
control logic errors specific to a sub-system. Also, it is a safe
practice compared to conventional virtual commissioning, because
the complete production systems is not commissioned as a whole.

Another concept of using virtual commissioning during the entire
preparation and commissioning phase as opposed to use virtual
commissioning as a last step before physical commissioning of the
project life cycle is proposed in [5-7]. By doing so, both the simulation
model and the PLC logic can be tested at any stage of the engineering
cycle. Also, having a single simulation model in the entire engineering
chain would make the engineers’ job easier in terms of modifying and
updating the model at any stage of the engineering life cycle. The
problem to counter here is data heterogeneity, as different proprietary
software are used throughout the project life-cycle.

The problems of natural language and data heterogeneity can be
resolved by specifying technical documents formally. A formal
description can be translated by computer algorithms and can thus
make the job of creating a simulation model and PLC code automatic.
Inindustry, the use of formal methods is not routine butitis gradually
gaining popularity. A number of works [18-22] motivate the use of
formal approaches for both modeling and PLC programming.

The simulation model built using formal specification will
allow information re-use from different software and tools used
during the development phase. By reusing information and data,
virtual commissioning and testing can start already in the
preparation phase. Logical errors in the control logic can be
found much earlier and the simulation model can be improved
based on the results [7].

Currently, all the practices related to virtual commissioning
whether it be creating a simulation model or creating PLC code are
manual in nature. This manual implementation can be made fully
automatic if ready-made models of components can be provided
by vendors. A framework related to such automatic implementa-
tion is described in [23], but as of today, vendors do not provide
ready-made components for modeling and PLC programming.

On the one hand, virtual commissioning has benefits in terms of
cutting down physical commissioning time [2,3]. On the other
hand, significant time is consumed to model the system down to
the level of sensors and actuators [14]. Also, having a virtual
environment gives leverage to test numerous scenarios, but it also
requires more time to validate them. If safety PLC logic testing and
validation is incorporated in the virtual environment, full potential
of the virtual commissioning practice can be exploited, hence
further reduction in physical commissioning time is possible.

3 Industrial practice of testing and validation of safety logic

When anew production system s installed, one of the last activities
carried out during the factory acceptance test is the validation of the
safety system. Safety systems are used primarily to protect humans
from harm, but also to safe guard machines. There are different
types of safety devices, e.g. light curtains, floor sensors, emergency
switches etc., which are used to protect both humans and machines.

During factory acceptance testing, all the functions related to
the safety equipment are tested manually, e.g. emergency stop
buttons are pressed to see if the production system stops, light
curtain functions are tested by manually breaking the light barrier
etc. This manual testing of actual sensors and equipment triggers
the associated inputs and outputs in the safety PLC code, the
observed results helps in validation of the created safety PLC code.

The testing and validation of the safety system and safety logic
is typically done manually using checklists and visual inspection
[8]. The checklists are prepared in detail in conjunction with the
equipment to be tested, and are typically described using natural
language. Typically, it has titles of different tests, under the title
comes the description of the test i.e. how the test is performed and

what constitutes a pass for the executed text. For example, in the
case of testing safety PLC logic for the emergency shutdown, the
physical system will be interrupted while nominal operation is
being carried out by pressing the button. This interruption will
trigger the safety interlock in the PLC logic, which automatically
takes the physical system from being operational to a halt state.
After visually observing and confirming that machines and
humans are safe, this shutdown logic will constitute a pass.

The checklists are managed by the safety personnel at the
company level. The safety personnel is one or more authorized
persons from one of the engineering departments within the
company. The responsibilities of the safety personnel include
maintaining safety documents related to validation e.g. checklists,
development process (V-model) and equipment safety buy-offs.

A certified engineer is assigned by the lead engineer to provide
technical support and to perform the validation of the safety
software and safety devices. The certified engineer can be third
party personnel hired to give support, or the company's own
employee. The assigned engineer must have sound knowledge of
control engineering, the company's hardware and software stand-
ards and should be experienced in validation of safety systems. The
certified engineer validates the following aspects of the safety code:

e Completeness and accuracy.

o Implementation of predefined “standard non-editable routines”.

» Correctness of /O mapping and configurations.

e Implementation of correct interlocks.

e Exclusive implementation of safety tasks and routines from
nominal tasks.

In addition to the above mentioned tasks, additional functional
and dynamic tests based on design documentation, regional
control organization norms and regulations are also carried out.
After the validation task, a certificate of correct and successful
validation is provided to the company.

The PLC programs are created based on the requirement
specifications provided by the manufacturing company, which
requires thorough investigation and testing, especially if the PLC
programming is outsourced. Because when the PLC code is
developed in-house at the company instead of outsourced to a
contractor, the communication between the engineers who create
the PLC code and the engineers who wrote the specification can
take place anytime during the project life-cycle. This communica-
tion gap increases when the project is outsourced to another
company, and has the consequence that the PLC code becomes
developed from rather high level requirement specifications and
probably requires more thorough testing.

Informal specifications can be interpreted differently, which
leads to more errors, therefore the finished PLC code, irrespective
of if it has been developed in-house or not, has to be tested.
Currently in the preparation phase, usually the engineers at the
manufacturing companies do robot simulation and other forms of
modeling e.g. CAD and kinematics. But in terms of preparation for
factory acceptance testing, manual checklists are prepared.

4 Model-based testing

Manufacturing production systems and their logical behavior
can often be beneficially modeled as discrete event systems [24].
Discrete event systems evolve dynamically on the occurrence of
events, while at each time instant occupying a specific state where
certain conditions hold. Several discrete event formalisms and
approaches [24| have been developed to implement, test, and
analyze the behavior of systems with respect to specifications.

One of those approaches is model-based testing [10], which is a
formal approach to subject a model of an implementation to series
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of tests that try to falsify the specification according to which the
implementation was created, in order to find faults in the
implementation. To formalize this, the concept of input—output
conformance (I0CO) was proposed by [25].

In the [OCO testing relation, the specification provides the basis
for the behavior of the implementation in that it dynamically
defines the outputs that the implementation is allowed to emit. If
other than the specified outputs are emitted by the implementa-
tion, it is not IOCO with respect to the specification and either the
specification or the implementation need to be modified.

The reason of non-conformance has to be evaluated separately for
each case. If inspection of the reason behind why the implementation is
not I0CO withrespect to the specification reveals that the specification is
correct, the implementation needs to be modified. However, in some
cases, such as when having a legacy system [26] for which the
specification was designed from outdated documentation, it may in fact
be the implementation that is correct and the specification that is faulty.
In this case, it is the specification that needs to be modified.

To give the formal definition of I0CO, consider two disjoint
sets of input actions I and output actions O. The output actions are
the actions initiated by the system under test and are expressed
with an exclamation mark, such as !ac 0. The input actions are
commands to the system and are expressed with a question mark
such as a? 1. Now, we consider a labelled transition system to
elaborate the concept of IOCO and give the formal definition.

Definition 1. An [/O labelled transition system (LTS) is a 4-tuple (S,
So, L, = ) where:

« S is a non-empty set of states;

e 5o € S is the initial state;

e L is a countable set of labels. These represent observable
actions of a system i.e. L=IUJ0 where [ and O are as above.
Consider also a quiescence symbol §¢ L, and define the sets
Ls=LuU{8} and Os=0uU{8};

e — CSxLsxSisa transition relation such that, p — aq implies
(p, q, q) € — and p — a for a € L, if there exists g €S such that
p — aq. Similarly, p » a, for a € L, if there exist no q such that
p—aq. In addition, only coherent quiescent systems are
allowed, so — also satisfies the following:

- if p—dp’, then p=p’ i.e. a quiescent transition is always
reflexive.

—if p»la for all lacO, then p— dp, i.e. a state with no
outputs is quiescent.

- if p— 1a for some !acO, then p » 4, i.e. a state with some
output is not quiescent.

Furthermore, a trace t is a finite sequence of symbols of L; i.e.
t € Ly, including the empty trace ¢. When the transition relation is
restricted to be a function, and thus for p — aq and p — aq’ it holds
that g=¢q’, the resulting LTS is said to be deterministic.

Additional definitions needed to express the I0CO relation in
Definition (6) are as follows.

Definition 2. The set of traces from a state p in an LTS is

traces(p) = {t c L |p — t}. (1)
Foran LTS A= (S, so, L, — ), its set of traces are the ones defined from
its initial state

traces(A) = traces(sp). (2)

Definition 3. The set of states reached after a trace t from a state
pis
after(p,t) ={p’' €S|p — tp'}. (3)

Foran LTS A= (S, sq, L, — }, the set of states reached after a trace t is
after(A,t) = {p’ € S|so — tp'}. 4)

For a deterministic LTS, after(-, -) always returns a singleton set.
Then we write after(p, t)=p'.

Definition 4. The set of outputs from a state p is

outs(p) = {lac O |p — la}. (5)

In IOCO the implementation and the specification are regarded
as discrete event systems, typically modeled as finite-state
machines (FSMs) [24], with the events representing the inputs
and outputs. For an implementation G and specification S, the
formal definition of the I0CO testing relation [27] can now be
stated as.

vt € traces(S) : outs(after(G,t)) C outs(after(S, r)) (6)

The formal 10CO definition (6) is interpreted as an implemen-
tation G conforms to a specification S, if for all the traces in the
specification the output events possible from the state reached by
the implementation after a trace form a subset of the possible
output events from the state reached by the specification after the
same trace. Whenever this subset relation between the respective
sets of output events exist, the implementation is said to be 10CO
with respect to the specification, for that particular trace. If the
implementation is IOCO with respect to the specification for all the
traces defined by the specification, then the implementation is said
to be I0OCO with respect to the whole specification.

As an example consider the FSM shown in Fig. 2. In the FSM,
start, !DoneG, !DoneP, and !DoneW are input and output events,
with the output events prefixed by an exclamation mark. The
possible traces of the FSM are the empty trace of length zero, the
start trace of length one, and the traces of length two start.! DoneG,
start. !DoneP, and start.! DoneW. The outputs after the trace start are
IDoneG, !DoneP, and !DoneW. For all other traces the possible
outputs in the given example is the empty set.

For a specification that specifies that after the start trace only
the !DoneG and !DoneP outputs are valid, an implementation
looking as the FSM of Fig. 2 would not be I0CO, as the outputs from
the implementation after the start trace would not be a subset of
the outputs of the specification after the same trace. However, note
that an implementation is allowed to define fewer output events
than the specification after a trace.

The above mentioned concepts traces, outs, and after related to
the I0CO testing relation need to be appropriately applied to their
respective conceptual equivalent in the safety PLC code. The
concept of traces is related to sequences of operations programmed
in the PLC code that occur dynamically depending on the inputs
and outputs. Similarly, after will be the post operation scenario in

—_— 50
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Fig. 2. FSM representing three alternative operations.
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the implementation and outs will be the outputs from the safety
PLC logic. These PLC outputs will then be compared to the expected
outputs to check if the implementation is IOCO or not with respect
to the specification.

In practice, Boolean signal values are shared between the safety
PLC logic and the specification, not events. Thus, the notion of
subsets is to be adapted to Boolean signals in the way that False is a
subset of both False and True, while True is considered to be a subset
of only True. Hence, if the specification output for a certain Boolean
signal is False and the implementation output for the same signal is
True, then the I0CO relation fails. The problem of combinatory
explosion is not an issue for testing safety logic using I0CO, since
typically, the number of inputs and outputs for a safety code is
small. However, large number of inputs and outputs could lead to
traceability issue if not managed properly.

5 Testing and validation of safety PLC logic in a virtual
environment

In this section, the approach to test and validate the safety PLC
logic in a virtual environment is detailed. The presented approach
is general in nature and not brand specific. To create a simulation
model, any software e.g. Delmia [13], Process Simulate [12] etc.
with features to create and simulate models of physical systems
and human dynamics can be used. Similarly, due to the [EC61131-3
PLC programming standard, a PLC of any brand can be used.

Compared to the proposed approach to test and validate the
safety PLC logic, as presented in Fig. 1, the actual setup differs
slightly [28] as shown in Fig. 3. A single standard PLC is used to
implement both the PLC logic for the nominal behavior and the
safety PLC logic. Furthermore, the results of the executed tests, i.e.
if the test has passed or failed, is also determined by the standard
PLC instead of the test initiating software. The test initiator
software, which is the HMI in the actual setup is used to initiate
tests and for the visualization of test results.

The proposed setup in Fig. 1 is changed due to a problem [28]
with the safety functionality that occurred during implementation.
The PLC used in the implementation is a S7-1500 PLC [29] with
integrated safety functions. This integrated safety functionality
was unable to send and receive safety signals with the simulation
model. Being unable to rectify this problem, despite numerous
attempts, the proposed setup was modified. The modified setup
does not have the safety PLC. Due to this, certain hardware safety
functions such as redundant controllers and I/Os [29], which are
associated with hardware reliability cannot be implemented and
tested. However, in terms of logic development and testing, a
safety PLC is the same as a standard PLC. Therefore, the modified
setup does not affect the primary goal of testing safety PLC logic in
a virtual environment.

The simulation model is created in the software Process
Simulate [12], and a Simba Box [30] is used to establish connection
with Process Simulate and the PLC. The manufacturing company
provided partial CAD models of the actual cell, which were

Input-Output
Status
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Fig. 3. Actual setup.

elaborated and enriched manually in Process Simulate by adding
operations both for nominal and safety behaviour.

Inthe use case, different safety related scenarios are implemented
in the simulation model. In addition to visual validation, the safety
PLC code is validated using the 10CO testing approach.

The safety PLC code is typically interlocked with the relevant
inputs and outputs of the nominal behavior. As a result, when
safety critical scenarios arise, the nominal operation will be
disrupted with respect to the safety PLC logic. To resume the
nominal operation again, certain steps are required, e.g. resetting
the emergency stop button. The nominal operations that will be
disrupted in the use case are loading, picking, and placing of parts.
To resume the nominal operations, the steps required will vary
depending on the activated safety PLC code. If the robot has been
paused due to human presence, the nominal operation can begin as
soon as the human leaves the critical zone. But if the robot has been
stopped due to human interference, the Reset button needs to be
pressed manually.

In addition to the mechanical and electrical equipment, the
simulation model includes a model of a human operator that can
subject the system to certain scenarios e.g. opening the fence door,
breaking the light barrier etc. This human operator disrupts the
nominal actions, which are being carried out in the simulation
model. The human model in the simulation is controlled with the
part flow operation instead of the Jack module of Process Simulate
[12], as triggering the safety sensors does not require detailed
simulation of human movements.

The part flow operation is a feature in Process Simulate that
allows movement of different CAD objects during simulation
through pre-defined paths called via points. This part flow
operation feature is used to move the model of a human through
pre-defined via points, which were marked in four safety zones.
These via points are defined using the placement manipulator
function available in Process Simulate and is added to the path
editor that allowed the mapping of human behavior, e.g. walking.

The disruption caused by the human is detected by the safety
sensors in the simulation model, causing the sensor values to
change. As a response to this change in the sensor values, the
respective outputs will be triggered in the safety logic.

The outputs triggered as a result of human disruption in the
safety PLC logic have tags associated with them in the human-
machine-interface (HMI). These tags will not illuminate if the
implementation is I0CO with respect to the specification or, in
other words, if the test is passed. If the implementation is non-
[OCO then the tags will illuminate and a manual amendment is
required in the safety PLC code to make it IOCO. This amendment is
carried out on the assumption that the specification is correct,
which is the basis of the I0CO testing methodology. In this
application, time constraints are not taken into account and only
logical correctness will be tested.

5.1 Use case

The implementation of the IOCO concept for the validation of
the safety PLC logic is carried out on the production cell illustrated
in Fig. 4. This production cell is situated at a manufacturing
company in Sweden. The cell contains one robot and three stations.
Out of these three stations, Station 3 is a loading station, on which a
part is initially loaded, Station 1 and Station 2 are place stations.
Initially a part arrives at the loading Station 3. From there the part is
picked up by the robot. After being picked, it is placed on either
Station 1 or Station 2.

The cell is divided into four zones to cater for operations related
to human safety. Zone 1, Zone 2, and the Centre Zone are monitored
by floor scanners, while Zone 3 is monitored by a light beam to
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Fig. 4. Production cell.

detect human presence. For the robot operation a SafeMove Zone is
defined, which transcends the boundary of Zone 3 at all three
stations.

The human operator included in the simulation model, after
getting triggered, will cause interference in the zones. This
interference is either in terms of breaking the light beam or being
detected by the floor scanners. In Process Simulate, different
available options are used to mimic the behavior of the respective
SEensors.

The floor scanners are mimicked using proximity sensors to
detect objects in a defined area, which can be seen in Fig. 5 as a
rectangular grey mat, which defines the detection range of the
floor scanner. The light beam is created by using a light sensor from
the software. Fig. 6 shows the created light beam to detect human
presence.

In terms of safety logic, there are different scenarios possible
when human presence is detected in the specific zones of the cell. If
the human presence is detected in Zone 1, see Fig. 4, the robot will
continue to carry out its task at normal speed, and nominal
operation is not disrupted by the PLC safety logic. In Zone 2, the
robot slows down its movement in case of human presence.
However, due to unavailability in Process Simulate of functions for
controlling the speed of the robot, this behaviour is not
implemented for the proposed use case.

Zone 3 has two different safety scenarios associated with it. One
scenario is when the robot pauses its movement due to human
interference at any of the three work stations while the robot tries

Fig. 5. Floor scanner.

Fig. 6. Light beam.

to enter the SafeMove zone of that particular station. The second
scenario is when the robot stops its activity in the SafeMove region
of any work station because the human enters that particular
station.

For the Centre Zone, the robot stops when a human opens the
fence door. The robot, after being stopped, requires a manual reset
in the same way as for Zone 3.

5.1.1 Human-machine interface

The human-machine-interface (HMI) is used to initiate and
monitor tests. The software used is SIMATIC WinCC [31]. After the
execution of each test, the HMI will wait for the output signals, i.e.
Robot stop and Robot pause. These two output signals are modelled
in the HMI for the purpose of visualization.

The HMI, Fig. 7, contains a Start button to trigger the main
nominal operation cycle, that is, the loading and pick-and-place
operations of the robot. There are four buttons modelled to initiate
different tests in the cell while the nominal operations are being
carried out. Each of the four buttons that initiate tests has an
indication lamp attached to it. These lamps indicate Test status,
which will illuminate if the executed test fails.

To reset the robot after being stopped in the case that the
human breaks the light beam, a Reset button is modelled, which is
required to resume nominal operations. To exit the HMI, the exit
button can be pressed.

Scenario 1 Test status
Scenario 2 114
Senario 3
i . - -Staﬂﬂ
Scenario 4

Robot stop Robot pause

Fig. 7. Human-machine-interface.
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Floorsenstl  Robotstl Robotpause
—/t it { }—

FloorSenst2 RobotSt2

FloorSenSt3 RobotSt3
—A— —

Fig. 8. Robot pause safety logic.

FISensorCentre resetl Robotstop
— 4 { }—

LightSt2
/F

Gateclosed

EmergenStop
—t

Lightst3
—t

Robotstop
1+

Fig. 9. Robot stop safety logic.

5.1.2 Safety PLC code

The company did not provide the actual PLC code per company
policy. So, the PLC code for both nominal and safety is created
manually from the specifications discussed with the manufactur-
ing company.

The safety PLC code created for the proposed use case revolves
around two safety outputs i.e. pausing and stopping of the robot.
These two safety functions are tested using five different scenarios
in the simulation model, which cover all the safety sensors and the
logic associated with them.

Fig. 8 shows the safety PLC logic related to the robot pause
function. In the safety code, the Robotpause output is activated via
inputs FloorSenSt1, FloorSenSt2, or FloorSenSt3 that correspond to
the floor sensors installed at each station. These are activated in
conjunction with the respective inputs RobotSt1, RobotSt2, and
RobotSt3, that correspond to the presence of robot at Stationl,
Station2, and Station3, respectively.

Fig. 9 shows the safety PLC logic of the robot stop function.
There are three different scenarios in which the robot is stopped.
The first scenario is due to the activation of safety sensor inputs
FlSensorCentre, LightSt2, or LightSt3. The second scenario relates to
the input EmergenStop, which corresponds to the emergency stop
button; the third scenario is related to the fence gate input
Gateclosed, i.e. whether the fence gate is closed or not. In the safety
code, the Robotstop output is activated via parallel combination of
FlSensorCentre, LightSt2, LightSt3, EmergenStop, or Gateclosed in
conjunction with the reset1 input.

The default values of the safety sensors, emergency stop
button etc. received from the simulation model are normally
high in both robot pause and the robot stop safety logic. These
safety sensor signals are represented using normally closed
contacts in the safety logic. This combination of normally high
signals and the normally closed contacts in the safety logic
makes the Robotpause and the Robotstop outputs low under
nominal conditions, hence the robot remains operational.
However, in case of human interference, the received sensor
signals goes low, which makes the Robotpause and the Robotstop

Table 1

Traces in robot pause safety logic.
Traces Outs
FloorSenSt1. RobotSt1 Robotpause
FloorSenSt2. RobotSt2 Robotpause
FloorSenSt3. RobotSt3 Robotpause

Table 2

Traces in robot stop safety logic.
Traces Outs
FlSensorCentre. reset1 Robotstop
LightSt2. reset1 Robotstop
LightSt3. reset1 Robotstop
Gateclosed. reset1 Robotstop
EmergenStop. reset1 Robotstop

Reset Lightst2 FlSensorCentre Gateclosed E Lightst3 Rob resetl
i 1} i} 1} { k i b {

Fig. 10. Reset logic.

signals go high, which in turn makes the physical robot pause or
stop.

From the perspective of 10CO, there are many traces possible
due to the combinatorial nature of the logic. However, all
combinations eventually activate either the Robotpause or the
Robotstop output. Therefore, only parallel traces in the safety PLC
logic are highlighted in Tables 1 and 2.

The normally open contact Robotstop in the robot stop logic is
not regarded as an input event, because it is only used in the safety
PLC code to hold the robot in the stopped state. The reset1 input on
the other hand is connected to the reset logic. This reset1 input is a
normally closed contact and works inversely when the Reset
button is activated.

The Reset input shown in Fig. 10 is provided to manually reset
the PLC code, which is activated to resume operation via the HMI
Reset button. The reset logic is interlocked with inputs FISensor-
Centre, LightSt2, LightSt3, EmergenStop, and Gateclosed, so that the
robot can only resume operation, once the intruded zone has been
cleared from human presence. The input Robotstop is added to hold
the robot in the stopped state, until the Reset is pressed.

5.1.3 Testing and validation

The tests created can be seen in Fig. 11, each test's result after
being initiated is determined by the Test determination Logic
illustrated in Fig. 12. Tests are initiated via the HMI (Fig. 7) by
pressing the buttons corresponding to the specific test, these
buttons are designated Scenariol, Scenario2, Scenario3, and
Scenario4. After test initiation, if the test status indication stays
low, this signals a pass for the executed test. The inputs Scenariol,
Scenario2, Scenario3, and Scenario4 in Fig. 11 instigates a model of a
human via the outputs Human1, Human2, Human3, and Human4,
which works in conjunction with humanlend, humanZend,
human3end, and human4end in a holding coil PLC structure.

Test one instigates a human to interfere with the nominal
operation at Station3. According to the safety logic in Fig. 8, the
inputs FloorSenSt3 and RobotSt3 pause the robot as the human
enters Station3 in the presence of the robot. The Robotpause lamp in
the HMI illuminates as a response to this interference. At the same
time, the output testifail in the test result determination logic in
Fig. 12 stays low, which constitutes a pass for the executed test.

In the second test, a human breaks the light beam at Station3 in
the presence of the robot at Station3. According to the safety logic
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Scenariol Human1
X {F—
Humanl humanlend
| | i/t
Scenario2 Human2
1 | { —
Human2 human2end
{ | i1
Scenario3 Human3
{ | { F—
Human3 human3end
¥ %
Scenario4 Human4
I} t
Human4  humandend
| | i1
Fig. 11. Tests.
FloorSenst3 Robotpause Ii?w? test1fail
1 1 N Q
10MS - FT ET
test1fail reset?
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LightSt3 Robotstop Time test2fail
A 1t N Q——
10MS - pT ET
test2fail reset2
i | /1
TON
LightSt1 Robotstop Time test3fail
A % no o—i
10MS — pT 3]
test3fail reset2
TON
Gateclosed Robotstop Time test4fail
—1 % W o—— —
10MS — p1 ET— -
test4fail reset2
—

Fig. 12. Test results determination.

in Fig. 9, the input LightSt3, which is related to the light beam
installed at Station3 stops the robot. As a response to this event, the
Robotstop is illuminated in the HMI, hence the input-output
conformance relation for test two is validated, and the test2fail
output stays low.

In the third test, the human breaks the light beam installed at
Station1, but the robot does not stop. Due to this failure in the safety
logic, the test status lamp of the third test turns red in the HMI,
indicating that the initiated test has failed, hence the input-output
conformance relation fails. Upon inspection of the safety PLC logic
shown in Fig. 9, it is found that the input related to the light beam
sensor, which is LightSt1, is not taken into account by the code. This
error in the safety PLC code was fixed manually after the failure of
the test by adding the required input LightSt1.

In the fourth test, a human interferes in the CentreZone by
opening the fence gate, while the nominal operation is being
carried out. This disruption causes the robot to stop as per the
safety PLC logic shown in Fig. 9. The Robotstop is triggered via the
Gateclosed input as the fence gate opens, hence the input-output
conformance relation is validated for scenario four.

Fig. 12 represents the test results determination logic for the
four tests mentioned above. Each rung in this logic determines the
status (pass or fail) of the executed test with a normally closed
contact of the triggered safety sensor e.g. FloorSenSt3, LightSt3, etc.
in conjunction with the normally closed contact of either the
Robotpause or RobotStop output. For each test, the failure is
highlighted in the HMI indications, which are connected to the
outputs testl1fail, test2fail etc. These outputs are also used in a
holding coil configuration with an input reset2. The reset2 input is
provided to reset the executed test to its initial state, while the
timers are provided to have some tolerance for signal flickering
that can occur during human interference.

Apart from the mentioned tests, other scenarios were also
tested for the given use case, which were based on activation of
multiple sensors simultaneously in different zones. However, the
robot is either paused or stopped, which was trivial and was
already tested in the four tests mentioned above. Therefore, these
tests are not detailed in this paper.

The errors found in the safety PLC logic during testing of the
other scenarios, which are not detailed in the paper were fixed
manually after inspection, so that the safety PLC code conforms to
the required specification. Hence, the applied testing approach
using the I0OCO testing relation showed its viability on a real
industrial system, as it helped in finding errors in the safety PLC
code in the virtual environment.

6 Conclusion

In this paper, an approach to test and validate safety PLC code
based on the IOCO testing relation in a virtual environment is
detailed. Similar to virtual commissioning, in the proposed
approach, the safety PLC code is tested using a simulation model
of a physical system. The proposed approach is applied on a use
case to demonstrate how input-output conformance testing can
be used for the validation of safety PLC logic. The outcome of the
testing shows the viability of the approach in an industrial
setting, as the errors found in the safety PLC code using the
simulation model can be fixed before the factory acceptance
phase. Due to this, the engineers can prepare themselves better
before the actual factory acceptance testing phase and is
expected to spend less time at the contractors facility, which
as a result may help in further reduction in the physical
commissioning time of a production system. In this work, the
errors found in the safety PLC code were fixed manually but in
the future, this work will be extended in terms of using
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automatic adjustment of non-conforming implementation with
respect to the specification. Furthermore, in the future, QuickCheck
|32] will be used to generate more complex test cases.
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