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ABSTRACT
We present a novel analytical model for the lossless fiber in the weak-dispersion regime. The model is compared
to three other models via simulations using the split-step Fourier method. These simulations explore the validity
of the models with respect to parameters that affect the signal after the fiber propagation. In one of the systems
under consideration, the proposed model is accurate until 8.7 dBm while the others are accurate only until 2.4
dBm. The impact of the modulation format is analyzed for three of the models. Our results show differences
up to 1.82 dB in the maximum power in which the proposed model remains accurate when changing from
quadrature phase shifting keying to 8-ary quadrature amplitude modulation.
Keywords: High nonlinearity regime, nonlinear Schrödinger equation, optical fibers, Raman amplification,
weakly dispersion regime.

1. INTRODUCTION
The transmission of a signal in an optical fiber is characterized by linear and nonlinear effects [1, Ch. 2]. The
linear effects are related to attenuation and chromatic dispersion [1, Ch. 3]. The nonlinear effect can be modeled
by the Kerr effect [1, Ch. 4]. The attenuation can be neglected when considering ideal Raman amplification,
which maintains the signal power constant during propagation [2]. In that case, the only linear effect remaining
is the chromatic dispersion, which can be easily compensated at the receiver by a linear filter, referred to as
electronic dispersion compensation (EDC) [3].

An EDC receiver has a better performance for low input powers [3], since in this case the channel is
predominantly linear. However, when the input power is high, the Kerr effect becomes significant. In this
scenario, to significantly improve the transmission rates, the receiver should also consider the nonlinear effect
[4]. To build such a receiver, one may use a mathematical model for the optical channel. These models are
generally obtained from the nonlinear Schrödinger equation (NLSE) [1, Ch. 2]. So far in the literature, the
solutions of the NLSE are obtained by approximations, which can be numerical or analytical. One of the most
accurate approximations is obtained numerically by the split-step Fourier method (SSFM) [5]. In the SSFM, the
fiber is represented by a set of small segments, called steps, in which the linear and nonlinear effects can be
applied separately. The same method can be applied with the inverse parameters at the receiver and/or transmitter,
a process called digital back-propagation (DBP) [6], [7]. DBP can partially compensate the nonlinear and linear
effects by choosing a sufficient number of steps. Increasing the number of steps also increases the receiver’s
computational complexity. To design low-complexity receivers, analytical models are highly desirable.

Analytical models usually consider that either the nonlinear or the linear effect is predominant. In models
obtained by degenerated solutions of the NLSE, one of the effects is completely neglected. For example, in the
dispersion-only model, the nonlinearity is ignored by setting the nonlinear coefficient γ to zero in the NLSE
[1, Ch. 3]. In the nonlinear phase noise (NLPN) model, the chromatic dispersion is ignored by setting the
group-velocity dispersion (GVD) parameter β2 to zero [1, Ch. 4], [8]. Analytical models that consider both
effects can be obtained by regular perturbation (RP) theory. A well-known model that uses this theory is the
RP on the nonlinear coefficient γ [9], [10]. RP on γ considers a low nonlinear effect. This model is appropriate
for many known communication systems, and has been used for performance prediction and design of receivers
[11], [12]. When parameters such as power and γ increase, the model loses its accuracy [9]. In that regime, a
new model is necessary. Such a model is not available in the literature yet and will be addressed on this paper.

In this paper, we present a novel model based on RP on the GVD parameter β2 for a lossless NLSE. In contrast
to the RP on γ, the proposed model considers a low dispersion effect and can represent fiber transmission in
the highly nonlinear regime. We compare this model with the dispersion-only, NLPN, and RP on γ models and
analyze their accuracy for different input powers and modulation formats. The proposed model shows excellent
performance for input powers greater than −1 dBm when compared to the other three models. The limits of
the model with respect to the bandwidth and fiber length are also analyzed.

2. OPTICAL CHANNEL MODELS
In this section, we present four models for the optical channel. The two first models are degenerated solutions
of the NLSE. The third is an RP on the nonlinear coefficient γ and the fourth is our proposed model, an RP
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on the GVD parameter β2.
The NLSE for the lossless and noiseless propagation at the retarded frame t and distance z is [1, Ch. 2]

∂A(t, z)

∂z
= −jβ2

2

∂2A(t, z)

∂t2
+ jγ|A(t, z)|2A(t, z), (1)

where γ is the nonlinear Kerr coefficient and β2 is the GVD parameter. We obtain the solution A of (1)
numerically using the SSFM. To compare this solution with the signal AM obtained from a model, the normalized
square deviation (NSD) metric is used. The NSD is defined as [9, eq. 27]

NSD ,

∫∞
−∞|AM (t, z)−A(t, z)|2dt∫∞

−∞ |A(t, z)|2dt
. (2)

A model will be considered accurate if it has an NSD lower than 0.1 %. The power in which a model has that
value of NSD is defined as P0.1% in this paper.

2.1 Dispersion-only model
If we set γ = 0, (1) becomes

∂AM (t, z)

∂z
= −jβ2

2

∂2AM (t, z)

∂t2
, (3)

which admits a solution, given in the Fourier domain by [1, Ch. 3]

ÃM (ω, z) = Ã(ω, 0)e
jβ2
2 ω2z. (4)

We call the solution of (4) the dispersion-only model. This model is an all-pass filter, and causes pulse-width
variation [1, Ch. 3], [13, Sec. 3.1.1].

2.2 Nonlinear phase noise model
By setting β2 = 0, the NLSE in (1) turns into

∂AM (t, z)

∂z
= jγ|AM (t, z)|2AM (t, z), (5)

which also admits an analytical solution [1, Ch. 4]

AM (t, z) = A(t, 0)ejγ|A(t,0)|2z. (6)

The solution (6) is called the NLPN model. In analogy with the dispersion-only model, the NLPN model does
not affect the amplitude of the time-domain signal. In the frequency domain, (6) causes spectral variation [1,
Ch. 4], [13, Sec. 3.1.2].

2.3 Regular Perturbation on γ

The first order of a regular perturbation on γ is a model that consider the dispersion effect as the main fiber
effect. The model is described in the frequency domain as [9]

ÃM (ω, z) = Ã(ω, 0)e
jβ2
2 ω2z + jγ

∫ z

0

e
jβ2
2 ω2(z−u)S̃(ω, u)du, (7)

where S̃ is the Fourier transform of
S(t, z) = |A0(t, z)|2A0(t, z), (8)

and A0(t, z) is the inverse Fourier transform of Ã(w, 0)e
jβ2
2 w2z in (4). The first term in the right-hand side of

(7) accounts only for the dispersion effect. The second term considers the nonlinear and the dispersion effects
together. This can be seen by the similarity between the function S and the last term in (1).

2.4 Proposed Model: Regular Perturbation on β2

We present a first-order RP on β2. In this model, the main effect is nonlinearity. The model is given by

AM (t, z) = A(t, 0)e+jγ|A(t,0)|2z + β2B(t, z)e+jγ|A(t,0)|2z, (9)

where

B(t, z) = −
∫ z

0

F (t, u)du− 2jγA(t, 0)<
{
A∗(t, 0)

∫ z

0

(z − u)F (t, u)du

}
, (10)

F (t, z) =
j

2

∂2

∂t2

{
A(t, 0)e+jγ|A(t,0)|2z

}
e−jγ|A(t,0)|2z. (11)



3

The first term in the right-hand side of (9) accounts for the nonlinear effect only. The second term also accounts
for the mix of dispersion and nonlinear effects. The relationship between this last term and the dispersion is
observed in the second-order derivative in (11). In this paper, we motivate the model by numerical simulations,
deferring the theoretic analysis to a future publication due to space constrains.

3. NUMERICAL ANALYSIS
3.1 System Parameters
In the system under consideration, we transmit symbols using M -ary quadrature amplitude modulation (M -
QAM). The value of M is varied to analyze the impact of the modulation format on the models. For M = 4,
the 4-QAM modulation is called quadrature phase-shift keying (QPSK). The symbols modulate the amplitude of
root-raised cosine (RRC) pulses with a roll-off factor of 0.1. The resulting signal is transmitted over a nonzero
dispersion-shifted fiber (NZDSF) with parameters given in Table I.

TABLE I: Fiber parameters
Parameter Value

Wavelength λ [nm] 1550
Symbol Rate [Gbaud] 10

Fiber Length [km] 60
β2 [ps2/km] −5.42
γ [1/W/km] 1.46

In an NZDSF, the value of |β2| is lower than in a standard single-mode fiber (with typically β2 = −21.67
ps2/km). This fact provides a regime where the accumulated dispersion is low for the respective fiber length and
symbol rate. Changing these two last parameters significantly affect the model accuracy. This will be investigated
in the next section.

3.2 Simulation Results
Fig. 1(a) shows the NSD in (2) versus input power for the four models with QPSK modulation. As depicted
in Fig. 1(a), the dispersion-only and NLPN models have a worse performance than the RP on β2 in the entire
simulated range of powers. While for RP on β2 P0.1% ≈ 8.7 dBm, the second highest P0.1% is approximately
2.4 dBm, for RP on γ. This difference shows that the RP on β2 is accurate until powers more than 6.3 dB greater
than the other models. The higher P0.1% of RP on β2 shows more tolerance to power changes, even though
RP on γ is more accurate for powers below −2 dBm. Fig. 1(a) also illustrates the dispersion-only model with
rectangular 8-QAM modulation in a reduced range of powers. The change in the modulation format introduces
a difference ∆ between P0.1% for 8-QAM and QPSK of −1.57 dB.
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Figure 1: Simulation results for the system given by the parameters in Table I. (a) NSD versus input power for the four different model
with QPSK modulation. (b) Difference ∆ between P0.1 % for M -QAM modulation (M ≥ 8) and QPSK.

The difference ∆ is generalized in Fig. 1(b) for other modulation formats, always with respect to QPSK.
Fig. 1(b) illustrates the difference ∆ between M -QAM modulation formats and QPSK for the dispersion-only,
RP on γ and RP on β2 models. The NLPN is not considered in this figure since it does not cross the 0.1 %



threshold (see Fig. 1(a)). As shown in Fig. 1(b), the three models have a negative ∆ for M ≥ 8. For M ≥ 16,
RP on γ has a lower ∆ than the other models. The lowest ∆ for the three models occurs at M = 8, which is
the most nonsquare M -QAM. For that modulation format, RP on β2 presents a P0.1% 1.82 dB lower than for
QPSK. Nevertheless, the other nonsquare modulation formats (odd log2M ) converge to a higher ∆ than the
square ones (even log2M ). This behavior is depicted with dashed lines for RP on β2, with ∆ = −0.79 dB and
∆ = −1.00 dB, respectively.
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Figure 2: NSD for RP on β2 at different symbol rates and fiber lengths.
We considered a QPSK signal with 5 dBm input power.

Fig. 2 shows the NSD for RP on β2 at different
combinations of symbol rate and fiber length, con-
sidering QPSK. As illustrated in Fig. 2, increasing
the fiber length and/or the symbol rate deteriorates
the performance of the model. This behavior can be
justified using (4). The dispersion effect increases
with the distance and square of the signal bandwidth,
and the later increases linearly with the symbol rate.
Therefore, the approximation made by RP on β2

becomes worse, increasing the NSD. Using the same
symbol rate of 10 Gbaud used in the previous ex-
ample, the fiber could be extended to approximately
87.4 km keeping the model accurate ( in Fig. 2).
Fixing the fiber length to 60 km, the symbol rate
could be increase to only 13.4 Gbaud ( ). When
targeting higher symbol rates, the reach distance is
significantly decreased. For 30 Gbaud, the model is
accurate for a maximum fiber length of 17.0 km ( ).

4. CONCLUSIONS
We presented in this paper a novel model for the weak-dispersion regime in a lossless fiber, which can be used
even with high nonlinearity. The proposed model accurately represents the fiber output until an input power of
8.7 dBm in the system under consideration. The modulation format impacts the performance of the models,
especially when comparing QPSK and 8-QAM. The effect of changes in the symbol rate and fiber length was
also analysed, which showed a high sensitivity of the model to these two parameters. Deriving a receiver based
on the proposed model and finding higher-order perturbations on β2 are possible extensions of the work.
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