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We investigate a coherent conductor, which is voltage- and temperature-biased and addition-
ally fed by a time-dependently driven single-particle source (SPS). The conductor has an energy-
dependent transmission that we propose to be realized by a quantum point contact (QPC). The
interplay between stationary biases and time-dependent driving results in (quantum) screening ef-
fects at the QPC, which are already visible in the linear thermoelectric response coefficients of the
conductor to small biases and which can literally be switched on and off by the presence or absence
of the time-dependent driving. We find that this effect opens up for two very different opportunities
for spectroscopy: (1) the linear-response coefficients modified by the source operation give direct
access to rather unexplored quantum screening effects, which in other types of devices are obscured
by geometric capacitive effects and only constitute negligibly small corrections. At the same time,
(2) the tunable screening corrections to the linear-response coefficients are related to the energetic
properties of the SPS, providing a direct experimental characterization tool for the SPS properties.

I. INTRODUCTION

This paper explores the combined transport proper-
ties of charge and heat in mesoscopic conductors. In
recent years, there has been a growing interest in the
field of nanoscale thermodelectrics [1]: by exploiting the
properties of nanoscale conductors, such as their energy-
dependent transmission properties, single-particle effects,
and even quantum interference effects, novel principles
for (electric) heat-to-work conversion are currently ex-
plored. In contrast to analogous macroscopic devices
which are typically well characterized by their linear
thermoelectric properties, the nonlinear response is of
high interest for these nanoscale conductors, where ap-
plied temperature or voltage differences can easily be of
the order of internal energy scales. However, the non-
linear operation of these devices goes along with com-
plex quantum screening effects in the conductor, which
impact its transmission properties [2–6]. Despite their
relevance, these effects, in particular the effect of quan-
tum (compared to geometrical) capacitances, have been
little explored so far [7] and temperature-biased induced
charges has to our knowledge not been experimentally
accessed.

A very different reason for the study of charge and
energy transport in mesoscopic conductors is the possi-
bility to employ them as spectroscopy tools. Recently,
spectroscopy of quantum transport has become relevant
even on the single-particle level. The realization of dif-
ferent types of single-particle sources [8–10] for electronic
conductors opens up perspectives for metrology, but also
for electronic flying qubits and quantum optics experi-
ments with single electrons. It is then highly relevant
to not only explore the precision with which these parti-
cles are emitted [11–15], but also their detailed energetic
properties [16, 17]. Various setups have been suggested

to explore this, in particular also by studying combined
charge and energy (or heat) transport [18–22]; but only
few, rather complex experiments have until now been re-
alized [23–26].

In this paper, we propose a setup, consisting of a ther-
mally and electrically biased thermoelectric two-terminal
conductor, additionally fed by a time-dependently driven
(single-particle) source, and show that it can be exploited
to address both urging questions introduced above. The
proposed device, as shown in Fig. 1, is realized with a
quantum point contact (QPC) with an energy-dependent
transmission probability [27–30]. The single-particle

Figure 1. Schematic of a coherent mesoscopic conduc-
tor in the quantum Hall regime, connected to left and right
reservoirs. A single-particle source (SPS), consisting of a
slowly driven mesoscopic capacitor, injects electrons and holes
into the conductor’s edge state via a quantum point contact
(QPC) with transparency Ds. Injected single particles are
scattered by the central QPC with energy-dependent trans-
parency D(E) to electronic reservoirs L or R, with electro-
chemical potentials µL, µR and temperatures TL, TR.
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source (SPS), which we employ here as an example is
a time-dependently driven mesoscopic capacitor [31, 32],
realized in a conductor in the quantum Hall regime [33].
Note however that our proposed schemes can equally
be relevant for other types of time-dependently driven
sources and other types of energy-dependent mesoscopic
conductors. We find that the interplay between time-
dependent driving and screening effects at the energy-
dependent conductor due to the stationary biases, result
in measurable and controllable corrections to the thermo-
electric response, already in the linear response regime.

This has important consequences for transport spec-
troscopy: (i) the discovered corrections to the thermo-
electric linear-response coefficients are directly propor-
tional to different quantum screening coefficients, which
usually only play a role in the nonlinear thermoelectric
response of stationary conductors [2, 6, 34–38]. In the
latter case they occur as higher-order correction effects,
which are hard to extract from an experiment. In con-
trast, the correction terms identified here can be switched
on and off by operating the additional time-dependent
electron source. The quantum screening effects can thus
directly be extracted by comparing standardly detected
linear-response coefficients—in the presence and in the
absence of an operating single-electron source. (ii) The
discussed coefficients however also contain information
about the SPS itself. Depending on which set of ther-
moelectric response coefficients is measured, tuning the
potential landscape of the QPC allows to read out charge
and heat currents injected from the SPS or even the full
energy-resolved spectral currents.

In the following, we derive charge and heat currents
flowing in the setup shown in Fig. 1, using a scatter-
ing matrix approach [39–42] and carefully considering
geometrical and quantum screening effects of charge ac-
cumulation induced by both voltage and temperature
biases. We then elaborate on concrete strategies how
to exploit the interplay between screening effects and
time-dependent driving in order to read out either until
now elusive screening potentials or characteristic currents
emitted from a SPS.

II. SETUP

We consider a coherent mesoscopic conductor, coupled
to two electronic reservoirs L (left) and R (right), fed
by a time-dependently driven SPS, see Fig. 1. In princi-
ple, any type of SPS is of interest here, such as voltage-
bias induced Levitons [14, 15, 25, 43], dynamical quan-
tum dots [24, 44–47], single-particle turnstiles [48, 49] or
pumps [50–53]. However, in the present paper, we choose
as an illustrative example a time-dependently driven
mesoscopic capacitor [31, 32]. Such a setup was first re-
alized as an electronic high-frequency SPS by Fève et
al. [33] and has subsequently been implemented as cru-
cial ingredient for quantum-optics-like experiments with
single electrons [26, 54–56]. The mesoscopic capacitor,

consisting of a small gate-confined region, is realized in
the quantum Hall regime. It is weakly coupled to prop-
agating quantum Hall edge states, indicated with red
directional lines, by a QPC with (energy-independent)
transmission probability Ds. As a result, the mesoscopic
capacitor is characterized by a discrete energy-spectrum.
A controlled driving of this energy spectrum by a time-
periodic potential U(t) results in a tunable emission of
electron- and hole-like quasiparticles into the propagat-
ing edge state. Here, we assume this driving to be slow,
such that single-particle excitations are emitted as min-
imal excitations of the Fermi sea in the conductor, see
e.g. Ref. [57]. A detailed description of the mesoscopic
capacitor in terms of its scattering matrix is given in Ap-
pendix A.

Electrons injected into the conductor from the SPS
are sent onto a gate-tunable QPC with transparency1

D0(E). The transmission probability of the QPC is
energy-dependent and explicitly given by [27]

D0(E) =
1

1 + exp [− (E − ε) /γ]
(1)

with the step energy (position) ε and smoothness γ. The
energy dependence is used as critical property to break
the electron-hole symmetry of the setup. As a result,
particles emitted from the SPS are filtered depending on
their energy. At the same time, the conductor shows a
thermoelectric response, meaning that charge and heat
currents non-trivially depend on the temperature and
voltage biases, which can be applied between left and
right contacts across the conductor. Here, we assume
reservoir L to be grounded electrically, i.e. µL = µ0, and
kept at temperature TL = T0, while electrochemical po-
tential and temperature in the reservoir R are assumed
to be given by µR = µ0− eV and TR = T0 + ∆T , respec-
tively. Here, −e is the charge of the electron, with e > 0.
In what follows, we set µ0 ≡ 0 as the reference energy.

III. THEORETICAL METHOD

In the following we are interested in the impact of cur-
rents injected by a time-dependently driven SPS on the
linear thermoelectric response coefficients of the energy-
dependent QPC. In order to theoretically investigate this
impact, we employ a scattering matrix formalism, care-
fully taking care of screening effects arising at the QPC.

A. Charge and heat currents in scattering theory

We therefore start with a formulation of the full charge
and energy currents in the presence of a time-dependent

1 Note that this is the transmission probability in the absence of
external biases.
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driving and an arbitrarily energy-dependent QPC trans-
mission. We choose reservoir R to be the one, where
charge and heat currents are detected. The total time-
averaged charge and energy currents in this reservoir can
be described by time-dependent scattering theory [42] as

IR =Is +
e

h

∫
dE D(E) {fR(E)− fL(E)} , (2a)

IER =IEs −
1

h

∫
dE E D(E) {fR(E)− fL(E)} . (2b)

Here, we have split the full currents into a contribution
arising from the applied stationary temperature and volt-
age biases (second part of the right hand sides of Eq. (2))
and contributions, Is and IEs , arising from the time-
dependently driven SPS in the presence of the energy-
dependent transparency D(E) of the QPC. Both cur-
rent contributions depend on the transparency, which
in turn depends on the applied electrical and thermal
biases D(E) = D(E, {V,∆T}), due to screening ef-
fects, see the following Sec. III B. Note, that the trans-
mission probability in Eq. (1) is the equilibrium one
D0(E) = D(E, {0, 0}). Furthermore, the Fermi functions

fα(E) = [1 + exp ([E − µα]/kBTα)]
−1

enter the current
expressions. The current contributions from the time-
dependently driven SPS are given by the expressions

Is =
e

h

∞∑
n=−∞

|Sn|2
∫
dE D(E) {fL(E)− fL(En)} ,

(3a)

IEs = − 1

h

∞∑
n=−∞

|Sn|2
∫
dED(E) E {fL(E)− fL(En)} .

(3b)

Here, Sn is the n-th Fourier component of the frozen
scattering matrix of the slowly driven mesoscopic ca-
pacitor, see Appendix A for details. The index n in
the energy-argument of the equilibrium Fermi functions,
fL(E) ≡ f0(E) = [1 + exp (E/kBT0)]

−1
corresponds to a

shift of the energy by an integer multiple of the driving
frequency of the capacitor, En = E + n~Ω.

In order to obtain the heat current from the current
expressions given in Eq. (2), one needs to evaluate

JR = IER − V IR, (4)

and analogous expressions for the separate components
of the heat current arising from the stationary or time-
dependently driven sources.

B. Screening effects

Away from equilibrium, due to an applied voltage or
temperature bias, additional charge is injected into the
QPC region. This charge is screened by charge redistri-
butions at nearby metallic reservoirs and gates and by

displacement currents flowing from the reservoirs, shift-
ing the electrostatic potential at the QPC and hence its
scattering properties [2, 6, 37, 38]. To account for the
voltage and temperature dependence of the transmission
probability, we thus need to characterize the electrostatic
environment of the QPC as well as how the scattering
properties depend on the electrostatic potential. Here
we follow Refs. [37, 38] and consider a model of the QPC
with two constant potential regions, one on each side of
the QPC. The size of these regions, where the charge is
not perfectly screened, is given by the screening length
λ. We calculate the scattering properties of the QPC
within a semi-classical, WKB approach; a detailed de-
scription of the general model is given in Appendix B.
Here, we consider a spatially symmetric setup, capturing
all the relevant physics. In the setup, the constant poten-
tial regions are equally capacitively coupled to both the
QPC split-gate electrodes, with capacitance Cg, and to
respective electronic reservoir, with capacitance C. The
capacitive coupling between the two constant potential
regions does not affect the result in the symmetric case.
All other capacitive couplings are assumed to have a neg-
ligibly small influence on the screening properties. We
note that, in principle, screening at the QPC of the elec-
trons and holes injected from the SES also should be
accounted for. Here we however neglect this dynamical,
ac-screening effect, since we expect this to be mostly of
importance in time-resolved transport quantities, which
are not considered in the present paper.

The details of the calculation of the voltage and tem-
perature dependence of the transmission probability,
closely following Ref. [38], are deferred to Appendix B.
Focusing on the weakly non-linear regime, properly ac-
counting for gauge-invariance, and expanding to first or-
der in V,∆T , we have

D(E, {V,∆T}) = D0(E)− dD0

dE
(ξeV + χkB∆T ) . (5)

Here, we define the dimensionless coefficients

ξ =
2C +D

2C +D + 2Cg
, χ =

DE

2C +D + 2Cg
(6)

with D = −e2
∫
dEν(E)df/dE and DE =

−e2
∫
dE[E/(kBT0)]ν(E)df/dE, where ν(E) is the total

density of states in the two constant potential regions.
The density of states is calculated semi-classically for
an effectively one-dimensional QPC scattering potential,
described by an inverted parabola U(x) = ε−mω2x2/2,
where m is the effective electron mass and ω deter-
mines the smoothness of the barrier as γ = 2~ω. It is

given by [37] ν(E) = (γπ)−1arcosh
(√

Eλ/(ε− E)
)

for energies ε − Eλ < E < ε and ν(E) =

(γπ)−1arsinh
(√

Eλ/(E − ε)
)

for energies E > ε,

with Eλ = mω2λ2/2 the energy scale related to the
screening length λ.

The coefficients ξ and χ depend on the capacitances
C,Cg, the background temperature T0 and also on the
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Figure 2. Coefficients ξ, in (a), (b), and χ, in (c),(d) as
a function of ε/(kBT0) for a set of different Eλ/(kBT0), see
legend in (c), and for different values of the parameters Cg/C
and CD/C.

energy scales of the scatterer ε, γ, Eλ via D and DE . A
detailed analysis, see Appendix B, shows that ξ, χ can
conveniently be expressed in terms of four dimension-
less parameters Cg/C,CD/C, ε/(kBT0) and Eλ/(kBT0),
where CD = e2Eλ/(8πγkBT0) gives the typical magni-
tude of D,DE . The coefficient 0 ≤ ξ ≤ 1 is bounded
from above by gauge invariance, while χ can have any
sign and is not bounded. From Eq. (6) it follows that in
the limit of dominating capacitive coupling to the gate,
Cg � C,CD both coefficients are small, ξ, χ � 1. How-
ever, there are also extended parameter regimes, where
ξ and χ are considerably large, as can be seen in Fig. 2,
where we plot both coefficients as a function of ε for a
representative set of parameters.

We see that ξ shows a qualitatively similar behav-
ior in both panels, Figs. 2 (a) and (b), with a maxi-
mum around ε/(kBT0) = 0, approaching C/(C + Cg) for
ε/(kBT0) → ∞ and decaying slowly with increasingly
negative ε/(kBT0) < 0. The magnitude of the variations
with ε is however larger for Cg � CD. The trend is the
opposite for χ, in panels Figs. 2 (c) and (d), with larger
magnitude of ε variations for CD � Cg. Overall, χ shows
a qualitatively similar, alternating-sign behavior in both
panels, with a negative peak at ε < 0 and a positive
peak at ε > 0, both of the order of kBT0 away from the
origin. For larger absolute values χ approach zero for
ε/(kBT0)→ ±∞.

IV. OPPORTUNITIES FOR SPECTROSCOPY

A. Linear thermoelectric response

Starting from the general expressions for the charge
and energy currents, Eqs. (2a) and (2b), and the expres-
sion for the transmission probability in Eq. (5), we can
derive expressions for IR and JR to leading order in the
applied biases, ∆T and V . It is convenient to write the
currents in a vector form as(

IR
JR

)
=

(
Idir
s

IE,dir
s

)
+

(
G+Gs L+ Ls

M +Ms K +Ks

)(
V

∆T

)
.

(7)
Discussing the different terms one by one, we first have
the ”direct” source currents modified by the energy-
dependent transmission, which to leading order is not
affected by the applied biases, that is, Idir

s = Is|∆T,V=0

and IE,dir
s = IEs |∆T,V=0, with Is, I

E
s given in Eqs. (3a)

and (3b). Second, the matrix elements G,L,M and K
are the standard, linear response, thermoelectric coeffi-
cients

G =
e2

h
I0, L = −M

T0
=
e

h
kBI1, K = − 1

h
(k2

BT0)I2,

(8)
(see, e.g,. Ref. [1] for a review) with

In =

∫ ∞
−∞

dE D0(E)

(
E

kBT0

)n(
− ∂f0(E)

∂E

)
. (9)

Here, G is the electrical conductance, K the thermal con-
ductance, and L,M thermoelectric coefficients related
to the Seebeck and Peltier coefficients. We emphasize
that none of these coefficients are affected by the screen-
ing effects. Third, of main interest here, are the coef-
ficients Gs, Ls,Ms and Ks, modifying the standard lin-
ear response result. Physically, the origin of these coeffi-
cients is that the applied biases lead to a potential- and
temperature-dependent transmission probability, D(E),
which in turn modifies the currents emitted from the
SPS, when they are scattered at the QPC. Put differently,
the coefficients all arise due to the interplay between the
non-equilibrium induced screening effects and the time-
periodically driven source currents. The expressions for
the coefficients are

Gs = ξ
e2

h
J0, Ls = χ

kBe

h
J0,

Ms = −ξ kBe

h
T0J1, Ks = −χk

2
BT0

h
J1, (10)

where

Jn =
∑
n

|Sn|2
∫
dE

dD0(E)

dE

(
E

kBT0

)n
[f0(E)− f0(En)] .

(11)
Interestingly, the charge-current and heat-current coeffi-
cients are related in a simple way

Gs

eξ
=

Ls

kBχ
,

Ms

eξ
=

Ks

kBχ
(12)
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which derives from the fact that the two pairs of co-
efficients, Gs,Ms and Ls,Ks, respectively stem from
potential- and temperature-induced screening effects.
The relation, Eq. (12), demonstrates that the total coeffi-
cient matrix in Eq. (7) does not satisfy Onsager’s symme-
try relations. We stress that this breakdown is to be ex-
pected, due to the external driving breaking time-reversal
symmetry. Namely, the treatment of this external driv-
ing is not limited to linear response.

1. Weak thermoelectric effect

The origin of the coefficients in Eq. (10) as an inter-
play between the screening effects and the source cur-
rents becomes explicit in the limit of a weak thermoelec-
tric effect, that is, for a QPC constituting a smoothly
energy-dependent barrier. In this limit we can expand
the transmission probability to first order in energy as
D0(E) ≈ D0 + ED′0, where D0 ≡ D0(0) and D′0 ≡
dD0(E)/dE|E=0. Inserting this expansion into the co-
efficient expressions given in Eq. (10) we arrive at the
relations

Gs =
h

e2

1

L0T0
ξLIdir

s,0 , Ms =
h

e2

1

L0T0
ξLJdir

s,0 (13)

with the Lorenz number L0 =
π2k2

B

3e2 . Equivalent rela-
tions for Ls and Ks are directly obtained from these ex-
pressions, when employing Eq. (12). Here, Idir

s,0 and Jdir
s,0

are the charge and heat currents that would flow into
reservoir R for a completely open QPC, D(E)→ 1, and
in the absence of biases. The thermoelectric coefficient
is given by L = eπ2

3h k
2
BT0D

′
0, in accordance with Mott’s

law. Importantly, the conductance correction to all On-
sager coefficients, Gs, Ls, Ms, and Ks become particu-
larly simple in this regime. They are proportional to the
bare charge or heat source currents, Idir

s,0 or Jdir
s,0 , to the

screening coefficients ξ and χ, and to the same unper-
turbed thermoelectric coefficient L.

B. Sensing of (quantum) screening effects using
time-dependent current emitters

In typical, purely stationary biased conductors, the
screening effects, introduced in Sec. IV A above, occur as
higher-order corrections to the standard linear-response
coefficients, when the voltage and temperature biases are
of the order of or larger than relevant internal energy
scales of the conductor. To clearly distinguish—possibly
negligibly small—higher-order correction terms from the
dominating linear, first-order response is however difficult
in realistic experiments. Furthermore, screening effects
due to temperature have not been observed so far. In the
present manuscript, we reveal an interplay effect between
time-dependent source driving and (quantum) screening
effects, which allows to directly read out the latter from

the modifications of the linear-response coefficients due
to the driving, Gs, Ls, Ms, and Ks. Note that these are
not simply uncontrolled small corrections to the stan-
dard, stationary linear-response coefficients, but can be
switched on and off by the source at will. In other words,
the difference between the full linear response of the de-
vice in the absence and presence of the driven source
directly yields the sought-for modified terms.

For the specific readout, we can distinguish two situa-
tions: (i) the weak thermoelectric case, where at the same
time the source properties are well known, and (2) the
general case of arbitrary D(E) where we neither assume
a detailed knowledge of the source properties.

In case (i), Eqs. (13) and (12) determine the modifica-
tions of the linear-response coefficients. One can deter-
mine Idir

s,0 (respectively Jdir
s,0 ) and L from separate electri-

cal (or thermal) dc-current measurements, where only the
source is active or the thermal bias is applied. Thus, we
can subsequently directly extract the coefficients ξ and χ,
given in Eq. (6). Note that these parameters can already
be obtained from a measurement of the charge-current
coefficients Gs and Ls, alone. If further measurements of
Ms and Ks are possible, they would provide an indepen-
dent possibility to verify the obtained parameters.

In case (ii), the functions J0 and J1 are not necessarily
known. An experiment could then have two strategies to
proceed: either a measurement of all four coefficients,
Gs, Ls, Ms, and Ks, gives access to the four unknown
functions χ, ξ, J0 and J1, allowing to determine χ and
ξ, separately. Or, in an experiment, e.g. restricted to
a measurement of charge-current coefficients only, one
could extract the ratio

χ

ξ
=

e

kB

Ls

Gs
=

DE

2C +D
. (14)

Note that this ratio gives access to, until now undetected,
quantum screening properties due to a thermal bias, en-
coded in DE .

C. Characterization of single-electron sources with
energy-selective transport spectroscopy

Importantly, the fact that the time-dependently driven
SPS impacts the linear response coefficients, allows for
identifying direct relations between the modified response
coefficients, Gs, Ls, Ms, and Ks, and the signal in-
jected from the SPS. More specifically, in this section,
we demonstrate, how the thermoelectric response of the
conductor shown in Fig. 1 can be used for a readout of
the spectral current of the source as well as of the bare
source charge and heat currents.

1. Sharp QPC transmission

We start by approximating the transmission of the
QPC by a sharp step. This approximation matches the
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experimental situation when the temperature T0 is small
with respect to the broadening γ of the transmission
given in Eq. (1). We thus here assume

D(E) ≈ θ(E − ε) (15)

Note that insightful, analytical results for the full current
expressions, using this sharp-step approximation can be
found; they are explicitly shown in Appendix C. In this
regime, it is reasonable to further assume that the ge-
ometric capacitances are the only relevant ones. This
also means that there is no dependence on the QPC
step height or smoothness in the screening-induced pre-
factors, χ and ξ, of the coefficient corrections. Further-
more, taking the geometric capacitances to be symmetric
to the left and right side of the QPC and smaller than
the capacitive coupling to the gate controlling the QPC,
we have ξ = 1

2 . A generalization of these assumptions is
straightforward and will be treated elsewhere.

Using Eqs. (10) and (11), we then find the modification
of the charge conductance, Gs, to be given by

Gs

e2/2h
= i(ε) (16)

where i(ε) is the spectral current of the source (the ener-
getic distribution of particles) at the step height energy
of the QPC, ε. The spectral current is determined by

i(E) =

∞∑
n=−∞

|Sn|2 [fL(En)− fR(E)] . (17)

As a result, measuring the difference of the charge con-
ductance of the system in the absence and presence of
the time-dependently driven SPS, gives direct access to
the spectral current of the emitted particles. By tun-
ing the step height of the QPC transmission, the full
spectral current can be read out. The result is shown
in Fig. 3 (a) for different temperatures T0. A detailed
discussion of the temperature dependence of this spec-
tral current has been discussed in Ref. [57], where it has
been found to be a characteristic feature of the type of
employed SPS. Note that a similar procedure has been
employed in Ref. [23], where the response of the source-
injected charge current to a modulation of the gate po-
tential, defining the energy-selective barrier, was used to
read out the spectral current emitted far above the Fermi
sea by a dynamically modulated quantum dot. Here, we
show that the response to externally applied biases gives
similar opportunities, but opens up for a broader set of
characteristic response coefficients.

Indeed, also the modification of the thermoelectric co-
efficient Ms contains information on the spectral current,
but also contains the full direct charge current from the
source. We find

Ms = − e

2h
ε i(ε) + Idir

s . (18)

In Fig. 3 (b), we show Ms as function of the step height
for different background temperatures. Reading out Ms
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Figure 3. Modification of (a) the charge conductance Gs

and (b) the thermoelectric coefficient Ms, as function of the
step height ε/(~/σ) in the QPC transmission and for different
values of the background temperature T0. Here, σ is the width
in time of the current pulses injected from the SPS.

hence allows for the readout of Idir
s after a measurement

of Gs has lead to the extraction of the spectral current.
Alternatively, an independent measurement of the spec-
tral current is provided by Ms in case the average source
charge current, Idir

s , is known.
Importantly, in general the modifications of the ther-

mal conductance, Ks, and the thermoelectric coefficient
Ls contain the same source information as Gs and Ms

and only differ by a factor given by the potential- and
temperature-bias induced screening properties of the
QPC and the background temperature, see Eq. (12). An
additional measurement of the modification of the linear-
response coefficients due to temperature-induced screen-
ing can therefore be used for an independent control of
the observables extracted from a measurement of Gs and
Ms.

2. Smooth QPC transmission

We now discuss the opposite case of a very weakly
energy-dependent QPC. This is of relevance when the
background temperature is small, kBT0 � γ and trans-
port (both due to the small biases as well as due to the
driven source) take place in an energy window, which is
inferior to the broadening of the step-like QPC transmis-
sion. In this regime of weak thermoelectricity, as pre-
sented in Sec. IV A 1, the energy dependence of the QPC
transmission is large enough to make the interplay be-
tween screening effects and time-dependent driving vis-
ible, without however strongly modifying the contribu-
tions from the different inputs, see Eqs. (13).
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As a result, the modifications of the linear thermo-
electric response coefficients, Gs, Ls, Ms, and Ks are di-
rectly proportional to the unperturbed charge- and heat
currents, Idir

s,0 and Jdir
s,0 , injected from the SPS. A measure-

ment of the linear response coefficients in the absence and
presence of the driven SPS therefore allows to read out
these charge- and heat currents, which the source would
emit without external stationary biases, V and ∆T , and
without a beam-splitting QPC.

The four coefficients given in Eqs. (13) contain the eas-
ily accessible background temperature T0 and stationary
thermoelectric response coefficient L. These two quan-
tities can hence be assumed as known parameters. This
means that the four coefficients contain maximally four
unknown quantities: the screening coefficients χ and ξ
and the sought-for source currents Idir

s,0 and Jdir
s,0 .

Note however that even if the experiment is limited to
the extraction of a subset of these coefficients, valuable
information about the source currents is still accessible.
For example, in an experiment where quantum screening
is absent and hence no screening occurs due to a tempera-
ture bias, the ratio between Idir

s,0 and Jdir
s,0 is still accessible

from a measurement of Gs and Ms. Knowledge of the (ge-
ometrical) screening factor ξ would even allow to extract
both charge- and heat currents separately. Furthermore,
if in an experiment only the modifications to the charge
current coefficients, Gs and Ls, can be detected, while
heat currents are not detectable, the source charge cur-
rent could still be read out, to a degree that depends on
the knowledge of the screening factors.

V. CONCLUSIONS

In summary, we have shown how the interplay between
time-dependent driving and quantum screening effects
due to stationary thermal and electrical biases impacts
the linear response of a thermoelectric conductor. This
allows us to put forward two very different proposals for
transport spectroscopy. The first proposal suggests how
to directly read out, until now elusive quantum screen-
ing effects, from tunable modifications of linear-response
coefficients due to the time-dependent driving of a side-
coupled (single-particle) source. Importantly the con-
crete properties of the SPS do not necessarily have to
be precisely known to allow for this readout. We ex-
pect presently available experimental techniques to allow
for the proposed readout of quantum screening effects.
The findings of such an experiment could be used to test
predictions for screening potentials, as given in detail in
Appendix B.

At the same time, we suggest that these controllable
contributions to the thermoelectric response coefficients
can also be employed in order to read out charge and
heat currents and even energy-resolved currents injected
from the SPS. A full readout of these observables can be
performed by carefully tuning the potential defining the
QPC, which is a central element of the proposed setup.

We thereby extend a technique employed in Refs. [23, 24],
where the charge current response to the gate-voltage
tuning of an energy-selective conductor has been used for
the readout of spectral currents injected from a dynam-
ical quantum dot. Here, we show that also the response
to external biases allows for such a readout and thereby
provides a full set of response coefficients which can in-
dependently provide information on the spectral current
and other transport observables.
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Appendix A: Time-dependently driven mesoscopic
capacitor

In this appendix, we briefly summarize how to describe
the time-dependently mesoscopic capacitor with a Flo-
quet scattering method [42] in the regime of our interest.
This explicit calculation is relevant only for plots of the
extracted spectral currents via thermoelectric response
coefficients as presented in Sec. IV C. There, we are inter-
ested in an ideal source that emits well-separated pulses,
see e.g. Ref. [57] for a detailed discussion.

The mesoscopic capacitor has a discrete level spectrum
with level spacing ∆ and level width Γ. The level width
is Γ = Ds∆/(4π); it hence depends on the coupling be-
tween the mesoscopic capacitor and the propagating edge
states, see Fig. 1. To allow for the emission of well-
separated pulses, the level width should be much smaller
than the level spacing, Γ � ∆, requiring Ds � 1. We
further assume that only one level of the mesoscopic ca-
pacitor contributes to the emission process. If finally
the driving is slow and the driving amplitudes are con-
veniently chosen, the time interval between the electron
emission te (namely the time at which the level of the
mesoscopic capacitor crosses the Fermi level, from below)
and the hole emission th is long enough so that a particle
is definitely emitted before the next level crossing. This
translates as

|te − th| � σ, (A1)

where 2σ is the width of the pulse in time. In particular
this also means Ωσ � 1.

In this regime, the scattering matrix gets the form

Sn(E) =


−2Ωσe−nΩσeinΩte , n > 0,

−2ΩσenΩσeinΩth , n < 0,

1, n = 0.

(A2)

Note that Sn(E) has to be unitary and needs to fullfill∑
n |Sn(E)|2 = 1.
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𝜖
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E

Figure 4. (a) Schematic top-view of QPC, showing regions L
and R where the charge is not screened. The upper (gU) and
lower (gD) split gate electrodes are also shown. (b) Energy
and potential sketch. At the QPC, the electrostatic potential
can be approximated by an inverted parabola, with top en-
ergy ε. The width of the potential parabola determines the
smoothness γ of the barrier. For further details see text.

Appendix B: Screening effects in weakly nonlinear
response

In this section we provide a detailed discussion of the
effect of screening in the weakly non-linear transport
regime. Various aspects of the result have been pre-
sented in different papers over several decades, see e.g.
Refs. [2, 6, 34–38]. However, it is our impression that a
complete, self-consistent discussion is missing. Since the
material is mainly known but still is of central interest
to our work, we present it in detail in this appendix.

1. QPC potential, screening regions and
semi-classical approach

In Fig. 4, left panel, we show a schematic top-view
of the QPC region sketched in Fig. 1. We assume that
there is only one conduction mode open in the QPC and
that the problem hence is effectively 1D, along the x-axis.
Indicated in the figure are two regions, L and R, on each
side of the QPC midpoint at x = 0. In these two regions,
of the size of the screening length λ, it is assumed that
the charge is not completely screened. The electrostatic
potential U(x) of the QPC is taken to be an inverted
parabola [27, 58], see right panel of Fig. 4, with

U(x) = ε− mω2

2
x2 , (B1)

where ε determines the top of the potential, at x = 0.
Here, m is the effective mass of the electron and ~ω/2 =
γ, where γ is the smoothness of the transmission proba-
bility.

Let’s now consider an electron incident from e.g. the
right at an energy E, where the energy is counted from
µ0 ≡ 0, the electrochemical potential of the reservoirs at
equilibrium. This is shown in panel (b) of Fig. 4. Using a
semiclassical, WKB analysis, the electron has a classical

turning point at a position xtp = xtp(E), obtained from
E = ε−mω2x2

tp/2, that is

xtp =

√
2(ε− E)

mω2
. (B2)

As a consequence we can say that the regions 1 and 2,
where charges are not fully screened, are defined by

− λ < x < −xtp, xtp < x < λ (B3)

respectively, as shown in Fig. 4 (a). We note that the
expression for xtp formally holds only for E < ε. For
E > ε, the result would be non-physical (imaginary) and
we instead take xtp = 0, that is, there is no classical
turning point and region 1 and 2 are in direct contact.
Moreover, for sufficiently low energies Emin, the turning
point xtp(E) reaches the boundaries of the non-perfectly
screened region. This happens when xtp = λ, which gives
Emin = ε−Eλ, where we introduced for later convenience
Eλ = mω2λ2/2.

2. Scattering matrix, semiclassical approach

To find the scattering matrix S for the QPC, we point
out that the length of the scattering region is taken to
be −λ < x < λ. We first note that, quite generally, the
scattering matrix for the QPC can be written as

S =

(
ieiφ(E)

√
1−D(E) eiφ(E)

√
D(E)

eiφ(E)
√
D(E) ieiφ(E)

√
1−D(E)

)
, (B4)

where we take into account that the QPC is spatially
symmetric and impose the unitarity condition for S, i.e.
S†S = 1. The transmission probability D(E) is given by
Eq. (1) in the main text,

D(E) =
1

1 + e−(E−ε)/γ . (B5)

The scattering phase φ(E) is the dynamical phase ac-
quired when traversing the QPC. Starting with the
case Emin < E < ε, it is obtained by integrating
the semiclassical, position-dependent momentum p(x) =√

2m[E − U(x)] over the path through region L and R,

φ(E) =

√
2m

~

(∫ −xtp

−λ
dx+

∫ λ

xtp

dx

)√
E − ε+

mω2

2
x2

(B6)
giving

φ(E) =
mωx2

tp

~
× (B7) λ

xtp

√(
λ

xtp

)2

− 1− ln

 λ

xtp
+

√(
λ

xtp

)2

− 1


=
ε− E
γ
×[√

Eλ
ε− E

(
Eλ
ε− E

− 1

)
− arcosh

(√
Eλ
ε− E

)]
,
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Figure 5. (a) Normalized scattering phase as a function of
energy. (b) Energy derivative of the scattering phase, propor-
tional to the density of states (see text).

where we used that the prefactor mωx2
tp/~ = (ε−E)/γ.

For energies E < Emin the acquired phase is zero. For
energies above the potential top, E > ε, xtp = 0 and we
can proceed as above and write the acquired phase

φ(E) =
1

~

∫ λ

−λ
dx

√
2m

(
E − ε+

mω2

2
x2

)
(B8)

giving

φ(E) =
E − ε
γ
× (B9)[√

Eλ
E − ε

(
Eλ
E − ε

+ 1

)
+ arsinh

(√
Eλ
E − ε

)]
.

We note that the phase, in addition to the amplitudes,
depends on the energy scale Eλ. In Fig. 5, the normalized
phase φ(E)/(Eλ/γ), is plotted as a function of energy
(E − ε)/Eλ. It is clear that the phase has a cusp at
E = ε.

We stress that it is in principle possible to perform
a full quantum mechanical calculation of the scattering
matrix elements, following Refs. [58, 59]. Since the main
interest here is to get a qualitative picture of the physics,
we however judge that a semiclassical treatment is suffi-
cient.

3. Density of states and injectivities

The next step is to consider the density of states
(DOS). It is known [60, 61] that the global DOS, ν(E), of
an arbitrary scatterer is related to the scattering matrix
S as

ν(E) =
1

2πi
tr

[
S†
dS

dE

]
=

1

π

dφ(E)

dE
. (B10)

From the expressions for φ(E) above, we have, for Emin <
E < ε,

ν(E) =
1

γπ
arcosh

(√
Eλ
ε− E

)
(B11)

L R

L R

D(E)

R(E)

R(E)

D(E)

L

R

Figure 6. Schematic of scattering paths contribution to the
density of states.

and for E > ε we have

ν(E) =
1

γπ
arsinh

(√
Eλ
E − ε

)
(B12)

in line with Ref. [37], see also Sec. III B. In Fig. 5, we
plot the energy derivative of the phase. It is clear that the
phase derivative has a singularity at E = ε, a consequence
of the semiclassical approximation. As is clear below, this
singularity is integrable, that is, it does not prevent an
analysis of the energy integrated DOS, entering the final
result.

We note that since the QPC is symmetric, half of the
states are on each side of the saddle point, such that

νL(E) = νR(E) = ν(E)/2 . (B13)

Here να(E) is thus the local density of states in the re-
gions α = L,R, see Fig. 4. Based on the local density of
states, we can follow the discussion in Ref. [36] to calcu-
late the partial density of states and the related injectivi-
ties for the QPC. To this aim, it is helpful to consider the
trajectories for incoming particles from the left and right,
shown in Fig. 6. From these paths we can write down the
local, partial density of states ναβγ , where γ = L,R de-
notes the reservoir from which a particle is incident on
the scatterer, α = L,R denotes the reservoir to which
the particle is emitted from the scatterer, and β = L,R
denotes the region of the density of states to which the
path contributes. This gives, by inspection, writing out
all eight cases explicitly,

νLLR(E) =
1

2
D(E)νL(E), νLLL(E) = R(E)νL(E),

νRLL(E) =
1

2
D(E)νL(E), νRLR(E) = 0,

νLRR(E) =
1

2
D(E)νR(E), νLRL(E) = 0,

νRRL(E) =
1

2
D(E)νR(E), νRRR(E) = R(E)νR(E),

(B14)

Here D(E) and R(E) = 1 − D(E) are the probabilities
for the different paths to occur, given that one particle
is incident from the reservoir. The factor 1/2 in front of
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the terms with D(E) tells that the particle only traverses
the region in one direction (out of two possible), thus
contributing to only one half of the total DOS. We stress
that the following relation holds∑

α,β,γ

ναβγ(E) = νL(E) + νR(E) = ν(E). (B15)

From the partial, local DOS we can construct the injec-
tivities νβγ(E) by summing over the reservoirs to which
the particle is emitted. Explicitly, we have

νLL(E) = νLLL(E) + νRLL(E) =
1

2
D(E)νL(E)

νRR(E) = νLRR(E) + νLRR(E) =
1

2
D(E)νR(E)

νRL(E) = νLRL(E) + νRRL(E) =
1

2
[1 +R(E)]νL(E)

νLR(E) = νLLR(E) + νRLR(E) =
1

2
[1 +R(E)]νR(E) .

(B16)

In the same way, one can obtain the emissivities of the
QPC, however, as they are not needed for this calcula-
tion, we do not present them here.

4. Induced charge, bare and screened

As a result of the applied potential and temperature
biases, Vα and ∆Tα at the reservoirs α = L,R, charge is
injected into the QPC regions. First, the bare charges

Q
(b)
L and Q

(b)
R on the two QPC regions can be written in

terms of the injectivities as

Q
(b)
L = DLLVL +DLRVR +DELL∆TL +DELR∆TR,

Q
(b)
R = DRLVL +DRRVR +DERL∆TL +DERR∆TR,

(B17)

Here we have introduced the total, energy integrated
charge [34] and entropic [6] injectivities

Dαβ = −e2

∫
dEναβ(E)

df0

dE
(B18)

DEαβ = −e
∫
dE

E

T0
ναβ(E)

df0

dE
. (B19)

Note that the total charge injectivities are given with the
units of capacitance.

As a result of the injected charge, the system responds
by trying to screen it. In the QPC regions, the electro-
static potentials are shifted UL and UR away from their

equilibrium values and screening charges Q
(s)
L and Q

(s)
R

are induced. Following the same semiclassical approach
as for the scattering matrix [36], we can write the screen-
ing charges as

Q
(s)
L = −DLUL, Q

(b)
R = −DRUR , (B20)

where we introduced the energy integrated, local density
of states

Dα = −e2

∫
dEνα(E)

df0

dE
, DL = DR =

D
2
. (B21)

Here D is the total, energy integrated DOS in the system
(in the units of capacitance).

The total induced charges in the two regions is then
given by the sums of bare and screened charges, QL =

Q
(b)
L +Q

(s)
L and QR = Q

(b)
R +Q

(s)
R , giving

QL = DLLVL +DLRVR +DELL∆TL +DELR∆TR −
D
2
UL,

QR = DRLVL +DRRVR +DERL∆TL +DERR∆TR −
D
2
UR.

(B22)

As a next step, we take into account that the total charges
QL and QR also couple capacitively to nearby metallic
gates and reservoirs, as well as to each other. For the
QPC system, the most relevant capacitive couplings are
shown in the left panel of Fig. 7. As a result of the capac-
itive interactions, shown schematically in the right panel
of Fig. 7, there will be charges induced on the surfaces
of the metallic gates and reservoirs, such that inside a
Gauss region [2] the total charge is zero.

L R

gU

gD

cL cR

CRU

CRR
CRD

CLD

C0

CLU

CLL

(a)

QL QR QcR

QgD

UL UR

Vg

QcL

QgU

Vg

VL VR

(b)

Figure 7. (a) Most relevant geometric capacitances in the
system. (b) Induced charges, in QPC and on nearby metallic
gates and reservoirs. The Gauss region, inside which the total
charge is zero, is shown with dashed lines.
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We can thus write the electrostatical relations

QL = CLL(UL − VL) + CLU(UL − Vg) + CLD(UL − Vg)

+ C0(UL − UR)

QR = CRR(UR − VR) + CRU(UR − Vg) + CRD(UR − Vg)

+ C0(UR − UL), (B23)

where we have assumed that the same potential Vg is
applied to both gate electrodes (as is normally the case
for a split gate). We can now combine the expressions
for the charge in Eqs. (B22) and (B23), giving relations
for the induced potentials UL and UR in terms of the
applied voltages VL, VR, temperatures ∆TL,∆TR and the
gate voltage Vg, in a matrix form as(

UL

UR

)
=

(
ξLL ξLR

ξRL ξRR

)(
VL

VR

)
+

(
vL

vR

)
Vg

+

(
χLL χLR

χRL χRR

)(
∆TL

∆TR

)
. (B24)

The coefficients ξαβ , χαβ and vα are the characteristic
potentials we need for the further evaluation. An explicit
calculation gives for the voltage ones

ξLL =
1

Z
[(2CR + 2CRR +D)(CLL +DLL)

+ 2C0(CLL +DLL +DRL)]

ξRL =
1

Z
[(2CL + 2CLL +D)DRL

+ 2C0(CLL +DLL +DRL)]

ξRR =
1

Z
[2CL + 2CLL +D)(CRR +DRR

+ 2C0(CRR +DLR +DRR)]

ξLR =
1

Z
[(2CR + 2CRR +D)DLR

+ 2C0(CRR +DLR +DRR)] (B25)

where we introduced CL = CLD +CLU, CR = CRD +CRU

and the denominator

Z = 2C0(CL + CLL + CR + CRR +D)

+
1

2
(2CL + 2CLL +D)(2CR + 2CRR +D) (B26)

For the temperature ones we get

χLL =
(2CR + 2CRR +D)DELL + 2C0(DELL +DERL)

Z

χRL =
(2CL + 2CLL +D)DERL + 2C0(DELL +DERL)

Z

χRR =
(2CL + 2CLL +D)DERR + 2C0(DELR +DERR)

Z

χLR =
(2CR + 2CRR +D)DELR + 2C0(DELR +DERR)

Z
(B27)

and for the gate potential ones

vL =
2C0(CL + CR) + CL(2CR + 2CRR +D)

Z

vR =
2C0(CL + CR) + CR(2CL + 2CLL +D)

Z
.(B28)

We point out that in the limit considered by Meair and
Jacquod [38], our result reduces to theirs.

5. Transport quantities, weak non-linear expansion

The electrical and energy/heat currents both depend
on the transmission probability D(E). Away from equi-
librium, in the presence of electrical and/or thermal bias,
the transmission probability becomes dependent on the
applied biases VL, VR and ∆TL,∆TR. The equilibrium
value of the gate potential is used to regulate the barrier
top energy ε and the width, determining γ. Throughout
the discussion we keep the gate potential constant, at its
equilibrium value, i.e. Vg = 0. As discussed above, the
applied biases affect the scattering properties by modify-
ing the potentials UL, UR, that is, we can write

D(E) ≡ D(E,UL[{Vα,∆Tα}], UR[{Vα,∆Tα}]), (B29)

where {Vα,∆Tα} = VL, VR,∆TL,∆TR. Within the
weakly non-linear approximation we expand D(E) to
leading order in the biases, as

D(E) ≡ D0(E) +
∂D(E)

∂UL

(
∂UL

∂VL
VL +

∂UL

∂VR
VR

+
∂UL

∂∆TR
∆TR +

∂UL

∂∆TL
∆TL

)
+
∂D(E)

∂UR

(
∂UR
∂VL

VL

+
∂UR

∂VR
VR +

∂UR

∂∆TR
∆TR +

∂UR

∂∆TL
∆TL

)
, (B30)

where D0(E) is the equilibrium transmission probabil-
ity in Eq. (1) and all partial derivatives are evaluated at
{Vα,∆Tα} = 0. Making use of the characteristic poten-
tials we can write, collecting the bias terms,

D(E) ≡ D0(E) +

(
∂D(E)

∂UL
ξLL +

∂D(E)

∂UR
ξRL

)
VL

+

(
∂D(E)

∂UL
ξRL +

∂D(E)

∂UR
ξRR

)
VR

+

(
∂D(E)

∂UL
χLL +

∂D(E)

∂UR
χRL

)
∆TL

+

(
∂D(E)

∂UL
χRL +

∂D(E)

∂UR
χRR

)
∆TR. (B31)

Now, it can be shown that gauge invariance guarantees
[2, 35] the relation

∂D(E)

∂VL
+
∂D(E)

∂VR
+
∂D(E)

∂Vg
+ e

∂D(E)

∂E
= 0. (B32)

Written in terms of the characteristic potentials we have

∂D(E)

∂UL
(ξLL + ξLR + vL) +

∂D(E)

∂UR
(ξRL + ξRR + vR)

= −e∂D(E)

∂E
. (B33)
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Then, using the condition that the sum of the character-
istic potential at a given region is unity, gives

ξLL + ξLR + vL = 1, ξRL + ξRR + ξR = 1 (B34)

and hence

∂D(E)

∂UL
+
∂D(E)

∂UR
= −e∂D(E)

∂E
. (B35)

Following our assumption that the QPC scattering po-
tential is symmetric around x = 0 we can write

∂D(E)

∂UL
=
∂D(E)

∂UR
= −e

2

∂D(E)

∂E
. (B36)

Inserting this into the expression for D(E) we arrive at
(Vg = 0),

D(E) ≡ D0(E)− e

2

∂D(E)

∂E
(ξLVL + ξRVR

+ χL∆TL + χR∆R), (B37)

where we introduced, for shortness, ξL = ξLL + ξRL, ξR =
ξRR + ξLR, χL = χLL + χRL and χR = χRR + χLR.

6. Symmetric setup

For the completely symmetric capacitive situation con-
sidered in the main text, we have CL = CR ≡ Cg, CLL =
CRR ≡ C. As is also clear from the discussion above, we
can write the DOS expressions DLR = DRL,DRR = DLL

and DELR = DERL,DERR = DELL. This together allows us to
write the relevant characteristic potentials

ξL = ξR =
2C +D

2C +D + 2Cg
, χL = χR =

DE

2C +D + 2Cg
,

(B38)

noting that D/2 = DLL +DLR and DE/2 = DELL +DELR.
We note that, due to the symmetric setup, neither ξL, ξR
nor χL, χR are dependent on C0. Performing a rescal-
ing DE → (kB/e)DE and putting ξ ≡ ξL = ξR, χ ≡
(e/kB)χL = (e/kB)χR, we arrive at Eq. (6) in the main
text.

Making use of Eqs. (3) in the main text, we can then di-
rectly write down the linear response (in voltage and tem-
perature) modifications of the charge and energy currents
due to the SES. For the biasing arrangements discussed
in the main text, VL = 0, VR = V,∆TL = 0,∆TR = ∆T ,
we get

δIs = − e
2

2h

(
ξV +

kBχ

e
∆T

)
×

∞∑
n=−∞

|Sn|2
∫
dE

∂D0(E)

∂E
[f0(E)− f0(En)]

δIEs = − e

2h

(
ξV +

kBχ

e
∆T

)
×

∞∑
n=−∞

|Sn|2
∫
dE

∂D0(E)

∂E
E [f0(E)− f0(En)] .

(B39)

From these expressions we directly arrive at the expres-
sions for Gs,Ls,Ms and Ks in Eq. (10) in the paper.

7. Weak thermoelectric effect

It is particularly interesting to investigate the case with
a weak thermoelectric effect, resulting from a weakly en-
ergy dependent transmission probability, expanded as

D0(E) = D0 + E
∂D0

∂E

∣∣∣∣
E=E0

+
E2

2

∂2D0

∂E2

∣∣∣∣
E=E0

....

≡ D0 + ED′0 +
E2

2
D′′0 ... (B40)

Keeping only leading order in energy dependence, we
have the well known [40] linear response coefficients

G =
e2

h
D0, L = −M

T0
=
eT0

h

(πkB)2

3
D′0, K = L0T0G0

(B41)
where L0 = (πkB)2/(3e2) is the Lorenz number. The
direct source currents become (to leading order) inde-
pendent on the thermoelectric effect, as

Idir
s = D0I

dir
s,0 , IE,dir

s = D0I
E,dir
s,0 , (B42)

where Idir
s,0 and IE,dir

s,0 are the bare charge and energy cur-
rents of the source. For the source dependent linear re-
sponse terms, given from Eqs. (10), we get for the con-
ductance

Gs = −ξ e
2

h

∞∑
n=−∞

|Sn|2
∫
dED′ [f0(E)− f0(En)]

= eξD′Idir
s,0 =

h

eT0L0
ξLIdir

s,0 . (B43)

That is, Gs is proportional to the bare source current Idir
s,0 ,

the thermoelectric coefficient L, and the screening char-
acteristic potential ξ. For the thermoelectric coefficient
we get, in the same way

Ls =
h

eT0L0
χLIdir

s,0 , (B44)

proportional to Gs. For the energy current terms we have

Ms = −uR
e

2h

∞∑
n=−∞

|Sn|2
∫
dED′E [f0(E)− f0(En)]

=
e

2
χD′IE,dir

s,0 =
h

2eT0L0
χLIE,dir

s,0 . (B45)

and, in the same way,

Ks =
h

2eT0L0
χLIdir

s,E . (B46)

The expressions for Gs and Ms are the ones given in
Eq. (13) in the main text.
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8. Key integrals

Two integral expressions are of key importance for the
numerical evaluation of ξ and χ. From Eqs. (B11) and
(B12) we have

D =
e2

4πkBT0γ

∫ ε

ε−Eλ
dE

arcosh
(√

Eλ/(ε− E)
)

cosh(E/[2kBT0])

+
e2

4πkBT0γ

∫ ∞
ε

dE
arsinh

(√
Eλ/(E − ε)

)
cosh(E/[2kBT0])

.(B47)

Changing variables as x = (ε − E)/Eλ and y = (E −
ε)/Eλ, we get

D =
e2Eλ

4πγkBT0

[∫ 1

0

dx arcosh

(√
1

x

)
1

cosh([ε0 − xελ]/2)

+

∫ ∞
0

dy arsinh

(√
1

y

)
1

cosh([ε0 + yελ]/2)

]
, (B48)

where we introduced the dimensionless energies ελ =
Eλ/[kBT0] and ε0 = ε/[kBT0]. To have a more shorthand
notation we first write

D = 2D0 (F0 + G0) , D0 =
e2Eλ

8πγkBT0
, (B49)

where the dimensionless integrals are

Fn =

∫ 1

0

dx xnarcosh

(√
1

x

)
1

cosh([ε0 − xελ]/2)

Gn =

∫ ∞
0

dy ynarsinh

(√
1

y

)
1

cosh([ε0 + yελ]/2)
.

(B50)

In this notation, convenient for the numerics, we can
write the characteristic potential

ξ =
1 + D

2C

1 + D
2C +

Cg
C

=
1 + cd(F0 + G0)

1 + cg + cd(F0 + G0)
, (B51)

introducing yet another shorthand notation with dimen-
sionless quantities cd = D0/C, cg = Cg/C. This form
shows clearly the different, independent dimensionless
parameters that controls ξ, namely ελ, ε0, cg, cd.

In the same way we have

DE =
e2

4πγk2
BT0

∫ ε

ε−Eλ
dE

E

T0

arcosh
(√

Eλ/(ε− E)
)

cosh(E/[2kBT0])

+
e2

4πγk2
BT0

∫ ∞
ε

dE
E

T0

arsinh
(√

Eλ/(E − ε)
)

cosh(E/[2kBT0])
.

(B52)

Making the same variable substitutions as for D we have

DE = 2D0 [ε0 (F0 + G0) + ελ (−F1 + G1)] (B53)
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Figure 8. Charge current as a function of ε/(~/σ) for different
values kBT0/(~/σ) and ∆T = 0, when (a) ∆µ/(~/σ) = 0 and
(b) ∆µ/(~/σ) = 0.005.

We can thus write the relevant, dimensionless character-
istic potential function

χ =
DE

2C +D + 2Cg
=
cd [ε0 (F0 + G0) + ελ (−F1 + G1)]

1 + cg + cd(F0 + G0)
.

(B54)
We note that since the integrals Fn and Gn are functions
of ε0 and ελ, the same four parameters ε0, ελ, cd and cg
determine both ξ and eχ/kB.

Appendix C: Linear response charge and heat
currents – sharp barrier

In this appendix we show analytical results for all con-
tributions to Eq. (7) for the case where the QPC trans-
mission is approximated by a sharp step function. Note
that in this case, it is useful to neglect all quantum screen-
ing effects and to assume symmetric, geometrical capac-
itances leading to ξ = 1

2 . For the standard, stationary
response coefficients, we find

G =
e2

h
f0(ε), (C1)

L =− M

T0
=
e

h

1

T0

[
ε(f0(ε)− 1)− kBT0 ln

{
f0(ε)

}]
,

(C2)

K =− 1

h

1

T0

[
ε2(f0(ε)− 1)− 2kBT0 ε ln

{
f0(ε)

}
+2(kBT0)2Li2

{
−e

ε
kBT0

}
+

(πkBT0)2

3

]
. (C3)
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Figure 9. Heat current as a function of ε/(~/σ) for different
values kBT0/(~/σ) and ∆T = 0, when (a) ∆µ/(~/σ) = 0 and
(b) ∆µ/(~/σ) = 0.005.

For the currents injected from the source, which are
independent of the applied biases, we find

Idir
s =

e

h

∑
n>0

|Sn|2
{
kBT0 ln

{
f0(ε+ n~Ω)

f0(ε)

}}
, (C4)

IE,dir
s = − 1

h

∞∑
n=−∞

|Sn|2
{
− (n~Ω)2

+ kBT0 ε

[
ln

{
f0(ε+ n~Ω)

f0(ε)

}
+ ln

{
f0(ε− n~Ω)

f0(ε)

}]
+ (kBT0)2

[
Li2

{
−e

ε
kBT0

}
− Li2

{
−e

ε+n~Ω
kBT0

}]
+ (kBT0)2

[
Li2

{
−e

ε
kBT0

}
− Li2

{
−e

ε−n~Ω
kBT0

}]}
. (C5)

Finally, we present results for the modification of the
linear response coefficients due to the discussed interplay

between screening effects and time-dependent driving

Gs =
e2

2h

∑
n>0

|Sn|2 [−2f0(ε) + f0(ε+ n~Ω) + f0(ε− n~Ω)] ,

(C6)

Ms = − e

2h

∑
n>0

|Sn|2[
ε [−2f0(ε) + f0(ε+ n~Ω) + f0(ε− n~Ω)]

+ 2kBT0 ln

{
f0(ε)

f0(ε+ n~Ω)

}
+ 2kBT0 ln

{
f0(ε)

f0(ε− n~Ω)

}]
.

(C7)

The missing coefficients Ls and Ks are zero in the ab-
sence of quantum screening and are otherwise straight-
forwardly obtained from Eq. (12).

In the following we show results, in Fig. 8, for the ob-
tained currents for the case where no temperature bias,
but only a voltage bias is applied. This means in partic-
ular

IR = (G+Gs)V + Idir
s (C8)

JR = (M +Ms)V + IE,dir
s . (C9)

In Fig. 8 panel (a), we show the case of vanishing po-
tential bias; the charge current is then given by the direct
current from the source alone. When applying an elec-
trochemical potential, Fig. 8 (b), when ε � 0, meaning
that the energy filtering by the transmission function is
negligible, the conductance G is the main contribution
to the charge current. The charge current of the source
is zero because of the (approximate) electron-hole sym-
metry. However at small, but positive step energies, the
direct current from the source is maximal. It therefore at
low temperatures dominates the total charge current. At
high temperatures, kBT0 > ~/σ, the effect of the source
is negligible, and again, the conductance G, becomes the
key contribution to the charge current.

Similarly, the dominating influence of the thermoelec-
tric coefficient M and the direct source energy current
can be observed in the heat current up to linear response,
as shown in Fig. 9.
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[2] T. Christen and M. Büttiker, “Gauge-invariant nonlinear
electric transport in mesoscopic conductors,” EPL 35,
523–528 (1996).
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