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Abstract 
The fact that accessibility shapes the geographic distribution of activity needs to be addressed 

in any long-term policy and planning for urban systems. One major problem is that current 

accessibility measures rely on the identification and quantification of attractions in the system. 

We propose that it is possible to devise a network centrality measure that bypasses this reliance 

and predicts the distribution of urban activity directly from the structure of the infrastructure 

networks over which interactions take place. From a basis of spatial interaction modelling and 

eigenvector centrality measures we develop what we call a preferential centrality measure that 

recursively and self-consistently integrates activity, attraction and accessibility. Derived from 

the same logic as Googleôs PageRank algorithm, we may describe its operation by drawing a 

parallel: Googleôs PageRank algorithm ranks the importance of networked documents without 

the need to perform any analysis of their contents. Instead it considers the topological structure 

of the network and piggybacks thereby on contextualized and deep evaluation of documents by 

the myriad distributed agents that constructed the network. We do the same thing with regard 

to networked geographical zones. Our approach opens up new applications of modelling and 

promises to alleviate a host of recalcitrant problems, associated with integrated modelling, and 

the need for large volumes of socioeconomic data. We present an initial validation of our 

proposed measure by using land taxation values in the Gothenburg municipality as an empirical 

proxy of urban activity. The resulting measure shows a promising correlation with the taxation 

values.   

 

Keywords 
Accessibility, urban activity, centrality, Eigenvector centrality, preferential attachment, 

PageRank, transportation, spatial regression, land value, spatial interaction 

  

                                                 
1 alexander.hellervik@chalmers.se 



Environment and Planning B: Urban Analytics and City Science ï Forthcoming in 2019 
 

2 

 

1 Introduction 
Spatial interaction is essential for urban activity and is ultimately afforded by the transportation 

network. Can the geographical distribution of urban activity thereby be inferred directly from 

some measure of centrality derived from the transportation system? In this paper we combine 

theories from spatial interaction modelling (e.g. Wilson, 2000), and network centrality (e.g. 

Newman, 2008) to develop a model to test this hypothesis with encouraging results. As a 

framing, we begin by subdividing the problems faced by planners and theorists into: a planning 

problem that carries with it a modelling problem, and a data problem. 

The planning problem concerns the need to integrate transport and land use to handle dynamical 

consequences of change. At its heart, the planning problem stems from the essential 

unpredictability of complex interactions within and between domains. For example, a newly 

constructed road may itself increase traffic by inducing new development attracted to improved 

accessibility along its extent. 

Computational models are attractive as tools for studying these dependencies, which leads us 

to the modelling problem. If we begin unpacking the transportation and land use domains, many 

levels of fine-grained subsystems appear (e.g. Iacono et al., 2008). To make matters worse, 

these subsystems are not as internally integrated and externally separated as we may wish. 

Integrated models are near-decomposable (Simon, 1962) in a complicated machine-like 

manner, while urban systems are wicked (Andersson et al., 2014). Integrated model systems 

and urban systems are not complex in the same way (Timmermans, 2003). 

However, even if we were to solve the modelling problem, we would still be left with a data 

problem. Attempting to improve realism by integrating as much theoretical and empirical detail 

as possible (e.g. Waddell et al., 2003) leads to a two-fold problem. First, suitable and consistent 

data must be obtained. Second, empirical patterns must be expected to remain valid even as 

planning parameters are changed, which is particularly problematic for long term forecasts. 

Our approach is to strike at the modelling and data problems simultaneously by exploring an 

alternative approach. We aim to infer the distribution of urban activity, by modelling only the 

physical characteristics of geographical zones and their interactions, i.e. without reliance on 

any demographic data. Our centrality measures are derived from the same basis as Googleôs 

PageRank algorithm (Brin and Page, 1998), but in our case the main input is the transportation 

network, which is used to infer the importance ï or centrality ï of the zones that it links. Our 

hypothesis is that this centrality concept is intimately linked with the concept of urban activity. 

The result is an expandable, scalable and portable model based on new principles that bypasses 

some of these key modelling and data problems in planning. The model may be re-applied 

anywhere in the world, and, with regard to data availability, it may be scaled up to the global 

level, opening up new vistas of possible applications besides those of traditional planning.  

The first part of the paper concerns theoretical background and derivation of centrality models 

for predicting urban activity. We then present our data sources, followed by methods and results 

sections where the model implementation and empirical validation processes are described.   
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2 Theory 

2.1 Background 
From the common wisdom that cities tended, from early on, to be established on trade routes, 

natural ports or river crossings stems the fundamental assumption of all spatial economic 

theories: a location with good accessibility is more attractive than locations with bad access. 

This is a fundamental assumption that theoretically goes back to von Thünen (1826). A break-

through study by Hansen (1959) demonstrated that locations with high accessibility were 

developed earlier and more densely than less accessible locations. On the same path, Alonso 

(1964) formulated a theory linking accessibility and land use. Following Krugman (1996) and 

Fujita et al. (1999), a great part of spatial development can be explained by the interplay 

between two major driving forces, (i) economies of scale and (ii) spatial factors such as 

transport costs and land prices. 

To take the leap from these concepts towards an urban centrality measure, we propose to use a 

simplified model of urban economic activity in combination with a much more detailed spatial 

representation. This makes it possible to view the urban system as a network of interacting 

locations (Barthélemy, 2011; De Montis et al., 2013; Andersson et al., 2006). 

2.2 Urban activity 

A central concept in this paper is the notion of urban activity (denoted ὥ, for zone Ὥ). In our 

definition, urban activity is fundamentally tied to a location and to interactions. We do not 

differentiate between activity types but leave it as an aggregated intensity measure2 

corresponding to the sum of all interactions between a location and all other locations. Since it 

includes both social and economic interactions, it cannot be easily measured in total, which 

means that any modelling and empirical studies must resort to studying some relevant proxies. 

The monetary part of urban activity can be understood as a concept close to GDP, so that 

activity can be approximated by the sum of the market value of all (value-adding) production 

of goods and services taking place at a location at a certain point in time.  

2.3 Local characteristics 

A fundamental property of a location is its capacity to be adapted to human activity, determined 

by basic usability such as local access to buildable land and infrastructure. These local 

characteristics (denoted Ὑ  correspond to the attractivity of a zone ñin itselfò. Details about 

how we have calculated the local attractivity characteristics are described in the Methods 

section.  

2.4 Accessibility and centrality 

Consider the accessibility to attractions as defined by Hansen (1959); ὃ ВὡὪὧ ȟ 

where ὡ  is the index of attraction of Ὦ, ὧ is a measure of distance or travel time of moving 

                                                 
2 Different activity intensities however, do make a location more or less suited for different 

activity types, which means that a change of intensity sometimes goes together with a change 

of type. These type changes, however are assumed to be implicit in our modelling framework.  

This also means that we assume land improvements such as buildings are assumed to be an 

effect of activity ï not a source of it. 
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between Ὥ and Ὦȟ and Ὢ is a decreasing function. One way of describing centrality is by stating 

that a location is central if it has strong accessibility to other central locations, which can be 

formalised by replacing attraction ὡ  with accessibility ὃ itself, to arrive at a recursive 

eigenvector centrality definition, ὃ ВὃὪὧ Ȣ 

This concept is powerful and forms the basis for the measures that we elaborate in this paper. 

One outcome of such a centrality concept is the famous page-rank algorithm used by Google 

(Brin and Page, 1998), which enables a ranking of web documents with regard to their 

importance. Documents on the internet are given a higher ranking if they are linked to from 

other pages with high ranking. Notably, at no point, the search engine has to analyse the 

semantic contents of the documents ï which is exactly what it seeks to rank the importance of. 

This approach has also been applied to physical road networks by e.g. Jiang (2006) and Chin 

and Wen (2015), with the main objective to describe human movement. El-Geneidy and 

Levinson (2011) have tackled the centrality calculation from a different direction, by using data 

on actual flows as a starting point. Our proposed centrality measures are also based on flows of 

interactions, but without any requirements of specific travel data. Instead, the computations are 

performed by modelling these flows using a general interaction function with infrastructure 

network data as input (although modelling accuracy could likely be improved by using detailed 

empirical interaction data).  

Using centrality measures based on the road network to predict urban flows and activities is not 

a new idea, see for example Hillier and Hanson (1989), Porta et al. (2009), Sevtsuk and 

Mekonnen (2012) and Gao et al. (2013). However, the measures that have been mostly in focus 

(closeness and betweenness centrality) cannot easily be incorporated into a spatial interaction 

modelling framework, which is our main reason for instead exploring extensions of eigenvector 

centrality.  

2.5 Closing the loop from activities to flows and back again to activities 

Our modelling approach departs from classical spatial interaction modelling (Wilson, 2000; 

Batty, 2013), where local activity levels ὥ are exogenous variables, appearing as specific 

aspects of local activity, such as population or purchasing power. We then ask whether we may 

instead infer the distribution of activity from knowledge about the other variables, in particular 

the information embodied by infrastructure networks. The causal rationale for this belief is, 

first, that large-scale infrastructure change is a relatively slow process, which implies that land 

use, activity levels and interaction flows have enough time to adapt to a semi-static 

infrastructure network. Second, even to the extent that the time scales of road and land use 

change do overlap, actual planning practices link according to ideas of need and geographical 

importance, so the effect also of the reciprocal dynamics goes in the same direction. 

2.5.1 From activity to spatial interaction 

Spatial interaction models arise by subjecting the logic of the gravity model to local constraints 

on the size of flows in the system. Flows of interactions between zones can then be estimated, 

by distributing economic flows from origins to destinations in proportion to their relative 

attractions, see Figure 1. As noted by Wilson (2000) such a model formulation will take into 

account the competition between different locations for attracting incoming flows.  
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Figure 1. Deriving flows from activity and attractivity. The flow is shown as one-directed, but a flow in the opposite direction 

is also present and can be computed analogously. See supplemental material for a detailed derivation of the interaction 

model. 

2.5.2 From spatial interaction back to activity 

In many cases, the distribution of activities in the system is of interest in itself. Salient questions 

include how infrastructural change affects things like urban extent, patterns of interaction, 

housing, jobs and so on. Infrastructural data is considerably more widely available, complete 

and consistent than demographic and economic data on the nebulous concepts of activity and 

attraction, which we must approach via its rich flora of expressions such as buildings, land value 

and population. If we can tease most of the information we need out of the infrastructure of 

interactions, we are in a much better shape with regard to data supply but also with regard to 

model design. We may then circumvent the need to figure out how various sub-models interact, 

and we are at least less exposed to the ontological mismatch between models and reality.  

ὥ ï Level of 

activity in 

zone Ὥ. 

ὡ  - How attractive is 

zone Ὦ?  Ὢὧ  ï Decreasing 

interaction when 

costs are increasing 

В  ï Summation across all zones 

Ὧ to uphold local constraint on 

interactions. 

ὛὭὮ
ὥὭὡὮὪὧὭὮ

ВὡὯὪὧὭὯὯ

 

We obtain a flow Ὓ  between zones 

Ὥ and Ὦ:  
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Figure 2. From spatial interaction to activity modelling. 

In Figure 2 we outline the logical sequence in which we develop our preferential centrality 

model by using a ñquasi-growth modelò ï quasi since it embodies a growth logic but is really 

used in an iterative process to find a stable equilibrium distribution of activity. First, we assume 

that activity quasi-growth is proportional to the sum of flows entering the zone. Second, 

attraction ὡ  is refined into an intrinsic property equal to our measure of local characteristics, 

ὡ  Ὑ . Now, if we begin with activity uniformly distributed across the system, and we 

redistribute it according to this logic we arrive at an iterative algorithm,  

ὥὸ ρ ὅὥὸ ‭ВὛ ὸ,  ( 1 ) 

with the equilibrium distribution 

In spatial interaction modeling, activity 

ὥ represents demand while attraction ὡ  

represents supply. Interactions are thereby 

directed, going from demand to supply. 

In the basic eigenvector centrality model, activity 

ὥ represents any activity. Most types of activity 

generate both supply and demand on an aggregated 

level. Attraction ὡ  is refined into an intrinsic 

property Ὑ of the zone, reflecting suitability for 

development. 

We posit that activity is in equilibrium when total 

interaction from a zone is in balance with total 

interaction to the zone. Our task is then to find such 

a configuration of ai to fulfil this for all zones. 

To achieve this, we iteratively adjust a
i
 across the 

zones. If interactions in and out are not in balance, 

the current estimate must be adjusted. We repeat 

until a convergence criterion has been reached. 

+  - 

In our preferential centrality model , we refine the definition of attraction to reflect a dynamic coupling 

with activity. Development suitability Ὑ  now figures as one aspect of attraction ὡ   together with 

activity ὥ. A parameter ‌ is used to set the balance between these aspects. 
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ὥ ὙВ
В

ȟ ( 2 ) 

independently of the quasi-growth constants ὅ and ‭. See supplemental material for the full 

derivation of this self-referring equilibrium condition, that can be restated as ὥ Вὥὓ , 

where ὓ  
В

. The adjacency matrix ὓ  corresponds to a transformation of the 

physical network and the activity will correspond to the eigenvector centrality of this weighted, 

transformed network. Thus, we can infer the structure of urban activity from the physical 

linking of places, similar to how the PageRank centrality algorithm can infer the relative 

importance of pages from the hyperlink structure. 

The model may be substantially improved by positing that activity in itself stimulates 

attractivity, ὡ ὥ ‌Ὑ, which results in a modification of the equilibrium formulation: 

ὥ ὥ ‌Ὑ В
В

Ȣ ( 3 ) 

We call this new non-linear measure preferential centrality, because the activity-dependent 

attraction can be thought of as a continuous version of preferential attachment  (Barabási and 

Albert, 1999) for the activity interaction network. The resulting equation can be solved for ὥ 

by iteration. However, unique or positive solutions are not guaranteed for low values of ‌Ȣ  

2.6 Interaction function 

The most common choices for interaction functions are the exponential function  Ὢὧ

Ὡ , and power law decay, Ὢὧ ὧ . If we were studying a single type of activity it 

would be reasonable to assume a specific spatial scale of interaction, which is something that 

the exponential function captures well. However, our generalised concept of urban activity 

implies a mix of interactions on all scales which makes it more reasonable to use the power law 

function. Generally, the choice of interaction function is of course an empirical question. 

3 Data 
The data used for this study are of three kinds; road network, property polygons and land 

taxation values. The road network is used for three purposes; finding accessible areas within 

the polygons, finding connections from the polygons onto the road network and finally 

performing the distance calculations between zones. The property polygons are assigned a land 

taxation value from the taxations database according to a common identifier. They are thereafter 

aggregated into zones based on area and type code. In this study, the municipality of 

Gothenburg is chosen as a prototype area to develop, test and validate the model. 

Roads and streets are imported with preserved topology and attributes from Open Street Map 

(OSM). OSM has been subject to questions about its quality, but studies have found that the 

data quality is on pair with other data sources (Haklay, 2010; Dhanani et al., 2012). The reasons 

for choosing OSM are several; it is readily available to download, it contains the necessary 

attributes for the calculation, it has worldwide coverage for future expansions of the model, and 

the data is open.  

The entire extent of Sweden is partitioned into ñpropertiesò. Properties are either owned by 

individuals or juridical entities, or they can be jointly owned in the form of associations. The 
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precision and quality of this data is high, since the purpose is to establish and prove ownership 

(which needs to be precise and just). Properties are of different types and usages; therefore, they 

are classified and assigned a type code based on usage by the Swedish taxation authority. The 

extent and borders of these properties are obtained from the Swedish land survey. 

The Swedish taxation authority assigns to all properties a taxation value that should represent 

about 75% of the market value. This value is arrived at by a procedure that takes several 

characteristics into consideration such as area, closeness to water, building type, sales values of 

the neighbouring properties etc. The quality of this data is also very good in the sense that it is 

done according to a legal criterion, although the values for industries is a bit uncertain due to 

the fact that they are seldom sold. Therefore, these few sales have a disproportionately big 

impact on the industrial properties taxation values. This has to be taken account for in the 

regression analysis. All the taxation values and type codes are acquired from the Swedish 

taxation authority. 

4 Methods 
The procedure for model exploration and validation is roughly composed of three steps; 1) data 

preparation in order to create the input for the activity model as well as preparing the empirical 

data used in the last step, 2) running the activity model and 3) finally using the results from the 

models in a multiple spatial regression analysis with the empirical values.  

For the activity model we compare four different versions; the local model, the monocentric 

model, the iterative eigenvector model and the iterative preferential model. Our aim is to assess 

whether or not the more elaborate iterative models provide any additional predictive capabilities 

compared to the simpler versions. To find out whether the models are capable of capturing all 

of the spatial dependencies, we have performed spatial testing (Anselin, 1988) in the regression 

analysis.  

4.1 Data preparation 

4.1.1 Spatial entities 
The spatial entities used in the activity model and the multiple regression analysis are chosen 

to be realized as zones, defined as one or more aggregated properties. All properties smaller 

than 3000 m2 are aggregated to zones by dissolving common borders, if they have the same 

taxation type code.  

Geographical analysis of polygon features are subject to the MAUP (Openshaw and Taylor, 

1979). The way of spatial partitioning of land must therefore be carefully chosen. The 

justifications for using zones as spatial units are that; properties are readily available, have a 

designated usage and can provide useful output in planning applications. Property-based zones 

also simplifies the empirical comparisons, since model and data will have the same spatial 

representation.  

4.1.2 Connection between road network and zones 
We do not use detailed data about physical connections between zones and the road nework. 

Instead approximate ñvirtualò connections are created in the road network model by choosing 

the shortest Euclidean lines between zonal centroids and connection-permissible roads.  
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Motorways, trunk roads and other roads with high speed limits are not considered permissible 

for these virtual connections.   

4.1.3 Zonal weights ς local characteristics 
A zonal weight (Ὑ) is assigned to every zone Ὥ based by accessible, buildable and permitted 

areas. Generally, the weight can also be modified with different types of (physical) attractivity 

factors.  

Accessible areas are here stipulated as land that can be accessed from roads. Therefore, the 

assumption in the model is that only the area within a certain distance from a road is possible 

to develop. These areas are created by buffering the roads (30 m in the baseline case) and doing 

a union overlay onto the properties.  

Buildable areas are hereby defined as firm ground suitable for buildings. Areas used by (or very 

close to) road or rail infrastructure are not considered as buildable.  

Permitted areas are those that, according to planning restrictions, are allowed for development. 

In our current model implementation, productive forestry, agricultural land and areas used for 

special purpose buildings are considered as not permitted.    

A basic attractivity factor is closeness to open water, which can have a large effect on land 

value and land taxation. Since our study area (Gothenburg) is situated by the coast we must 

include some approximation for this effect. We have chosen to include the water attraction as a 

multiplicative factor of 1.5 for the zonal weights for zones with centroids within 500 m of the 

coast-line.  

4.2 Implementation of the activity model 
To arrive at zone-to-zone impedances ὧ, Dijkstraôs algorithm is used to identify the shortest 

paths in the road network weighted by segment travel times (taking into account speed limits). 

A constant impedance penalty (comparable to 1 minute in the baseline case) is added to all 

relations to reflect the cost of starting and ending an interaction. Zones are assumed to not 

interact with themselves, i.e. Ὢὧ π. As a baseline interaction function we have used the 

power law decay, Ὢὧ ὧ , with ‍ ς. 

The eigenvector activity model is implemented by using simple iterative updating of the activity 

for all zones. Initial activity is chosen to equal local zonal weights, i.e. ὥὸ π Ὑ. Zonal 

weights are then considered static during the iteration. For every iteration a new activity vector 

is computed using Equation (1). Total activity is kept constant in every iteration by a global 

normalisation. The relative vector norm of activity differences between subsequent iterations is 

compared to a predefined tolerance value (we have used 10-5), to determine if a good enough 

approximation to the equilibrium is found.  

The implementation of the preferential model is identical to the eigenvector model in all aspects 

except from the additional mechanism of activity dependent attractivity. This mechanism 

introduces the parameter ‌, for which we have chosen a value as low as possible, but that still 

results in a convergent iterative process. This principle gives the largest possible difference of 

activity configuration in comparison to the eigenvector model, since increasing values of ‌ can 
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bring the results of the preferential model arbitrarily close to the eigenvector model. In the 

baseline case, the application of the principle resulted in ‌ ρȢφςυ.  

Compared to the iterative models, the monocentric version is simpler.  It is derived by assuming 

that all zones only interact with the most central zone, defined in the implementation as the 

zone closest to Gothenburg Central Station. For a full description of this model version, see 

supplemental material. 

Zonal weights are mainly used as input to the iterative activity models. However, for 

comparative purposes we also investigate a local activity model, without any interaction 

between zones. It is implemented using direct proportionality between zonal weights and 

activity. 

4.3 Spatial regression 

4.3.1 Preparation of the spatial regression analysis data 
The two independent variables are; the prediction from the activity model and the amount of 

industrial area per zone. The reason to include the amount of industrial area in the regression 

model is that industrial properties have on average a lower taxation value due to the taxation 

process.  

The dependent variable is the property taxation value. For some records in the taxation database 

there is not a 1:1 relationship to property polygons. We handle this by aggregation, de-

aggregation and filtering. We start from 60137 property polygons and arrive at 27628 zones 

after aggregation. Out of these, we have empirical taxation values for 12062 zones, hence only 

they are used in the regression. 

4.3.2 Weight matrix creation.  
In order to specify a regression model with spatial diagnostics a spatial weights matrix has to 

be created. The weights matrix in this study is created by using the impedance of the road 

network between all places and then apply a cut-off value in order to determine which zones as 

treated as adjacent ones. We have chosen a cut-off value that is 3000 meters. To examine the 

robustness of the model a weight matrix based on Euclidian distance of 600 meters is also tested 

in the regression. 

4.3.3 Investigating spatial dependencies 
To examine the presence of spatial dependence, an analysis of Moranôs I for the model values 

and empirical values is made (Moran, 1950; Haining, 2004). This test (see Table 1) shows that 

both preferential model values and taxation values are subject to a rather strong spatial 

autocorrelation while the local weights are not. 

Variable Moranôs I 

Land taxation value (dependent) 0.34 

Local weights (independent) 0.04 

Preferential model prediction 

(independent)  
0.47 

Industrial areas (independent) used 

as correction factor 

0.24 

Table 1. Indicators for spatial autocorrelation. 
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This finding indicates that spatial diagnostics needs to be evaluated in the regression analysis, 

to make sure that all spatial autocorrelation is taken care of. The finding that local weights are 

virtually not at all spatially autocorrelated tells us that they cannot sufficiently explain the 

variation in the empirical property taxation values. 

4.3.4 Ordinary Least Squares (OLS) with spatial diagnostics 
An OLS with both spatial and non-spatial diagnostics is performed in order to know whether 

the dependent variableôs spatial autocorrelation is captured by the independent variables (which 

would mean that an ordinary OLS is sufficient). If not, the diagnostics are used as guidance for 

the next steps in order to take care of the spatial autocorrelation (Anselin, 1988). This results in 

a collection of diagnostics that need to be analysed: 

¶ Diagnosis for non-normal error distribution, Jaque-Bera (JB) test.  

¶ Diagnostics for heteroscedasticity, Breusch-Pagan and Koenker-Bassett tests (B-P and 

K-B). 

¶ Diagnostics for spatial autocorrelation, Lagrange Multipliers (LM) tests and Moranôs I 

on the residuals. 

4.3.5 Comparative indicators for model fitness and validity 
To evaluate and compare models, Ὑ  is commonly used but is not reliable when residual spatial 

autocorrelation is present. Therefore, the Schwarz information criterion is also used (Anselin 

and Rey, 2014). 

When spatial autocorrelation is present in the residuals, the observations are not independent 

from each other, hence the regression model is not valid. This is investigated with the LM tests; 

if they are significant it indicates that some measure like using a spatial lag or spatial error 

model has to be taken in order to handle the remaining spatial autocorrelation (Anselin, 1988). 

If the LM (or robust LM) test for spatial error model is significant while the tests for lag model 

are not, a spatial error model is probably the right way to go, and vice versa. If both tests are 

significant, the regression analysis is not valid and there is no indication of any spatial model 

that can make it valid. In that case the model has to be re-specified (Anselin and Rey, 2014). 

This procedure has been used in this study for guidance in the search for a good and valid 

model. 

4.4 Software  
For the data preparation, cleaning and aggregation, FME was used. The activity models were 

implemented in python, using the packages OSMnx (Boeing, 2017) and NetworkX (Hagberg 

et al., 2008).  The spatial statistical analysis were performed in GeoDa (Anselin, 2006). 
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5 Results 

5.1 Model validity and fitness 
All models except the preferential models have all the LM tests significant, which invalidates 

them due to untreated spatial autocorrelation. The local and industrial models are included just 

as control, to see that it is actually the activity model prediction that is responsible for the good 

results. The other indicators on model fitness shown in Table 2 implies that the preferential 

model is the best choice, even before considering and applying the spatial error model. 

For the preferential model, the robust version of the LM test for error model was significant 

(0.00) while the robust version of the LM test for lag model was not (0.83). This suggested that 

using a spatial error model is the correct approach (Anselin and Rey, 2014). Therefore, only the 

preferential spatial error model is usable for inference and predictions, although its spatially 

clustered errors (Anselin, 1995) are hiding some unknown spatial factors (see Figure 3). 

Model version R2  Moransô I on 

residuals  

Schwarz 

information 

criterion  

Model valid? 

Industrial area coverage 

(as control) 

0.00 0.34 20842 No, since all LM tests are significant. 

Local  0.40 0.42 14644 No, since all LM tests are significant. 

Monocentric 0.54 0.24 11329 No, since all LM tests are significant. 

Eigenvector 0.54 0.24 11470 No, since all LM tests are significant. 

Preferential  0.58 0.16 10297 No, not as non-spatial OLS, since LM tests 

are significant. 

Preferential spatial 

error model 

(Pseudo) 

0.66 

Not applicable 

(none) 

7792 Yes, since remaining spatial autocorrelation 

is taken care of as error term 

Table 2. Results from the spatial regression. A better fit is indicated by a lower Schwarz and a higher R2. For Moransô I, low 

values indicate low spatial autocorrelation. The pseudo R2 value in a spatial error model is computed differently than in a 

standard OLS, which means that the R2 for the preferential spatial error model is not directly comparable to the other R2 

values in the table. 

5.2 Other statistical tests on the preferential spatial error model 
The low multicollinearity number (12) indicates that there is no problematic multicollinearity 

among the explanatory variables. Values < 30 are usually considered as unproblematic (Anselin 

and Rey, 2014) 

The JB test is significant, which indicates a non-normal distribution of error terms. However, 

this test is less relevant, since this dataset is large (Anselin and Rey, 2014).  

According to the B-P and K-B tests there is a significant heteroskedasticity in the model results. 

There can be multiple reasons for this where one possible cause is the aggregation of properties 

(Haining, 2004). The effects are not that great in these specific models, since the standard errors 

are very low on their own. It is therefore not considered as crucial for the conclusions of this 

study. 

5.3 Sensitivity analysis 
We have explored many variations of the key parameters, such as the preferentiality parameter 

‌, and the functional form and parameters of the interaction function. See supplemental material 

for details on these results. The main finding is that the preferential model seems to be robust 

with regard to changes in parameter values  
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Figure 3. Preferential spatial error model:  Predictions (top left), empirical land value (top right) and local weights (bottom 

left) are normalised with regard to zone area. Spatial residuals (bottom right) show the remaining spatially autocorrelated 

error term. 

 

5.4 Discussion of results 

5.4.1 Comparing the model versions 
The eigenvector and monocentric models have decent performance; therefore, the interpretation 

of their results have been used as steps in the search for a valid model. The preferential spatial 

error model, besides being the only valid model, also performs well in absolute numbers with 

a pseudo Ὑ πȢφφ. Considering the small number of input data sources used, and the simple 

underpinning model assumptions, this level of correlation indicates that the proposed 

preferential centrality measure is promising. 
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5.4.2 Remaining challenges  
In this paper we have not aimed to present a full predictive model. Some improvements for 

moving in that direction are: 

¶ To reduce uncertainty in the regression coefficients, heteroskedasticity should be 

sufficiently taken care of. Some more parameter variations as well as trying different 

levels of aggregation into zones might give some clues how to handle this problem. 

¶ The preferential spatial error model still contains unknown spatial variables that are 

handled as a spatial error term together with standard residuals. To understand those 

errors can be helpful for further development of the model. Some ideas and 

suggestions for further investigation are: 

o Different kinds of properties (i.e. commercial vs. residential) might not be fully 

comparable in taxation terms. 

o Other transportation modes, such as pedestrian, bicycle and public transport 

are not captured in the current car-oriented implementation of the model 

o Truncation effects; this model is only investigating areas within the 

Gothenburg municipality, although the city also acts a regional centre for a 

larger surrounding region. 

¶ In the preferential model, we have a parameter ‌ for which model fitness improves as 

it is lowered towards the threshold of iterative divergence. Perhaps the empirical 

system state corresponds to a non-convergent model outcome? To explore this 

hypothesis, the convergence criterion in the model can be replaced by a minimisation 

target. 

 

6 Conclusions and ways forward 
By using a theoretical concept of interaction-based centrality we have demonstrated that it is 

possible to create an urban activity model with empirical validity, using only two data sources 

ï road networks and property polygons. The empirical validation is based upon using land 

taxation values as a proxy for urban activity.  

According to the comparative results from the spatial regression, local characteristics are far 

from enough to explain the geographical variation of land values. The activity intensity is also 

affected by the geographical ranking of the location; in the city and in the region. Including the 

distance to the city centre in a monocentric interaction model gives a seemingly better fit, but 

the spatial statistical tests shows this model to be invalid for the geographical area that we study, 

indicating that a more elaborate model is warranted.  With the introduction of our concept of 

preferential centrality, where initial concentrations of activity are assumed to ignite local 

feedback-mechanisms that attract even more activity, we finally arrive at a valid regression 

model.  

The preferential centrality model has several additional advantages compared to a monocentric 

approach. First, we avoid the requirement of having to manually identify the most central 

location. Instead the centrality model will endogenously determine central places and their 

relative importance. In a polycentric setting this is a crucial model feature. Second, in a planning 

context it can often be an important question in itself how the location and strength of urban 

centres are affected by planning interventions, such as new infrastructure. For example, the 
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preferential model can be used to analyse the robustness of a city centre under the influence of 

suggested new road investments. Such an analysis is clearly not possible within a monocentric 

model framework.  

Regarding data requirements, our approach is somewhat more demanding when compared to a 

basic monocentric model, since travel times must be computed between all zones and not only 

to the predefined centre. The number of zones needed (i.e. the spatial resolution) depends on 

context and further studies are needed to determine what levels of resolution that are adequate 

for different planning applications. 

Our current model implementation is technically complicated and requires different pieces of 

software. This is however not a fundamental property of the approach and we aim in future 

work to achieve a work-flow within a single open source framework, to open up for broader 

testing and practical application.  

Before using our modelling approach in a practical planning context, further validation is 

needed; both cross-sectional by studying other and larger areas, and longitudinal by 

investigating changes in urban activity over a time period where the road network also has 

changed. For the purpose of this validation, we cannot escape the need to use empirical activity 

data, such as taxation values or night light data. However, since our sensitivity analyses show 

that model outcomes are fairly robust, a validated preferential centrality model should be 

transferrable to applications in different geographical settings, without any need for local 

economic or demographic data.  
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Supplemental material A ς mathematical detail 

 

From activity to spatial interaction 

We have an interaction model, for the economic flow Ὓ  from zone Ὥ to Ὦ: 

Ὓ ὄὖὡὪὧ ȟ 

where ὄ  is a balancing factor (to be determined below) for zone Ὥ, ὖ is the economic output 

(total spending) from zone Ὥ, ὡ  is the attraction of zone Ὦ, ὧ is the cost of interaction (cost can 

be derived from network impedance) between Ὥ and Ὦ, Ὢ is a function decreasing with increasing 

cost.  

We also have the accounting relation that the sum of flows from a zone should correspond to 

ὥ, the economic activity in the zone: 

Ὓ ὥȢ 

The accounting relation can be combined with the initial flow equation  

ὄὖ ὡ Ὢὧ ὥ 

to determine the balancing factor 

ὄ
ὥ

ὖВ ὡ Ὢὧ
Ȣ 

 

Thus, the resulting interaction flow model is 

Ὓ
ὥὡὪὧ

В ὡ Ὢὧ
ȟ 

which has the simple interpretation that the total economic flow from zone Ὥ is distributed 

between all other zones in proportion to their relative attractions modified by a function of 

interaction cost. 

The total incoming economic flow Ὀ  for zone j can now be found by  

Ὀ Ὓ ὡ
ὥὪὧ

В ὡ Ὢὧ
 

 

As noted by Wilson (2000), this will take into account the competition between different 

locations for acquiring incoming flows. 
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From spatial interaction back to activity 

To be able to infer activity levels from only attractions and costs of interaction, we use a ñquasi-

growth modelò ï ñquasiò since it embodies a growth logic, but is really used in an iterative 

process to find a stable equilibrium distribution. The local ñquasiò-growth of activity at a zone 

is assumed to be proportional to the sum of incoming flows, according to  

 

ὥὸ ρ ὅὥ ὸ ‭Ὀ  

 

Where C is a global factor controlling overall growth. 

Assuming the condition of constant global activity and the relation В Ὀ В ВὛ Вὥ  

gives 

Вὥὸ  Вὥὸ ρ ὅВὥὸ ὅ‭ВὈ ὸ ὅρ ‭Вὥὸ. 

For this to hold true, ὅ , and ὥὸ ρ  

The equilibrium condition ὥὸ ρ ὥὸ yields the only solution ὥ Ὀ, i.e. that 

incoming flow must be equal to activity. 

And then we can state the equilibrium condition 

ὥ ὡ
ὥὪὧ

В ὡ Ὢὧ
 

or in a briefer version: 

ὥ

ὡ
Ὢὧ

ὥ

ὃ
ȟ 

where ὃ В ὡ Ὢὧ  is the accessibility to attractivity from zone Ὥ. Thus, we can interpret 

the equilibrium condition as a system state where the ratio of activity and attraction must equal 

the accessibility to normalised activity, where the normalisation is with regard to accessibility. 

This means that for a zone to have high activity relative to its attractivity, it must have high 

accessibility to other zones which themselves have low accessibility to attractivity. 

The right-hand term can be thought of as a relative accessibility, or spatial fitness –

ВὪὧ  . This term captures everything related to the spatial propensity of a location for 

attracting new activity. The left-hand term contains only localised variables. This means that in 

equilibrium, the local activity and attractivity of a zone must be in balance with the zoneôs 

relative place in the spatial system, described by the right-hand term. In short, –. 

 

To find specific solutions, an additional model component is needed, to describe how attractions 

develop. Two obvious alternatives are:  

1. Describe static attractions based on specific data of the studied system.  
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2. Create a dynamic economic model for the evolution of different types of attractions. 

Since our aim is to achieve a simple model, with minimal dependence of data and economic 

specifics of different types of businesses, we have chosen a somewhat different approach.  

Our first attraction-model is akin to suggestion 1 above in that we only consider local, static 

properties of zones. If attractions are only dependent on constant local characteristics, ὡ Ὑ 

(see main paper for an explanation of how these are determined), an eigenvector equation is 

obtained:  

ὥ
ὥὙὪὧ

В ὙὪὧ
ὥὓ ȟ 

where ὓ  
В

. Note that ὓ  is only determined by local characteristics and the 

impedance structure of the underlying transportation network. Ὓ ὥὓ , which means that 

the matrix described by ὓ  reveals the relative flow from Ὥ to Ὦ, and that the equilibrium activity 

corresponds to the eigenvector centrality (Bonacich, 1972) of a weighted network of relative 

flows between zones. 

Our second model version incorporate dynamics by using the simple assumption that attraction 

is linearly related to generalized urban activity, ὡ ὥ ‌Ὑ, which results in the modified 

equilibrium formulation: 

ὥ ὥ ‌Ὑ
ὥὪὧ

В ὥ ‌Ὑ Ὢὧ
 

 

More elaborate functions Ὣ of attraction ὡ Ὣὥ ȟ are of course also conceivable within the 

same formalism, but we have not yet further investigated this. 

Starting from a standard interaction model we have now arrived at a self-consistent non-linear 

centrality measure. We call this new measure preferential centrality, because the activity-

dependent attraction can be thought of as a continuous version of preferential attachment 

(Barabási and Albert, 1999) for the activity interaction network. 

The resulting equation can be solved for ὥ by iteration. However, positive solutions are not 

guaranteed for low values of ‌Ȣ At the limit of large ‌, the preferential centrality corresponds 

to the eigenvector centrality, since 

ὥ ‌Ὑ
ὥὪὧ

В ὥ ‌Ὑ Ὢὧ

ὥ

ɻ
Ὑ

ὥὪὧ

В
ὥ
ɻ Ὑ Ὢὧ

ᴼ
ὥὙὪὧ

В ὙὪὧ
ȟ ×ÈÅÎ ‌ᴼЊȢ 

We can summarise some observations about the equilibrium condition in the preferential model, 

which must hold true for every zone: 

¶ The sum of outgoing interactions is equal to activity 
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¶ The sum of incoming interactions is equal to activity 

¶ Attraction is linearly related to activity 

¶ Relative accessibility (fitness) equals the ratio between activity and attraction. 

 

Derivation of the monocentric model  
For comparative purposes the same formalism can be used for creating a monocentric model,  

 

ὥ ὅ ὙὪὧ ȟ 

 

by making the assumption that all zones only interact with the most central zone, that we name 

zone 0. I.e. Ὢὧ =0, for Ὥ π. ὅ  is a global constant regulating the total activity in the 

system. 

The monocentric model can be derived from the eigenvector equation:  

ὥ
ὥὙὪὧ

В ὙὪὧ

ὥὙὪὧ

В ὙὪὧ

ὥὙὪὧ

В ὙὪὧ
ὅ ὙὪὧ ȟ 

with ὅ
В

. 

 

The value of ὥ will be directly related to the total activity ὥ  according to: 

ὥ ὥ ὥ ὥ ὥ ὥ
В ὙὪὧ

В ὙὪὧ
ὥ ὥ

ВὙὪὧ

В ὙὪὧ
ςὥȟ 

if  we also make the assumption of no self-interaction within the central zone, Ὢὧ =0.  

In its formulation the monocentric model only embodies information about the cost of travel to 

the city centre in combination with local characteristics. This means that relative activity 

ᾥὮȾὙͅὮ  must decrease monotonously with increasing cost of travel to the centre. 

One straight-forward interpretation of the monocentric model is that the periphery provides 

services (such as housing/labour) exclusively to the central zone, where all other production 

takes place, as well as all commercial activity. Increasing cost of interaction with the centre will 

make fewer services profitable and as an effect activity will decrease as we move further into 

the periphery. 
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 Supplemental material B ς Sensitivity analyses 

  

Parameters 
Table 3 shows an overview of the implementation-specific parameters. For all of these parameters a 

single typical value has been used for all baseline results reported in the main paper.  

Parameter Unit Typical 

value 

Theoretical effect of change 

Waterfront factor None 1.5 A higher value gives zones with centroids within 

the distance cut-off increased baseline attractivity 

Ὑ .   

Waterfront distance 

cut-off 

Meters 500  A higher value will cause the waterfront factor to 

be applied to more zones. 

Constant 

impedance penalty 

Meters 1000 A higher value reduces the relative difference of 

interactions between nearby zones. 

Buffer distance for 

accessible land 

Meters 30 Higher local weights due to larger percentage 

usable for development. 

Iteration break 

tolerance 

None 10-5 Convergence criterion, should be between 0 and 1. 

Interaction 

function, ÆÃ  

None ὧ  A change toward a more strongly decaying 

function reduces the interaction between farther 

zones. 

Travel time decay 

exponent, ‍  

None 2.0 An increase corresponds to a relative shift from 

long-range towards more local interactions. 

Local characteristics 

weight, ‌  

None 1.625 An increase corresponds to a smaller effect of 

activity on attraction, which means lower 

centralisation. 

Table 3. An overview of the model parameters. The typical values correspond to the baseline case.  

Method and results 
For all sensitivity tests, one free parameter at a time is varied in combination with a changed value of 

‌ that is chosen according to same principle as in the baseline case: as low ‌ value as possible that still 

results in a convergent iteration (according to the iteration break tolerance, that is held constant). All 

other methodology is the same as described in the main paper. Results are shown in Table 4 for the 

preferential activity model only. We have not used any spatial error models for the sensitivity tests.  

The main findings are that the preferential model seems to be robust to changes in parameter values. 

Some cases such as extremely strong exponential distance decay seem to make the model perform 

badly, but all other variations are in general valid (according to LM tests) and not too far from the 

baseline, in terms of model fitness comparisons.  
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Kind of sensitivity test ♪ R2 Schwarz 

infor-

mation 

criterion 

aƻǊŀƴΩǎ L ƻƴ 

residuals, 

Euclidian 

distance 

weights 

matrix 

aƻǊŀƴΩǎ L 

on 

residuals, 

network 

distance 

weights 

matrix 

LM-test 

lag model, 

Euclidian 

distance 

weights 

matrix 

LM-test 

lag model, 

network 

distance 

weights 

matrix 

K-B 

Baseline case 1.625 0.58 10297 0.24 0.16 0.5892 0.8262 0.00 

‌ = 2.0  2.0 0.57 10606 0.26 0.19 0.0006 0.0000 0.00 

‍ = 1.0   0.602 0.59 10056 0.24 0.16 0.2422 0.0000 0.00 

‍ = 1.5 1.055 0.59 10116 0.24 0.16 0.0003 0.0003 0.00 

‍ = 2.5  2.280 0.58 10429 0.24 0.16 0.0968 0.0538 0.00 

‍ = 3.0  2.988 0.57 10675 0.24 0.16 0.0174 0.0439 0.00 

‍ = 4.0  2.988 0.54 11439 0.24 0.16 0.7781 0.0026 0.00 

Exponential 

interaction function; 

Ὢὧ Ὡ , ‍ = 

0.001  3.586 0.53 11763 0.25 0.18 0.0456 0.2209 0.00 

Exponential 

interaction function; 

Ὢὧ Ὡ , ‍ = 

0.0001  0.383 0.59 10019 0.23 0.16 0.0000 0.0000 0.00 

Exponential 

interaction function; 

Ὢὧ Ὡ , ‍ = 

0.002  3.717 0.37 15193 0.38 0.31 0.0636 0.0000 0.07 

Zonal self-

interaction turned 

on 1.578 0.58 10257 0.24 0.17 0.3369 0.4862 0.00 

Waterfront factor 

1.0 1.574 0.57 10724 0.27 0.18 0.2265 0.1260 0.00 

Waterfront factor 

2.0 1.695 0.58 10302 0.24 0.16 0.3434 0.1569 0.00 

Waterfront factor 

3.0 1.844 0.56 10864 0.25 0.17 0.9156 0.0091 0.00 

Constant impedance 

penalty 1 m 2.593 0.56 10691 0.25 0.17 0.0021 0.0000 0.00 

Constant impedance 

penalty 5000 m 0.800 0.59 10053 0.24 0.16 0.7864 0.4622 0.00 

Table 4. Sensitivity tests for the preferential activity model, with different parameter variations compared to the baseline 

case. 
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Supplemental material C ς Maps 

  

Introduction 
This document contains detailed maps with local weights (Figure 4), baseline results for the different 

activity model versions, that are presented in the main paper (Figure 5 to Figure 7), as well as empirical 

values (Figure 8) spatial (Figure 9) and non-spatial errors (Figure 10). All local weights, model values and 

empirical values have been normalised with regard to zone area. In Figure 11 we show a close-up of 

the city centre to illustrate the zonal representation.     
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Figure 4. The local weights that are used as a starting point. 
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Figure 5. The eigenvector model results. 
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Figure 6. The monocentric model, where the central station is manually defined as the city centre. 
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Figure 7. The preferential model, which is an elaboration of the eigenvector model, and therefore performs better compared 

to empirics. 










