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We show that sensorial delay alters the collective motion of self-propelling agents with aligning interactions:
In a two-dimensional Vicsek model, short delays enhance the emergence of clusters and swarms, while long or
negative delays prevent their formation. In order to quantify this phenomenon, we introduce a global clustering
parameter based on the Voronoi tessellation, which permits us to efficiently measure the formation of clusters.
Thanks to its simplicity, sensorial delay might already play a role in the organization of living organisms and can
provide a powerful tool to engineer and dynamically tune the behavior of large ensembles of autonomous robots.
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I. INTRODUCTION

Collective motion and pattern formation in systems of
self-propelled agents are fascinating phenomena, which have
attracted much attention [1,2]. Systems of interest include, for
example, animal flocks [2–5], chemically powered nanorods
[6], actin networks driven by molecular motors [7], robotic
swarms [8], and human crowds [9]. Despite occurring on
different scales, there are several emergent behaviors that are
robust and universal, being in particular independent of the
agents constituting the swarm [2–10]. In the past decades,
it has become a challenge for theoretical physics to find
minimal dynamical models that capture these features. In
1987, Reynolds introduced the boids model to simulate the
swarm behavior of animals at the macroscale within computer
graphics applications [11]. Later, in 1995, Vicsek et al. [12]
introduced the Vicsek model, which was the first to consider
collective motion in terms of a noise-induced phase transition
and, together with its multiple variants, has become one of
the most often employed models [2,13–15]. The dynamics of
these systems can be influenced by the presence of delay
[16–19] or multiplicative noise [20,21], a fact that has been
exploited for a long time in control theory [22,23]. Using
robots, we have recently demonstrated that it is possible to
use the delay between the time when an agent senses a signal
and the time when it reacts to it (sensorial delay) as a new
parameter to engineer their large-scale organization [16,19].

Here, we show that the presence of a sensorial delay alters
the collective motion emerging in the Vicsek model. Consid-
ering a collection of self-propelling agents moving with con-
stant speed and tending to align with the average direction of
motion of the agents in their local neighborhood, we show that
a short sensorial delay enhances the formation and stability
of swarms, while longer or negative delays prevent swarm
formation. The latter result is in agreement with Ref. [24],
which has recently shown that sufficiently large delays can
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destroy synchronization, and with control theory, where long
enough delays are known to destabilize a system. We analyze
these behaviors using the global swarming coefficient, which
is standard since the introduction of the Vicsek model [12],
and by introducing a global clustering coefficient based on the
Voronoi tessellation, which better captures the formation of
swarming clusters.

II. MODEL DESCRIPTION

We consider the standard two-dimensional (2D) Vicsek
model [12]. The self-propelling agents are point-like particles
with position ri and orientation θi, where i = 1, . . . , N and N
is the total number of agents. These agents move in a square
arena (2 000 × 2 000, with periodic boundary conditions) with
constant speed ν and orientation determined by thermal noise
and short-range aligning interactions. At each timestep, the
ith agent moves by ν (ν = 1, 3, or 7 depending on the
simulation) along the direction defined by θi; the value of
θi is set equal to the average direction of the agents within
the detection radius R = 20 (including the ith agent itself);
and, finally, θi is incremented by a random number drawn
from a uniform distribution in [ −η

2 ,
η

2 ], where η = 0.4; the
value η = 0.4 is chosen because it is large enough to prevent
formation of permanent clusters, and is also small enough so
that the agent behavior is mainly controlled by the aligning
interactions (note that the overall behavior of the system is
robust to variations of η, see also Supplemental Material Fig. 1
[25]). Each simulation run starts with random ri and θi, is
carried out for 10 000 timesteps, and reaches the steady state
at most after 5000 timesteps (and typically much sooner). A
crucial parameter in determining the behavior of the system
is the density of agents. We consider a system with density
of δ = 0.0001 agents per unit area, so that the partner num-
ber (i.e., the average number of agents within a detection
radius) is M = δπR2 = 0.13. We have chosen this value in
order to achieve a relatively fast equilibration period (� 5000
timesteps) while preventing the appearance of density waves,
which occur at significantly higher densities [26–29]. We have
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verified that density waves occur in our system only when
the density is at least ten times larger than that we employed.
We have also verified that ten simulations for each parameters
are sufficient by reproducing Fig. 2 with 100 simulations and
obtaining the same results. Furthermore, we have verified that
similar results are obtained for larger systems (Supplemental
Material Fig. 2 [25]). Importantly, the effects that we describe
in the following occur when the parameters of the Vicsek
model are such that they do not lead to the formation of a
single giant cluster with all the particles, i.e., when ψ < 1 in
the steady state (Supplemental Material Fig. 3 [25]).

When multiple agents come within a detection radius from
each other, they form a local cluster traveling approximately in
the same direction and, as time passes, more and more agents
are recruited to the cluster, while some agents (usually one
by one) leave the cluster, leading to a stationary distribution
of cluster sizes. When the thermal orientational noise is small
enough for the aligning interactions to take hold, over time all
agents tend to align and travel in the same direction. Impor-
tantly, this global alignment occurs despite each agent sensing
only its immediate surroundings and having no knowledge
of an overall plan. This is traditionally measured by using
a global alignment parameter given by the modulus of the
average normalized velocity [12]:

ψ = 1

N

∣∣∣∣∣

N∑

i=1

vi

ν

∣∣∣∣∣ , (1)

where vi is the velocity of the ith agent. When θi are com-
pletely randomized, ψ is close to zero, while ψ ≈ 1 when
most agents are aligned. A snapshot of the standard Vicsek
model is shown in Fig. 1(a) (see also Supplemental Material
video 1 [25]). The corresponding evolution of ψ as a function
of the timestep is shown by the blue line in Fig. 2(a): It can be
seen that, for the parameters of our model (which are chosen
so that the orientational noise is below the threshold necessary
for global alignment [2,12]), a high degree of alignment is
achieved, even though fluctuations persist.

III. EFFECT OF DELAY

While a defining ingredient of the Vicsek model is the
instantaneous alignment of the agents, in realistic systems and
applications delays are often present due, for example, to the
time it takes to acquire, transmit, and process sensorial data
about the environment surrounding an agent. Therefore, in the
following we explore what happens to the Vicsek model when
we introduce a delay d between the moment when an agent
measures the average orientation within a detection radius and
the moment when it changes its own orientation accordingly.
As can be seen in Fig. 1(b) (see also Supplemental Material
video 1 [25]), the introduction of a one-timestep delay (d =
1) enhances the formation of clusters and the emergence of
swarming; in fact, the resulting swarms are more stable than
in the case of the standard Vicsek model (d = 0, Fig. 1(a)).
This can be understood taking into account that, by intro-
ducing a small delay, the reorientation of the agents acquires
an enhanced persistence time and, therefore, becomes more
robust against the orientational noise. Interestingly, we have

FIG. 1. The presence of sensorial delay d influences the cluster-
ing and swarming of N = 400 self-propelling agents (circles, speed
ν = 3, detection radius R = 20) in a 2D Vicsek model (arena size
2000 × 2000 with periodic boundary conditions): (a) d = 0 (stan-
dard Vicsek model); (b) d = 1 enhances the formation of swarms;
(c) d = 25 prevents the emergence of swarms. The snapshots are
taken once the system has reached the steady state (timestep 8000). In
the top row only the agents are shown, while in the bottom row also
the borders of the corresponding Voronoi tessellation are shown. The
color of the agents denotes the area of the corresponding Voronoi
cell going from black (smallest area) to white (largest area). See also
Supplemental Material video 1 [25].

found that a theoretical model taking into account first-order
correlations between consecutive timesteps is not affected by
the introduction of a delay, so that we conclude that the effects
we observed numerically for nonzero delay can only be prop-
erly described by including higher-order correlations, which
will require the development of non-trivial theoretical tools.
We developed a kinetic theory for a delay of one time step,
d = 1, which is based on the two-time phase-space density
of the N-agent system. This theory combines the phase-space
approach for the regular Vicsek model [30] with Rostoker’s
kinetic theory from plasma physics [31]. Within a generalized
molecular chaos closure that includes correlations between
states at the two different times but neglects equal-time cor-
relations, the phase diagram for spatially homogeneous states
was calculated and found to be identical to that of the regular
Visek-model with zero delay [29]. Thus, we expect that the
effects we observed numerically for nonzero delay can only
be properly described by including correlations in a more
realistic way, which will be left for future work.

Increasing the value of d at first further enhances the
swarming behavior, but at some point leads to its disruption.
Indeed, very long delays prevent the formation of clusters. For
example, this can be seen in Fig. 1(c) (see also Supplemental
Material video 1 [25]), where d = 25 and the clusters are less
defined than in the standard Vicsek model (d = 0, Fig. 1(a)).
A qualitative explanation of this phenomenon is the following:
When νd > R (i.e., when the agent has time to travel a dis-
tance longer than the detection radius), its reorientation occurs
after it has exited the detection area; and, when νd � R, its
reorientation is essentially uncorrelated to the orientation of
the agents currently surrounding it.
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FIG. 2. Global alignment and clustering parameters. (a) The
evolution of the global alignment parameter ψ as a function of time
does not show a clear difference between delays d = 0, 1, and 25,
and (b) the average steady-state (i.e., measured after 5000 timesteps)
ψ does not show statistically significant differences as a function of d
(the shaded area represents a standard deviation over ten independent
runs). (c) The evolution of the global clustering parameter c shows
marked differences between delays d = 0, 1, and 25, and (d) the
average steady-state (i.e., measured after 5000 timesteps) c clearly
depends on d (the shaded area represents a standard deviation over
ten independent runs). In all cases, we consider N = 400 agents
with ν = 3 and R = 20 in a square 2000 × 2000 arena with periodic
boundary conditions.

We tried to use ψ to quantify the effect of introducing
a sensorial delay. However, as can be seen in Fig. 2(a), the
evolution of ψ for delays d = 1 (red line) and d = 25 (yellow
line) does not show a clear difference; even the average values
of ψ (black dots in Fig. 2(b)) in the steady state (>5000
timesteps) show only a trend that does not appear to be statis-
tically significant when considering the error bars (gray area).
This is because ψ measures the global average alignment of
the agents and, therefore, is reduced in the presence of multi-
ple clusters with different directions. In order to overcome this
problem, we introduce an alternative parameter based on the
Voronoi tessellation [32]. The Voronoi tessellation partitions
the plane into Voronoi cells corresponding to the agents: Each
agent is associated to a Voronoi cell constituted by all those
points of the plane that are closer to it than to any other agent.
We define the global clustering coefficient c as the proportion
of Voronoi cells whose size is smaller than a detection area:

c = count{Ai < πR2}
N

, (2)

where Ai is the area of the ith Voronoi cell. When c ≈ 0, the
systems is fully scattered, while c → 1 indicates a high level
of clustering. Figure 2(c) shows the values of c for delays d =
0 (blue line), d = 1 (red line), and d = 25 (yellow line) as a

FIG. 3. Dependence of clustering and swarming on the agents’
speed ν. (a) The dependence of the global clustering parameter
c on the delay d varies as a function of ν (the symbols are the
averages in the steady state, and the shaded areas are the standard
deviations over ten independent runs). The disruptive effect on the
formation of the swarming clusters is more pronounced for large
speeds (stars, ν = 7, see also Supplemental Material video 2 [25])
than for small speeds (crosses, ν = 1, see also Supplemental Material
video 3 [25]). The dots correspond to the model explored in Figs. 1
and 2. (b) Corresponding plot of the values of c as a function of the
dimensionless delay dν/R. In all cases, we consider N = 400 agents
with R = 20 in a square 2000 × 2000 arena with periodic boundary
conditions.

function of the timestep: There are clear differences between
their values in the steady state (>5000 timesteps). Figure 2(d)
shows the average steady-state value (black points) and the
standard deviation (gray area) of c as a function of d . The
cluster formation reaches its optimal value at d = 6, which
corresponds to the situation when agents travel a distance
almost as long as a detection radius during a timestep (i.e.,
νd ≈ R). As an intuitive argument, in absence of delay the
detection of an agent j as a neighbor of agent i usually
happens only when their relative distance is slightly less than
R; instead, having a small delay allows the agent to enter
deeper in the detection circle of each other, making it less
likely to escape immediately after detection due to the noisy
update. For larger values of d , c monotonically decreases
because the cluster formation is prevented. The main reason
behind such phenomenon is most likely the fact that for larger
delays the agents apply the gathered information after they
already passed each other, thus making the information much
less correlated with the current state of the system.

The effect of the delay depends on the parameters of the
system. For example, in Fig. 3 we explore the effect of the
agent speed ν, considering the cases ν = 1 (crosses), 3 (dots),
and 7 (stars). In all cases, short delays enhance the clustering
and swarming behavior, as alignment occurs when agents are
close to each other, while long delays lead to their disruption,
as alignment occurs when agents are close to the edge or
completely outside of each other’s detection radius. In all
cases, the optimal clustering and swarming behavior occurs
when dν ≈ R, so that the agent has optimally entered the
detection area before reorienting; this occurs at d ≈ 18 for
ν = 1 (crosses), at d ≈ 6 for ν = 3 (dots), and at d ≈ 2 for
ν = 7 (stars). For larger values of d , the reorientation of the
agent occurs later when it is virtually uncorrelated to the
orientation of the surrounding agents, which leads to a loss
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FIG. 4. Negative and positive delays. (a) Global alignment pa-
rameter ψ and (b) global clustering parameter c (the blue symbols
are the steady-state averages and the shaded areas are the standard
deviations over ten independent runs) as a function of delay d . The
black dots in (a) and (b) represent the same data as in Figs. 2(b) and
2(d), respectively, provided for comparison. In all cases, we consider
a Vicsek model with N = 400 agents (ν = 3, R = 20) in a square
arena (2000 × 2000) with periodic boundary conditions. See also
Supplemental Material video 4 [25].

of global clustering and swarming. This can be clearly seen in
Fig. 3(b), which show that the maximum value of c is achieved
for the same value of the dimensionless delay dν/R.

IV. NEGATIVE DELAY

It is also interesting to explore the system behavior for
“negative” delays; for example, we employed negative delays
to obtain non-trivial behaviors in previous works employing
phototactic robots with delayed feedback [16,19]. A negative
delay can be understood as the agents making a prediction
of the future value of the orientation within their detection
area in order to adjust their current orientation; importantly,
this prediction can be done based on local orientations mea-
sured up to the present time. In practice, the agents save the
orientations measured in the last five timesteps and linearly
extrapolate them to the given value of the delay; we have ver-
ified that the same qualitative results are obtained also when
extrapolating using a different number of timesteps between 2
and 15 (Supplemental Material Fig. 4 [25]). When compared
to the standard alignment mechanisms, this approach leads
to a much smoother alignment process, as can be seen in
the Supplemental Material video 4 [25]. Figure 4 shows the
results for various values of d corresponding to both positive
and negative delays. The blue dots in Fig. 4(a) show the value

of ψ : the best alignment is achieved for d = 5, while for larger
values of d and for d < 0 the system becomes increasingly
disordered. These results are more clearly visible in the trend
of c (blue dots in Fig. 4(b)): the clustering reaches its optimal
value for d = 5 and decreases for larger positive values of d
and for d < 0. For d � 0, these results are in agreement with
those obtained using the measured past value of the average
orientation in the detection area, as shown by the black dots
in Figs. 4(a) and 4(b) corresponding to the values reported
in Figs. 2(b) and 2(d), respectively. The main difference is
that employing the extrapolated orientation value leads to
more disordered systems. We speculate that this phenomenon
is caused by the fact that the linear extrapolation leads to
a wrong estimation of the orientation at a given time and
therefore to a randomization of the agent orientation, as can
be seen following the agents’ trajectories in Supplemental
Material video 4 [25].

V. CONCLUSIONS

In conclusion, we have shown with numerical simulations
that the introduction of a sensorial delay in the Vicsek model
can alter its swarming and clustering behavior. Specifically,
short positive delays lead to a more ordered and coherent
motion of the ensemble of agents, while larger positive de-
lays and negative delays lead to a disruption of the order
of the system, preventing the emergence of clustering and
swarming. The cluster parameter and the order parameter
reach their highest values at the rescaled delay time νd/R ≈ 1.
Importantly, sensorial delay can potentially play a crucial
role in systems different from the Vicsek model featuring
alternative underlying dynamics [2–10]. We speculate that,
since some living entities, such as bacteria, are known to
respond to the temporal evolution of stimuli [33,34], the
presence of a delay can already be at play in natural sys-
tems due to the time it takes to acquire, process and react
to environmental information. Furthermore, we propose that
engineering of sensorial delay can be employed to control
and tune the clustering and swarming behavior of large en-
sembles of agents in applications, such as swarm robotics
[8], environmental monitoring [35,36], and self-assembly
[37,38].
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