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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Spot welding is the prevalent joining process in the automotive industry. The spot welding sequence has a notable effect on the 
geometrical variation of the final assembly. Finding the optimal weld sequence for geometrical quality is a fast growing and NP-
complete problem. Using exhaustive search for this purpose can be a time-consuming task. In this paper, genetic, particle swarm 
and ant colony optimization algorithms are applied to three industrial reference cases. The performance of these algorithms for 
finding the optimal sequence with respect to geometrical variation is compared considering the number of function evaluations. 
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1. Introduction 

In the automotive industry, the body of the car (Body in 
White) is made using sheet metals. The predominant joining 
method for these type of assemblies is spot welding. In a typical 
passenger car body, there are more than 4000 spot-welds. These 
spots are mainly being welded by industrial robots which are 
placed in different assembly cells. Different sub-assemblies are 
being joint together in these cells using weld guns on robot 
arms. A limited amount of time is available in each of the cells 
for the welding to be performed. Therefore, a limited amount of 
spots can be welded by the robots. The spot-welds and the 
sequence in which they are applied have a significant effect on 
the assemblies’ geometrical variation [1]. The spot-welding 
sequence is a combinatorial problem which can be categorized 
as a Hamiltonian graph search problem. Since the number of 
the possible sequences increases exponentially, with the 
number of the weld points, finding the global optimal sequence 
becomes a challenge. This problem can be compared to the 
traveling salesman problem which is an NP-hard problem in 
combinatorial optimization. Previously, Genetic Algorithm 
(GA) has been tested on this problem and shown to have 
promising results. Although GA has a widespread application 

in the sequencing and scheduling problems in the industry, 
there are some shortcomings associated with it. Using GA still, 
a large number of the solutions need to be evaluated, which can 
be time-consuming. Moreover, it is not always clear that a 
global optimum has been reached. There are many competitors 
to GA, in the category of evolutionary algorithms, for solving 
the combinatorial problems. These have not yet been tested on 
the spot-weld sequence optimization problem with respect to 
geometrical variation. In this work, three different evolutionary 
optimization algorithms have been successfully applied to the 
spot-weld sequencing problem. The performances of these 
algorithms have been evaluated using three industrial reference 
assemblies.  

1.1. Previous research  

Different approaches have been tested for finding the 
optimal welding sequence. Genetic algorithm has been used for 
finding the optimal sequence and has proven to be an efficient 
method [2, 3]. Xie and Hsie [3] have used GA to find the 
optimal spot-weld or clamping sequence minimizing the 
assembly deformation. They also have taken cycle time into 
consideration. Segeborn et al. [2] have used GA for finding the 
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1. Introduction 

In the automotive industry, the body of the car (Body in 
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arms. A limited amount of time is available in each of the cells 
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spots can be welded by the robots. The spot-welds and the 
sequence in which they are applied have a significant effect on 
the assemblies’ geometrical variation [1]. The spot-welding 
sequence is a combinatorial problem which can be categorized 
as a Hamiltonian graph search problem. Since the number of 
the possible sequences increases exponentially, with the 
number of the weld points, finding the global optimal sequence 
becomes a challenge. This problem can be compared to the 
traveling salesman problem which is an NP-hard problem in 
combinatorial optimization. Previously, Genetic Algorithm 
(GA) has been tested on this problem and shown to have 
promising results. Although GA has a widespread application 

in the sequencing and scheduling problems in the industry, 
there are some shortcomings associated with it. Using GA still, 
a large number of the solutions need to be evaluated, which can 
be time-consuming. Moreover, it is not always clear that a 
global optimum has been reached. There are many competitors 
to GA, in the category of evolutionary algorithms, for solving 
the combinatorial problems. These have not yet been tested on 
the spot-weld sequence optimization problem with respect to 
geometrical variation. In this work, three different evolutionary 
optimization algorithms have been successfully applied to the 
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Different approaches have been tested for finding the 
optimal welding sequence. Genetic algorithm has been used for 
finding the optimal sequence and has proven to be an efficient 
method [2, 3]. Xie and Hsie [3] have used GA to find the 
optimal spot-weld or clamping sequence minimizing the 
assembly deformation. They also have taken cycle time into 
consideration. Segeborn et al. [2] have used GA for finding the 
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which random key encoding and GASP are widespread within 
the sequencing type of problems [13]. In this work, random key 
encoding approach has been applied to the GAs to solve the 
spot-weld sequence optimization problem. Like other 
evolutionary algorithms, GAs involve a set of parameters that 
can affect the efficiency of the search. Selection pressure, 
mutation percentage, crossover percentage, population size and 
number of generations are parameters that can influence the 
quality of the results and efficiency of the search.  

2.1.2. Particle swarm optimization 
PSO is a fairly simple optimization algorithm which is inspired 
by the social behavior (intelligence) of swarms. This algorithm 
was first introduced for optimization of continuous nonlinear 
functions. Just like GAs, the algorithm is initialized by 
generating a random initial population of solutions. These 
solutions are referred to as particles. Random velocities are 
assigned to each particle and they maneuver in the problem 
space. The particles are assigned with global and personal 
memories, which lead them towards the best cost/fitness 
evaluated in the whole population. The algorithms main steps 
applied to the spot welding sequence problem are shown in 
Fig.2. The PSO algorithm also contains a set of parameters that 
can affect the performance of the algorithm. These parameters 
are often referred to as exploration and exploitation parameters. 
Exploration is the ability of the algorithm to search the problem 
space for identifying the optimum candidate. 
Exploitation is the ability to search around the good candidate 
in order to find the global optimum. Several studies have been 
made on fine-tuning these parameters [14]. For making PSO 
compatible with discrete combinatorial problems some 
modifications are required. Introduction of a mutation operator 
is necessary and in this work, this is done through the 
application of random key encoding. The same approach as for 
GA has been used in this algorithm.  

2.1.3. Ant colony optimization 
ACO is one of the meta-heuristic optimization algorithms 
which is inspired by the behavior of the ants. This behavior 
entails finding the shortest path from the nest to the food. This 
is achieved through the medium of pheromones, used for 
communication between the individuals for sharing the path 
information. ACO is a rather different algorithm compared to 
the other EA algorithms since it constructs a new set of 
solutions, also referred to as colonies, in each generation. The 

constructed solution contains the information of the previous 

solutions. Furthermore, an approach to add or remove 
(evaporation) pheromone on the paths is applied. A local search 
for exploring the neighboring areas in the solution space is also 
applied in this algorithm [15]. A number of parameters are 
affecting the efficiency of this algorithm just like other EAs. 
Initial pheromone rate, pheromone exponential rate, heuristic 
exponential rate, evaporation rate together with population size 
are among these parameters. The algorithms main steps applied 
to the spot welding sequence problem are shown in Fig.3.  

3. Reference Case Evaluations 

In this section, the setup required for applying the 
algorithms on the reference cases is introduced. Three chosen 
industrial reference cases are also introduced. 

3.1. Reference cases 

Three Reference Cases (referred to as RC1-3 for simplicity) 
from vehicle industry have been chosen for optimizing the spot 
welding sequences. These are sheet metal assemblies from the 
vehicles’ body. In Table 1, description of each RC is presented. 
All these RCs are pre-processed (meshed) and modeled for 
variation analysis in RD&T.  
In RC1 the locating scheme consists of 6 points. No extra 
supports were used in the measurement fixture. RC2-3, 
however, have an extra support. The mating surfaces in RC1 
are quite small compared to the overall geometry. In RC1, the 
CAT model includes 159 contact points between the ingoing 
parts in the sub-assembly. The same information for RC2-3 are 
presented in Table 1. The spot welds in RC2 are on the small 
formed flanges. The directions in which these spot welds lock 
the geometry are presented in Table 1, for RC1-3.   
There are 7 weld points included in RC1-3. This will make the 
number of possible sequences in each assembly equal to 5040.  
This approach is chosen mainly for two reasons. Firstly, in each 
assembly cell in a BIW assembly shop, there is a time 
limitation, which does not allow the sequencing procedure to 
perform more than a limited number of welds. Secondly, it has 
been shown that the first weld points that are welded in each 
assembly cell have the most effect on the geometry outcome. 
These points are also referred to as geometry spot welds (geo-
spots). The geo-spots are usually a limited number of points in 
each assembly. The rest of the weld points are considered to 
have less effect on the final geometry and therefore the Fig. 2 PSO principle on spot welding sequence 

Fig. 3 ACO principle on spot welding sequence 
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optimal spot welding sequence with respect to geometrical 
variation and cycle time. Industrial best practice approaches 
have also been tested for finding the pseudo optimal welding 
sequence [4].  Neural network approach has also been used for 
finding optimal continuous welding sequence [5]. Carlson et al. 
[6] have introduced a systematic search approach for quality 
and throughput optimization, which exploits the properties of 
the welding process.  

1.2. Non-rigid variation simulation 

Sheet metal assemblies are non-rigid and are bent and 
deformed during assembly. In order to analyze geometrical 
variation of theses assemblies, caused by over-constrained 
locating schemes and joining forces, Finite Element Analysis 
(FEA) calculation is needed to retrieve the deformations. 
Variation analysis can be performed using the transformation 
matrices to simulate the propagation of the variation in the 
assembly [7]. In this work, the CAT tool, RD&T is utilized to 
calculate the assembly deformations and geometrical variation. 
This software uses Monte Carlo Simulation (MCS) for 
variation analysis and method of influence coefficient (MIC) in 
the FEA solver for calculating the assembly deformations and 
variation. In order to model the accurate non-rigid behavior of 
the sheet metal assemblies contact modelling is used to avoid 
the mating parts to penetrate each other. This is achieved by 
including a number of contact points in the CAT models.  The 
connection between the MCS and MIC is improved and 
described by Lindau et al.  [8]. The software has the possibility 
to calculate the deformations after spot welding, taking into 
account the welding forces. 

1.3. Scope of the paper 

The problem of welding sequence optimization has been 
studied before, using various methods. For spot-welding 
sequence optimization, the analysis of evolutionary algorithms 
has been limited to GA. The applicability and efficiency of 
other evolutionary algorithms are remained ambiguous in this 
application. In this work, two other suitable evolutionary 
algorithms are chosen and their performances are compared to 
the GA algorithm. This will give a broader perspective on the 
applicability of other methods on spot-welding sequence 
optimization with respect to geometrical variation. The 
structure of the paper is as follows: 
In the first section, an introduction to the problem and previous 
research are presented. A brief introduction to the utilized 
method is also given. Built upon this information, the rest of 
the paper is structured as follows. Section 2 introduces the three 
chosen evolutionary algorithms and implementation of them on 
the welding sequence optimization for geometrical variation. In 
section 3, the reference cases and experiment setup are 
described. In Section 4, the results retrieved from the reference 
cases are presented and discussed. In section 5, the conclusions 
are drawn based on the results.  

2. Evolutionary Algorithms on Spot-Weld Sequencing 

Evolutionary Algorithms (EA) are those algorithms that are 
inspired by biological evolution processes. The main 
characteristics of such a process are fitness and reproduction. 
There are a number of algorithms available and developed in 
this arena. Genetic algorithms (GA), Ant Colony Optimization 
(ACO), and Particle Swarm Optimization (PSO) are of this 
kind. These algorithms are widely applied to the combinatorial 
type of problems. Spot welding sequence optimization with 
respect to geometrical variation can be categorized as one of 
the combinatorial problems. The formulation of this problem is 
close to the Travelling Salesman Problem (TSP). There are 
several evaluations on the performance of the EAs on the TSP 
problem [9]. ACO has abroad applications for this type of 
problem [10]. PSO is also one of the major competitors of the 
GAs, especially for the continuous type of problems. Discrete 
PSO has also been applied to the TSP problem, and have been 
shown to be efficient [11]. The ACO and PSO algorithms are 
chosen to be evaluated and the performance to be compared 
with the GA algorithm on this basis, for the spot welding 
sequence optimization.  

2.1.1. Genetic algorithm 
Genetic algorithms are one of the stochastic search methods 
within the evolutionary algorithms category. Natural selection 
processes inspire these algorithms. In GAs a set of design 
alternatives, also referred to as population, in a specified 
generation is reproduced, crossed over among themselves with 
the bias towards the fit member to create a new set of 
alternatives [12]. The three main operators in GAs are 
reproduction, crossover, and mutation. The reproduction 
operator copies an old string into the new population based on 
the strings fitness/cost through function evaluation. Crossover 
allows the exchange of the characteristics of a string among 
themselves. Mutation is another operator which allows a 
number of the members in a binary string, with a specified 
location, switch 1s to 0s, vice versa [12]. The algorithms steps 
on spot welding sequence problem are shown in Fig.1. 
In order to apply GAs to the sequencing problems, some 
modifications need to be applied to crossover and mutation 
operators. This is to overcome the problem of repetitive 
numbers being proposed to the different permutations. These 
modifications can be performed through different methods, of 

Fig. 1 GA principle on spot welding sequence 
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the sequencing type of problems [13]. In this work, random key 
encoding approach has been applied to the GAs to solve the 
spot-weld sequence optimization problem. Like other 
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welding sequences. These are sheet metal assemblies from the 
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been shown that the first weld points that are welded in each 
assembly cell have the most effect on the geometry outcome. 
These points are also referred to as geometry spot welds (geo-
spots). The geo-spots are usually a limited number of points in 
each assembly. The rest of the weld points are considered to 
have less effect on the final geometry and therefore the Fig. 2 PSO principle on spot welding sequence 

Fig. 3 ACO principle on spot welding sequence 

2 Roham Sadeghi Tabar/ Procedia CIRP 00 (2018) 000–000 

optimal spot welding sequence with respect to geometrical 
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described. In Section 4, the results retrieved from the reference 
cases are presented and discussed. In section 5, the conclusions 
are drawn based on the results.  
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inspired by biological evolution processes. The main 
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shown to be efficient [11]. The ACO and PSO algorithms are 
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with the GA algorithm on this basis, for the spot welding 
sequence optimization.  
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Genetic algorithms are one of the stochastic search methods 
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processes inspire these algorithms. In GAs a set of design 
alternatives, also referred to as population, in a specified 
generation is reproduced, crossed over among themselves with 
the bias towards the fit member to create a new set of 
alternatives [12]. The three main operators in GAs are 
reproduction, crossover, and mutation. The reproduction 
operator copies an old string into the new population based on 
the strings fitness/cost through function evaluation. Crossover 
allows the exchange of the characteristics of a string among 
themselves. Mutation is another operator which allows a 
number of the members in a binary string, with a specified 
location, switch 1s to 0s, vice versa [12]. The algorithms steps 
on spot welding sequence problem are shown in Fig.1. 
In order to apply GAs to the sequencing problems, some 
modifications need to be applied to crossover and mutation 
operators. This is to overcome the problem of repetitive 
numbers being proposed to the different permutations. These 
modifications can be performed through different methods, of 

Fig. 1 GA principle on spot welding sequence 
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each RC, within the identified ranges. The best combination of 
the parameters which resulted in the lowest NFEs, out of the 20 
experiments, were then chosen for implementation of the 
algorithms. These parameter values can be found in Table 2. 
During the screening process, it was observed that by using the 
larger population size the NFEs increases to a high extent. 
Using the population 50 in the PSO algorithm in RC1 require 
at least 200 to 300 NFEs. Therefore, for reaching the fewer 
function evaluations, all the algorithms required smaller 
population size for reaching the exact optimum. The optimum 
is known form the exhaustive search results. Table 2 shows that 
using the smaller population sizes the optimum can still be 
found using 7 to 82 function evaluations for all the RCs. 

Table 2 Parameter values 

GA  Selection 

Pressure 

Mutation 

Percentage 

Crossover 

percentage 

Population 

size 

Observed NFE 

Case 1 8 0.9 0.5 2 30 

Case 2 8 0.9 0.5 2 82 

Case 3 7 0.8 0.6 2 34 

PSO  Inertia 

Weight 

Personal learning 

coefficient 

Global learning 

coefficient 

Population 

size 

Observed 

NFE 

Case 1 0.5 0.6 0.4 2 42 

Case 2 1 0.2 0.6 2 7 

Case 3 1 2 2 3 10 

ACO Selection 

Pressure 

Mutation 

Percentage 

Crossover 

percentage 

Evaporation 

rate 

Population 

size 

Obs. 

NFE 

Case 1 1.6851 1 1 0.05 2 24 

Case 2 1.6851 1 1 0.05 2 24 

Case 3 1.6851 1.2 1.5 0.15 2 16 

4. Results 

The results of the evaluations are presented in Table 3. This 
table shows the mean and range of the NFEs required for 
finding the minimum value. This also shows the number of 
solutions (sequences) that have been searched to retrieve the 
minimum value. The mean and the range of the minimum 6s 
RMS of the geometrical variation (geometrical deviation for 
case 3) after spot welding (in millimeters) also have been 
shown as a decision support to the evaluating criteria. The other 
evaluation criterion is the number of the times that the actual 
optimum was found by the algorithm during the 100 trials. This 
can help to evaluate the ability of the algorithm to find the 
global optimum. The global optimum values are known, 
through the exhaustive search results. In Table 4 the number of 
the occurrence of the global optimum in 100 trials is shown. 
For reference cases 1 and 2, where geometrical variation was 
taken into account, ACO resulted in the lowest mean value in 
the required NFEs. 
For RC2, ACO has higher mean in the RMS values. This can 
also be evaluated with the results in table 4, where ACO has 
the lowest ability to find the global optimum. This also applies 
to RC1 for the ACO algorithm. PSO and GA performed quite 
similar, with approximately 12 NFEs difference, in RC2.  

In RC1, GA performed better compared to PSO. This is due to 
the occurrence of the 1274 NFEs once in 100 trials. If this 
number was disregarded, the required NFEs will reduce to 178 
and range to 480 for the PSO algorithm. In RC3, where 
geometrical deviation was considered and the range in the 
problem space was smaller compared to RC1 and RC2, GA 
resulted in lower NFEs.  

Table 3 NFEs and RMS values in 100 trials 

RC 1 Optimum RMS* after welding from exhaustive search: 1.8752 mm 

Min NFE Max NFE Range NFE Mean NFE 
GA 10 398 388 147.98 
PSO 22 1274 1252 190.58 
ACO 2 198 196 96.03 
 Min RMS Max RMS Range RMS Mean RMS 
GA 1.8752 1.9443 0.0691 1.8928 
PSO 1.8752 1.9430 0.0678 1.8937 
ACO 1.8752 1.9310 0.0558 1.8902 
RC 2 Optimum RMS after welding from exhaustive search: 1.0303mm 

Min NFE Max NFE Range NFE Mean NFE 
GA 9 390 381 212.39 
PSO 22 492 470 199.92 
ACO 2 200 198 99.31 
 Min RMS Max RMS Range RMS Mean RMS 
GA 1.0303 1.0478 0.0175 1.0333 
PSO 1.0303 1.0428 0.0125 1.0311 
ACO 1.0303 1.4050 0.3747 1.0511 
RC 3 Optimum RMS after welding from exhaustive search: 0.6554mm 

Min NFE Max NFE Range NFE Mean NFE 
GA 6 334 328 60.89 
PSO 10 465 455 113.82 
ACO 3 261 258 89.73 
 Min RMS Max RMS Range RMS Mean RMS 
GA 0.6554 0.6673 0.0119 0.6574 
PSO 0.6554 0.6591 0.0037 0.655463 
ACO 0.6554 0.6591 0.0037 0.655492 

*All the RMS values are in millimeters 

In this RC, GA algorithm resulted in a higher mean for the 
RMS value. Again, this can be evaluated with the results in 
Table 4, where GA has the lower ability to find the global 
optimum compared to the other two. In the ability to find the 
global optimum, PSO algorithm has performed better in all the 
RCs. This also has to be mentioned that in RC1 the range of the 
problem space is higher, 0.61 mm, than the RC2 and RC3 where 
the ranges are 0.2773 and 0.0571 mm respectively.  
In summary, it can be stated that the ACO performed better in 
RC1 and RC2 for the NFEs with a satisfying mean value in 
RMS. While, in RC3, GA performed better with an acceptable 
difference in the mean RMS from the optimum. The PSO 
algorithm has a strong ability to find the global optimum in all 
the three RCs. 
Within the field of geometry assurance, there are also similar 
processes to spot welding sequence. As an example, the effect 
of the clamping sequences on the final geometry can be seen as 
the same problem. Therefore, the EAs used in this work can be 
applied to the clamping problem as well. Other types of joining 
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sequence of welding them have minimal effect on the geometry 
outcome [16]. 

Table 1 Reference cases 

Reference Cases (RC) 1 2 3 

Figures 

   

No. of parts 2 3 3 

Locating 
scheme+supports 

6 6+1 6+1 

No. of contact points 159 62 194 

Welds included in 
sequence 

7 7 7+4* 

Welds locking the 
parts in direction 

6(X)-1(Z) 2(X)-2(Y)-
3(XYZ) 

3(X)-3(X)-1(Z) 

* Out of the 11 weld points, 7 were included in sequence analysis and 4 welded simultaneously 

3.2. Experiment setup 

In the following sections, the approach for applying the EA 
algorithms and screening their corresponding parameters are 
described. 

3.2.1. Implementation of the EA Algorithms 
For analyzing the non-rigid behavior of the assemblies after 
welding, the three cases were modeled in the CAT-tool RD&T 
[17]. This model is used to evaluate the cost function of the 
optimization algorithms, where the cost for a sequence is 
defined as the total geometrical variation in the assembly. The 
number of times that an EA calls the cost function is referred 
to as Number of Function Evaluation (NFE). This means that 
for every time the algorithm calls the cost function, non-rigid 
variation simulation in the tool RD&T, the NFE counter 
accumulate one instance. The cost function for a sequence is 
defined as the Root Mean Square (RMS) of the variation in all 
nodes (from the meshed model) of the assembly.  For each node 
j, j=1,...,k  the magnitude of the variation is calculated as the 
sum of the variations in the X, Y and Z directions [18]: 

𝑆𝑆𝑗𝑗
2 =  𝑆𝑆𝑗𝑗𝑗𝑗

2 + 𝑆𝑆𝑗𝑗𝑗𝑗
2 + 𝑆𝑆𝑗𝑗𝑗𝑗

2                                  (1) 

The RMS value is then defined as: 
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Each sequence of seven spot welds requires approximately 44 
seconds for cost function evaluation. This is done using a 
regular working station with CPU i7-2.7 GHz and 16 GB RAM. 
Having a coupled simulation tool to the algorithms for 
retrieving the RMS value of each generated solution would be 
time-consuming (real-time optimization). This means that the 
algorithms should stand by for 44 seconds until the cost is 
evaluated. Therefore, for evaluating and comparing the 
algorithms in spot welding sequence applications, knowing the 
actual optimum is of importance, due to time limitations. For 
this, an exhaustive search was performed. All the possible 5040 
sequence combinations, for all the three cases, were simulated. 
The total RMS of the geometrical variation over all nodes after 
welding was retrieved and saved for each sequence. 
The optimum sequences for minimizing the total RMS of 
geometrical variation were identified, by a simple search on 
each column of the retrieved results. In RC3, only the 
deformation data was available, therefore the analysis for RC3 
only considers the geometrical deformation and not variation. 
These data then are used in the cost functions of the algorithms.  
The algorithms will run much faster thorough using the 
exhaustive search results since the FEA calculations do not 
need to run at the same time (Offline optimization). An 
overview of this approach is shown in Fig.4. 
The main bottleneck in spot-welding sequence analysis is the 
simulation time needed for evaluating each sequence. This is 
why that the NFE is chosen as a comparison parameter. The 
algorithms were then successfully applied on the RCs using 
MATLAB, based on the approach discussed in 2.1.1-2.1.3. For 
evaluating the algorithms’ performance on each case, each 
algorithm has run 100 times, where the ending condition was 
reaching a desired value (optimum value, known from the 
exhaustive search). The NFE for reaching the exact optimum 
RMS is then considered for comparison. These results are 
presented in Section 4.  

3.2.2. Screening of the EA parameters 
In section 2.1.1-3, it was mentioned that the EA’s parameter 
setting can significantly affect the performance of the 
algorithms. For identifying a suitable set of parameters for each 
RC, a screening process was conducted. This process is 
initiated by running multiple tests on the EA parameters to 
retrieve the appropriate range of each parameter on each RC. 
This means that the parameters of each algorithm were changed 
on each test and the algorithms were run with 100 iterations and 
the corresponding NFE was monitored. The initial starting 
values of the parameters were based on the recommendations 
in the literature.  
After this monitoring process, a suitable range for each 
parameter was identified. Latter, 20 experiments were 
conducted by changing the parameters of each algorithm for 

Fig. 4 Overview of the experiment approach 
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each RC, within the identified ranges. The best combination of 
the parameters which resulted in the lowest NFEs, out of the 20 
experiments, were then chosen for implementation of the 
algorithms. These parameter values can be found in Table 2. 
During the screening process, it was observed that by using the 
larger population size the NFEs increases to a high extent. 
Using the population 50 in the PSO algorithm in RC1 require 
at least 200 to 300 NFEs. Therefore, for reaching the fewer 
function evaluations, all the algorithms required smaller 
population size for reaching the exact optimum. The optimum 
is known form the exhaustive search results. Table 2 shows that 
using the smaller population sizes the optimum can still be 
found using 7 to 82 function evaluations for all the RCs. 

Table 2 Parameter values 

GA  Selection 

Pressure 

Mutation 

Percentage 

Crossover 

percentage 

Population 

size 

Observed NFE 

Case 1 8 0.9 0.5 2 30 

Case 2 8 0.9 0.5 2 82 

Case 3 7 0.8 0.6 2 34 

PSO  Inertia 

Weight 

Personal learning 

coefficient 

Global learning 

coefficient 

Population 

size 

Observed 

NFE 

Case 1 0.5 0.6 0.4 2 42 

Case 2 1 0.2 0.6 2 7 

Case 3 1 2 2 3 10 

ACO Selection 

Pressure 

Mutation 

Percentage 

Crossover 

percentage 

Evaporation 

rate 

Population 

size 

Obs. 

NFE 

Case 1 1.6851 1 1 0.05 2 24 

Case 2 1.6851 1 1 0.05 2 24 

Case 3 1.6851 1.2 1.5 0.15 2 16 

4. Results 

The results of the evaluations are presented in Table 3. This 
table shows the mean and range of the NFEs required for 
finding the minimum value. This also shows the number of 
solutions (sequences) that have been searched to retrieve the 
minimum value. The mean and the range of the minimum 6s 
RMS of the geometrical variation (geometrical deviation for 
case 3) after spot welding (in millimeters) also have been 
shown as a decision support to the evaluating criteria. The other 
evaluation criterion is the number of the times that the actual 
optimum was found by the algorithm during the 100 trials. This 
can help to evaluate the ability of the algorithm to find the 
global optimum. The global optimum values are known, 
through the exhaustive search results. In Table 4 the number of 
the occurrence of the global optimum in 100 trials is shown. 
For reference cases 1 and 2, where geometrical variation was 
taken into account, ACO resulted in the lowest mean value in 
the required NFEs. 
For RC2, ACO has higher mean in the RMS values. This can 
also be evaluated with the results in table 4, where ACO has 
the lowest ability to find the global optimum. This also applies 
to RC1 for the ACO algorithm. PSO and GA performed quite 
similar, with approximately 12 NFEs difference, in RC2.  

In RC1, GA performed better compared to PSO. This is due to 
the occurrence of the 1274 NFEs once in 100 trials. If this 
number was disregarded, the required NFEs will reduce to 178 
and range to 480 for the PSO algorithm. In RC3, where 
geometrical deviation was considered and the range in the 
problem space was smaller compared to RC1 and RC2, GA 
resulted in lower NFEs.  

Table 3 NFEs and RMS values in 100 trials 

RC 1 Optimum RMS* after welding from exhaustive search: 1.8752 mm 

Min NFE Max NFE Range NFE Mean NFE 
GA 10 398 388 147.98 
PSO 22 1274 1252 190.58 
ACO 2 198 196 96.03 
 Min RMS Max RMS Range RMS Mean RMS 
GA 1.8752 1.9443 0.0691 1.8928 
PSO 1.8752 1.9430 0.0678 1.8937 
ACO 1.8752 1.9310 0.0558 1.8902 
RC 2 Optimum RMS after welding from exhaustive search: 1.0303mm 

Min NFE Max NFE Range NFE Mean NFE 
GA 9 390 381 212.39 
PSO 22 492 470 199.92 
ACO 2 200 198 99.31 
 Min RMS Max RMS Range RMS Mean RMS 
GA 1.0303 1.0478 0.0175 1.0333 
PSO 1.0303 1.0428 0.0125 1.0311 
ACO 1.0303 1.4050 0.3747 1.0511 
RC 3 Optimum RMS after welding from exhaustive search: 0.6554mm 

Min NFE Max NFE Range NFE Mean NFE 
GA 6 334 328 60.89 
PSO 10 465 455 113.82 
ACO 3 261 258 89.73 
 Min RMS Max RMS Range RMS Mean RMS 
GA 0.6554 0.6673 0.0119 0.6574 
PSO 0.6554 0.6591 0.0037 0.655463 
ACO 0.6554 0.6591 0.0037 0.655492 

*All the RMS values are in millimeters 

In this RC, GA algorithm resulted in a higher mean for the 
RMS value. Again, this can be evaluated with the results in 
Table 4, where GA has the lower ability to find the global 
optimum compared to the other two. In the ability to find the 
global optimum, PSO algorithm has performed better in all the 
RCs. This also has to be mentioned that in RC1 the range of the 
problem space is higher, 0.61 mm, than the RC2 and RC3 where 
the ranges are 0.2773 and 0.0571 mm respectively.  
In summary, it can be stated that the ACO performed better in 
RC1 and RC2 for the NFEs with a satisfying mean value in 
RMS. While, in RC3, GA performed better with an acceptable 
difference in the mean RMS from the optimum. The PSO 
algorithm has a strong ability to find the global optimum in all 
the three RCs. 
Within the field of geometry assurance, there are also similar 
processes to spot welding sequence. As an example, the effect 
of the clamping sequences on the final geometry can be seen as 
the same problem. Therefore, the EAs used in this work can be 
applied to the clamping problem as well. Other types of joining 
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sequence of welding them have minimal effect on the geometry 
outcome [16]. 

Table 1 Reference cases 

Reference Cases (RC) 1 2 3 

Figures 

   

No. of parts 2 3 3 

Locating 
scheme+supports 

6 6+1 6+1 

No. of contact points 159 62 194 

Welds included in 
sequence 

7 7 7+4* 

Welds locking the 
parts in direction 

6(X)-1(Z) 2(X)-2(Y)-
3(XYZ) 

3(X)-3(X)-1(Z) 

* Out of the 11 weld points, 7 were included in sequence analysis and 4 welded simultaneously 

3.2. Experiment setup 

In the following sections, the approach for applying the EA 
algorithms and screening their corresponding parameters are 
described. 

3.2.1. Implementation of the EA Algorithms 
For analyzing the non-rigid behavior of the assemblies after 
welding, the three cases were modeled in the CAT-tool RD&T 
[17]. This model is used to evaluate the cost function of the 
optimization algorithms, where the cost for a sequence is 
defined as the total geometrical variation in the assembly. The 
number of times that an EA calls the cost function is referred 
to as Number of Function Evaluation (NFE). This means that 
for every time the algorithm calls the cost function, non-rigid 
variation simulation in the tool RD&T, the NFE counter 
accumulate one instance. The cost function for a sequence is 
defined as the Root Mean Square (RMS) of the variation in all 
nodes (from the meshed model) of the assembly.  For each node 
j, j=1,...,k  the magnitude of the variation is calculated as the 
sum of the variations in the X, Y and Z directions [18]: 

𝑆𝑆𝑗𝑗
2 =  𝑆𝑆𝑗𝑗𝑗𝑗
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The RMS value is then defined as: 
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Each sequence of seven spot welds requires approximately 44 
seconds for cost function evaluation. This is done using a 
regular working station with CPU i7-2.7 GHz and 16 GB RAM. 
Having a coupled simulation tool to the algorithms for 
retrieving the RMS value of each generated solution would be 
time-consuming (real-time optimization). This means that the 
algorithms should stand by for 44 seconds until the cost is 
evaluated. Therefore, for evaluating and comparing the 
algorithms in spot welding sequence applications, knowing the 
actual optimum is of importance, due to time limitations. For 
this, an exhaustive search was performed. All the possible 5040 
sequence combinations, for all the three cases, were simulated. 
The total RMS of the geometrical variation over all nodes after 
welding was retrieved and saved for each sequence. 
The optimum sequences for minimizing the total RMS of 
geometrical variation were identified, by a simple search on 
each column of the retrieved results. In RC3, only the 
deformation data was available, therefore the analysis for RC3 
only considers the geometrical deformation and not variation. 
These data then are used in the cost functions of the algorithms.  
The algorithms will run much faster thorough using the 
exhaustive search results since the FEA calculations do not 
need to run at the same time (Offline optimization). An 
overview of this approach is shown in Fig.4. 
The main bottleneck in spot-welding sequence analysis is the 
simulation time needed for evaluating each sequence. This is 
why that the NFE is chosen as a comparison parameter. The 
algorithms were then successfully applied on the RCs using 
MATLAB, based on the approach discussed in 2.1.1-2.1.3. For 
evaluating the algorithms’ performance on each case, each 
algorithm has run 100 times, where the ending condition was 
reaching a desired value (optimum value, known from the 
exhaustive search). The NFE for reaching the exact optimum 
RMS is then considered for comparison. These results are 
presented in Section 4.  

3.2.2. Screening of the EA parameters 
In section 2.1.1-3, it was mentioned that the EA’s parameter 
setting can significantly affect the performance of the 
algorithms. For identifying a suitable set of parameters for each 
RC, a screening process was conducted. This process is 
initiated by running multiple tests on the EA parameters to 
retrieve the appropriate range of each parameter on each RC. 
This means that the parameters of each algorithm were changed 
on each test and the algorithms were run with 100 iterations and 
the corresponding NFE was monitored. The initial starting 
values of the parameters were based on the recommendations 
in the literature.  
After this monitoring process, a suitable range for each 
parameter was identified. Latter, 20 experiments were 
conducted by changing the parameters of each algorithm for 

Fig. 4 Overview of the experiment approach 
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sequences, like riveting and clip fasteners can also be analyzed 
using the applied EA algorithms.  

Table 4 Occurrence of the global optimum in each case in 100 trial  

Reference Case 1 Reference Case 2  Reference Case 3 
GA 40% GA 67%  GA 68% 
PSO 65% PSO 91%  PSO 99% 
ACO 11% ACO 2%  ACO 93% 

5. Conclusion 

Three evolutionary algorithms have been successfully 
applied on three reference cases. The purpose was to evaluate 
the performance of these algorithms and compare them to each 
other. The comparison has been made for the spot welding 
sequence optimization with respect to geometrical variation. 
Previously, only GA algorithms have been implemented on this 
problem. Through this evaluation, it was realized that other 
evolutionary algorithms like ACO and PSO can be used as an 
alternative to GA and retrieve satisfactory or even better 
results, depending on the assembly complexity. 
Improvements are still required in this area to minimize the 
amount of time required for solving this problem. At the current 
state, all the three evaluated, and perhaps other stand-alone EAs 
will perform somewhat the same for NFEs. It can be concluded 
that the three evaluated algorithms are highly dependent on the 
quality of the initial position of the randomly generated 
population. This might reduce the efficiency of the EAs where 
the range in the problem space is considerably high. The 
bottleneck of this problem lies in the required simulation time 
needed to evaluate each sequence. This, in another word, means 
that the NFEs need to be kept to the minimum.  
Working on simplifications of these calculations for spot 
welding sequence optimization is one approach that can be 
further analyzed.  Other evaluations can be made on the ability 
of these algorithms to run parallel, meaning evaluating 
different solutions at the same time. One other improvement 
worth analyzing is the introduction of a biased initial position 
to the EAs. Industrial best practice approaches could be one 
alternative for these initial positions. 
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