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Abstract: This paper reports the extraction of electrical impedance at microwave frequencies of
vertically aligned multi-wall carbon nanotubes (VA MWCNT) bundles/forests grown on a silicon
substrate. Dedicated resonating devices were designed for antenna application, operating around
10 GHz and benefiting from natural inductive/capacitive behavior or complex conductivity in the
microwave domain. As obtained from S-parameters measurements, the capacitive and inductive
behaviors of VA MWCNT bundles were deduced from device frequency resonance shift.

Keywords: multi-wall carbon nanotubes; microwave impedance; small antennas

1. Introduction

Carbon nanotubes (CNTs) have been extensively studied over the last decades due to their
exceptional electrical, thermal, and mechanical properties. In addition to these properties, applications
of CNTs in the microwave domain have also appeared, as numerous research works have been devoted
to the elaboration of active and passive radio-frequency (RF) devices such as resonators and field-effect
transistors (FETs) [1,2], but also to the development of chemical and mechanical sensors [3–5] for
environment monitoring and biomedical applications. Several technical approaches are competing for
microwave antenna miniaturization prospects, as the resolution of numerous technological processes
is converging drastically down to the nanometer scale. At the same time, hybrid material compatibility
can now be implemented as high-resolution characterization tools such as near-field probe techniques
coupled to large broadband vector network analysis become more affordable [6–9].

Major challenges remain in the qualification of this material in the microwave domain in terms
of complex impedance or conductivity. In this research field, 1D and 2D materials have recently
validated their eligibility of implementation in microwave circuit design, reaching a high level of
innovation, as confirmed from theory [10,11]. Indeed, graphene and metallic CNT material conductivity,
offering a non-negligible imaginary part, now stands as the best candidate for antenna miniaturization
(Table 1) following the initial experimental validations [12]. These technical approaches are competing
with surface-mode propagation solutions superimposed by metallic/dielectric interfaces. Plasmonic
structures are the most studied nanoscale configuration in the THz regime [13].
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Table 1. Comparison of lineic electrical properties of a 10-nm-diameter cylinder.

Parameter Perfect Electrical Conductor
(PEC) Wire

Individual MWCNT (Multi-Wall
Carbon Nanotube)

Resistance 5 mΩ/µm 7 kΩ/µm
Inductance 1 pH/µm 20 nH/µm
Capacitance 5 aF/µm 0.5 fF/µm

At microwave frequencies, metasurface circular topologies leading to a leaky-wave radiation such
as in [14,15] allow a maximum miniaturization factor of λ/50 for each individual element. CNT-based
composite materials technology in which multi-wall (MW) or single-wall (SW) CNTs are dispersed
randomly in a solution or polymeric layer have demonstrated their efficiency in low-frequency antenna
design on flexible substrates [16].

At present, the identification of electromagnetic properties at RF/microwave frequencies has
become a milestone in order to understand and design new components for future implementation in
the next generation of CNT-based microwave systems.

In this paper, we report on the electromagnetic material properties of vertically aligned CNT
bundles grown on a substrate by the exploitation of a de-embedding technique developed for
integrated technology. Using this approach, the experimental complex conductivity of MWCNTs
bundles processed from well-controlled vertical growth technology in the microwave domain is
presented from impedance extraction obtained from on-wafer S-parameters measurements.

2. MWCNT Material Properties from Theory

An individual single-wall carbon nanotube (SWCNT) consists of a spatially unique angled rolling
of a graphene sheet that depends on the associated chiral vector, which defines its degree of metallicity.

Frequency-dependent graphene conductivity can be approximated using the Kubo formula (1),
with the chemical potential µc and the relaxation rate Γ. This complex expression, in which Γ was
experimentally estimated to be 0.1 meV, exhibits a complex behavior with σreal and σimag as real and
imaginary parts of σs(ω) depending on the value of µc. From a dyadic Green’s function formulation of
electromagnetic field propagation through Sommerfeld integrals, Transverse Electric (TE) or Transverse
Magnetic (TM)-mode surface wave propagation operations have been validated for positive or negative
values of σimag from [3].

Starting from the graphene conductivity formulation (1), a specific SW rolling configuration
leading to a metallic behavior also implies a complex conductivity definition as in a chiral case (2).
A MW formation of CNTs has to be selected in order to ensure a metallic behavior from catalyst atom
choice and growth technique. From the literature, an RLC circuit representation study of individual
SW or MW CNTs from electron gas theory states a high linear resistance, static capacitance, and kinetic
inductance per micrometer values at several orders of magnitude higher than a standard metallic
gold wire with the same dimensions (i.e., with 5 nm radius and 300 µm distance from a ground plane;
Table 1).
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As a consequence, from these statements, the existence of an imaginary character of electrical
conductivity (i.e., an inductive or capacitive behavior in frequency) presents strong interest in
electronic circuits designed from the material itself. Furthermore, considering a vertically aligned
collective representation of individual CNTs as in a bundle, a complex expression of bundle-equivalent
conductivity must be assumed as in (3), with a static parameter σb0 and a frequency-dependent
imaginary part σb(ω).

3. Microwave Material Parameters Identification Procedure

3.1. Microwave Structures Design

Preliminary resonant structures in coplanar waveguide (CPW) technology with suitable
taper-based electrodes (Figure 1) were designed using commercial 3D electromagnetic simulation code
(Ansys-HFSS) with technological process implementation.
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Figure 1. Technological process and Characterization of the vertically aligned multi-wall carbon
nanotubes (MWCNTs)-based device. (a) SEM (scanning electron microscope) image of CNT bundles
grown by Thermal Chemical Vapor Deposition (TCVD) (b) Top view of MWCNTs-based device in
CPW (coplanar waveguide) technology under a 125-µm-pitch test probe (optical microscope image).

For characterization technique improvements, a new differential-type approach is chosen by
assuming a dedicated de-embedding structures definition. In order to overcome the physical constraints
imposed by the material dimensions and the technological process, a transmission line circuit topology
in CPW technology was selected, with a tapered-type profile which preserves electrical contact from
standard coplanar access to the circular cross section of the MWCNT bundle.

3.2. Material Microwave Conductivity Extraction Procedure

From material considerations, insertion of the MWCNT bundle at the end of the electrode
adds a complex impedance in series, which contributes to a resonant frequency shift as a reactance
modification of the system. By a classical spatial integration of the bundle conductivity from (2)
involving a bundle length L and diameter D, an equivalent impedance Zbundle approach becomes a
comprehensive representation of the added material at mesoscopic scale (4).

By introducing (2) in (4) and assuming that Zbundle = Z′bundle + j Z”bundle with a form factor F = L/D,
real (Z′bundle) and imaginary (Z”bundle) parts of Zbundle relations become inversely frequency dependent,
as expressed in (5) and (6):

Zbundle =
1
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·
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Z′′bundle = −
σb(ω)

σ2
b0 + σb(ω)

2 ·
4πF
D

. (6)

4. Experimental Results

4.1. Technological Process

The vertical technology developed for device elaboration relies on a multistep process. In a
first step, a 2-µm-thick layer of Mo was sputtered on a highly resistive (HR) Si/SiO2 substrate for the
definition of microwave structures. After optical lithography and ion beam etching (IBE), Al2O3 and
Fe layers were locally deposited as catalyst for the thermal Chemical Vapor Deposition (TCVD) growth
of MWCNT bundles at 700 ◦C, allowing for the growth of a bundle with a form factor F equal to 5.

4.2. Experimental Microwave Environment

A broadband microwave experimental setup based on a probe test equipment connected to
a vectorial network analyzer was used for the on-wafer S-parameters measurements of devices
after an on-wafer Short/Open/Load/Thru (SOLT) calibration on alumina substrate in the 0.2–67 GHz
frequency band.

For microwave signal coupling methodology, different device inner electrodes (C1 to C5) were
designed and tested in order to validate the material properties. Each design was replicated on the
same wafer as two sets of samples were processed with and without CNT bundles on the same wafer,
maintaining the same bundle diameter of 20 µm for each device, in order to extract the VA (vertically
aligned) MWCNT bundle impedance contribution from the microwave test structure itself.

From reflection coefficient measurements, microwave input impedances Zin and Z′in were
extracted from devices with and without VA MWCNT bundle implementation, as in Figure 2.
As VA MWCNT bundles are electrically connected in series to microwave coplanar structures,
the frequency-dependent complex impedance of VA MWCNT bundles was extracted from the
reflection coefficient to input impedance conversion followed by a de-embedding technique assumed
by direct impedance subtraction.
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As expected from theory and as shown in Figure 3a, a decrease of the real part of the impedance
in frequency was confirmed from five samples measurements. At low frequencies, an impedance value
of 80–100 Ω validates the collective response of the individual shunt high resistance of each MWCNT
forming the bundle, with a density of 1015 units per cm2. At higher frequencies, VA MWCNT bundles
demonstrated a decreasing frequency-dependent impedance as expected from Equations (5) and (6),
as well as a capacitive behavior from its negative imaginary part.Micromachines 2019, 10, x FOR PEER REVIEW 5 of 7 
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Figure 3. Experimental VA MWCNT bundle impedance extracted from five different CPW devices
(C1 to C5) incorporating identical bundle dimensions in the 5–15 GHz frequency band: (a) Real part;
(b) Imaginary part.

In addition, a non-negligible and complex conductivity in Figure 4 attributed to this material
was experimentally observed from the five samples for the first time at microwave frequencies.
These exceptional properties confirm this new material’s implementation as a disruptive technology
for the next generation of microwave devices designed with a high degree of miniaturization.
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Figure 4. Experimentally extracted VA MWCNT complex conductivity measurements from five microwave
devices (C1 to C5) incorporating identical bundle dimensions: (a) Real part; (b) Imaginary part.

5. Conclusions

Preliminary research works were performed on sub-wavelength MWCNT-based antennas
designed benefiting from the natural inductive/capacitive behavior or complex conductivity never
before achieved in classical conductors in the microwave domain. By also exploiting a vertically aligned
CNT bundle configuration that drastically reduces the contact resistance of individual MWCNTs,
the electromagnetic VA MWCNT bundle properties as obtained by equivalent complex impedance
extraction from our experimental material process were identified for the first time using CPW
technology, from 5 to 15 GHz frequency. These exceptional properties concretize the eligibility of this
new material as a disruptive technology for the next generation of microwave devices and antennas,
at the material level. Future works will focus on the determination of VA MWCNT bundle complex
impedance law in respect of physical dimensions and cross section profile.

6. Patents

This work has led to the filing of a patent under deposition number FR1800496.
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