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Abstract
Theoretical models of the strong nuclear interaction contain unknown cou-
pling constants (parameters) that must be determined using a pool of cali-
bration data. In cases where the models are complex, leading to time
consuming calculations, it is particularly challenging to systematically search
the corresponding parameter domain for the best fit to the data. In this paper,
we explore the prospect of applying Bayesian optimization to constrain the
coupling constants in chiral effective field theory descriptions of the nuclear
interaction. We find that Bayesian optimization performs rather well with low-
dimensional parameter domains and foresee that it can be particularly useful
for optimization of a smaller set of coupling constants. A specific example
could be the determination of leading three-nucleon forces using data from
finite nuclei or three-nucleon scattering experiments.
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1. Introduction

Mathematical optimization plays a central role in natural science. Indeed, most theoretical
predictions are preceded by a calibration stage whereby the parameters of the model are
optimized to reproduce a selected set of calibration data. In nuclear physics, the coupling
constants of any theory of the strong interaction between protons and neutrons (nucleons)
must be determined from experimental data before one can attempt to solve the Schrödinger
equation to make quantitative predictions of the properties of atomic nuclei.

Typically, measured low-energy nucleon–nucleon (NN) cross sections and the properties
of light nuclei with mass number A� 4 have been used for calibrating the NN and three-
nucleon (NNN) interaction sectors of the nuclear force, see e.g. [1–3] and references therein.
However, it is still an open question—with several parallel and ongoing research efforts [4–7]
—how to best constrain the unknown coupling constants in theoretical descriptions of the
nuclear interaction and how to incorporate the covariance structure of the experimental data
and the model discrepancy [5, 8–11]. Recent theoretical studies [7, 12–14] indicate that NN
scattering data and the properties of very light nuclei do not contain enough information to
constrain all directions in the parameter domain at sufficient level. Instead, it has been
proposed that the pool of fit data need to be augmented with complementary data types, such
as NNN scattering cross sections, and/or the ground-state properties of nuclei with A> 4, or
even empirical properties of infinite nuclear matter. However, modeling of such observables
is typically much more complex and requires substantial computational effort ranging from
hours to days for just one model evaluation, even on a supercomputer. Consequently, the
optimization of the underlying model parameters will be difficult. The main focus of the
present work is to investigate a possible strategy for mitigating this computational challenge.

Inspired by recent progress in the optimization of hyperparameters of deep neural net-
works [15], we explore several Bayesian optimization (BayesOpt) strategies5 for maximizing
the likelihood of objective functions based on complex models in nuclear physics. BayesOpt
originated more than 50 years ago [17], it was popularized in the 1990s, see e.g. [18, 19], and
has since then been applied in various disciplines; from selecting experiments in material and
drug design [20] to tuning event-generators in particle physics [21]. The central idea in
BayesOpt is to construct a probabilistic surrogate model, usually a Gaussian process ( ), to
capture our prior beliefs and knowledge about the objective function, f (x), and iteratively
confront the surrogate with actual data samples from f (x) and thereby refine our posterior of
this function. The main advantage of BayesOpt is that we can incorporate prior beliefs in a
straightforward way. The disadvantage lies in the arbitrariness and uncertainty of a priori
information.

In the following we will be dealing with complex models in nuclear physics. The origin
of the underlying physics model and its parameters is briefly introduced in this section, while
more details and relevant references are provided in appendix B. Nucleons are made of quarks
and gluons, and it is well known that the strong interaction between these fundamental
particles is described in detail by quantum chromodynamics (QCD), which is part of the
standard model of particle physics. It is equally well-known that QCD is not perturbative in
the low-energy region relevant for nuclear structure physics. This prevents straightforward
application of, e.g. perturbation theory to compute atomic nuclei starting from QCD. Instead,
chiral effective field theory (χEFT) [22–24] is constructed as a low-energy approximation to
QCD. This framework shows promising signs of being an operational approach to analyzing
atomic nuclei while maintaining a firm link with the more fundamental theory. In χEFT, the

5 We employ the BayesOpt implementation provided through the Python package GPyOpt [16].
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long-ranged part of the nuclear interaction is described in terms of pion exchanges, while the
short-ranged part is parameterized by contact interactions. The unknown parameters of this
description are known as low-energy constants (LECs). It is important to realize that any
realistic description of the nuclear interaction has to introduce unknown coefficients, but it has
been found that χEFT is able to capture the physics with a relatively small number of
parameters. Depending on the level of details included, there are typically ∼10–30 LECs.

Clearly, if model predictions of physical observables, such as scattering cross sections,
are computationally expensive, we face the challenge of optimization with a limited budget of
evaluations of the objective function. For the overwhelming majority of well-developed
research problems there does not exist a universal optimization strategy that guarantees to
arrive at a global optimum of an objective function in a finite number of iterations. Instead,
any information regarding the mathematical or computational structure of the objective
function, perhaps guided by the physical nature of the underlying problem, should play an
important role in the choice or design of the optimization algorithm.

In this paper, we will systematically study the application of BayesOpt to optimization
problems of increasing degree of complexity. The BayesOpt algorithm is presented in section 2
with its main ingredients: the  kernel and the acquisition function. The performance of
different optimization algorithms can be compared using a data profile. This measure, as used in
the present work, is introduced in section 3. In order to benchmark the performance of
BayesOpt with various settings in controlled problem conditions we will employ a selected set
of six test functions in D=2, 4, 8 dimensional parameter domains. This study is presented in
section 4, while the test functions themselves are listed in appendix A. The main focus of this
work is found in section 5 with the application of BayesOpt to a real nuclear physics problem.
We will use BayesOpt to optimize the 12 LECs appearing at next-to-next-to-leading order
(NNLO) in χEFT, using the proton–neutron scattering data in the Granada database [25] with
laboratory energies of the incident beam below 75MeV. This case is complex enough to
constitute a non-trivial problem from a physics as well as an optimization perspective. How-
ever, it is still computationally straightforward such that we can easily afford a detailed analysis
of 12 different BayesOpt algorithms. Indeed, each evaluation of the objective function at a
specific point in the parameter domain only takes a couple of seconds on a standard desktop
computer. Still, evaluating the 4096 corners in the hypercube of the corresponding parameter
domain will take a couple of hours, so the premise for BayesOpt is well justified. We will
compare the optimization performance of BayesOpt with the POUNDERs algorithm [26]. This
is a simulation-based optimization algorithm that has been successfully applied in nonlinear
least-squares optimization in nuclear physics before [27, 28]. Finally, we end with a summary
and outlook in section 6.

2. Bayesian optimization

Without any loss of generality, we will frame the determination of the LECs in χEFT as a
minimization problem. Global minimization of a function  f : D , with input parameters
x that are perhaps subject to some constraints c(x)�0 and typically belong to a compact
input domain Ì D, is a long-standing and central problem in science. Here, we also
specialize the formalism to scalar valued functions f. Mathematically, we are trying to find a
global minimizer:

=
Î




fx xarg min, , 1
x

( ) ( )
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i.e. a point that fulfills f (xå)�f (x) for all Î x . In general, this is an intractable problem
unless we have detailed information about x or that the parameter domain only contains a
finite number of points. In reality, we are trying to find local minimizers to f (x), i.e. points xå
for which f (xå)�f (x) for all Î x close to xå. A substantial complication arises if f (x) is
computationally expensive to evaluate. Then it becomes even more important to adopt a well-
founded strategy, based on all present knowledge about f (x), for carefully selecting a data set
of n sequential function queries = = yx ,n i i i

n
1: 1{ } , where yi=f (xi), such that we increase our

chances of a rapid convergence towards xå. A BayesOpt framework can provide this.
Moreover, at each iteration BayesOpt will consider all insofar collected data points and
thereby take full advantage of the history of the optimization run. Note that we refer to a set of
function evaluations as data. This should not be confused with experimental data. There are
two main components in a BayesOpt algorithm;

• A prior probabilistic belief p f( ∣ ) for the function f given some data . The prior is
often a  . This is updated in every iteration.

• An acquisition function  x( ∣ ) given some data , i.e. a heuristic that balances
exploration against exploitation and determines where to evaluate the objective function
f (x) next.

The next iterate, xi+1, is selected where we expect the minimizer xå, based on some
utility function. Below, we will define two different acquisition functions  x( ∣ ), and show
how to embed them in an iterative context for selecting sample points xi. In the following we
will also drop the explicit data dependence in the notation for the acquisition function and
only write  x( ). A pseudo-code for BayesOpt is listed in algorithm 1 and a pictorial expo-
sition of a handful of BayesOpt iterations of a simple univariate function is provided in
figure 1.

Algorithm 1. Bayesian optimization

1: select initial x1, x2, K xk, where k�2
2: evaluate the objective function f (x) to obtain yi=f (xi) for i=1, K, k
3: initialize a data vector = ¼ y y yx x x, , , , , ,k k k1 1 2 2{( ) ( ) ( )}
4: select a statistical model for f (x)
5: forn=k+1, k+2, Kdo
6: select xn by optimizing the acquisition function

 = - x xarg maxn n
x

1( ∣ )
7: evaluate the objective function to obtain yn=f (xn)
8: augment the data vector = -  yx, ,n n n n1{ ( )}
9: update the statistical model for f (x)
10: end for

2.1. The prior: a Gaussian process

To model the prior p f( ∣ ) for the objective function we use a Gaussian process  x( ) with
mean function μ(x) and covariance matrix K with entries kij=k(xi, xj). The mean and covariance
functions fulfill expected relations; m = x x( ) [ ] and m m¢ = - ¢ - ¢k x x x x x x,( ) [( ( ))( ( ))] for
all ¢ Î x x,( ) . Any real-valued function μ(·) is permissible, but for k(·, ·) the corresponding
covariance matrix K must be positive semidefinite. A  is one example of a stochastic process
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that is very useful in statistical modeling [29]. In brief, it is a collection of function evaluations y1:n
at x1:n, with mean μ0 (often shifted to zero), that are jointly Gaussian, i.e.

m

m
~ =

y

y

k k

k k

x

x
K

x x x x

x x x x
,
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where m s~ y , 2( ) denotes a normally distributed random variable y with mean μ and
covariance σ2. After conditioning this prior with some data = ¼ y yx x, , , ,n n n1 1{( ) ( )}, with
mean μ0, we obtain the mean and covariance of the  model for the prior according to

Figure 1. Five BayesOpt iterations towards finding the global minimum of the function
p= +f x x xsin 4 4( ) ( ) where x ä [0, 1] (black solid line) using the expected

improvement acquisition function (bottom gray line). Two initial function evaluations
f (x=0.05) and f (x=0.9) (filled markers) were randomly selected. In each iteration
the next evaluation point (dashed gray line) in the parameter domain is determined from
the maximum of the expected improvement acquisition function. For each iteration, the
corresponding value of f (x) is indicated with an empty marker. The mean (green line)
and 95% confidence interval (green region) of a  with a squared-exponential kernel,
sequentially approach f (x). After iteration 3, the algorithm leaves the rightmost x-
domain, and the associated local minimum, to explore the region containing the global
minimum. The kernel hyperparameters (θ0, θ1) in iteration 1–6 are (in order): (0.44,
0.15), (0.49, 0.03), (0.39, 0.04), (0.44, 0.07), (0.70, 0.09), (0.63, 0.08).
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These explicit expressions follow from the fact that the marginal distribution of a
multivariate Gaussian is also Gaussian. The mean and variance of the prior, i.e. the  , for
the schematic example in figure 1 are indicated with a green line and a green shaded band,
respectively.

In this work we will consider three common types of covariance functions, also referred
to as kernels:

• Squared exponential: q¢ = -k rx x, exp0
2 1

2
2( )( )

• Matern 3/2: q¢ = + -k r rx x, 1 3 exp 30
2( ) ( ) ( )

• Matern 5/2: q¢ = + + -k r r rx x, 1 5 exp 5 ,0
2 5

3
2( ) ( ) ( )

where º å - ¢
q=r x xi

D
i i

2
1

1 2

i
2 ( ) and q =i i

D
0{ } is a set of hyperparameters for the kernel. The

correlation length(s) ℓ=(θ1, K, θD) indicate how far you need to move (along a particular
direction in the parameter domain) for the function values to become uncorrelated. With
automatic relevance determination (ARD), we optimize the vector of correlation lengths
separately in each direction of the function domain Ì D. Without ARD, the kernel
hyperparameters are isotropic. In this work, we extract the hyperparameters using maximum
likelihood estimation.

The characteristic features of the s based on the three kernels listed above are
illustrated in figure 2. The smoothness of each kernel, in terms of how far you have to
move in the parameter domain for the function to change significantly, corresponds to the
typical correlation length, and is one of the key differences between the kernels. This
feature of the  kernel affects the prior modeling of the objective function, and as such
the ensuing performance of BayesOpt. We will see this clearly in the analyses in
sections 4–5.

2.2. The acquisition function

The acquisition function determines the most likely improvement to the currently best
minimizer in the parameter domain. In figure 1 the mean of our posterior belief (green line)
of the unknown values of the objective function f (black line) is sequentially augmented
with one new data point (black dot) in each iteration. The best candidate for further
minimizing f at iteration n is the parameter that maximizes the acquisition function (gray
curve). Although the acquisition function is also optimized in Ì D it is significantly
faster to evaluate, compared to the underlying objective function f (x), since it only relies on
draws from the prior  . Still, the complexity of maximizing  x( ) increases as we increase
the dimensionality of the parameter domain  . This aspect should not be underestimated,
and it is in fact one of the main challenges with BayesOpt. Another challenge, although
unlikely, could emerge if the set of collected data points n1: becomes very large. Indeed, in
each iteration the evaluation of the  requires an inversion of an n×n matrix, and the
complexity of that operation naively scales as  n3( ). Cholesky decomposition reduces
this cost somewhat to n 63( ). In reality, however, this is rarely a limiting factor since we
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typically resort to BayesOpt when only a small number of function evaluations can be
carried out in the first place.

A very appealing feature of BayesOpt is its ability to select a new point xn in a region of
 where the prior model of f is exhibiting a large uncertainty. This means that the algorithm
can be rather explorative and therefore escape a local minimum of the objective function f.
Depending on the details of the acquisition function, the explorative nature is balanced with a
certain degree of exploitation, i.e. to evaluate points in the parameter domain where the prior
model for f is exhibiting a low mean value. To study the exploration-exploitation balance we
will consider two of the most common acquisition functions; the expected improvement (EI)
and the lower confidence-bound (LCB). In the following, we denote by fmin the insofar lowest
recorded value of f (x).

The EI acquisition function is defined by the expectation value of the rectifier
-f f xmax 0, min( ( )), i.e. we reward any expected reduction of f in proportion to the reduction

fmin−f (x). This can be evaluated analytically

Figure 2. Randomly drawn  priors (left column), posteriors (middle column), and
full probabilistic model (right column) using the three kernels we employ in this paper;
Matern 3/2 (first row), Matern 5/2 (middle row), and squared exponential (bottom
row). For each kernel, the priors are confronted with two identical data points (black
dots) and the two corresponding hyperparameters, covariance and correlation length
(ℓ), are optimized to maximize the marginal likelihood of the data. The resulting
correlation lengths for each kernel are provided in the middle column. Clearly, the
Matern 3/2, Matern 5/2, and squared exponential kernels are increasingly smooth.
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where m s f x x x, 2( ( )∣ ( ) ( ) ) indicate the density function of the normal distribution6, whereas
the standard normal distribution7 and the cumulative distribution function8 are denoted f and
Φ, respectively, and we dropped the explicit dependence on x in the third step. In the last step
we write the result in the standard normal variable = m

s
-

z
fmin . BayesOpt will exploit regions

of EI when the term zΦ(z) dominates, while new, unknown regions will be explored when the
second term f(z) dominates. For the EI acquisition function, the exploration–exploitation
balance is entirely determined by the set of observed data  n1: and the  kernel.

The LCB acquisition function introduces an additional parameter β that explicitly sets the
level of exploration

bs m= - x x x . 5LCB( ) ( ) ( ) ( )

The maximum of this acquisition function will occur for the maximum of the β-enlarged
confidence envelope of the  . We use β=2, which is a very common setting. Larger
values of β leads to even more explorative BayesOpt algorithms.

Besides being derivative-free—although derivatives can in fact be incorporated [30]—it
is in many ways the explorative nature of BayesOpt that is most attractive. This feature is
most easily observed in the optimization of a rather complex two-dimensional function with
several local minima, such as the Langermann function

å
p

=-
- + -

- + -

=
=
=

p=
f x y

c x a y b

x a y b

a
b
c

,
cos

exp
,

3, 5, 2, 1, 7 ,
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1, 2, 5, 2, 3 . 6

i

i i i

i i1

5 2 2

1 2 2
( ) [ (( ) ( ) )]

(( ) ( ) )
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( )
( ) ( )

⎧
⎨⎪
⎩⎪ ⎡⎣ ⎤⎦

⎫
⎬⎪
⎭⎪

In figure 3 we show the sequence =x y,i i i 0
51( ) of 50 evaluation points following two initial

points of BayesOpt with an Matern 3/2 kernel, EI acquisition function without ARD. It
should be made clear that, given a limited computational budget, the success of BayesOpt
hinges on the choice of kernel and acquisition function. In the example above with a
Langermann function, the non-smooth nature of the Matern 3/2 kernel is advantageous
compared to, e.g. the squared exponential kernel. The exploration–exploitation balance also
leverages the success ratio of BayesOpt. To learn more about BayesOpt, it is obviously
instructive to benchmark and compare different BayesOpt algorithms using well-known test
functions. For this purpose we first need to select a performance measure for optimization
algorithms.

6 Density function of the normal distrubution: q m s q m= - -
ps s

 , exp2 1

2

1

2
2

2( )( ∣ ) ( ) .

7 Density function of the standard normal distribution: f m sº = = = -
p

z z z0, 1 exp2 1

2

1

2
2( )( ) ( ∣ ) .

8 Cumulative distribution function of the standard normal: òF = -
p -¥

z texp d
z t1

2 2

2( )( ) .
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3. Measuring the performance of optimization algorithms

To analyze the performance of derivative-free optimization algorithms we follow [31] and
define a data profile

a a= Î
+

 d p
t

D

1
size :

1
. 7s

s p

p

,( )
∣ ∣

( )
⎧⎨⎩

⎫⎬⎭
The data profile enables direct comparison between a set of optimization algorithms  , all of
which are applied to a set of well-defined optimization problems  . For each Î ´ s p,( ) ,
the performance measure ts,p>0 denotes the number of function evaluations that are
required for optimization algorithm s applied to a problem p to satisfy some convergence
criterion. Thus, ds(α) is the fraction of problems that can be solved within α function calls.
The performance measure can be further normalized to Dp+ 1, where Dp denotes the
dimensionality of the parameter domain in problem p. This is an attempt to account for some
of the complexity due to a larger number of parameters in the problem. This dimensional
scaling is only approximate and motivated by the (Dp+1) function evaluations required to
compute a D-dimensional simplex, i.e. a D-dimensional triangle of function evaluations.

Each combination of starting point and objective function (plus other possible con-
straints) constitutes a separate problem p. The data profile is a monotonically increasing
function between zero and one, and a large value of ds(α) for small values of α is better. In
line with [31] we employ a convergence criterion

t- - -f x f x f x f1 . 8L0 0( ) ( ) ( )( ( ) ) ( )

This is fulfilled for any x where the initial function value f (x0) is reduced 1−τ times the best
possible reduction -f x fL0( ) . We will set fL to be the lowest value of f achieved by any
solver Î s . Although we will come close to the true solution xå in a few cases, it is highly
unlikely that any derivative-free solver will arrive at f (xå). For that, one would typically have
to resort to gradient-based optimization algorithms. With BayesOpt, we will consider a 90%
reduction in the function value as a sign of convergence, i.e. set τ=0.1. For the purpose of

Figure 3. The trace (red dots connected by red lines) of 50 BayesOpt iterations with a
Matern 3/2  kernel and expected improvement acquisition function for finding the
unique global minimum xå=(2.002 992, 1.006 096) (cross) of the Langermann
function. The search is initiated at the coordinates [(x0, y0); (x1, y1)]=[(7.5, 2.5); (2.5,
7.5)]. The explorative nature of BayesOpt is clearly manifested by the coverage of the
function evaluations. For this particular setting, the BayesOpt algorithm arrives in the
vicinity of the optimum already after 20 iterations.
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comparing BayesOpt with other derivative-free optimization algorithms we will occasionally
use τ=0.01. When the objective functions are represented by known test functions
(described in section 4 and appendix A), we will set fL=f (xå). Throughout this study we will
only allow a maximum of α=250 function calls per solver and problem, and set = ¥tp s, in
case the convergence criterion is not fulfilled. This upper limit on α should cover most
scenarios that would call for the use of BayesOpt.

3.1. Selecting parameter starting points in RD

A multi-dimensional parameter domain Ì D of the objective function leads to the
increasingly likely existence of multiple points corresponding to local and/or global mini-
mizers. In reality, the choice of initial point, i.e. where we start the optimization run, will
determine the local minimum that the optimizer converges to. When benchmarking, it will be
necessary to start each solver s from N>1 starting points in  . In this work, we use an
identical set of N=2D starting points for all optimizers in a D-dimensional domain. This is
somewhat motivated by Wendel’s theorem [32] that states that for N random points on the D-
sphere, the probability P(N, D) that they all lie on some hemisphere is given by

å= -- +

=

-

P N D N
k

, 2 1 . 9N

k

D
1

0

1( )( ) ( )

Thus for random N=2D points on the D-sphere, P(2D, D)=0.5. Although we do not
distribute points on a hypersphere, we use it to motivate a rule of thumb. It should be pointed
out that some authors argue for a slightly more expensive rule of thumb to select N=10D
starting points when initializing computer simulations in D [33].

A priori, we do not distinguish between different parts of the parameter domain, so we
select the N starting points using a space-filling algorithm in the form of a quasi-random
Sobol sequence. We employ a Python implementation of this algorithm. The mathematical
underpinnings of the Sobol sequence are provided in the original paper [34] and a discussion
related to the numerical implementation is given in e.g. [35]. This is a so-called low-dis-
crepancy sequence, which in fact is the opposite of a random sequence. It is designed to
generate each successive sample point as far away as possible from all existing sample points.
This tends to sample the space more uniformly than pseudo-random numbers, at least for
lower-dimensional domains. We will not go beyond D=12 in any part of this work.
Although the Sobol sequence can exhibit gaps in multi-dimensional spaces, it has several
advantages. In addition to fast generation, a Sobol sequence is straightforward to augment
with additional sample points. We remind the reader that Latin hypercube sampling (LHS)
[36], which is a different kind of algorithm for generating space-filling samples, is in most
cases not easy to augment while preserving the Latin hypercube structure. The space-filling
differences between Sobol, LHS, and conventional pseudo-random numbers in 2 are illu-
strated in figure 4.

4. Analyzing a set of test functions

Before we tackle an optimization problem in nuclear physics, we will explore and benchmark
the performance of BayesOpt on a set of test functions. To this end, we have selected a set of
six multivariate and continuous functions  f : D , each defined on some domain

Ì D. The functions are defined for any D>0, but we will only consider D=2, 4, 8. The
set of test functions reflects an average of various spatial characteristics. Two-dimensional
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graphical representations are shown in figures 5 and 6, with explicit expressions given in
appendix A.

A comparison of two or more optimization algorithms on a finite set of test functions is
neither fair nor conclusive. Indeed, although one algorithm (or class of methods) appears to be
more successful in finding optima, it is clear from the no free lunch theorem in optimization
that the averaged performance of any two algorithms on the set of all possible functions will
be the same [37]. Here, we merely set out to compare and analyze the performance of
BayesOpt on a limited set of characteristically different continuous test functions.

We now turn our attention to the resulting data profiles when applying BayesOpt for
finding the minimizer in each one of these test functions with parameter domains in D=2, 4,
8 dimensions. In total, we will analyze 12 BayesOpt algorithms composed from combining
three kernels, two acquisition functions, and with or without ARD. We use a Sobol sequence
to initiate each BayesOpt algorithm at N=2D different starting points in each parameter
domain in D. Remember that we refer to each specific combination of starting point and test
function as a problem. Combined, with the different solvers (optimization algorithm with
specific settings) this is a rather large data set and we analyze it from several different angles.
The data profiles for different versions of BayesOpt applied to all six test functions in D=2,
see figure 7 (top row), indicate that d(50)∼0.7, i.e. that ∼70% of the problems are con-
verged at the τ=0.1 level within 50 function evaluations. The performances of the EI and
the LCB acquisition functions are very similar. Although, EI exhibits a slightly better and
more coherent performance across all  kernels, and at 150 function evaluation more than
80% of the test functions in D=2 are converged. ARD, i.e. to learn each individual length
scale hyperparameter in the kernel, is often an efficient way of pruning irrelevant features.
We find that exploiting ARD increases the performance of BayesOpt once data from a
sufficient number of function evaluations has informed the  kernel on the possible ani-
sotropic structure of the objective function. This becomes even clearer if we enforce a
stronger convergence criterion with τ=0.01, see figure 7 (bottom row). There seems to be a
slight advantage of using ARD with the EI acquisition function.

In D=2, and for this set of functions, the Matern kernels perform slightly better than the
squared exponential. In general, the Matern kernels are better tailored to non-smooth
objectives. This becomes even clearer when we study the performance of all BayesOpt
algorithms on the Ackley function (one hole on a semi-flat surface with several periodic

Figure 4. 50 points in 2 according to the Sobol low-discrepancy sequence, Latin
hypercube sampling (LHS), and the standard Mersenne twister pseudo-random
generator. The Sobol sequence minimizes the occurrence of large gaps (discrepancy).
In fact, given the grid decomposition of the area, LHS produces one empty region in
the lower left corner, and the Mersenne twister produces two empty regions.
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shallow local minima) in =D 2,4,8, see figure 8. From the characteristics of the data profiles
shown in figure 8, it is obvious that the exploratory nature of the LCB acquisition function is
highly advantageous for finding the global minimum hiding on a surface covered with local
minima. Clearly, it is important to tailor the BayesOpt acquisition function and underlying
kernels to the spatial structure of the objective function. This result also reflects the two
fundamental and competing aspects of BayesOpt. If we incorporate prior beliefs, or even

Figure 5. Surface plots and projections for the test functions with D=2. One test
function per row, top to bottom: Ackley, Deceptive, and Rastrigin. See the text and
appendix A for details.

J. Phys. G: Nucl. Part. Phys. 46 (2019) 095101 A Ekström et al

12



knowledge, about the objective function, then BayesOpt will perform rather well. On the
other hand, the usefulness of BayesOpt will consequently be limited by the arbitrariness and
uncertainty of a priori information. This is further complicated by the fact that we typically
resort to BayesOpt when we know very little about the objective function in the first place,
since it is computationally expensive to evaluate.

Figure 6. Surface plots and projections for the test functions with D=2. One test
function per row, top to bottom: Rosenbrock, Schwefel, and Sphere. See the text and
appendix A for details.
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Data profiles for the test functions as we increase the dimensionality of the parameter
domain from D=2 (in figure 7) to D=4 and D=8 are shown in figure 9. We can conclude
that having a larger number of parameters provides a significant challenge to BayesOpt, as for
all optimization algorithms. Indeed, in D=4 dimensions it takes more than α=150
function evaluations to reach a data profile value of ~d 0.5. The more exploratory LCB
acquisition function exhibits a slightly larger performance spread with respect to different 
kernels. This becomes even more prominent as we increase the dimensionality of the para-
meter domain to D= 8. For the set of test functions that we have employed it is marginally
advantageous to be more exploratory for higher dimensional objective functions. We also

Figure 7. Data profiles (measured with our six test functions in D=2 domains) for
BayesOpt using three different kernels (see legend), with and without ARD, and using
two different acquisition functions: expected improvement (left column), lower
confidence-bound (right column). The convergence criterion, set by τ, corresponds to a
(1−τ)·100% reduction of the initial function value. Data profiles for τ=0.1 (top
row). Data profiles for τ=0.01 (bottom row).
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note that the potential benefit of ARD requires data from more than α=250 function
evaluations. This is natural since ARD introduces more hyperparameters that need to be
determined. For all problems in D=4, 8 dimensions, BayesOpt with Matern kernels
converge faster than BayesOpt with a squared exponential kernel. As above, the squared
exponential kernel does not capture the high-frequency modes that are present in some of the
functions.

5. Bayesian optimization of the NN interaction

An EFT of the nuclear interaction essentially corresponds to a low-energy parameterization of
QCD in a fashion that is consistent with the symmetries of the more fundamental theory. To

Figure 8. Data profiles for the Ackley test function. The performances are averaged
over parameter domains with D=2, 4, 8, and we employ a dimensionality
normalization κ=α/(Dp+1).
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devise a true EFT description of the nuclear interaction is a major intellectual challenge in
ab initio nuclear theory. Several avenues are currently being explored. The physical under-
pinnings of the objective function we seek to minimize are described in somewhat more detail
in appendix B. Regarding the optimization of the LECs, the inclusion of calibration data from
more complex atomic nuclei and low-energy nuclear processes, e.g. NNN scattering, in the
objective function are currently being considered in the community. Such extensions of the
calibration data clearly increases the information content—but does so at the expense of an
increased complexity in the computer modeling.

A specific aim of this work is to analyze the performance of BayesOpt for determining
the parameters x in an EFT model of the NN interaction. For this, we use the proton–neutron
sector of an EFT at NNLO with 12 parameters and try to find the vector of model parameters
x that are in agreement with existing experimental data on proton–neutron scattering cross

Figure 9. Data profiles for BayesOpt applied to all test functions in D= 4 dimensional
domains (top row) and D=8 dimensional domains (bottom row).
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sections. This type of observable is a measure of the probability of an incident particle (a
neutron) with a given kinetic energy to scatter into a certain solid angle element due to mutual
interaction with the target particle (a proton). We have deliberately chosen this class of
calibration data since it does not render particularly challenging model evaluations. One
evaluation of the full objective function f (x) takes a merely couple of seconds on a standard
desktop. Still, the complexity of the physical model provides a non-trivial testing ground for
assessing nascent applications of BayesOpt in ab initio nuclear physics.

The experimental data set is composed of NG groups of measurements where the gth
group consists of Ng,d measured cross sections, with associated random measurement
uncertainty, sg i g i,

experiment
, , for = ¼i d1, , , with a common normalization constant νg and

corresponding experimental systematic error σg,0. We employ the measurement errors as
reported by each experimenter. Each group of data originates from a specific experiment. We
restrict the inclusion of experimental data in the present case to laboratory scattering energies
below 75MeV. This ensures a rather fast (seconds) evaluation of the objective function and
therefore enables a more detailed analysis of BayesOpt. Experimental errors across mea-
surement groups are considered independent and identically distributed. The normalization
constant, together with its uncertainty, represents the systematic uncertainty of the mea-
surement. For an absolute measurement, the normalization is given by νg= 1± 0. Usually
this means that the statistical and systematic errors have been combined with σg,d. Certain
experiments are not normalized at all. Instead, only the angular- or energy-dependence of the
cross section was determined. For these groups of data, νg is solved for in the optimization by
minimizing the discrepancy between the model prediction  xg d,

model( ) and the experimental

data pointsg d,
experiment. For such freely renormalized data, the optimal νg is easily obtained in

closed form. For practical purposes, the normalization error can be considered infinite in these
cases, and will therefore not contribute to the objective function.

In summary, we seek to find the parameter vector x that minimizes the deviation between
the model and the experimental data, as measured by the objective function f defined below:
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This type of (nonlinear) least-squares objective function, where we assume a normal
model for the parameters, appears naturally in most parameter estimation problems. In a
setting defined by χEFT it would be natural to also incorporate a theoretical model dis-
crepancy term motivated by the low-energy EFT expansion itself [5, 8, 9, 11, 38, 39].
However, in this paper we will focus on the challenges of mathematical optimization that are
associated with a numerically costly objective function, and for simplicity therefore only
incorporate the experimental errors of the data.

We define three different parameter domains for minimizing the objective function;
small, medium, and large, see table 1. They differ by the level of included prior knowledge
regarding the range of plausible parameter values. The limits of the large parameter domain is
based on the most naive estimate without any significant prior information. In contrast, the
limits of the medium domain are partly informed by prior data. Specifically, the three para-
meters (LECs c1, c3, c4) associated with the long-range part of the nuclear interaction are
constrained to ranges determined from a separate analysis of pion-nucleon scattering data
[40, 41]. The small domain is further informed by previous experience of typical values for
the LECs in the short-ranged contact potential.
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The data profiles of the BayesOpt algorithms applied to all domains of the nuclear
physics objective function in equation (10) are plotted in figure 10. Clearly, the EI acquisition
function performs slightly better than the LCB acquisition function. It is difficult to draw any
conclusions regarding an optimal choice of kernel. Compared to the test functions, the

Figure 10. Data profiles for BayesOpt applied to the nuclear physics objective function
in equation (10), over all parameter domains in table 1. The expected improvement
acquisition function for all kernels, except Matern 5/2, exhibits a better performance
compared to the lower confidence-bound acquisition function. Improving the
performance for lower confidence-bound will require further function evaluations.

Table 1. Three different parameter domains (small, medium, large) of the 12 parameters
(LECs) in the nuclear physics objective function we study here. The LECs govern the
short-range contact potential (C̃·) at leading order (unit: 104 GeV−2), the short-range
contact potential (C·) at next-to-leading order (unit: 104 GeV−4), and the sub-leading
long-ranged pion potential (c·) at next-to-next-to-leading order (unit: GeV−1).

Domains

Parameter Small Medium Large

C
S
np

1
0

˜ ( ) (−0.2, −0.1) (−5, +5) (−5, +5)

C S3
1

˜ (+2, +3) (−5, +5) (−5, +5)
C S1

0 (−0.2, −0.1) (−5, +5) (−5, +5)
C S3

1 (−1, +1) (−5, +5) (−5, +5)
C P3

0 (−1, +1) (−5, +5) (−5, +5)
C P3

1 (−1, +1) (−5, +5) (−5, +5)
C P3

2 (−1, +1) (−5, +5) (−5, +5)
C P1

1 (−1, +1) (−5, +5) (−5, +5)
CE1 (−1, +1) (−5, +5) (−5, +5)
c1 (−0.76, −0.72) (−0.76, −0.72) (−5, +5)
c3 (−3.66, −3.56) (−3.66, −3.56) (−5, +5)
c4 (+2.41, +2.47) (+2.41, +2.47) (−5, +5)
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Figure 11. Separate data profiles for BayesOpt applied to three different parameter
domains; small (top row), medium (middle row), and large (bottom row).
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squared exponential kernel seems to work a little bit better than the Matern 5/2 kernel. This
result is also somewhat surprising since the performance of the squared exponential kernel is
nearly identical to the Matern 3/2 kernel. When we analyze the performance of BayesOpt in
each of the three parameter domains separately; small, medium, large, see figure 11, we note
that the medium and large domains stand out. In the former, the EI acquisition with the
Matern 3/2 kernel and ARD algorithm achieves a 50% performance already after 50 itera-
tions. This is the top performing BayesOpt algorithm with the nuclear physics objective
function. In the small and large domains the Matern 3/2 kernel performs best without ARD.
Since BayesOpt will work best with a sensible prior, this suggests rather short correlation
lengths. In the large domain, the LCB acquisition shows a tendency to perform better than EI.
This is perhaps not too surprising since the parameter domain is large enough to benefit from
substantial exploration. Clearly, the ARD kernels require much more data in larger spaces in
order to prune irrelevant features of the objective function.

5.1. Comparison with the POUNDERs algorithm

To facilitate a benchmark and further analysis of the strengths and weaknesses of BayesOpt,
we have also optimized the nuclear physics objective function using the POUNDERs
(Practical Optimization Using No Derivatives for sums of Squares) optimization algorithm
[26]. This is a well-tested derivative-free algorithm for optimizing nonlinear least squares
problems. Indeed, it has been applied successfully in basic nuclear physics research since
almost a decade [27, 28]. The key feature of POUNDERs is that it assumes a least-squares
structure of the objective function, i.e. that it consists of a sum of squared residuals Ri(x)
written as

å=
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i
1
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Tailoring an optimization algorithm to exploit this mathematical structure, i.e. that each term
is a squared function of the parameters x, is very fruitful. A quadratic model,

+ = + +m fx s x g s s H s
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2
12k k k k

T T
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for an objective function f, at the current iterate xk, with gk=∇f (xk) and Hk=∇2f (xk), is a
very common choice. If the corresponding derivatives are known the subproblem of
minimizing mk can be solved quite efficiently. However, derivatives ∇f and ∇2f are
considered unavailable for the present problems and only a set of function values f (y(j)), and
residual values Ri(y

(j)), for some set = ¼Y y y y, , , n1 2{ }( ) ( ) ( ) can be accessed. POUNDERs
sets up a quadratic model for each residual i in equation (11)

= + - + - -q cx x x g x x H x x
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centered around the current iterate Î Î xk
D. The model for each residual i is defined by

the parameters Î c i( ) , Î g i D( ) , and Î ´H i D D( ) . These model parameters are determined
by solving an interpolation problem in D, see [26] and references therein. Once the model
parameters are obtained, they can be used to approximate the derivatives of the objective
function. In principle, the first- and second-order derivatives of f (x) with respect to x are
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Figure 12. Separate data profiles for BayesOpt with the expected improvement acquisition
function (left column) and POUNDERs (right column) applied to three different parameter
domains; small (top row), medium (middle row), and large (bottom row).
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given by å R Rx xi i i( ) ( ) and å   + R R R Rx x x xi i i i i
2( ( ) ( ) ( ) ( )), respectively. Conse-

quently, POUNDERs sets up a master model Mk for the objective function
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It should be noted that the master model itself does not interpolate the objective over the
interpolation set Y.

POUNDERs is a trust-region method. The master model Mk is believed to approximate f
in a neighborhood Bk of the current iterate xk, where

d= Î - B x x x: . 15k
D

k k{ ∣∣ ∣∣ } ( )

The master model is therefore minimized over some Bk with radius δk>0. The solution sk to
d+ M x s smin :k k k{ ( ) ∣∣ ∣∣ } determines the next iterate xk+1 and a new trust region radius

δk+1 is determined based on how good the model prediction Mk(xk+sk) was, see [26] for a
full specification of the algorithm. We are running POUNDERs in the default mode, meaning
that we only have to input Î x D

0 , M0, some initial trust-region radius 0<δk<0.5, and
lower and upper bounds li, ui of the domain  . We also scale the problem such that the
bounds correspond to a unit hypercube [0, 1]D. This scaling is not performed in BayesOpt.

In figure 12 we present the data profiles for POUNDERs applied to the physics objective
function in the small, medium, and large domains and compare with BayesOpt. The results
are only compared with the EI acquisition function as it was shown in figure 11 to perform
significantly better than the LCB acquisition function for this optimization problem. We
remind the reader that all algorithms are initiated from an identical set of 24 starting points
{x1, x2, K, x24} for each parameter domain. As seen clearly in figure 12, the choice of initial
trust-region radius δ0 determines the performance of POUNDERs. Setting the initial radius
too small (δ00.15) hampers the POUNDERs algorithm by trapping it in a shallow local
minimum. This is not an issue with BayesOpt which continues to improve as more and more
function values extends the data vector. As we have already noted several times, the overall
performance of BayesOpt depends crucially on the prior. We also note that when POUN-
DERs performs well, it does so within rather few function evaluations, but halts once it is
trapped in a local minimum. The advantages of BayesOpt are most prominent when opti-
mizing over the medium domain. Regardless of kernel, BayesOpt performs rather well even
with few function evaluations. In the large domain, the good performance of POUNDERs
clearly indicates the usefulness of encoding prior knowledge about the mathematical structure
of the objective function. There is likely some large scale structure in the objective function
that the BayesOpt kernel would benefit to learn about. Therefore, it would probably be
advantageous to amend the BayesOpt prior with a polynomial regression term fitted to the
first few evaluations of the objective function.

BayesOpt is not intended for pinpointing the exact location of an optimum. In the
neighborhood of an optimum most objective functions can be well approximated by a
quadratic polynomial. For this reason, POUNDERs will always outperform BayesOpt when
decreasing τ in the convergence criterion given in equation (8). For τ= 0.01, i.e. a conv-
ergence criterion corresponding to a 99% reduction of the objective function, BayesOpt will
only reach a performance of d(α<250)≈0.15, whereas POUNDERs can approach
a »d 0.35( ) for an optimal choice of the initial trust-region radius δ0, see figure 13.
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6. Summary and outlook

Some of the most interesting optimization problems in nuclear physics, as well as other fields
of science, typically render computationally expensive objective functions defined on multi-
dimensional parameter domains. Moreover, derivatives with respect to those parameters are
usually not accessible.

In this paper we explore the potential benefits of BayesOpt (section 2) for efficiently
exploring the parameter space of a χEFT (Appendix B) in computationally complex cir-
cumstances. A local minimum, with realistic physical properties, in this parameter domain
allows for numerical simulations of atomic nuclei and therefore improves our understanding
of the origin, evolution, and structure of all matter in the Universe. The underlying optim-
ization problem is therefore well known in the nuclear physics research community and
several classes of numerical optimization algorithms have already been employed; derivative-
based [5] as well as derivative-free approaches [28].

BayesOpt presupposes a prior on the objective function, usually in the form of a . The
original optimization challenge is transformed to a design problem that boils down to
choosing an appropriate acquisition function to facilitate an exploration–exploitation balance.
This choice is encoded in a utility function that decides where to collect training data for the
 . Several choices of kernels and utility functions exist. Our initial studies of BayesOpt
applied to a set of six test functions with parameter domains in 2,4,8 clearly demonstrate the
importance of a sensible prior assumption of the objective function, see figure 7. From this
analysis it is also clear that BayesOpt performs rather well in low-dimensional (2 and 4)
parameter domains. It turns out that the choice of acquisition function is even more important
than the choice of  -kernel, see figure 8. This is something we see also when we study the
data profiles of BayesOpt applied to the nuclear physics objective, see figure 11.

Our main findings and conclusions can be summarized as follows:

Figure 13. Data profiles comparing BayesOpt with the expected improvement
acquisition function (left) and POUNDERs (right) for the nuclear physics objective
function in the small domain. Note that the convergence criterion is set to τ=0.01.
Only POUNDERs can achieve a reasonable level of performance.
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• In general, BayesOpt will never find a narrow minimum nor be useful for extracting the
exact location of any optimum. For that to work, in anything but a trivial case, it is
necessary to have detailed information about the objective function and successfully
encode this prior knowledge into the algorithm. This is a situation that we typically do not
have, since BayesOpt is applied to computationally expensive objective functions.
Instead, BayesOpt might find use as a first stage in a hierarchical optimization protocol to
identify an interesting region of the parameter domain. It might also be advantageous to
design an acquisition function that is more explorative during the first iterations, and then
switch to an acquisition function that exploits more than it explores.

• When we compare with the POUNDERs algorithm, section 5.1—a derivative-free
optimization algorithm that successfully incorporates the squared-sum structure of the
objective function—we find that BayesOpt in ab initio nuclear physics would probably
benefit from a prior with a polynomial regression term to efficiently capture the large
scale structure of the objective function.

• We find that the choice of acquisition function is more important than the specific form of
the  -kernel. For the present case, the EI acquisition function performed slightly better
than the LCB in smaller parameter domains, while more exploration as achieved with the
LCB acquisition function, was shown to be beneficial in larger domains.

• The  -kernel can be improved with ARD tuning of the hyperparameters. However, this
feature is only useful if a minimum number of iterations can be afforded. In fact, the ARD
kernels requires significantly more data in larger spaces in order to prune irrelevant
features of the objective function.

• Although we employ an objective function consisting of independent scattering cross
sections, and all of them with similar and low computational cost, a multi-fidelity scenario
is equally probable. Consider e.g. to calibrate an EFT model of the nuclear interaction
using scattering cross sections and data on bound states in multi-nucleon systems such as
isotopes of oxygen and calcium. In such scenarios, where the computational cost of
solving the Schrödinger equation for bound-states of a nucleus with A nucleons naively
grow exponentially with A, it would be interesting to study the benefits of existing
BayesOpt frameworks that can maximize information gathering across multiple functions
with varying degrees of accuracy and computational cost. See e.g. [42] and references
therein.

Acknowledgments

The research leading to these results received financial support from the BigData@Chalmers
initiative. This research also received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 758027), the Swedish Research Council under Grants No. 2015-00225 and
2017-04234, and the Marie Sklodowska Curie Actions, Cofund, Project INCA 600398.
Computations were performed on resources provided by the Swedish National Infrastructure
for Computing (SNIC) at NSC, Linköping.

Appendix A. Test functions

In this appendix we provide the expressions for the six test functions that we used for initial
analysis of BayesOpt.
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• Ackley: one hole on a semi-flat surface with shallow local minima.
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• Deceptive: very challenging multivariate test function for which the total size of the
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This function has 3D−1 local minima in D.

å

a
a

a
a a

a
a

a
a

a
a

a

a a

= -

=

- + <

+ - <

+
-
-

+ <
+

+
-
-

+
+

<

=
+
Î = ¼

= ¼ = -

=

 









f
d

g x

g x

x
x

x
x

x
x

x
x

i

d
x i d

f

x

x x

1
,

where

4

5
if 0

4

5

5 4 if
4

5

5
1

1 if
1 4

5
1

1

4

5
if

1 4

5
1

and
1

.

Domain: 0, 1 , for 1, , .
Global minimum: , , , and 1. A.2

i

d

i i

i i

i

i
i i

i

i
i i i

i i

i
i i

i

i

i

i
i

i

i

d

1

2

1

( ) ( )

( )

[ ]
( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

• Rastrigin: spherical function with cosine modulation to generate frequent local minima.

å p= + -

Î - = ¼
= ¼ =

=

 

f n x x

x i d
f

x

x x

10 10 cos 2 .

Domain: 5.12, 5.12 , for 1, , .
Global minimum: 0, , 0 , and 0. A.3

i

d

i i

i

1

2( ) [ ( )]

[ ]
( ) ( ) ( )

• Rosenbrock: classic test function with minimum located in very shallow valley.
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• Schwefel: smooth surface with several local minima and a global minimum located far
away in a corner, which in turn is far away from the second best local minimum.
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• Sphere: in many ways the simplest possible test function. It is convex and unimodal.
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Appendix B. Physics model: χEFT for neutron–proton scattering at NNLO

In the interest of keeping this paper somewhat self-contained, we briefly review the formalism
that underpins the physics model we are optimizing. To that end, we include a selected set of
expressions that are representative for the full theoretical framework for computing neutron–
proton (np) scattering cross section starting from a potential description in χEFT. Exhaustive
reviews of EFT are given in [22–24]. The model evaluation  xmodel( ) of an np scattering
cross section to be confronted with an experimentally determined valueexperiment at a given
on-shell momentum k proceeds in three steps:

(i) Compute the momentum-space proton–neutron interaction potential.
(ii) Use the potential to compute the quantum-mechanical scattering amplitude by solving the

non-relativistic Lippmann–Schwinger equation.
(iii) Use the amplitude to compute a model value for the scattering cross section by evaluating

the spin-scattering matrix.

B.1. The np interaction potential at NNLO in χEFT

The interaction potential in χEFT consists of non-polynomial terms that describe the long-
range part corresponding to pion exchanges, and contact-type interactions given by poly-
nomial expressions corresponding to a short-range part:

= +-V V Vp p p p p p, , , , B.1f i f i f ilong range contact( ) ( ) ( ) ( )

where pf and pi denote the final and initial nucleon momenta in the center-of-mass system
(CMS), and the special case = = kp pf i∣ ∣ ∣ ∣ corresponds to an on-shell momentum (see
figure B1). The potential can be written as a systematic expansion with high-order terms
being less important than low-order ones. In this work we employ a potential including terms
up to NNLO in χEFT9. This means that there are terms also at leading-order (LO) and next-
to-leading order (NLO). In general, at higher orders there are more pion exchanges and
higher-order polynomial terms in momenta that flow through the contact diagrams. At LO, the
one-pion exchange potential is given by

9 We use an NNLO potential with a non-local regulator form and with a cutoff Λ=500 MeV. The details can be
found in [5].
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where q≡pf−pi is the momentum transfer, s1,2 and t 1,2 are the spin and isospin operators
of nucleon 1 and 2, gA, fπ, and mπ denote the axial-vector coupling constant, the pion decay
constant, and the pion mass, respectively. We use fπ=92.4 MeV and gA=1.29 throughout
this work. Higher order corrections to one-pion exchange renormalize the coupling constants
gA and fπ, and the LO long-ranged part is considered parameter-free in this work. Up to
NNLO, leading and sub-leading two-pion exchange enters and the long-ranged part of the
interaction is given by
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and the so-called spectral function cutoff is set to L = 700 MeV˜ . The long-ranged part
contains three of 12 unknown LECs that we seek to constrain using BayesOpt, denoted c1, c3,
and c4 in equation (B.3). The remaining nine LECs control the short-ranged part of the NNLO
potential, which can be written as a linear combination of terms polynomial in the initial and
final momenta, and the total spin vector (S), of the interacting nucleons:

s s s s
s s s s

= + + + + +
+ - ´ + +
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Figure B1. NN scattering (right), and associated experimental data, can be used to
determine the values of the parameters (LECs) of the χEFT NNLO model (left).
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B.2. Proton–neutron scattering observables

Proton–neutron elastic scattering observables are calculated from the spin-scattering matrix M
[43, 44]. This is a 4×4 matrix in spin-space that operates on the initial state to give the
scattered part of the final state. M is related to the conventional scattering matrix S by

= -pM S 1
k

2

i
( ), where k is the relative momentum between the nucleons. The S-matrix for

the scattering channel with angular momentum J can be parameterized by the Stapp phase
shifts = dS e2i J [45]. The Stapp phase shifts are calculated from the potential V(pf, pi) by
solving the Lippmann–Schwinger equation. This equation describes quantum-mechanical
scattering, and is an integral equation of the Fredholm type that can be solved as a matrix
equation. In our application, and for each value of the on-shell momentum k, this amounts to
inverting a 200-by-200 matrix followed by a matrix-vector multiplication. The matrix
inversion prevents linearizing this particular EFT model in its parameters. Although, the
matrix inverse is not particularly time-consuming in the present case, it should be pointed out
that the complexity of the corresponding quantum-mechanical equations for describing
scattering states, or bound states, of more than two nucleons typically scale exponentially
with the particle number.
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