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Abstract  

Native protective oxide scales offer resistance against corrosion for high temperature 

materials, which often work in extreme conditions of varying mechanical and thermal loads. 

The integrity of such layers is of critical importance, since their damage can lead to 

significant reduction in material life. Mechanical data such as fracture strain and elastic 

modulus are required to include oxides in material life estimation models for high temperature 

materials, but there is lack of such data. Their thickness is in the µm range, which makes 

mechanical testing for property determination difficult. Here we present a micro-mechanical 

testing method, based on bending of micro-cantilevers produced by focused ion beam milling, 

capable of circumventing the limitations of conventional approaches. We apply this method to 

chromia thermally grown on pure chromium, and measure fracture strains at room and high 

temperatures (600 °C). The measured fracture strains were found to be higher at room 

temperature, due to a larger fraction of transgranular fracture. Surprisingly, a large fraction of 

transgranular fracture was seen even in the presence of stress concentrations at grain 

boundaries. Removal of the stress concentrations accentuated the propensity for transgranular 

cracking at room temperature. Realistic values of room temperature elastic modulus were 
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obtained as well. The observed mixed trans- and intergranular cracking points towards the 

need for dedicated investigations of both oxide grain boundary strength and cleavage 

resistance of single crystals in order to fully understand the failure mechanisms in thermally 

grown oxide scales.  

 

Keywords: Micromechanics; fracture mechanisms; electron microscopy; oxide; chromia.  

1. Introduction  

High temperature materials, such as superalloys and high temperature steels, are often 

employed in extreme conditions where they experience a combination of severe mechanical 

loads at elevated temperatures in the presence of a corrosive environment. In such situations, 

they depend on the formation of a protective oxide scale for resistance against degradation. In 

the presence of fluctuating loads and temperatures during operation, the materials are 

subjected to thermo-mechanical fatigue (TMF), which has been extensively studied for these 

materials [1–3]. Oxide scales are generally brittle and such fluctuating thermal and/or 

mechanical loads can cause damage. Depending on the adhesion strength of the oxide scales, 

this can either lead to formation of through cracks or even spallation, thereby exposing the 

material to further oxidation [4]. Through cracks in oxide scales can act as fatigue crack 

initiation sites for the bulk material. Cruchley et al. [5] observed significant reduction in the 

fatigue life of Ni-base superalloy specimens subjected to pre-oxidation, compared to polished 

specimens. This was attributed to crack initiation from the oxide scale. Compressive dwells, 

both during isothermal high temperature fatigue [6] and during the hot part of TMF cycles [7], 

have been shown to reduce fatigue life since the oxide formed during compressive loads 

fractures in the subsequent tensile leg of the cycle, leading to rapid crack initiation in the 

material. Furthermore,  oxidation at the crack tip can induce accelerated crack growth, 
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causing fatigue crack growth rates at high temperatures to be an order higher in air than 

vacuum for superalloys such as Alloy 718 [8–12].  

 

As the integrity of the protective oxide scales have a direct impact on the life of high 

temperature materials, it is necessary to include behaviour of the oxides in lifetime prediction 

models for improved reliability. Several models have been developed for describing the 

failure of oxide scales and the dependence of various parameters involved in their cracking 

with the aid of fracture mechanics [13–16]. Schütze et al. [17] developed an approach to a 

comprehensive oxide scale failure diagram based on fracture mechanics, which examines the 

various modes of failure in oxide scales. This has been applied in a simplified form by 

Rudolphi et al. [18,19] and has been validated for oxide scales such as NiO, TiO2 and Fe2O3. 

These models require input in the form of parameters such as failure strain, elastic modulus 

and physical defect size in order to describe the fracture behaviour of the oxide scales. Also, 

in the case of complex life assessment models on oxidation assisted crack growth [20], 

fracture strain and elastic modulus of oxides are key parameters. But, as has been pointed out 

by Schütze et al. [21], the required data regarding mechanical behaviour of oxides, 

specifically fracture properties, are still lacking.  

 

Several methods have been developed in the past few decades to measure the elastic modulus 

and fracture strains of oxide scales. One of the earliest methods for measuring fracture strain 

by Hurst et al. [22] utilises the change in resonant frequency of a specimen during oxidation. 

A frequency drop during tensile loading observed with the help of dynamic frequency 

measurements indicated oxide scale failure and this was used as an estimate for the tensile 

fracture strains of oxide scales. Four-point bending tests on oxide scales have also been used 

to obtain both compressive and tensile fracture strains [23]. Specimens with oxide scale 
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grown on them were subjected to bending, and acoustic emission was used to identify exact 

moments of oxide scale fracture. Nanoindentation is a powerful and direct technique which 

has been used to measure the hardness and elastic modulus of oxide scales. Tortorelli et al. 

[24–26] and Nicholls et al. [27] have worked extensively on the measurement of elastic 

modulus of different oxide scales at room and high temperatures using nanoindentation. Taper 

polishing methods on oxide scales have been used to assess the influence of substrate [25] and 

measurements on spalled oxide scales have been proposed to estimate the influence of 

residual stresses [26].  

 

The aforementioned methods have mostly been used for measurements of thick oxide scales 

(several µm to tens of µm thick). Except for nanoindentation, the other methods provide only 

an indirect way of measuring hardness and elastic modulus. The influence of growth and 

residual stresses, and substrate influence have not been studied extensively since it is beyond 

the capabilities of these methods. This is critical, as pointed out by Nagl et al. [28] in the case 

of NiO and Fe2O3, where failure strains could be overestimated by a factor of two if residual 

stresses are not considered.  Furthermore, in the case of many modern alloys, especially 

superalloys, the oxidation kinetics are slow and the thickness of oxide scales formed are in the 

sub-µm to µm range. The previously described methods fail to address the properties of oxide 

scales in this size range. Clearly, and as pointed out in [21], a new approach is necessary in 

order to determine these oxide properties in a direct manner so that the experimentally 

measured values could be used in the models. With the advent of focused ion beam (FIB) 

milling techniques, it became possible to manufacture specimens in the µm range with 

sufficient accuracy for mechanical testing at this scale, commonly referred to as micro-

mechanical testing. Specimens of different geometries such as cantilevers [29–32], tensile 

specimens [33], micropillars [34–37], etc can be manufactured with precision using FIB and 
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tested with the help of nanoindenters and micromanipulators. Micro-mechanical testing offers 

a unique tool to assess the response of thin surface layers, due to its ability to probe 

mechanical properties of specimens at µm length scales with high spatial resolution. This has 

been extensively utilised for numerous thin film and coating systems [38–41], but so far only 

a very limited number of studies have been performed on surface oxide scales [42–44] in 

order to estimate their fracture and elastic properties.  

 

We have previously demonstrated a micro-cantilever bending method [44] for testing 

thermally grown oxide scales, which was capable of probing very thin (<200 nm) native 

oxides formed on a Ni-base superalloy. Interestingly, these scales showed evidence of 

pronounced plasticity at room temperature, presumably due to the presence of an outer spinel 

layer. Since micro-cantilever bending inevitably localizes the high tensile stresses on the 

upper surface, the properties of the underlying chromia layer could not be assessed. As 

chromia is the protective oxide for many high temperature materials, including superalloys, it 

is critical to further investigate its deformation and fracture properties. We apply the same 

approach as used in [44] in order to measure fracture strains and elastic modulus of pure 

chromia scales at both room and elevated temperatures. Interestingly, we observe a reduction 

in the fracture strain of chromia at 600 °C compared to room temperature. Examination of the 

fracture surfaces provided information regarding the fracture mechanism showing that, 

surprisingly, transgranular fracture was seen even in cases where stress concentrations at 

oxide grain boundaries were present.  By comparing the fracture path with the 

crystallographic orientation of the oxide grains, the transgranular fracture was found to 

correlate well with the most probable cleavage planes. 
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2. Experimental methods 

2.1 Isothermal exposure and oxide characterisation 

Pure chromium (99.97% purity) samples were cut into coupon shaped specimens with 

dimensions of 15´15´2 mm. The flat surfaces were mechanically polished with SiC paper up 

to 4000 grit followed by diamond polishing with 3 and 1 µm diamond suspensions. The 

samples were thoroughly cleaned in an ultrasonic bath in acetone and ethanol. The isothermal 

exposures were conducted in an alumina tube furnace at 700 °C in a pure oxygen environment 

with gas flow rate of 150 ml/min for 480 hours. Two samples were oxidized for sake of 

comparison.  

 

The oxidised specimen surfaces were imaged with JEOL 7800F Prime FEG scanning electron 

microscope (SEM) in order to obtain an overview of the oxide microstructure. Cross sections 

of the oxide layer were prepared with the help of focused ion beam (FIB) milling in a FEI 

Versa3D dual beam instrument, in order to estimate the thickness of the oxide layer. The 

oxide microstructure was examined with the help of electron transparent foils prepared by 

FIB milling using the lift-out technique. Scanning transmission electron microscopy (STEM) 

was performed in a Tescan GAIA3 FIB-SEM on the electron transparent foil of the oxide 

scale at a voltage of 30 kV and 200 pA current in high-resolution mode to obtain a fine spot 

size. The crystallographic orientations of the oxide grains were studied with the help of 

transmission Kikuchi diffraction (TKD) with an Oxford instruments NanoNordlys EBSD 

detector.  

 

2.2 Micro-cantilever preparation 

The oxidised specimens were cut with a low speed diamond saw and the cross sections were 

metallographically prepared manually by grinding using SiC papers up to 4000 grit size in 
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order to provide a sharp edge for the preparation of micro-cantilevers using FIB milling. 

Compressive residual stresses of the order of 0.5–1.5 GPa were present in the oxide scales 

(see supplementary material, section A) and, consequently, the previously developed 

cantilever geometry designed to circumvent residual stress effects of the oxides was used 

[44]. In short, it consists of a region about 3 µm in length near the support where the metal is 

completely removed and the oxide is isolated, allowing the residual stresses in this region to 

completely relax. However, a significant amount of the metal substrate is left on the 

remaining part of the cantilever to avoid excessive bending from stress relaxation and allow 

suitable condition for the mechanical loading.  The rough milling was performed with 

currents of 7, 3 and 1 nA, and finishing for the final geometry was done at a lower current of 

100 pA to reduce the effects of ion implantation. Figure 1(a) shows the schematic for the 

geometry of the micro-cantilever. For one set of cantilevers, the top surfaces were left 

untouched by FIB milling in order to avoid influence of Ga ion implantation and also to be 

representative of real conditions. However, a small portion near the free end is flattened with 

FIB from the side to facilitate the placement of indenter. These will be referred to as ‘raw’ 

micro-cantilevers from here on. The dimensions of the prepared cantilevers are measured 

from top and side view of SEM images. The height of the cantilever is measured as the 

average height in the isolated portion of the oxide (Figure 1(b)). Table S1 in the 

supplementary material lists the dimensions of the prepared raw micro-cantilevers. An 

additional set of micro-cantilevers was prepared by removing the surface roughness along the 

entire length through ion milling at low currents from the side in order to minimize gallium 

implantation. This set was prepared for experimentally determining the elastic modulus of the 

oxide layer. These will be referred to as ‘flat’ micro-cantilevers from here on. The dimensions 

of those micro-cantilevers are given in table S2 in the supplementary material.   
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Figure 1: (a) Schematic of micro-cantilever showing different dimensions (b) SEM image 

showing geometry of micro-cantilever.  

 

2.3 Micro-cantilever bending tests  

All micro-cantilever bending tests were performed with an Alemnis in-situ nanoindenter 

(Alemnis AG, Switzerland) [45]. The raw micro-cantilevers were tested in a Zeiss DSM 962 

SEM and the flat ones were tested in a Zeiss LEO55 FEG SEM. For the 600 °C tests, the high 

temperature module from Alemnis was used. The compact high temperature Alemnis setup 

employed independent tip and sample heating that enables iso-thermal matching of the two 

contacting bodies (tip apex, sample surface) to minimize thermal drift. The indenter frame is 

water-cooled to maintain the sensors and actuators from getting affected by the heat and for 

faster thermal stabilization times. Thermal drift rates were minimized using the protocols 

outlined previously [46,47]. A tungsten carbide cono-spherical indenter (Synton-MDP AG, 

Switzerland) with tip radius ~1 µm was used for the reported micro-bending tests of raw 
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micro-cantilevers and a diamond tip of similar radius was utilised for testing of flat micro- 

cantilevers. The samples were mounted on a high temperature copper stub using a conductive 

high temperature cement (Aremco Pyroduct 597-A). Displacement controlled microcantilever 

bending tests were performed at room temperature (RT) and 600°C on the raw micro-

cantilevers.  Each testing cycle consisted of fixed periods of thermal load drift testing before 

and after the bending test. The load-displacement curves were corrected for the pre-existing 

load drift. The flat micro-cantilevers were initially subjected to small displacement tests 

(where repeated loading-unloading cycles with different load amplitudes where applied) in 

order to estimate the elastic modulus. This was followed by displacement-controlled fracture 

tests.  

 

The oxide micro-cantilevers after testing were imaged in an SEM from the top and side to get 

a clear view of the crack. Some tested micro-cantilevers, which had not broken off 

completely, were carefully broken and removed with the help of a Kleindiek 

micromanipulator setup after the above imaging so that the fracture surfaces are visible. The 

samples were then imaged in a Zeiss LEO55 FEG SEM to obtain high resolution images of 

the fracture surfaces.  

 

3. Results 

3.1 Oxide microstructure  

The isothermal exposure generated an oxide scale that was rough on the surface and consisted 

of a combination of small and large faceted grains (Figure 2(a)). The average thickness of the 

scale measured from FIB cross sections was 2.8±0.6 µm. STEM imaging on the oxide scale 

cross section showed grains of increasing size from the bottom of the scale to top (Figure 

2(b)). The small grains close to the oxide metal interface have an average size of about 120 
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nm, which have an equiaxed structure (Figure 2(c)). A homogenous layer of oxide grains of 

an average size of 1 µm covers the whole surface, whereas some grains on the surface have 

grown larger (Figure 2(a) and (c)). TKD showed the appearance of a texture in the larger 

grains, which preferentially grow with the c-axis (<0001>) perpendicular to the interface as 

seen from the inverse pole figure (IPF) map for the growth direction (Figure 2(d)). No such 

tendency is seen in the underlying fine-grained oxide, which shows a more random 

orientation distribution. Another feature visible from the images is the presence of porosity, 

both at the oxide metal interface and within the scale. Some dislocations are visible in the 

larger grains (arrows in Figure 2(b)). From the observed morphology of the oxide, it is clear 

that there will be significant stress concentrations at oxide grain boundaries in the case of the 

raw cantilevers. 
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Figure 2: (a) SEM image of the oxide scale surface showing an underlying layer covering the 

entire surface, with occasional larger grains on top; (b) STEM bright field image of an oxide 

cross-section clearly showing porosity in the lower parts of the oxide; (c) shows STEM image 

of highlighted region from (b) with smaller grains; and (d) inverse pole figure map of region 

highlighted in (b) showing random orientations of the fine-grained underlying oxide and 

preferential <0001> growth of the larger grains. 
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Figure 3: (a) Stress-strain curves for tested raw micro-cantilevers; (b) stress-strain curves 

from the fracture tests of flat micro-cantilevers; (c) comparison of the fracture strains; and (d) 

measured elastic modulus for different tested micro-cantilevers, including comparison with 

literature data ([25,27]) and theoretical average modulus, Eavg, and upper and lower limits 

from elastic anisotropy, Emax and Emin. 

 

3.2 Mechanical response 

The data obtained from the micro-cantilever bending tests is in the form of force (F) and 

displacement (d). As the F–d response strongly depends on the cantilever geometry, a 

conversion to the corresponding (approximate) stress–strain curves were performed. There is 

a purely geometric relation (independent of material properties) between F and the local 

maximum stress (smax), as well as between d the local maximum strain (emax), which was 

utilised for the conversion. Generally, for simple prismatic beams, analytical formulas are 

used for this purpose but due to the complex geometry of the current micro-cantilevers, finite 

element modelling (FEM) was used to derive the geometrical constants. Due to surface 

roughness, an exact response cannot be calculated for the raw cantilevers, so an average 
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height was used to create the FE model, neglecting the geometric stress concentrations arising 

from the scale morphology. The procedure is detailed in section B of the supplementary 

material. The geometric constants were derived individually for each tested cantilever and 

used to construct the stress-strain curves. Here it should be noted that the oxide and substrate 

were modelled using the same elastic material properties, meaning that the deformation at the 

supported end will not be accurately captured. However, this effect is small compared to other 

sources of uncertainty [44], in particular as the average moduli of chromium and chromia is 

not vastly different. Figure 3(a) shows the calculated smax–emax curves for the raw micro-

cantilevers. It can be noticed that the response is linear until fracture, implying elastic 

behaviour.  

 

Despite converting to stress and strain, the data shows significant variation in slope 

(stiffness). This could be due to a number of factors such as surface roughness, porosities, 

oligo-crystalline nature of the oxide layer, anisotropic elasticity or a combination of these. On 

removal of surface roughness, the scatter in slope gets reduced, which can be seen from the 

stress-strain curves for the tested flat micro-cantilevers (Figure 3(b)). The fracture strains for 

the raw micro-cantilevers show a trend despite the scatter in the curves. It can be seen from 

figure 3(c) that the fracture strains (ef, defined as emax corresponding to the point of fracture) 

are close together for the same condition of testing in the case of raw micro-cantilevers (note 

that the data point for 600 °C in Figure 3(c) is actually two overlapping points). Somewhat 

surprisingly, the fracture strain at 600 °C is approximately half of that of the room 

temperature tests. The fracture strain obtained from flat micro-cantilevers show a larger 

scatter in comparison to the raw ones. The flat micro-cantilevers show larger fracture strains, 

which is expected due to the removal of the stress concentrations. Furthermore, the scatter in 

fracture strain is larger for the flat cantilevers, which, again, could be related to the absence of 
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stress concentrations. The fracture in this case would be governed by statistical effect 

expected in case of ceramics (position of porosity, crystal size, etc), whereas for the raw 

micro-cantilevers, the stress concentrations play a major role. Details regarding the 

mechanism of cracking can be obtained by examination of the crack path and the fracture 

surface, which will be described later.  

 

Elastic modulus estimations were performed by small displacement tests designed to obtain 

the linear response before fracture for the flat micro-cantilevers. It was possible to test four 

different micro-cantilevers, and Figure 3(d) shows the estimated elastic modulus from all the 

bending tests. Since the test value for each cantilever were derived as an average of multiple 

tests, it was also possible to estimate the experimental errors. The values obtained from 

fracture tests of raw micro-cantilevers (‘Raw 600 °C’ and ‘Raw RT’) have been included as 

well for sake of comparison. Some values from literature [25,27] have been included in order 

to compare with the previous measurements attempted for the oxide. The values of the elastic 

modulus measured from the flat micro-cantilevers are in excellent agreement with the 

literature data, in spite of the large sensitivity to errors in geometry measurement inherent in 

the cantilever bending method for stiffness estimation. Furthermore, as the highly-stressed 

part of the micro-cantilevers only contains a small number of grains, and the elastic response 

of chromia is anisotropic, a large variation can be expected even in the case of perfect 

measurements of the geometry. The dotted lines in the figure refer to the calculated 

(polycrystalline Voigt) average (Eavg), maximum (Emax), and minimum (Emin) theoretical 

elastic modulus which were calculated from the stiffness matrix obtained from [48] using the 

online tool ELATE [49]. Details regarding elastic modulus evaluation is described in section 

D and theoretical calculations in section E of the supplementary material. The experimental 

values for the flat micro-cantilevers fall in the lower end of the estimated range, which is 
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expected for two reasons: (i) the texture of the larger grains will place the basal planes parallel 

to the tensile axis, and the elastic modulus in the basal plane is relatively low; (ii) the presence 

of porosity reduces the load carrying area leading to larger displacements and lower estimated 

stiffness. The second point is also the likely reason behind the data point below the estimated 

lower bound. For the raw cantilevers tested at RT, one data point is significantly lower than 

expected, which could stem from the combined presence of porosity and strain localisation 

due to the surface stress concentrations. The largest discrepancy is the extremely high 

modulus (~460 GPa) measured in one of the raw cantilevers tested at 600 °C. A probable 

explanation is the difficulty in estimation of the geometry of the micro-cantilever for 

calculations. When determining the average height, the cantilever is viewed edge on, 

providing only a 2D projection of the rough 3D surface. The roughness across the width of 

the cantilever is uncertain, which can lead to the underestimation of height, and 

overestimation of elastic modulus. As mentioned, cantilever bending is very sensitive to 

errors in the thickness, as the area moment of inertia scales inversely with the cube of the 

thickness.  

 

3.3 Fracture behaviour 

Figure 4 shows the side and top views for a raw micro-cantilever tested at 600 °C. It can be 

seen from figure 4(b) that the crack starts between two grains on the surface and has stopped 

near a pore in the bottom layer of the oxide scale. From the top view of the crack (Figure 

4(d)), it seems that the crack has propagated in an intergranular manner. Other micro-

cantilevers tested under the same conditions exhibit features of cleavage fracture as shown in 

Figure 5, suggesting a combination of intergranular and transgranular fracture. Further 

examinations of the fracture surfaces indicate that the cracking mode is mainly intergranular 

at 600 °C, although cleavage steps can be seen as well (shown with arrows). The fraction of 
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cleavage fracture is higher in the case of the RT tests as seen in figure 6(c)-(d). The frequent 

occurrence of transgranular cracking was surprising since the stress concentrations at the 

grain boundaries of the oxide layer would be expected to promote intergranular fracture. This 

tendency towards cleavage fracture was even more pronounced in the case of the flat micro-

cantilevers (Figure 7).  

 

Figure 4: Different views of tested raw micro-cantilever. (a) side-view before testing; (b) side 

view of crack after testing from region highlighted in (a); (c) top-view before testing; (d) top-

view of crack after testing from highlighted region in (c). 
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Figure 5: Cleavage fracture seen from side view of tested raw micro-cantilevers. (a) was 

tested at 600 °C and (b) at RT.  

 

It was possible to perform EBSD on the top surface of some flat micro-cantilevers before 

testing. Figure 8 shows the inverse pole figure map from the surface of one tested flat micro-

cantilever with the position of the crack (determined from SEM images after testing) 

superimposed, which shows that the crack propagated in a transgranular manner. The 

orientations of the grains through which the crack propagated has been shown in the figure as 

well. The c axis of the grains is at a small angle to the crack, which means that the cleavage 

plane could be one of the family of planes parallel to the c axis [50], i.e. {1	0	1%	0} or 

{1	2%	1	0}. Each family of plane has 3 equivalent planes, and plane traces of each plane (six in 

total) was compared with the path of the crack. The one that best fit with the angle of crack 

was considered as the probable cleavage plane for the particular grain. Table 1 shows the 

cleavage plane for each of the three grains of interest from Figure 8. There is a good fit 

between the trace and the crack path for all the three highlighted grains, thus supporting the 

proposed cleavage mechanism. However, further analysis is needed, such as a 3D 

reconstruction of the fracture surface to allow for a proper correlation.   
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Grain position Best fit Second best fit 

A (1	2%	1	0) (1%	1	0	0) 

B (1%	1	0	0) (2%	1	1	0) 

C (2%	1	1	0) (1%	1	0	0) 

Table 1: Cleavage planes for cracked grain from Figure 8.  

 

 

 

Figure 6: Fracture surfaces of tested raw micro-cantilevers. (a) and (b) are from 600 °C tests 

and, (c) and (d) are from RT tests. The arrows indicate the presence of river marks. 
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Figure 7: Examples of fracture surfaces of flat micro-cantilevers with arrows showing 

transgranular fracture.  

 

Figure 8: Inverse pole figure map of the top surface of a flat micro-cantilever. The loading 

point is shown towards the right with a cross. The yellow dotted line shows the crack path and 

the orientations of the grains with transgranular crack are shown as well. The white and blue 

line represents the plane traces of {1	2%	1	0} and {1	0	1%	0} respectively. 

 

4. Discussion  

4.1 Fracture and mechanical properties of the oxide scale 

This approach of measuring mechanical response of thermally grown oxide scales provides 

more insight in to the mechanism of fracture when compared to the classical methods. 

Simplified models such as the h-c model [51] require parameters such as elastic modulus (E), 
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fracture toughness (KIC) and physical defect size (c) to be known to be able to predict the 

failure strains. In the case of grain boundary fracture model for superalloys [20],  the fracture 

strain is required in order to predict the threshold crack growth rate. The approach presented 

here possesses the ability to provide data such as fracture strain and modulus for real systems 

and aid in generation of oxide failure models which in turn can produce life prediction models 

with better accuracy for high temperature materials. The current study shows that the fracture 

behaviour of thermally grown oxide scales is complex, and thorough and careful evaluations 

are required in order to generate meaningful data. The failure mechanism is not limited to 

intergranular cracking, but shows instances of transgranular cracking. This in turn calls for 

dedicated studies of both single grain cleavage and grain boundary fracture in chromia in 

future. Also, additional techniques are needed to bridge the gaps in the presented method. 

Parameters such as the orientation of fracture surface in cleaved grains as well as the physical 

defect size can be provided by 3D imaging and EBSD. The combination of FIB and SEM is a 

powerful tool to perform 3D which can take the method to the next step. Overall, such an 

approach shows that it is possible to obtain detailed information on the micro-mechanisms of 

fracture even at the scale of thermally grown oxide scales.  

 

The micro-cantilever bending tests reveal several aspects of fracture properties associated 

with the oxide scale. By comparing the stress-strain curves of the 600 °C and RT raw tests, an 

immediate observation that can be made is that for all tests, the behaviour before fracture is 

elastic. Plasticity in oxides have been observed for Al2O3, which is also a corundum 

structured oxide, but for much higher temperatures [52], where creep is the dominant 

deformation mechanism and the strain rates are very low. It has also been seen in Al2O3 single 

crystals tested at room temperature using micropillar compression [35], where uniaxial 

stresses as high as 11 GPa is required.  Schütze et al. [53] have highlighted the requirements 
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for plasticity in oxide scales, in which they state that for lower temperatures, the cracking in 

oxide scales start before reaching the stress levels required to activate the slip systems, in 

particular in the presence of tensile stresses. In addition, physical defects are also present in 

thermally grown oxides which initiate cracking before plasticity can occur. One of the 

possibilities is at high temperature where creep is active. But, the current temperature (600 

°C) is much less than 0.5Tm and therefore the possibilities for creep is minimum. Also, in 

presence of creep, the fracture strains at 600 °C would be expected to be higher than at RT, as 

observed by Nagl et al. [28] in NiO and Fe2O3.  

 

In the present case the fracture is brittle, and the fracture mode at both RT and 600 °C has 

been shown to be mixed transgranular and intergranular, with a higher fraction of cleavage 

fracture in the RT tests.  There is very limited quantitative data on fracture behaviour of 

chromia available in the literature, but existing results for alumina can be used for qualitative 

discussions. As in the present case, the fracture in polycrystalline alumina is generally of 

mixed transgranular and intergranular mode, and an increasing fraction of intergranular 

fracture with increasing temperature has been reported [54], consistent with the present 

results. Norton et al. [30] used micro-cantilever bending with notched and artificially flawed 

specimens in order to measure the fracture toughness associated with cleavage of different 

planes, as well as grain boundaries in polycrystalline alumina and in a diffusion bonded bi-

crystal. The fracture toughness for cleavage was found to be approximately a factor of two 

higher than for grain boundary fracture (1.5 MPa m–1 compared to 0.7 MPa m–1 obtained for 

grain boundaries in both diffusion bonded bi-crystal and polycrystal). Similarly, Yasuda et al. 

[55] measured a factor of two higher critical energy release rate for transgranular fracture in 

alumina, and showed a positive correlation between the fraction of transgranular cracking and 

fracture resistance. A compilation of the temperature dependence of the fracture toughness of 
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single and polycrystalline alumina have shown that both decrease with temperature, consistent 

with the current observation of lower fracture strains at 600 °C [56].  Further studies using 

simulations and specially designed fracture tests on ideal orientations will be able to shed 

even more light into the fracture mechanism.    

 

As discussed previously, the scatter in stiffness for the raw micro-cantilevers can be attributed 

to various reasons such as geometric irregularities, anisotropy in the material, heterogenous 

distribution of porosity, etc. In order to evaluate the influence of such factors, some FE 

models were constructed considering some of the extreme cases. The details of the 

calculations are given in supplementary material, section F, and the results show that the 

stiffness can be almost halved in the most extreme cases. This is without accounting for 

uncertainties in the estimation of the average height of the oxide in the isolated part of the 

cantilevers, which is expected to have a significant effect. In addition to geometric factors, the 

testing is done on an oligo-crystalline material, which is anisotropic. This can be reflected in 

the variation of the mechanical data obtained. The anisotropy in elastic modulus (Emax/Emin) 

for this oxide was obtained to be 1.6 from calculation detailed in section E of the 

supplementary material. This implies that the tested oxide could have a significant spread in 

modulus values depending on the orientations of the grains undergoing elastic deformation. 

These factors could account for the variations seen in the mechanical response of the tested 

specimens. However, from the tested flat micro-cantilevers, it can be observed that the scatter 

in the elastic modulus values is reduced in comparison with raw micro-cantilevers. Thus, the 

conclusion is that the scatter observed in mechanical response is mainly due to the geometric 

factors such as presence of stress concentrations and porosities.   
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4.2 Experimental considerations 

The surface condition is one factor that has to be studied in detail when FIB fabrication is 

involved. The micro-cantilever preparation involves initial rough milling to remove a larger 

volume of material (1000 µm3 or more), which leads to redeposition of the removed metal and 

oxide on the surface. This forms a thin layer of amorphous material on top of the surface 

oxide grains. This could influence the measured properties. This was analysed with the help 

of high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-Ray 

spectroscopy (EDX) on an electron transparent sample prepared from region of micro-

cantilever milling. It was seen that the thickness of the redeposition layer was roughly 

between 20-50 nm (for details, refer to section G in supplementary material). However, this 

thickness is not constant throughout and there is some variation in different oxide grains. The 

thickness of the redeposited layer is negligible in comparison to the oxide layer itself, and 

since the oxide roughness has a larger influence on the cracking mode through the formation 

of stress concentrations, no significant impact on the measured properties is expected. This 

layer is visible on top of the fracture surface in figure 6(a) and (b), but it doesn’t seem to have 

affected the mode of fracture. Also, this layer is amorphous and will be full of defects, which 

would make it weaker than the oxide layer. An additional issue is occurrence of Ga 

implantation from the FIB milling on the properties. The contrast outlining the grain 

boundaries in Figure 5(a) is a result of Ga being ejected during the time at high temperature. 

Since only the side and bottom surfaces of the cantilever were exposed to Ga, and the 

implantation depth is very small (roughly 30 nm for normal incidence and 15 nm for gracing 

incidence, as seen from SRIM simulations [57]), this is not expected to have an impact on the 

fracture behaviour. Ga ejection can be seen also in Figure 6(c), this time on the bottom side of 

a cantilever tested at room temperature. This occurs since all cantilevers were milled on the 

same specimen, and consequently also the room temperature specimens were subjected to 
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periods at 600 °C, although after room temperature tests had been performed. The 

implantation of Ga is of more concern for the flat cantilevers, where the top surface is 

flattened using FIB milling. Although implantation is unavoidable in this case, the milling 

procedure was specifically designed to minimise the depth of the affected layer. 

 

5. Conclusions  

The current approach of using micro-cantilever bending in order to study fracture in thermally 

grown chromia has been shown to be highly effective in comparison to classical measurement 

methods. The estimated elastic modulus for the thermally grown oxide scales is in the range 

of 217 to 301 GPa, which agrees with the literature values. From the micro-cantilever bending 

experiments, new insights into the cracking behaviour has been obtained. Testing of raw as-

grown scales resulted in significantly lower fracture strains at 600 °C, compared to room 

temperature. The raw cantilevers fractured in a mixed inter- and transgranular manner, with a 

larger fraction of transgranular cracking at room temperature. The relatively large number of 

cleaved grains in the raw cantilevers is surprising, since the rough as-grown surface has 

pronounced stress concentrations at the grain boundaries in the “troughs”. Removal of the 

surface roughness increases the tendency for transgranular fracture. The EBSD analyses were 

able to identify the possible cleavage planes for transgranular fracture, which points toward 

the fact that in addition to stress concentrations, the crystallographic orientation and texture 

plays a role in fracture, both at room temperature and 600 °C. This hints at the need for 

dedicated single and bi-crystal testing in future so that the cracking mechanism can be studied 

in detail.  
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Supplementary material 

 

A. Residual stress evaluation by Raman spectroscopy  

The oxide scales were checked for the presence of residual stresses with Raman spectroscopy 

mapping in a WITec Alpha 300R Raman microscope. A green laser with wavelength of 532 

nm was used in the Raman spectroscopy studies. Area scans were performed in order to 

obtain an idea of the spatial distribution of residual stresses. Due to the difference in co-

efficient of thermal expansion between metal and the oxide, stresses develop in the scale 

when it cools to room temperature after exposure. In addition to that, lateral growth stresses 

exist within the scale, resulting in a net residual stress in the oxide scale. In the case of 

chromia, the Raman spectrum consists of  2 A1g and 4 Eg mode of vibrations [1], and the 

presence of stresses in the material causes a shift in the peak positions. For the A1g peak near 

551 cm-1, which is the most intense peak, the shift is linearly proportional to the stress. The 

formula for stress (in GPa) is described by: s = -Dn ´ 0.307 [1], where Dn is the difference in 

wave number between the constrained oxide and the reference, and 0.307 is the shift stress 



conversion coefficient. Figure S1 shows the Raman maps for the oxide scale. The residual 

stresses present in the oxide scale is compressive and as high as 1.8 GPa in some regions. The 

regions that appear dark in the figure are regions with larger faceted grains of oxide. The 

spatial resolution of Raman area mapping is roughly 0.3 µm and therefore the variation in 

stresses in clearer in the larger grains.  

 

 

Figure S1: Raman map of the surface of oxide scale. Lighter regions have higher 

compressive residual stresses and darker regions have lower stresses.  

 

 

 

 

 

 

 

 

 

 



B. Micro-cantilever dimensions 

Table S1: Dimensions of the FIB milled micro-cantilevers referred to as raw, where the top 

surface is untouched by ion-milling.   

Sl No: Length 

L (µm) 

Width 

w (µm) 

Oxide depth 

h (µm) 

Oxide span 

c (µm) 

HT1 10. 8.3±0.03.03 3.23±0.06 1.28±0.19 2.94±0.06 

HT2 7.5±0.02 2.94±0.08 1.46±0.54 2.88±0.02 

RT1 7.4±0.06 5.4±0.16 1.54±0.26 2.96±0.05 

RT2 8.4±0.05 5.28±0.11 1.45±0.35 2.9±0.02 

RT3 7.6±0.04 4.29±0.07 1.11±0.08 2.98±0.05 

 

 

Table S2: Dimensions of micro-cantilevers referred to as flat, where the oxide surface is 

made smooth by ion-milling.  

Sl No: Length 

L (µm) 

Width 

w (µm) 

Oxide depth 

h (µm) 

Oxide span 

c (µm) 

F1 8.63±0.05 4.33±0.02 1.2±0.02 2.94±0.03 

F2 7.39±0.04 4.41±0.04 1.35±0.04 3.1±0.03 

F3 8.82±0.05 4.3±0.03 1.12±0.03 2.98±0.05 

F4 7.62±0.04 4.2±0.02 0.92±0.02 2.9±0.03 

 

 

C. Stress-strain calculation using FEM 

Since the geometry of the milled micro-cantilevers were complex, the conversion of force-

displacement data to stress-strain was done with the help of a finite element model with same 



dimensions as the different micro-cantilevers. The surface roughness was not included and 

was considered as flat in the models. Figure S2 shows an example of the geometry used, 

consisting of half the cantilever and support with symmetry conditions enforced. A simple 

stationary study was performed on the model using dimensions of the different micro-

cantilevers by application of an edge load, F/2. 

 

 

Figure S2: Geometry of micro-cantilever used in FEM.  

 

The maximum stress (!"#$) and strain (%"#$) on the surface, and the displacement of the free 

end (&) were evaluated and used in calculation of the geometric factors as follows:  

'( =
!"#$
* 		 

', =
%"#$
& 	 

The geometric factors were used to convert the experimental force-displacement data into 

stress and strain. 

 

D. Elastic modulus calculation  

Bending tests were conducted on flat micro-cantilevers by applying small displacements to 

avoid fracture. Each micro-cantilever was bent for at least two different displacements, and 



each test consisted of three loading-unloading cycles in order to confirm repeatability. The 

force displacement data was converted to stress-strain by obtaining geometric constants from 

FEM (as in section C) and linear fitting in MATLAB was used to obtain the value of elastic 

modulus. Table S3 lists all the elastic modulus values obtained from the small displacement 

tests.  

 

Table S3: Values of elastic modulus obtained from flat micro-cantilevers.  

Sl No: Elastic modulus (GPa) 

F1 257.3±19.8 

F2 217.5±15.7 

F3 301.3±15.1 

F4 271.6±19.7 

 

 

E. Anisotropy of elastic modulus   

In order to calculate the elastic anisotropy, the elastic stiffness in different crystallographic 

directions are required. In the case of Cr2O3, the following stiffness matrix was obtained from 

the values given in [2] considering rhombohedral symmetry:  

- = 	

⎣
⎢
⎢
⎢
⎢
⎡
373 160 178 −21 0 0
160 373 160 21 0 0
178 160 349 0 0 0
−21 21 0 160 0 0
0 0 0 0 160 −21
0 0 0 0 −21 106.5⎦

⎥
⎥
⎥
⎥
⎤

 

 

This matrix was used to calculate anisotropy with the aid of the web tool, ELATE [3] 

(http://progs.coudert.name/elate). 

 



The average elastic modulus (polycrystalline) was measured using Voigt averaging scheme, 

Eavg = 318.2 GPa.  

Maximum value: Emax = 394.1 GPa. (hkl = [0 0 1]) 

Minimum value: Emin = 241 GPa. (hkl= [0.67 0.37 -0.64]) 

The anisotropy, which is the ratio of the maximum and minimum value is 1.63. 

Figure S3 provides a visualisation of the anisotropy in elastic modulus (E). 

 

Figure S3: Visualisation of variation in elastic modulus for chromium oxide.  

 

F. Effect of geometric irregularities evaluated using FEM  

Effect of the presence of features such as stress concentrations and porosity in the oxide scale 

on its stiffness was investigated with the help of elastic FE models. Some extreme cases were 

chosen in order to demonstrate how much variations in stiffness are caused by notches, bumps 

and porosities. The following procedure was used in each case evaluated:  

• A geometry was generated based on the situation considered, such as presence of 

notch or porosity. 

• A small force was applied the resulting displacement (&@) was measured. 

GPa 



• A reference cantilever was generated without any notches/porosity, where the height 

of the oxide part of the cantilever was calculated by keeping the projected area at the 

oxide part as constant (shown in Figure S4).  

• A similar procedure was followed on the reference cantilever as well, in order to 

obtained the displacement (&ABC). 

• The effect of the notch on stiffness ratio is calculated as &ABC/&@ 

Note that only the surface roughness was considered when calculating the equivalent 

reference area. The porosity was neglected in order to obtain stiffness ratios corresponding to 

those that would be measured experimentally, since pores were not accounted for when 

estimating the average thicknesses in Tables S1 and S2, and in the case of internal porosity it 

would not be known. The different cases considered are presented in Table S5, showing 

stiffness reductions in the order of 15–48 %. Although the extreme case is unlikely in practice 

the results show that significant geometrical effects on the deduced elastic moduli can be 

expected. 

 

Figure S4: Illustration of how reference cantilever height is calculated.   

 

 



Table S5: Different cases considered for FEM. The stress scale shown for the first case is 

common for all cases. 

Case Description EFGH/EI 

 

 

Notch at support of cantilever.  

Notch height – 0.6 µm and 

width 0.4 µm. 

Height of oxide part – 2µm  

href = 1.98 µm 

0.65 

 

Notch away from support.  

Notch height and width same as 

above.  

href = 1.96 µm 

0.68 

 

Bump at the support. 

Height – 0.6 µm total height - 2 

µm 

href = 1.62 µm 

0.85 

 

Notch at support and pore 

below.  

Notch is same size as above 

cases.  

Pore - ellipse with semi axes 1 

and 0.3 µm. 

href = 1.67 µm 

0.52 



 

Same as above but pore is 

internal.  

Pore- ellipsoid with semi axes 

0.7, 1 and 0.3 µm.  

href = 1.98 µm 

0.64 

 

G. Analysis on redeposition layer  

Rough milling in FIB using high currents results in some redeposition on the surface of the 

oxide. In order to assess the presence of redeposition, A TEM lamella was prepared using FIB 

from a region near a milled micro-cantilever. High-resolution transmission electron 

microscopy (HRTEM) analysis was carried out in a FEI Titan 80-300 FEG TEM. High 

resolution imaging was performed in order to image the redeposition layer and assess its 

thickness as this layer would be amorphous, whereas the oxide grain would be crystalline.  

 

 

 



 

Figure S6: HRTEM image of chromium oxide layer with redeposition on top. The FFT is 

shown in inset for different layers.  

 

Figure S6 shows the HRTEM image highlighting the different regions in the area of interest.  

From the fast fourier transforms (FFT) shown for different layers, it can be seen that the 

redeposition layer is amorphous and has a thickness of about 20 nm. Chemical analysis was 

done in the form of an energy dispersive X-Ray spectroscopy (EDX) line scan. Figure S7 

shows the results of the EDX analysis, where it can be seen that the redeposition layer has a 

chemical composition similar to the oxide, which is expected since the redeposited material 

consists of the oxide and metal particles. The redeposition layer shows the presence of 

gallium in addition to chromium and oxygen, which also aids in highlighting the redeposited 

region.   



 

Figure S7: (a) High angle annular dark field (HAADF) scanning transmission electron 

microscopy (STEM) image of oxide layer with different regions highlighted; (b) results of 

EDX line scan from the black line shown in (a).  
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