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Abstract 

Bioethanol fermentations expose yeasts to a new, complex and challenging fermentation medium with  

specific inhibitors and sugar mixtures depending on the type of carbon source. It is therefore suggested 

that the natural diversity of yeasts should be further exploited in order to find yeasts with good ethanol 

yield in stressed fermentation media. In this study, we screened more than 50 yeast isolates of which 

we selected 5 isolates with promising features. The species Candida bombi, Wickerhamomyces 

anomalus and Torulaspora delbrueckii showed better osmo- and hydroxymethylfurfural tolerance than 

Saccharomyces cerevisiae. However, S. cerevisiae isolates had the highest ethanol yield in 

fermentation experiments mimicking high gravity fermentations (25% glucose) and artificial 

lignocellulose hydrolysates (with a myriad of inhibitors). Interestingly, among two tested S. cerevisiae 

strains, a wild strain isolated from an oak tree performed better than Ethanol Red,  a S. cerevisiae 

strain which is currently commonly used in industrial bioethanol fermentations. Additionally, a W. 

anomalus strain isolated from sugar beet thick juice was found to have a comparable ethanol yield, but 

needed longer fermentation time. Other non-Saccharomyces yeasts yielded lower ethanol amounts.  

Introduction 

In order to shift away from a petroleum-based energy source the European Union wants to establish 

the use of waste organic biomass as a renewable energy source. Currently used (so-called “first 

generation”) organic biomass sources are regular feedstocks with high sugar content (such as wheat, 

maize, sugar cane or beet) [34]. Whereas these sources might be suitable for high-end, but low 

quantity products, their role in bulk production of chemicals such as bioethanol is debated as they are 

competitive with food production. Indeed, it can cause an increase of the food price due to direct 

competition with the foodstock or through competition with agricultural land [7, 15]. Lignocellulosic 

biomass has therefore received increasing attention as an alternative for food energy crops. It is a 

renewable source originating from plant material, widely available and relatively inexpensive and can 

be non-competitive with food production [14]. 
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The improved use of these types of biomass for bioethanol production yields some hurdles to be 

tackled. Very high gravity fermentations using first generation biomass [3] imply a high osmotic stress 

due to high sugar concentrations and high ethanol stress due to ethanol production during 

fermentation. Main added-value characteristics for bioethanol production strains are therefore high 

osmo- and ethanol tolerance.  Lignocellulosic biomass is a more diverse and complex biomass 

compared to first generation biomass. It mainly consists of the sugar polymers cellulose and 

hemicellulose and the phenolic polymer lignin [18, 27, 29]. The cellulose fraction contains glucose 

monomers, while hemicellulose consists of a variety of C6 (mainly glucose) and C5 sugars (mainly 

xylose). These sugars are bound into the plant matrix and therefore need to be made available for 

fermentation by, for example, hydrolysis using acid or base at high temperature [22, 29, 37]. The 

liberated sugar concentration depends on the treatment type and intensity with high intensity 

treatments yielding higher sugar concentrations [37]. Typical total sugar concentrations vary between 

100 to 200 g l-1 with glucose concentrations about double of xylose concentrations [37]. While C6 

sugars are readily fermented to ethanol by conventional yeasts such as Saccharomyces cerevisiae, S. 

cerevisiae is unable to utilize xylose [4]. The fermentation of xylose, however, contributes to an 

economically viable second generation bioethanol. Xylose can be fermented by some other yeasts, 

bacteria or fungi although by-product formation or slow xylose conversion may limit their economic 

application for ethanol production [32, 34]. Recent research showed the potential of genetically 

engineering S. cerevisiae for the fermentation of xylose [10].  

However, these intense treatments to release sugars also result in the formation of several undesired 

compounds in concentrations which may reduce the fermentation efficiency [9, 14, 18, 20, 37]. Most 

common inhibitors are weak acids such as levulinic acid, formic acid, acetic acid, furans such as 5-

hydroxymethylfurfural (HMF) and furfural and phenolic compounds resulting from the lignin fraction 

such as vanillin [14, 21, 37]. Typical concentrations of these compounds in hydrolysates are very 

variable as these are dependent on the biomass source, as well as the treatment procedure and intensity 

[37].  
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Due to the experience using S. cerevisiae in other industrial fermentations and the large amount of 

knowledge that has been gathered this species is also the first choice for bioethanol production [5]. It 

is especially useful in first generation bioethanol production due to its high ethanol yield and ethanol 

tolerance [38]. However, as outlined above, the fermentation environment in second generation 

bioethanol production differs greatly from any previous fermentation. In addition, due to large 

diversity of biomass sources and hydrolysis techniques and the concomitant diversity of the resulting 

hydrolysate mixture composition, it is required to align the hydrolysate with a yeast with the ideal 

characteristics. Therefore the natural diversity of yeasts should be further exploited in order to find 

yeasts with good ethanol yield in a fermentation medium containing high concentrations of glucose, 

containing a mixture of sugars such as glucose and xylose and/or a myriad of inhibitors. Surprisingly, 

so far only little is known on the relative ethanol yield of especially non-Saccharomyces yeasts under 

these conditions compared to S. cerevisiae. 

In this study we examined several yeast species belonging to Candida, Starmerella, Metchnikowia, 

Pichia, Hanseniaspora, Torulaspora, Wickerhamomyces and Citeromyces which have been isolated 

from soil or sugar-rich habitats (floral nectar or sugar beet thick juice) for tolerance to inhibitors. 

Floral nectar and sugar beet thick juice are known for their low water activity (aw less than 0.9) due to 

high sugar concentrations and typically contain a limited number of specialized, xerotolerant yeasts 

[26]. In addition, nectar is also known for its diverse sugar composition [31]. In contrast to these 

sugar-rich habitats, soil contains a wide variety of different microorganisms. First, a large culture 

collection was screened for tolerance to osmotic stress, ethanol and HMF. Subsequently, tolerance to 

weak acids and furfural was examined on a selection of tolerant strains. Finally, 1.1 l fermentation 

experiments with 25% glucose and experiments mimicking lignocellulosic hydrolysates were 

performed using the most promising strains and ethanol yield was recorded. 
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Materials and Methods 

Culture collection 

A culture collection was constructed consisting of 56 yeast strains previously isolated from soil, plant 

nectar and sugar beet thick juice, i.e. an intermediate product from beet sugar production (Table 1) 

[17, 19]. Except for soil, these habitats are known to be low in microbial diversity due to high osmotic 

stress. In total, 39  nectar  isolates were included in this study, representing isolates from Candida 

bombi (14 isolates), Hanseniaspora uvarum (5), Metchnikowia reukauffii (11) and Starmerella 

bombicola (9). C. bombi and M. reukauffii were isolated from nectar of the same flower [17]. Further, 

the collection consisted of 12 isolates from beet sugar thick juice, representing isolates of Citeromyces 

matritensis (5), Torulaspora delbrueckii (3) and Wickerhamomyces anomalus (4) . From soil one 

Pichia kudriavzevii isolate, one T. delbrueckii isolate and three Metchnikowia pulcherrima were 

included. Identifications were based on sequence analysis of the D1/D2 region of the large ribosomal 

subunit after PCR on the DNA extract [25] using primers NL1 and NL4 [24]. PCR conditions were as 

follows: 2 min at 94 °C, 35 cycli of 45 s at 94 °C, 45 s at 55 °C and 45 s at 72 °C, followed by 10 min 

at 72 °C using Titanium Taq ((Clontech Laboratories, USA). Identification was performed by BLAST 

analysis in GenBank. To evaluate the phenotypic profile of these isolates in bioethanol production, a 

commercial S. cerevisiae strain currently used in bioethanol fermentation (Ethanol Red) and a ‘wild’ 

strain from oak (SCOak50) were used as a reference. All strains were stored in Yeast extract Peptone 

Dextrose (YPD) broth containing 25% glycerol  at -80 °C. 

Phenotypic profiling  

First, the whole culture collection was screened on solid agar plates for a number of desirable traits, 

including osmotolerance (glucose 40-70 % w/v), ethanol tolerance (5-15 % v/v) and HMF tolerance 

(2-7 g l-1) as described by Mukherjee et al. [28]. Briefly, a basic growth medium (control medium) was 

prepared using bacto peptone 2% w/v (BD), yeast extract 1% w/v (LabM),  glucose 2% w/v and agar 

1.5% w/v (Invitrogen) . Further, test media were prepared containing the same basic composition as 

the control medium, but supplemented with the test compounds. Agar plates were prepared using 
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Singer PlusPlates designed for use with the Singer ROTOR HDA robot (Singer Instruments, UK). 

Next, the 96-well plate containing the strains stored at -80 °C was thawed, spotted using the HDA 

robot on control medium containing 2% glucose and incubated at 30 °C for 2 days. Next, a 96-well 

plate containing 150 µl of liquid control medium in each well was inoculated with the strains using the 

robot and incubated overnight at 30 °C at 900 rpm for preculturing. In case of screening for ethanol 

tolerance, strains were precultured for 48 h in liquid control medium with 2% v/v ethanol for 

preconditioning. Then, optical density at 600nm (OD600) was measured using a microplate reader 

(Molecular Devices, USA) and  the cell density was manually adjusted to OD600≈0.2. This plate was 

used as the source plate for spotting the test plates with the HDA rotor. After 5 days of incubation at 

30 °C all test plates were scanned using a high definition scanner (Seiko Epson, Japan) and processed 

using ImageJ [1], combined with the ScreenMill software [11] especially developed to quantify the 

colony size of each isolate on the plates. Relative growth was calculated as the growth at a certain test 

condition relative to the growth on the control medium. Growth under a test condition is only 

considered when the relative growth exceeds 5% of the growth on the control medium. 

In a second phase, the most promising strains (i.e. strains with good ethanol and HMF tolerance) were 

further evaluated for their growth in 2% w/v xylose liquid yeast extract bactopeptone (YP) medium. 

Growth in 2% xylose medium was evaluated by measuring the OD after 24 h of incubation at 30 °C in 

comparison  with their growth in liquid medium containing 2% glucose. Additionally, tolerance to 

weak acids and furfural, both important inhibitors related to lignocellulosic hydrolysates was assessed. 

The assay was conducted in liquid medium using the OmniLog incubator/reader (Biolog, USA) which 

records color development due to metabolic activity. The assay was adapted from the general protocol 

as supplied by the manufacturer (Biolog, USA). The assay was performed in a 96-well plate in a total 

volume of 120 µl growth medium, consisting of yeast extract (10g l-1), bacto peptone (20 g l-1), 6% 

w/v glucose and Biolog dye D (0.5x tetrazolium redox dye) [13, 35]. Inhibitors were added at a 

concentration ranging from 10 to 40 mM for acetic acid (0.625-2.5 g l-1) and from 5 to 20 mM for 

furfural (0.48-1.92 g l-1), vanillin (0.76-3.04), formic acid (0.13-0.5 g l-1) and levulinic acid (0.58-2.3 g 

l-1).  Prior to inoculation isolates were overnight pregrown on solid YPD agar and suspended in sterile 
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demineralized water to an OD600 of 0.2. Next, 125 µl was added to 3 ml sterile water of which then 90 

µl was used as inoculum. The plates were incubated in the OmniLog instrument at 30 °C and the color 

development (due to the production of formazan from tetrazolium) at 36 h was recorded. Tolerance 

values were expressed relative to the growth without any inhibitors. 

Fermentation potential of selected isolates in high gravity and lignocellulosic medium 

Finally, these most promising isolates (one isolate from M. pulcherrima, P. kudriavzevii, T. 

delbrueckii, W. anomalus)  were subjected to small scale fermentations (1.1 l) to estimate their ability 

to produce ethanol under high gravity (25% glucose) and lignocellulosic hydrolysate stress. As a 

reference the S. cerevisiae strains Ethanol Red and SCoak50 were included. Both strains had 

previously been shown to have an excellent tolerance profile (Table 1) [28]. Isolates were precultured 

overnight in 5 ml YP medium containing 2% glucose, followed by inoculation in  300 ml YP medium 

containing 10% glucose and incubation at 30 °C, 150 rpm for 2 days until stationary phase. Next, 

OD600 was measured and a volume of it was harvested by centrifugation (5 minutes at 3000 rpm) that 

represented OD600≈2.1 and OD600≈1.5 in 1.1 l high gravity and lignocellulosic hydrolysate stress 

fermentation medium, respectively. The latter fermentation medium consisted of 4.8% w/v glucose, 

6.2% w/v xylose, 0.5% w/v mannose, 0.5% w/v galactose and 0.5% w/v arabinose and an inhibitor 

concentration of 1.24 g l-1 HMF, 0.4 g l-1 furfural, 2.3 g l-1 acetic acid, 0.44 g l-1 formic acid, 0.87 g l-1 

levulinic acid and 0.04 g l-1 vanillin as described by Koppram et al. [21]. Concentrations are within the 

range tested in the liquid assay test. Batch fermentations were carried out using Eppendorf BioFlo 

reactors at a pH of 4.5, 30 °C, 300 rpm and saturated with air at the start of the fermentation. After the 

start of the fermentation dissolved oxygen was not further controlled and dropped quickly due to 

fermentation activity. During the fermentation OD600 was measured frequently and 1 ml samples of the 

fermentation medium were taken, centrifuged and concentrations of ethanol, glucose and xylose in the 

supernatant were quantified using high performance liquid chromatography (HPLC) (Waters® 

isocratic BreezeTM  HPLC, ion exchange column WAT010290). Column temperature was maintained 

at 75 °C, and 5 mM H2SO4 was used as eluent with a flow rate of 1 ml min-1. A refractive index 

detector (Waters 2410, Waters, Milford, MA, USA) was used to detect the compounds of interest. 
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Results 

Tolerance differences between yeast species of different genera 

In general, the non-Saccharomyces cerevisiae isolates were more tolerant to high glucose 

concentrations (>55%) than the two selected S. cerevisiae reference isolates (Table 1). These were 

previously shown to be among the top 20 most osmotolerant isolates from a collection of 280 S. 

cerevisiae isolates [28]. Among the isolates from nectar, Candida bombi isolates showed the highest 

tolerance to glucose with an average relative growth (relative to the growth on 2% glucose)  of 23% at 

a concentration of 55% glucose, and 24% at both 60 and 70% glucose. None of the nectar isolates 

from other genera, even when isolated from the same type of plant nectar, managed to grow at this 

concentration.  Second best among the nectar yeasts was Starmerella bombicola with 24% relative 

growth at 55% glucose, 18% at 60% glucose, but none of the isolates did grow at 70% glucose (Table 

1). Among the isolates from sugar beet thick juice, all isolates of Citeromyces matritensis managed to 

grow up to 60% glucose (25% relative growth), and three out of five isolates showed minor growth at 

70% glucose. In contrast, the maximal glucose concentration at which isolates of Wickerhamomyces 

anomalus and Torulaspora delbrueckii isolates could grow was 55% (28% and 29% relative growth, 

respectively, Table 1). Pichia kudriavzevii (soil) and Hanseniaspora uvarum (nectar), represented the 

least glucose-tolerant non-Saccharomyces species, and were able to grow up to 48% and 50% glucose, 

respectively (Table 1). As expected, S. cerevisiae strains were most tolerant to ethanol, tolerating 13% 

(SCOak50) and 14% (Ethanol Red) ethanol. P. kudriavzevii isolated from soil was tolerant to 13% 

ethanol (Table 1). Non-Saccharomyces cerevisiae isolates showed considerable lower ethanol 

tolerance up to only 11% v/v, with M. reukauffi, M. pulcherrima and H. uvarum showing no growth 

from 7% v/v ethanol onwards. At 10% and 11% ethanol only W. anomalus (18% relative growth) and 

1 T. delbrueckii isolate (5%), all isolated from thick juice, were able to grow (Table 1). C. bombi  and 

P. kudriavzevii isolates were the most tolerant to HMF as 42 and 39% relative growth was recorded at 

7 g l-1 HMF, respectively. Other isolates did not manage to grow at this concentration, except for S. 

cerevisiae SCOak50 (Table 1).  
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Table 1: Average relative growth (relative to the growth on 2% glucose)(a) of different species on agar plates containing increasing concentrations of glucose, ethanol(b) and 5-
hydroxymethylfurfural with the standard error in brackets(c). The number of isolates incorporated in the screening (#) as well as the isolation source are given. 

  
 Glucose (% w/v) Ethanol (% v/v) 5-hydroxymethylfurfural (g l-1) 

Species # Source 40 46 48 50 55 60 70 5 7 10 11 12 2 3 4 5 6 7 

Candida bombi 14 Nectar 62 (3) 47 (2) 41 (2) 35 (2) 23 (1) 24 (1) 24 (2) 52 (3) 27 (2) 0 0 0 98 (4) 108 (3) 108 (3) 87 (4) 68 (4) 
51 

(3) 

Hanseniaspora 

uvarum 
5 Nectar 27 (1) 19 (0.4) 11 (2) 8 (1) 0 0 0 18 (3) 0 0 0 0 47 (1) 13 (2) 12 (2) 0 0 0 

Metchnikowia 

reukauffii 
11 Nectar 31 (1) 28 (2) 23 (1) 17 (1) 10 (1) 7 (1)* 0 0 0 0 0 0 49 (6) 17 (8) 17 (6) 0 0 0 

Starmerella 

bombicola 
9 Nectar 58 (1) 50 (2) 43 (1) 35 (1) 24 (1) 18 (1) 0 18 (2) 11 (2) 0 0 0 79 (6) 66 (10) 62 (9) 25 (8)* 39 (2) 0 

Metchnikowia 

pulcherrima 
2 Soil 75 (1) 46 (2) 46 (3) 36 (5) 37 (2) 19 (4) 9 15 (3) 0 0 0 0 

125 

(13) 

125 

(23) 

132 

(31) 
13 (0) 0 0 

Pichia kudriavzevii 1 Soil 114 14 9 0 0 0 0 116 120 85 64 42 78 70 71 57 46 39 

Citeromyces 

matritensis 
5 

Thick 

juice 
76 (3) 43 (4) 67 (4) 51 (5) 36 (4) 25 (3) 

12 

(2)* 

26 

(3)* 
19 0 0 0 12 (2)* 0 0 0 0 0 

Torulaspora 

delbrueckii 
4 

Thick 

juice (3) 
87 (31) 39 (2) 45 (2) 22 (7) 29 (3) 6 (1)* 0 57 (5) 36 (4) 19 5 0 

45 

(16)* 

46 

(12)* 

30 

(14)* 
22 8 0 

Wickerhamomyces 

anomalus 
4 

Thick 

juice 
161 (37) 45 (10) 

45 

(10) 
28 (6) 28 (4) 0 0 

80 

(10) 
59 (7) 

32 

(4) 

18 

(4) 
0 86 (14) 74 (16) 69 (15) 24 (9) 

11 

(4)* 
0 

S. cerevisiae (EtOH 

Red) 
1 

Bio-

ethanol 
42 42 24 15 0 0 0 101 102 85 81 73 138 129 129 33 0 0 

S. cerevisiae 

(SCOak50) 
1 oak 39 44 25 17 0 0 0 94 95 79 73 60 86 75 87 86 38 15 

(a) Underlined values: 1 isolate did not grow and was not taken into account; * two isolates did not grow; Bold and underlined values: more than 50% of the isolates did not grow 

(b)  Ethanol tolerance was also screened above 12% ethanol. For 13% ethanol only P. kudriavzevii (14% growth) and both S. cerevisiae strains (33% on average) could grow. Only S. cerevisiae 
from bioethanol could grow on 14% ethanol (22%) 

(c) No standard errors are given in cases when only 1 isolate is involved or when none of the isolates grew 
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Table 2: Growth on 2% glucose (colony area, mm2), growth on 2% xylose (%, relative to growth on 2% glucose) and tolerance to glucose, ethanol and HMF (%, relative to growth on 2% glucose 
without inhibitors) and tolerance to weak acids, furfural and vanillin (%, relative to metabolic activity in 6% glucose medium) of the best performing isolates of 5 genera. 

Strain Species 
Isolation 

source 
Glucose (% w/v) 

Xylose 

(% w/v) 
Ethanol (%v/v) HMF (g l-1) 

Acetic 

acid (g l-1) 

Formic 

acid (g l-1) 

Levulinic 

acid (g l-1) 

Furfural 

(g l-1) 

Vanillin 

(g l-1) 

   
2 46 55 60 70 2 5 11 12 4 5 7 2.5  0.5 2.3 1.44 0.76 

Ethanol Red 
Saccharomyces 

cerevisiae 
Bioethanol 742 42 0 0 0 3.5 101 81 73 129 33 0 94 89 94 6 86 

SCOak50 
Saccharomyces 

cerevisiae 
Oak 707 44 0 0 0 9 94 73 60 87 86 15 106 105 125 9 88 

ST1312/239 MP 
Metchnikowia 

pulcherrima 
Soil 654 43 34 21 9 25 10 0 0 170 0 0 110 83 90 0 30 

ST1312/061 PA G2 
Wickerhamomyces 

anomalus 
Thick juice 1127 25 19 0 0 24 73 22 0 61 30 0 89 94 89 0 99 

ST1312/167 TD 
Torulaspora 

delbrueckii 
Thick juice 1465 39 24 0 0 35 70 5 0 56 22 1 89 94 83 43 53 

ST1312/230 PK 
Pichia 

kudriavzevii 
Soil 1615 14 0 0 0 43 116 64 42 71 57 39 130 114 121 36 55 
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However, at a more relevant HMF concentration of 4 g l-1 15 isolates did not manage to grow, i.e. all 

C. matritensis isolates, 7 M. reukauffii isolates and 1 C. bombi, H. uvarum and T. delbrueckii. All W. 

anomalus (69%), M. pulcherrima and S. bombicola strains (62% growth) were able to grow (Table 1). 

M. reukauffii isolates showed variable tolerance, with four out of 11 isolates growing at 4 g l-1 HMF 

(17% growth), while the others did only grow up to 2 g l-1. Surprisingly, while the two M. pulcherrima 

isolates from soil showed 132% growth at 4 g l-1, one did not grow at higher concentrations and the 

other one only 13% at 5 g l-1 (Table1).  

Growth on xylose and tolerance to weak acids of selected yeast strains 

Due to their very low ethanol (less than 10% v/v ethanol) and/or HMF tolerance isolates of C. bombi, 

H. uvarum, S. bombicola, C. matritensis and M. reukauffii were abandoned for further experiments as 

they have not the appropriate features for bioethanol production. From the species W. anomalus, M. 

pulcherrima, T. delbrueckii and P. kudriavzevii we selected 1 strain with the largest tolerance to 

glucose, ethanol and HMF (Table 2), and also both reference S. cerevisiae isolates were included. 

Growth in xylose medium was slower for all tested isolates compared to growth in glucose medium. 

Non S. cerevisae isolates grew generally better on xylose than S. cerevisiae strains (<5%), especially 

W. anomalus PA G2, T. delbrueckii 167TD and P. kudriavzevii 230PK with growth >20% compared 

to growth in 2% glucose medium (Table 2). Tolerance to weak acids was good for all strains as at least 

80% relative metabolic activity was recorded at the highest tested concentrations for all tested weak 

acids (Table 2). T. delbrueckii 167TD and P. kudriavzevii 230PK showed highest tolerance to furfural, 

with recorded values  of  about 40% relative metabolic activity at 15 mM furfural (1.44 g l-1), while 

the other strains showed less than 10% activity. Nevertheless, at 5mM, only M.pulcherrima 230MP 

and T. delbrueckii 167TD, showed considerable decrease in activity (30% decrease). Both S. 

cerevisiae strains and W. anomalus 061P AG2 showed the best tolerance to vanillin with recorded 

values of 90-100% activity at 5 mM (0.76 g/l), respectively, while the other strains showed at least 

50% reduction (Table 2). No growth was recorded at 10 mM vanillin for any of the strains. 
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Bioethanol production under high gravity and lignocellulosic hydrolysate stress 

Ethanol yield was recorded in 25% glucose fermentation medium. It was observed that S. cerevisiae 

and W. anomalus PA G2 yielded the highest ethanol concentrations (g ethanol/g glucose), up to the 

theoretical maximum of 50% (Table 3) which corresponds to 14% v/v ethanol. The other yeast isolates 

yielded 26-38% ethanol corresponding to 9-12% v/v. Similar trends were observed for the 

lignocellulosic hydrolysate fermentations. There was no difference in ethanol yield in the presence and 

absence of inhibitors for all isolates, except for M. pulcherrima 230MP which did not yield any 

ethanol under inhibitor stress (Table 3). S. cerevisiae and W. anomalus PA G2 yielded the highest 

ethanol concentrations up to 61% of the total C6 sugars in the medium. Whereas both S. cerevisiae 

strains reached this value within 22 h (the first sampling point), W. anomalus PA G2 needed more 

time both in the absence (within 42h) and the presence (within 88h) of inhibitors (Table 3 and Fig. 1). 

At the time point with the maximal ethanol yield, about 10% of the xylose has been consumed by S. 

cerevisiae, probably because it was consumed for growth (Fig. 1, details not shown). W. anomalus PA 

G2 consumed 17% of the xylose in the absence of inhibitors and only 8% in the presence of inhibitors. 

The greatest decrease of xylose concentration was observed when glucose was still present and before 

the maximal ethanol yield was achieved (Fig. 1). 

Table 3: Maximal ethanol yield (%, g ethanol/g glucose) and the time (h) needed to reach this maximum for six 
selected yeast isolates in the presence of 25% glucose and the presence and absence of inhibitors(a) (with a 
mixture of 5.8% C6 and 6.7% C5 sugars) related to lignocellulosic hydrolysates. 

  High gravity  Lignocellulosic fermentation 

  25% glucose  Without 

inhibitors 

With inhibitors 

Isolate 

 

Species 

 Max. 
EtOH 
(%) 

Time 
(h) 

 Max. 
EtOH 
(%) 

Time 
(h) 

Max. 
EtOH 
(%) 

Time 
(h) 

EtOH Red  Saccharomyces cerevisiae  49 114  54 19 56 19 

SCOak50  Saccharomyces cerevisiae  50 52  62 22 61 22 
ST1312/239 

MP 
 

Metchnikowia pulcherrima 
 

38 119 
 

39 42 0 42 

ST1312/061 
PA G2 

 
Wickerhamomyces anomalus 

 
50 127 

 
55 41 59 88 

ST1312/167 
TD 

 
Torulaspora delbrueckii 

 
31 120 

 
42 42 42 42 

ST1312/230 
PK 

 
Pichia kudriavzevii 

 
26 138 

 
43 22 45 22 

(a) 1.24 g l-1 HMF, 0.4 g l-1 furfural, 2.3 g l-1 acetic acid, 0.44 g l-1 formic acid, 0.87 g l-1 levulinic acid and 0.04 g 

l-1 vanillin 
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Fig. 1: Consumption of glucose (circles) and xylose (triangles) and production of ethanol (squares) in the 
presence (black) and absence (grey) of inhibitors for S. cerevisiae Ethanol Red (left) and W. anomalus PAG2 
(right). Glucose and xylose values are relative to their respective values at the start of the fermentation, ethanol 
values are relative to the total C6 sugar content at the start. In case of Ethanol Red (left) the decrease of glucose 
is identical in the presence and absence of inhibitors and only the curve in the absence is visualized. 
Theoretically, 51g ethanol can be obtained from 100g C6 sugars (51%). The inhibitors concentrations are 1.24 g 
l-1 HMF, 0.4 g l-1 furfural, 2.3 g l-1 acetic acid, 0.44 g l-1 formic acid, 0.87 g l-1 levulinic acid and 0.04 g l-1 
vanillin. 

Discussion 

Currently, S. cerevisiae is the organism of choice for fermentation processes producing ethanol [5]. 

However, bioethanol production from high sugar concentration feedstocks (such as maize, sugar beet) 

and lignocellulosic hydrolysates confronts the yeast with new challenges which were previously not 

encountered in any of the known fermentations [29, 38]. These include high ethanol tolerance and 

osmotolerance in case of high sugar feedstocks and tolerance to osmotic stress and a myriad of 

inhibitors in case of lignocellulosic hydrolysates. Also, the fermentation of xylose which cannot be 

performed by non-genetically engineered S. cerevisiae is important in the latter case. Exploiting the 

natural diversity of yeasts might expand the yeast strain repertoire with suitable characteristics for 

bioethanol fermentation. Some studies previously investigated the potential of non-S. cerevisiae 

yeasts. Huang et al. [16] and Cho et al. [8] showed that Scheffersomyces stipitis, a xylose fermenting 

yeast, had a poor growth rate when inhibitors were present. Blomqvist et al. [6] studied a Dekkera 

bruxellensis strain with better tolerance to inhibitors compared to a S. cerevisiae strain, and both 

strains had a comparable ethanol yield. Delgenes et al. [9] compared the effects of inhibitors on 
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ethanol production by S. cerevisiae, Zymomonas mobilis, Pichia stipitis and Candida sheatae. Zha et 

al. [36] isolated Wickerhamomyces anomalus strains from grass silage that were tolerant to inhibitors. 

In this study we investigated yeasts isolated from a less commonly studied habitat, i.e. plant nectar and 

sugar beet thick juice (an intermediate product of sugar production stored in tanks) for their potential 

to tolerate osmostress, ethanol and HMF as lignocellulosic hydrolysate inhibitor and for their 

fermentation capacity. Nectar and sugar beet thick juice are known to house several yeast species 

which are less commonly isolated from typical habitats such as water or soil [2, 26]. In addition, these 

environments are rather distinct from typical habitats as they contain high concentrations of sugars 

and/or a myriad of different sugars [12, 26] and are therefore microbially less diverse compared to 

other environmental habitats.  

Our results, as summarized in Table 1, showed that Metchnikowia reukauffii, Hanseniaspora uvarum 

and Starmerella bombicola isolates, isolated from nectar, showed poor characteristics for bioethanol 

fermentation, even for low sugar feedstocks, due to a low ethanol tolerance with growth being 

severely impaired from 5% v/v onwards. Also Citeromyces matritensis isolates isolated from sugar 

beet thick juice showed poor ethanol tolerance. Also, the low HMF tolerance of these four species 

would impede their use in the fermentation of lignocellulosic hydrolysates. Candida bombi isolates 

from nectar, however, showed a very good osmotolerance (up to 70%) and HMF tolerance (up to 7 g l-

1). However, its low ethanol tolerance might impede its use in bioethanol fermentation of first 

generation and even of lignocellulosic hydrolysates as ethanol concentrations of 5% are readily 

obtained during fermentation. Similar conclusions can be drawn for three out of four Torulaspora 

delbrueckii isolates, however, they have a lower tolerance to HMF than C. bombi. One T. delbrueckii 

showed better ethanol and HMF tolerance and was therefore selected for further experiment. The most 

promising species is Wickerhamomyces anomalus. Although its osmotolerance and HMF tolerance to 

high concentrations is generally lower than C. bombi isolates, it is still good at relevant concentrations 

for bioethanol production. In addition, ethanol tolerance is much better than C. bombi with growth still 

recorded up to 11% ethanol. W. anomalus isolate PA G2 also performed best on xylose (Table 2). This 

suggests that W. anomalus might be interesting for the fermentation of xylose in lignocellulosic 

hydrolysates. Zha et al. [36] previously identified W. anomalus isolates as good candidates for 
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lignocellulosic hydrolysate fermentation as they showed good resistance to HMF and other inhibitors 

and growth on xylose as carbon source. In addition, W. anomalus might be an interesting species in 

unsterile fermentations due to its killer activity and biocontrol activity which outcompetes other 

microorganism during fermentation, such as lactic acid bacteria or other yeasts [30]. 

 Next to tolerance to fermentation inhibitors ethanol yield is also an important parameter. Therefore, 

we conducted fermentation experiments under controlled conditions using Bioflo bioreactors and 

measured glucose, xylose and ethanol during the course of the experiment. A high sugar medium 

containing 25% glucose and an artificial lignocellulosic hydrolysate medium was used to test 4 strains 

selected based on their tolerance. Two S. cerevisiae strains were included as reference, since this 

species is known for its excellent ethanol yield [33]. One strain is used as industrial bioethanol strain, 

the other strain is a natural strain isolated from oak and not domesticated for use in fermentation 

processes. The concentrations of the individual inhibitors in the lignocellulosic hydrolysate medium 

were similar to the concentrations tested in the liquid assay that not impaired metabolic activity. Our 

results confirmed the excellent ethanol yield of S. cerevisiae compared to other species (Table 3). Both 

strains yielded an ethanol concentration close to the theoretically maximal yield based on C6 sugars 

(51%), while the ethanol yield for the selected M. pulcherrima, T. delbrueckii and P. kudriavzevii 

strains ranged from 26-38%. The selected W. anomalus strain also yielded 50% ethanol per g glucose. 

This is in agreement with the study of Passoth et al. [30] that showed that W. anomalus has a good 

ethanol yield. Both S. cerevisiae and W. anomalus also showed good ethanol tolerance during these 

fermentation (up to 14%v/v ethanol), which is essential in high gravity fermentation. Similar trends 

were observed in the lignocellulosic hydrolysate medium without inhibitors containing about 20% 

total sugars. Except for M. pulcherrima which yielded no ethanol in the presence of inhibitors, no 

effect of the presence of inhibitors on the ethanol yield was observed for any of the strains. Both S. 

cerevisiae strains performed equally good with the oak derived strain even more tolerant to HMF, 

showing that good bioethanol production strains for both first and second generation biomass might be 

omnipresent in nature. In contrast to the 25% glucose fermentation, ethanol yield was above the 

theoretical value of 51%. Conversion of inhibitors to ethanol is unlikely explaining this, because this is 

also observed in the absence of inhibitors. Conversion of C5 sugars to ethanol might explain this, 
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however, this is not expected for S. cerevisiae that also showed increased ethanol yield. The ethanol 

yield of the W. anomalus strain was similar to that of both S. cerevisiae strains, however, the presence 

of inhibitors decreased the rate of ethanol production. This shows that W. anomalus might be 

interesting as bioethanol production strain for lignocellulosic hydrolysates if it is able to ferment 

xylose to ethanol. However, when pregrown on glucose it was shown that xylose was consumed along 

with glucose consumption, but once glucose was depleted xylose consumption decreased. This 

interrupted xylose consumption of W. anomalus was also observed by Zha et al. [36] and Kurtzman 

[23] and was contributed to the lack of oxygen present. This might suggest that xylose was not 

converted to ethanol during the first stage either, but rather used for aerobic growth. Indeed, the 

ethanol yield based on C6 sugars was similar to both S. cerevisiae strains which do not ferment xylose. 

Pregrowth of W. anomalus on 10% xylose did not make any difference in ethanol production and 

xylose or glucose consumption during fermentation compared to pregrowth on 10% glucose (data not 

shown). Similar ethanol yields were obtained and only 10% of xylose was consumed. 
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Figure caption 

Fig. 1 Consumption of glucose (circles) and xylose (triangles) and production of ethanol (squares) in 

the presence (black) and absence (grey) of inhibitors for S. cerevisiae Ethanol Red (left) and W. 

anomalus PAG2 (right). Glucose and xylose values are relative to their respective values at the start of 

the fermentation, ethanol values are relative to the total C6 sugar content at the start. In case of 

Ethanol Red (left) the decrease of glucose is identical in the presence and absence of inhibitors and 

only the curve in the absence is visualized. Theoretically, 51g ethanol can be obtained from 100g C6 

sugars (51%). The inhibitors concentrations are 1.24 g l-1 HMF, 0.4 g l-1 furfural, 2.3 g l-1 acetic acid, 

0.44 g l-1 formic acid, 0.87 g l-1 levulinic acid and 0.04 g l-1 vanillin. 
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