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Abstract
Durotaxis, the phenomena where cells migrate up a gradient in substrate stiffness,
remains poorly understood. It has been proposed that durotaxis results from the
reinforcement of focal adhesions on stiff substrates. In this paper we formulate a
mathematical model of single cell migration on elastic substrates with spatially vary-
ing stiffness. We develop a stochastic model where the cell moves by updating the
position of its adhesion sites at random times, and the rate of updates is determined
by the local stiffness of the substrate. We investigate two physiologically motivated
mechanisms of stiffness sensing. From the stochastic model of single cell migration
we derive a population level description in the form of a partial differential equation
for the time evolution of the density of cells. The equation is an advection–diffusion
equation, where the advective velocity is proportional to the stiffness gradient. The
model shows quantitative agreement with experimental results in which cells tend to
cluster when seeded on a matrix with periodically varying stiffness.

Keywords Cell migration · Durotaxis · Stochastic model · Jump process ·
Advection–diffusion equation

Mathematics Subject Classification 92C17

1 Introduction

Cell migration is a process of fundamental importance in a vast range of phenomena.
Examples include embryogenesis (Kurosaka and Kashina 2008), during which cells
migrate to particular regions to form the structure of an organism, or as part of an
immune response (Parkin and Cohen 2001), when macrophages and neutrophils crawl
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to infected sites, or as part of the wound healing process (Alberts et al. 2002). Another
example where cell migration is of great importance is in the growth and spread
of cancer (Wang et al. 2005; Yamaguchi et al. 2005), both in local invasion of the
surrounding tissue and in formation of metastases.

Two common mechanisms for cell locomotion are “swimming” and “crawling”.
Flaggelated cells such as certain bacteria move by rotating a flagella which act as a
propeller to drive them forward. A typical example is that of E. coli, and its motion
has been described as a “run and tumble” motion, where it alternates between two
phases (Berg et al. 1972). During the running phase it moves in a more or less straight
path, followed by a tumbling phase, where it re-orients itself with negligible change
in position. The second type of locomotion, crawling, is the process we will focus on
in this study. It is a complex phenomena which is often described as a cyclic process,
consisting of four distinct phases (Kurosaka and Kashina 2008). The first phase is
the polarization phase during which the cell defines its front end. The second is the
protrusion phase, in which the cytoskeleton changes shape by extending a protrusion
at the leading edge. The third phase is the attachment phase during which it adheres
to the substrate on which it is crawling. The last phase is the retraction phase, where
the cell pulls itself forward (Alberts et al. 2002; Kurosaka and Kashina 2008), and the
trailing edge retracts.

Cell migration that occurs in the human body depends heavily on the properties of
themicroenvironment, in particular its mechanical properties, and has been the subject
of extensive research. The extracellular matrix (ECM) making up the microenviron-
ment is a complex fiber network which is made up of proteoglycans and fibrous
proteins, mainly collagens, elastins, fibronectins and liminins (Frantz et al. 2010). It
functions as a scaffolding for cells, and plays an important role in proliferation, differ-
entiation and survival of cells (Keogh et al. 2010; Murphy et al. 2012). Abnormalities
in the ECM can cause a range of syndromes such as osteogenesis imperfecta and
Marfan’s syndrome (Järveläinen et al. 2009). Important properties of the ECM related
to cell migration include fiber density (Kaufman et al. 2005; Sander 2014), fiber ori-
entation which can give rise to contact guidance (Schwarz and Bischofs 2005) and
cell-substrate adhesiveness which can induce haptotaxis (Carter 1967). In this article
we are interested in the impact of ECM elasticity on cell migration, in particular the
phenomena known as durotaxis, where cells tend to move towards regions of higher
ECM stiffness.

1.1 Durotaxis

Durotaxis was first observed in 2000 by Lo et al. (2000), and has since been observed
repeatedly, for different cell types such as fibroblasts (Kuboki et al. 2014), vascular
smooth muscle cells (Isenberg et al. 2009), endothelial cells, malignant mammary
adenocarcinoma cells (Joaquin et al. 2016), on substrates with different mechanical
properties. In the experiment performed by Lo et al. fibroblasts were cultured on a
flexible polyacrylamide sheet coated with type I collagen. The sheet consisted of two
regions of different rigidity, and cells were approaching the boundary from the soft
and from the rigid side. The cell density was low enough for cell–cell interactions to be
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negligible. The experiment showed that when cells approached the boundary from the
soft side, theymoved across it into the stiffer region, whereas when they came from the
stiffer side the protrusion crossing into the softer side stopped and cells did not cross
the boundary. When there is a difference in compliance and the cell exerts forces on
the substrate, mass is being pulled toward the stiffer side. However, the authors argue
that the skewed mass distribution is not sufficient to explain the phenomena, because
the displacements are too small. Instead they proposed that the mechanism is due to
cells sensing small changes in stress and strain in the substrate, which is translated
into increased traction forces causing a bias in movement direction.

1.1.1 Previous models of cell migration

Mathematical modelling has been used to study a range of different interactions
between cells and their microenvironment. Some models focus on the subcellular
processes such as dynamics of protrusions and stress fibers, and formation of focal
adhesions (Harland et al. 2011; Kim et al. 2012, 2015). At a larger spatial scale, the
entities of interest are often individual cells and individual fibers, such as in the model
of Schlüter et al. (2012). They developed an individual-based model where cells exert
forces on the ECM, and assumed that cells had the capacity to realign matrix fibers,
modelled as thin cylinders. Their results showed that the cells in their model had a
slight preference for stiffer regions. They also found that the cell speed was lower
on very stiff matrices. van Oers et al. (2014) developed a hybrid cellular Potts and
finite element computational model. The ECM was modelled as a linearly elastic and
isotropic medium, and cells were assumed to exert forces on the ECM so it deformed.
They also assumed that a strained ECM is stiffer along the orientation of strain than
perpendicular to it, a phenomenon known as strain stiffening. Their model also cap-
tured durotaxis through an additional term in the energy function, which accounted for
the increased probability of cell extension along local strain orientation, and reduced
the probability of retraction in that direction.

A mathematical model to investigate durotaxis was developed by Stefanoni et al.
(2011). They developed a 2D numerical model based on a modified version of the
Langevin equation, where the stochastic force depends on the local stiffness. The cell
is assumed to be able to probe the surrounding tissue and sense the local displacement.
The stiffest direction is the one where the displacement is smallest. A probability
distributionwas then constructed for the angular distribution so that the stochastic force
is more likely to point in the direction of higher stiffness. However, the stiffness only
impacts the angular distribution and not the radial distribution. The authors investigate
first the case of a homogeneous and isotropic substrate, where random motility is
recovered, and go on to the case of a biphasic domain similar to the one used in Lo et
al. and found good agreement with their results.

1.2 The role of adhesion dynamics in durotaxis

During the migration cycle, cells assemble and disassemble focal adhesions. A recent
study by Fusco et al. (2017) suggests that the lifetime of adhesion sites depends on the
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stiffness. The authors investigated the lifetime of focal adhesions on three different
substrates with elastic moduli of 30, 200 and 1000 kPa. The average lifetime were
shown to be about 6.5, 8 and 12 min respectively.

Joaquin et al. (2016) managed to create a 3D extracellular matrix with varying
stiffness, while keeping the other mechanical properties, such as fiber density and
protein concetration, constant. They investigate the relationship between substrate
stiffness and cell migration velocity, as well as the preference for cells to migrate
towards stiffer regions. Their study suggests that cell velocity is uncorrelated with
the absolute stiffness, but depends on the stiffness gradient. Their results support a
previously suggested theory by Plotnikov and Waterman (2013), which states that
there may be a stiffness-dependent mechanism by which focal adhesion sites become
reinforced, hence increasing their lifetime, which in turn could cause durotaxis.

A number of computational studies have investigated various aspects of adhesion
dynamics on cell migration. For example the model by Ziebert and Aranson (2013),
where they accounted for substrate stiffness on the dynamics of adhesion sites. Their
model consists of two continuum fields, one for the moving cell boundary and one
for the dynamics of the actin cytoskeleton. The dynamics of the number of adhesion
contacts is governed by a reaction–diffusion equation and depends on the orientation
of the actin cytoskeleton, substrate deformation, and accounts for excluded volume
interactions. One of their findings was that their model produced predictions that cells
tend to stay on a rigid region, when planted on a regionwith a discontinuity in stiffness.

Harland et al. (2011) developed amodel for sliding adhesion sites and formation and
contraction of stress fibers, to investigate the impact of substrate stiffness on durotaxis.
Their model showed that in the absence of a stiffness gradient, the expected drift of a
cell was zero. When using a linearly increasing elastic modulus, their model predicted
the cell drift to be proportional to the ratio of stiffness gradient to the square of the
absolute stiffness. They also found that for most stiffness gradients, there exist an
optimal stiffness for which the drift is maximized. They use two different assumptions
in their model. One is that the number of stress-fibers (and hence adhesion sites)
is constant, and that once a fiber contracts enough so its length is reduced below a
certain threshold, it is removed and replaced by a new fiber with random orientation.
The second assumption is that the formation of stress fibers is a stochastic process,
where the formation intensity is stiffness dependent.

Dallon et al. (2013b) introduced a 2Dmathematical model for single cell migration,
where the cell consists of a nucleus and a number of adhesion sites. The adhesion sites
connect to the nucleus through elastic springs, and can be attached or detached to the
substrate. Times for attachment and detachment are governed by a Poisson process.
When the adhesion site attaches it chooses its position at random. The new position
is chosen so that the distance from the cell nucleus is uniformly distributed between
10µm and 15µm, and the direction is chosen uniformly distributed between −π/2
and π/2 with probability 0.6, and between π/2 and 3π/2 with probability 0.4. They
find that the cell speed is mainly influenced by the mean attachment time, and less by
the mean detach time or the strength of the forces the cell exerts on the substrate.

In this work we aim to investigate the impact of stiffness-dependent adhesion life-
times on the motility of cells, in particular on durotaxis. We do not model subcellular
mechanisms, instead we use a model similar to the one introduced by Dallon et al.
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(2013b) to focus on the individual cell level, where a cell is assumed to consist of a
nucleus and fixed number of sites which adhere to the substrate. The adhesion sites
connect to the cell nucleus through elastic springs, and the cell moves by updating the
position of adhesion sites at random times. To investigate the importance of adhesion
lifetimes on durotaxis we assume that the rate at which an adhesion site updates its
position depends on the local stiffness of the substrate.

The paper is organized as follows. In Sect. 2 we introduce the mathematical frame-
work for modelling cell migration, in the form of a single-cell stochastic model. In
Sect. 3 we analyze the model and derive a macroscopic continuous description for the
time evolution of the cell density, and derive an advection–diffusion equation using a
diffusion scaling. We then compare the stochastic and deterministic models. To inves-
tigate the impact of adhesion lifetimes on directed cell migration, we use biologically
relevant parameters and compare our model predictions with experiments in Sect. 4.
We summarize our results and discuss their relevance in Sect. 5, as well as possible
extensions to our model.

2 Model formulation

Our mathematical model of a cell is a 1D model inspired by the model introduced by
Dallon et al. (2013b). In the original model a cell was assumed to consist of a nucleus
with position X and a number of adhesion sites at positions xi which could be either
attached or detached to the substrate. A functionΦi (t)was used to indicate if adhesion
site i is attached or not, taking value 1 if the site is attached, and 0 if it is detached.
The position of a cell X , which is the position of the nucleus, satisfied the following
equation derived from Newton’s second law of motion under the assumption that the
acceleration term can be ignored:

μ
dX

dt
= −

n∑

i=1

αi (||X − xi || − li )
X − xi

||X − xi ||Φi (t), (1)

where μ is a drag coefficient, αi the spring coefficient of site i , located at position xi .
The model also allows for varying rest lengths of the springs, li . In a later work by
Dallon et al. (2013a), they analyzed a simplified version of this model, by informally
considering the limit as the spring coefficients become very large. In that case the
nucleus reaches its equilibrium position instantaneously, which can be obtained by
setting dX/ dt = 0. In our model we make a number of additional assumptions.
We consider a cell in 1D with n adhesion sites, located at x1, x2, . . . , xn ∈ R. We
assume that adhesion sites have detach time 0, meaning that each time an adhesion
site detaches, it instantaneously attaches at a new randomly chosen position. At each
site we assume that the rest length li is zero, and that all spring coefficients are equal.
These assumptions together give the position of the cell nucleus as the center of mass
of the adhesion sites:

X = 1

n

n∑

i=1

xi . (2)
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Fig. 1 A cartoon figure of our mathematical representation of a cell migrating in 1D space

Each adhesion site updates its position independently,where thewaiting times between
updates are exponentially distributed. The new position of an adhesion site is gener-
ated from a normal distribution centered around the current position of the nucleus,
with variance σ 2. When an adhesion site updates its position, the nucleus is assumed
to change its position instantaneously. A cartoon figure of our mathematical represen-
tation of a cell is shown in Fig. 1.

To capture the notion that adhesion lifetimes are dependent on the stiffness of the
substrate we assume that cells move on an elastic substrate with elastic modulus given
by the function E = E(x) > 0, which is assumed to be at least twice continuously
differentiable. The elastic modulus determines the mean waiting time until the next
update of an adhesion site. For example, if site i is located at xi , the time until the
next update is exponentially distributed with rate parameter λi = G(E(xi )), where the
functional form ofG describes how the cells respond to the local stiffness E(xi ), which
will be discussed in Sect. 2.1. This means that the average lifetime of site i , located at
xi , is 1/λi . We do not consider the case where the substrate becomes deformed under
the force exerted by cells, but plan to investigate this in future work.

A stochastic simulation based on the Gillespie algorithm for the migration of a
single cell is given in Algorithm 1.

Algorithm 1 Stochastic simulation algorithm
1: Initialize: Choose initial positions of the adhesion sites xi ∈ R, i = 1, . . . , n. Set time t = 0 and define end-time tend .

Compute initial nucleus position through X = 1
n

∑
i xi .

2: while t < tend do
3: Compute λi = G(E(xi )) for each site i , and Λ = ∑

i λi
4: Compute time until next event τ ∼ Exp(Λ). Generate a uniform random number r ∼ U ([0, 1]).
5: for i = 1 : n do
6: If

λi−1
Λ

≤ r <
λi
Λ
, update position xi = N (X , σ2), of site i .

7: end for
8: Compute new nucleus position X = 1

n
∑

i xi
9: t = t + τ

10: end while

2.1 Stiffness sensing

We investigate two different phenomenologically derived principles for how the stiff-
ness impacts the lifetime of adhesion sites. Both are based on the hypothesis that cells
probe the stiffness of the substrate at each adhesion site. If the cell exerts a force at
each adhesion site, the site will experience a large displacement in regions where the
substrate is soft, and smaller displacements in more rigid regions. We assume that the
parameter governing the exponential waiting times is given by some basic rate β ≥ 0,
and a contribution which is proportional to the relative difference of the magnitudes
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of displacement at site i , ui , and the average magnitude of displacements at all other
sites ũ = 1

n−1

∑
j �=i |u j |, therefore we choose

λi = β + γ
|ui | − |ũ|∑

j |u j | . (3)

The nonnegative parameter γ ≥ 0 influences how much weight is given to the dis-
placement difference. If the displacement |ui | is large compared to the average at the
other sites, ũ, then the site updates more frequently. To compute ui we assume that
the mechanical behaviour of the substrate is that of a Hookean spring of rest length 0
and spring constant given by E , so that if the cell exerts a force of magnitude F , the
magnitude of the displacement is given by

|ui | =
∣∣∣∣

F

E(xi )

∣∣∣∣ .

In the case of constant stiffness E , we have λi = β for all i . Moreover, we assume that
the force exerted is the same at every adhesion site so the force term F can be factored
out and incorporated in the parameter γ . Therefore we simply write |ui | = 1/E(xi ).

The second principle of stiffness sensing we consider is similar but uses absolute
displacement instead of relative displacement, which takes the form

λi = β + γ (|ui | − |ũ|). (4)

We refer toEq. (3) as using the relative relationship, and (4) as the absolute relationship.
We will always choose parameters so that it is ensured that λi ≥ 0.

In the next section we derive a population level description in the form of a
partial differential equation (PDE), describing the time evolution of the density of
non-interacting cells.

3 Model analysis

We consider the density of cells q(X , t) at spatial position X ∈ R at time t ≥ 0. By
location of a cell we mean the location of its nucleus. Let the function fc(r | X) be
the conditional probability density function (pdf) for a cell making a jump of size r ,
when it is currently residing at position X , and assume that the waiting times between
adhesion site jumps are exponentially distributed. The density of cells at time t + Δt
is then given by

q(X , t + Δt) = e−ΛΔt q(X , t) + ΛΔte−ΛΔt
∫

R

q(X − r , t) fc(r | X − r) dr + O(Δt2), (5)

where Λ is the total rate parameter at which the cell nucleus changes position, and
is the sum of the individual rate parameters Λ = λ1 + · · · + λn . For both choices of

123



2296 A. A. Malik, P. Gerlee

λi given by (3) and (4), the total rate is Λ = nβ independent of spatial position. The
first term on the right hand side describe cells located at X at time t that did not jump
in the interval [t, t + Δt], and the integral-term correspond to cells being located at
X − r at time t , and performing a jump of size r . The term O(Δt2) describe the gain
and loss of density whenever a cell exhibit 2 or more jumps in the time interval of size
Δt . By expanding e−ΛΔt in its Taylor series we obtain

q(X , t + Δt) = (1 − ΛΔt + O(Δt2))q(X , t) + ΛΔt(1 − ΛΔt + O(Δt2))∫

R

q(X − r , t) fc(r | X − r) dr + O(Δt2),

and rearranging gives

q(X , t + Δt) − q(X , t)

Δt
= q(X , t)(−Λ + O(Δt)) + Λ(1 − O(Δt))

∫

R

q(X − r , t) fc(r | X − r) dr + O(Δt2).

We now take the limit Δt → 0 and obtain the partial integro-differential equation,
often called a transport equation:

∂q

∂t
(X , t) = −Λq(X , t) + Λ

∫

R

q(X − r , t) fc(r | X − r) dr . (6)

Notice that the rate parameter Λ is the sum of all individual rate parameters λi , as it
describes the rate at which any event occurs. In what follows the rate parameters λi
will be spatially varying.

3.1 The distribution of nucleus jumps

We now simplify our analysis by considering only two adhesion sites, located at
x1 and x2. Since the nucleus is located at the center of mass of x1 and x2, that is
X = (x1 + x2)/2, we can express the position of the two adhesion sites as

x1 = X − Y , x2 = X + Y ,

where 2Y is the distance between the two adhesion sites, and Y ≥ 0.
It can be shown (see “AppendixC” for details) that in the stochasticmodel ofmotion

described in Sect. 2, the distance Y converges to a random variable distributed half-
normal with mean σ

√
2/3π and variance σ 2 (1 − 2/π) /3, whenever the new position

of an adhesion site is normally distributed around the current nucleus position with
variance σ 2. We denote the pdf of Y with fY , given by

fY (y) =
√
6

σ
√

π
e
− y2

2σ2/3 , y ≥ 0,
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and proceed to compute the pdf governing nucleus jumps through

fC (r | X) =
∫ ∞

0
fC | Y (r | X , y) fY (y) dy, (7)

where fC (r | X , y) is the conditional probability density function of a nucleus jump,
conditioned on the current nucleus position X , and the current distance y.

Assume that the current nucleus position X is known, as well as the current distance
y. The nucleus then jumps as a result of either site i = 1 performing a jump, or the
site i = 2 performing a jump. Whenever the left site makes a jump, the nucleus is on
average displaced to the right, and whenever the right site jumps, the nucleus is on
average displaced to the left. In both cases the average displacement of the nucleus
is exactly half as much as the jump of an individual adhesion site. Therefore, the
probability density fC (r | X , y) is a mixture-distribution of two components, given by

fC | Y (r | X , y) = w1(X − y)
2√
πσ 2

e− 2(r−y/2)2

σ2 + w2(X + y)
2√
πσ 2

e− 2(r+y/2)2

σ2 . (8)

In other words, it is a sum of the pdfs of two normal distributions with means y/2
and −y/2 respectively, and variance σ 2/4. The first component in the mixture comes
from the case that site i = 1 updates, and the second component from the case that
site i = 2 updates. The weights of the mixture w1 and w2 are given by

w1(X − y) = λ1

λ1 + λ2
, w2(X + y) = λ2

λ1 + λ2
. (9)

It is important to observe that theweights in themixture are functions of the positions x1
and x2, or equivalently as formulated above, functions of the current nucleus position
X and the distance y between the sites.

To summarize, the probability density function governing the size of a nucleus jump
fC (r | X), when the nucleus is located at X , is given as a mixture of two components,
where each component comes from whether the first or second adhesion site updates.
The weights depend on where the sites are located.

To proceed we use λi defined in (3) and (4) described in Sect. 2.1, and we derive an
advection–diffusion equation for the cell density using a large time diffusion scaling.

3.2 Large time diffusion approximation

We now consider the case where the rate of updates is given by Eq. (3), namely

λi = β + γ

(
|ui | − |ũ|∑n

j=1 |u j |

)
.

For two sites x1 = X − y and x2 = X + y this gives

λ1 = β + γ

( |u1| − |u2|
|u1| + |u2|

)
,
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λ2 = β − γ

( |u1| − |u2|
|u1| + |u2|

)
,

and the total rate is then given by

Λ(X) = λ1 + λ2 = 2β.

We now substitute ui = 1/E(xi ) and simplify to get

λ1 = β + γ

(
E(x2) − E(x1)

E(x1) + E(x2)

)
= β + γ

(
E(X + y) − E(X − y)

E(X − y) + E(X + y)

)
,

λ2 = β − γ

(
E(x2) − E(x1)

E(x1) + E(x2)

)
= β − γ

(
E(X + y) − E(X − y)

E(X − y) + E(X + y)

)
.

We now expand E in its Taylor series around X to obtain

λ1 = β + γ
yE ′(X)

E(X)
+ γ

∑

i=3,5,7,...

Ti (X)yi ,

λ2 = β − γ
yE ′(X)

E(X)
− γ

∑

i=3,5,7,...

Ti (X)yi ,

where the term Ti is the i th term in the Taylor series of E , depending only on X , and
the sum containing only odd indices because all even terms cancel in the series. Using
(8) and (9) in Eq. (7), we thus obtain the conditional jump distribution as

fC (r , X) =
∫ ∞

0

(
w1(X − y)

1√
2πσ 2/4

e
− (r−y/2)2

2σ2/4

)
fY (y) dy

+
∫ ∞

0

(
w2(X + y)

1√
2πσ 2/4

e
− (r+y/2)2

2σ2/4

)
fY (y) dy

=
∫ ∞

0

1

2β

((
β + γ

yE ′(X)

E(X)

)
1√

2πσ 2/4
e
− (r−y/2)2

2σ2/4

)
fY (y) dy

+
∫ ∞

0

1

2β

((
β − γ

yE ′(X)

E(X)

)
1√

2πσ 2/4
e
− (r+y/2)2

2σ2/4

)
fY (y) dy

+ 1

2β

∑

i=3,5,...

∫ ∞

0
Ti (X)yi

(
1√

2πσ 2/4
e
− (r−y/2)2

2σ2/4

)
fY (y) dy

− 1

2β

∑

i=3,5,...

∫ ∞

0
Ti (X)yi

(
1√

2πσ 2/4
e
− (r+y/2)2

2σ2/4

)
fY (y) dy

= 1

2β

(
2β + γ

r E ′(X)

E(X)

)
1√

2πσ 2/3
e
− r2

2σ2/3
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+ 1

2β

∑

i=3,5,...

∫ ∞

0
Ti (X)yi

(
1√

2πσ 2/4
e
− (r−y/2)2

2σ2/4

) √
6

σ
√

π
e
− y2

2σ2/3 dy

− 1

2β

∑

i=3,5,...

∫ ∞

0
Ti (X)yi

(
1√

2πσ 2/4
e
− (r+y/2)2

2σ2/4

) √
6

σ
√

π
e
− y2

2σ2/3 dy.

One can see that the last two terms of sums of integrals can be written as:

1

2β

1√
2πσ 2

e
− r2

σ2/3

√
6

σ
√

π

∑

i=3,5,...

Ti (X)

∫ ∞

−∞
e
− (y−r/2)2

2σ2/4 yi dy.

That is, we obtain the sum of higher order non-central moments of the normal distri-
bution with mean r/2 and variance σ 2/4. We know that the i th moment of a normal
distribution with mean r/2 and variance σ 2/4 is a sum of the form

1√
2πσ 2/4

∫ ∞

−∞
e
− (y−r/2)2

2σ2/4 yi dy =
�i/2�∑

j=0

c jσ
2 j

( r
2

)i−2 j
,

where the coefficient c j is given by the product of a binomial coefficient and the double
factorial:

c j =
(

i

2 j

)
(2 j − 1)!!

We therefore obtain the final result of the form

= 1√
2πσ 2

e
− r2

σ2/3
√
3

∑

i=3,5,...

Ti (X)
1√

2πσ 2/4

∫ ∞

−∞
e
− (y−r/2)2

2σ2/4 yi dy

= 1√
2πσ 2

e
− r2

σ2/3
∑

i=3,5,...

Ti (X)

�i/2�∑

j=0

c jσ
2 j

( r
2

)i−2 j
,

where we have incorporated the constant
√
3 into the constant c j . To summarize, the

jump distribution weighted by the total jump rate Λ(X) = Λ = 2β, as formulated in
the transport equation (6), is given by

Λ fC (r , X) = 1√
2πσ 2/3

e
− r2

2σ2/3

(
2β + γ

r E ′(X)

E(X)

)
(10)

+ 1√
2πσ 2/3

e
− r2

2σ2/3
∑

i=3,5,...

Ti (X)

�i/2�∑

j=0

c jσ
2 j

( r
2

)i−2 j
. (11)

We now insert this expression into Eq. (6) and obtain

∂q

∂t
(X , t) = −Λq(X , t) + Λ

∫

R

q(X − r , t) fc(r | X − r) dr
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= −Λq(X , t) +
∫

R

q(X − r , t)
1√

2πσ 2/3
e
− r2

2σ2/3

(
2β + γ

r E ′(X − r)

E(X − r)

)
dr

+
∫

R

q(X − r , t)
1√

2πσ 2/3
e
− r2

2σ2/3
∑

i=3,5,...

Ti (X − r)
�i/2�∑

j=0

c jσ
2 j

( r
2

)i−2 j
dr .

We now proceed with the following rescaling for jump-size and time:

σ = εσ̂ , t = 1

ε2
τ, (12)

for a small parameter ε. This corresponds to a cell which performs small jumps with

high frequency. Writing q(X , t) = q
(
X , 1

ε2
τ
)

= q̂ (X , τ ) the equation is

ε2
∂q̂

∂τ
(X , τ ) = −Λq̂(X , τ )

+
∫

R

q̂(X − r , τ )
1

ε

1√
2πσ̂ 2/3

e
− (r/ε)2

2σ̂2/3

(
2β + γ

r E ′(X − r)

E(X − r)

)
dr

+
∫

R

q̂(X − r , τ )
1

ε

1√
2πσ̂ 2/3

e
− (r/ε)2

2σ̂2/3
∑

i=3,5,...

Ti (X − r)
�i/2�∑

j=0

c jε
2 j σ̂ 2 j

( r
2

)i−2 j
dr ,

and we perform the change of variables, r = sε to obtain

ε2
∂q̂

∂τ
(X , τ ) = −Λq̂(X , τ )

+
∫

R

q̂(X − sε, τ )
1√

2πσ̂ 2/3
e
− s2

2σ̂2/3

(
2β + γ sε

E ′(X − sε)

E(X − sε)

)
ds

+
∫

R

q̂(X − sε, τ )
1√

2πσ̂ 2/3
e
− s2

2σ̂2/3
∑

i=3,5,...

Ti (X − sε)
�i/2�∑

j=0

c jε
i σ̂ 2 j

( s
2

)i−2 j
ds.

We now proceed with Taylor expanding the function q̂(X − sε, τ ) in space around
X . Also notice that the last term containing the higher order moments of the normal
distribution is of at least order ε3, and will therefore be neglected in the limit ε → 0.
For the sake of clarity we keep the second integral, but write it compactly as O(ε3).
Our equation now is

ε2
∂q̂

∂τ
(X , τ ) = −Λq̂(X , τ )

+
∫

R

q̂(X , τ )
1√

2πσ̂ 2/3
e
− s2

2σ̂2/3

(
2β + γ sε

E ′(X − sε)

E(X − sε)

)
ds

−
∫

R

sε
∂q̂

∂X
(X , τ )

1√
2πσ̂ 2/3

e
− s2

2σ̂2/3

(
2β + γ sε

E ′(X − sε)

E(X − sε)

)
ds
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+
∫

R

s2ε2

2

∂2q̂

∂X2 (X , τ )
1√

2πσ̂ 2/3
e
− s2

2σ̂2/3

(
2β + γ sε

E ′(X − sε)

E(X − sε)

)
ds

+O(ε3).

We now assume that the stiffness E is varying slowly in comparison to the typical size
of a cell, and expand the fraction E ′/E in its Taylor series around X :

E ′(X − sε)

E(X − sε)
= E ′(X)

E(X)
+ sε

E ′(X)2 − E(X)E ′′(X)

E(X)2
+ O(ε2).

Computing the integrals of our equation, we obtain the final result

ε2
∂q̂

∂τ
= −ε2q̂(X , τ )

(
E(X)E ′′(X) − E ′(X)2

E(X)2

)
γ

σ̂ 2

3

− ε2
∂q̂

∂X
(X , τ )

(
E ′(X)

E(X)

)
γ

σ̂ 2

3
+ ε2

∂2q̂

∂X2 β
σ̂ 2

3
+ O(ε3).

Dividing through by ε2 and taking the limit ε → 0, we obtain the equation

∂q̂

∂τ
= −γ

σ̂ 2

3

∂

∂X

(
E ′(X)

E(X)
q̂(X , τ )

)
+ β

σ̂ 2

3

∂2q̂

∂X2 , (13)

after writing the first two terms as a single derivative of a product.
We can perform the exact same analysis when using the absolute relationship (4),

with the same assumption on a slowly varying function E , and the same diffusion-
scaling to obtain the equation

∂q̂

∂τ
= −γ

σ̂ 2

3

∂

∂X

(
2E ′(X)

E2(X)
q̂(X , τ )

)
+ β

σ̂ 2

3

∂2q̂

∂X2 , (14)

which is different only in the advective velocity being 2E ′(X)/E2(X) instead of
E ′(X)/E(X). For details regarding the derivation of Eq. (14), see “Appendix A”.

3.3 Comparison between stochastic simulations and PDEmodel

We now compare the stochastic simulation to the solutions of the PDE models. We
compute the trajectories of 1500 cells using the stochastic simulation, compute the
occupancy in discretized intervals of the spatial domain, and normalize so that the total
cell density is 1. The PDE model is solved using a Crank–Nicolson finite difference
scheme (see “Appendix B” for details) using the same spatial discretization, and total
density chosen to be 1.

We compare themodels for a linearly increasing stiffness function E(x) = 3+0.9x ,
on the domain Ω = [− 3, 3], with parameters σ = 0.05, β = 0.5, γ = 1 for
t ∈ [0, 400]. In the stochastic simulations all cells are starting out at the origin, with
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both adhesion sites located at the origin, and in the PDE model we use a Dirac-type
initial condition, located at the origin. In the stochastic simulation, cells are not able
to migrate past the domain boundaries at ± 3. This is implemented by checking if a
cell is attempting to move outside the domain. If it is, it simply does not move. In the
PDE model we use zero-flux boundary conditions.

Figure 2a shows the cell density at four different instances in time, the red dashed
line corresponding to the stochastic simulation and the blue line to the solution of
PDE (13), when using the relative relationship (3). A comparison between the mean
position of a cell is shown in Fig. 2b. Figure 3a, b shows the same comparison when
using the absolute relationship (4).

In both cases the stochastic simulation and the solution of the PDE show good
agreement.

4 Periodically varying stiffness result in cell clusters

In this section we use our model to investigate if cells cluster on stiff regions, when
seeded uniformly at random on a substrate with a sinusoidal variation in stiffness.
This is motivated by the study performed by Joaquin et al. (2016), where the matrix
was modified so that there was a spatial variation in the stiffness, in the form of a sine
wave. In the experiments four different cell types were used, and all four cell types
formed clusters on the stripes of high stiffness but had different final morphologies.
From a correlation analysis they concluded that the stiffness gradient was the driving
factor in this durotactic phenomena, and not the absolute stiffness.

We now want to investigate if our model will produce the same behaviour, namely
that cells cluster on regions of high stiffness. To do so we need to find appropriate
parameter values. Recall that the mean distance between two sites is a random variable
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Fig. 2 Numerical comparison between stochastic model (red) and PDEmodel (blue) when using the relative
relationship (3). Panel a shows the cell density at four instances of time. Panel b shows the mean position of
the cell obtained from the stochasticmodel and the PDEmodel. σ = 0.05,β = 0.5, γ = 1, E(x) = 3+0.9x
on the domain [− 3, 3] for 400 units of time (colour figure online)
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Fig. 3 Numerical comparison between stochasticmodel (red) andPDEmodel (blue)whenusing the absolute
relationship (4). Panel a shows the time evolution at 4 time instances. Panel b shows the mean position of
the cell obtained from the stochastic and PDE model. σ = 0.05, β = 0.5, γ = 1, E(x) = 3 + 0.9x on the
domain [− 3, 3] for 400 units of time (colour figure online)

with mean σ
√
2/3π . Now we wish to choose the cell sizes to be on average 20μm,

which holds if we choose

σ

√
2

3π
= 20µm, (15)

which requires us to set σ ≈ 40µm = 0.04mm. We choose the time to be measured
in hours and the rates to have the unit updates per hour. The stiffness function is chosen
to match the stiffness profile from the experiments, and is given by

E(x) = 1 + 0.15 sin

(
8πx

3

)
, (16)

and the domain to be Ω = [− 3, 3] mm, so there are a total of 8 peaks of high
stiffness in the domain. We use uniformly distributed initial positions of cells in the
stochastic simulation, and constant cell density throughout the domain in the PDE
model, normalized so the total density is 1.

For our choice of σ , the nucleus jump is on average of size 9.21µm, and the rate at
which it jumps is 2β, in the absence of a stiffness gradient, so choosing β = 1 results
in cells which move about 20µm per hour on average, which is in a realistic range for
many cell types.

Figure 4 show the results of a simulation with 50 cells using the relative relationship
(3) along with the solution to the PDE model (13) after 24 h, for four different values
of γ ∈ {1, 2, 3, 4}, with unit h−1 in the case of using the relative relationship, and
mm−1h−1 in the case of using the absolute relationship. It can be seen that for larger
values of γ , the cells tend to cluster at the peaks. This is expected since the parameter γ
governs how big impact the difference in displacement (relative or absolute) has on the
update rates. The stiffness function is shown in the plots to illustrate where the peaks
are located, and the position of cells are plotted on this superimposed curve to better
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Fig. 4 Stochastic simulation of 50 cells, and the solution to the PDE model (13) after 24 h, with uniformly
distributed cells at time t = 0. The stiffness function is superimposed to illustrate the position of the regions
of high and low stiffness

illustrate where they are located. Note however that the cells move on a 1-dimensional
line.

Figure 5 shows the same comparison when using the absolute relationship (4) and
the corresponding PDE model (14).

To better understand how the lifetime of adhesion sites impact clustering we
also investigate the difference between lifetimes of the two adhesion sites, for
γ ∈ {0, 1, 2, 3, 4}. We do this by computing the minimum and maximum of λ1 and λ2
for each cell as it is moving around, and average over 2000 simulations. The results
can be seen in the table below. This means that for example, in the case of using γ = 4
the site that updates most frequently does so on average 15% more often than the site
that updates less frequently (Table 1).

We now introduce a way to measure to which degree cells cluster by defining the
following quantities. We define H to be the part of our spatial domain where the
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Fig. 5 Stochastic simulation of 50 cells, and the solution to the PDE model (14) after 24 h, with uniformly
distributed cells at time t = 0. The stiffness function is superimposed to illustrate the position of the regions
of high and low stiffness

Table 1 Table of the average
low and average high update
frequencies, averaged over 50
cells for 24 h of migration

γ λlow λhigh

(a) Relative relationship

0 0.5 0.5

1 0.4907 0.5093

2 0.4828 0.5172

3 0.4750 0.5250

4 0.4650 0.5348

(b) Absolute relationship

0 0.5 0.5

1 0.4821 0.5179

2 0.4648 0.5352

3 0.4445 0.5555

4 0.4323 0.5677
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stiffness is higher than the average stiffness over the entire domain, and L to be the
part where the stiffness is lower than the average. Then we define the total cell density
on high stiffness and low stiffness regions, at time t , through

NH (t) =
∫

H
q(x, t) dx, NL(t) =

∫

L
q(x, t) dx, (17)

respectively. We consider the ratio

R(t) = NH (t)/(NH (t) + NL(t)), (18)

i.e. ratio of cell density located on a stiff region, to the total cell density. Notice that
this measure ranges from 0 to 1, and takes the value 1/2 in the case that the cells are
uniformly spread between the soft and stiff regions.

Figure 6a, b show the evolution of the ratio R(t) for different values of γ , corre-
sponding to the experiments shown in Figures 4 and 5. The ratio is computed using the
PDE model. In order to compare our predictions with the experiments carried out by
Joaquin et al. (2016), we analyzed a supplementary video published with that study.
Images were extracted at 4, 8, 12, 16, 20 and 24 h and segmented using Otsu’s method
implemented in MATLAB (Otsu 1979). The total cell area was calculated in the high
and low stiffness regions. From these quantities we calculated the fraction of the cell
population being located on the stiff region for each image, corresponding to (18).
The resulting data is shown in Fig. 6c where we have fit the parameter γ using least
squares in our two PDE models and calculated the ratio defined in (18). It can be seen
that the two PDEmodels provide near identical predictions, but use different values of
γ . When fitting the PDE model based on the relative sensing we obtained γ = 13.28
and when using the model based on the absolute sensing we obtained γ = 6.5.

5 Conclusion

The mechanisms causing durotaxis remain poorly understood. A hypothesis has been
proposed, that through repeated tugging, cells probe the stiffness of their surrounding
and adhesion sites on stiff regions become reinforced (Joaquin et al. 2016; Plotnikov
andWaterman 2013). In this work we developed a mathematical model for investigat-
ing directed cellmigration, under the assumption that adhesion sites become reinforced
on stiff regions. The model assumes that a cell migrates by updating the position of
its adhesion sites at random times, and a new position is chosen randomly around its
current nucleus position. The cells are assumed to be able to sense the local stiffness by
exerting a force at every adhesion site.Wepropose two sensingmechanisms. Thefirst is
based on the relative displacement at adhesion sites, and the second based on the abso-
lute displacement. To model reinforcement we assume that adhesion sites where the
displacement is small update less frequently than sites where the displacement is large.

From the individual basedmodel we derived a continuous description in the form of
a partial differential equation for the density of cells. The resulting PDEs are advection
diffusion equations, where the cells are predicted to move in the direction of increas-
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Fig. 6 Ratio of total cell density on stiff regions to total cell density on soft regions over 24 h. Ratio
computed using (18), using the relative relationship in panel a and the absolute relationship in panel b for
γ = 0, 1, 2, 3, 4. Panel c shows comparison between experiments carried out by Joaquin et al. (2016) and
the two PDE models when γ is fitted using the least-squares method

ing stiffness. In the case of assuming a relative sensing mechanism cells move with a
velocity proportional to ratio of stiffness gradient to absolute stiffness, and in the case
of assuming an absolute sensing mechanism, the velocity is proportional to the ratio of
stiffness gradient to the square of absolute stiffness. The stochastic and deterministic
models showed good agreement for the length and time scales typically observed in
experiments.

Another type of taxis observed in biology is chemotaxis, where an organism
responds to the concentration of some chemical to which it is chemosensitive. A con-
tinuum description is given by the classical chemotaxis equation (Erban and Othmer
2004) for the density p of cells
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∂ p

∂t
= ∂

∂x

(
−pχ(S)

∂S

∂x
+ D

∂ p

∂x

)
,

where S(x, t) is the chemical concentration, and χ(S) describes the chemotactic sen-
sitivity, and in general S may be prescribed to evolve according to some evolution
equation. It is easily seen that if we assume that the chemical is independent of time,
and choose the sensitivity to be of the form χ(S) = 1/S(X) or χ(S) = 2/S2(X), the
chemotactic equation become Eqs. (13) and (14) respectively.

To investigate howwell themodel is able to capture durotaxis, we chose biologically
relevant parameters, and a sinusoidal stiffness function. This type of experiment has
shown to produce clusters of cells on the “peaks” of high stiffness (Joaquin et al. 2016).
Our models predicted cells to cluster, to different degrees depending on the parameter
γ , which governs how much the adhesion lifetime is impacted by the stiffness. For
example we showed that, to expect about 70–80%of the cells to be located in the stiffer
regions, the lifetime of adhesion sites on the stiff side of the cell has to remain for
15–30% longer than the average lifetime of sites on the soft side of the cell. Although
no experiments have yet investigated the lifetime of individual adhesions on a material
with a stiffness gradient, we know from the study by Fusco et al. (2017) that the average
lifetime of adhesions can be twice as long on stiff regions compared to soft regions.
This suggests that a 15–30% difference in update frequency lies within a realistic
range.

No visual difference between the two PDE models can be seen from Fig. 6c when
γ is chosen so that the models best fit the data. There is a small discrepancy at early
and late times between model and data. The early time difference could possibly be
due to effect such as cell–cell adhesion or a higher overall cell speed. The faster decay
for large times could possibly be the result of crowding, which our models does not
account for. In solutions of the PDE models shown in Fig. 6 we used a basic motility
rate β = 1. If it is increased to 2, corresponding to an overall cell speed of about 40µm
per hour, the fit becomes better. However, based on the result of the experimental study
(Joaquin et al. 2016), a speed of 20µm per hour is more realistic.

To be able to disentangle how much of the observed drift of cells is the result of
reinforcement of adhesion sites, one would need to measure the lifetime of individual
adhesion sites within a cell, as well as the cell velocity. This would in turn be sufficient
to estimate our model parameter γ , which describes how much of the displacement
difference that influences adhesion site lifetimes. To our knowledge such a study has
not yet been conducted. However, the lifetime of individual adhesion sites has been
measured (Fusco et al. 2017), and it iswell known thatmatriceswith a range of stiffness
profiles can be designed. It remains to study the velocity of cells and the lifetime of
adhesion sites on a matrix with a stiffness gradient.

The 1D model of migrating cells might appear unrealistic for modelling 3D cell
migration in a fibrous ECM. However, there are environments in which cell migra-
tion takes places in a highly organized ECM, along fibers. Examples include glioma
cell migration in white matter tracts (Bellail et al. 2004), and stem cell migra-
tion in rats, in both transplantation into the auditory nerve and after spinal cord
injuries (Palmgren et al. 2012; Tysseling et al. 2010). It is also believed that 1D
cell migration along fibers is more similar to migration in 3D matrices than cell
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migration on typical 2D planar surfaces (Doyle et al. 2009, 2013). This makes 1D
models suitable for modelling; they are more analytically tractable than 3D mod-
els, and they can provide results which more accurately translate into in vivo cell
behaviour.

5.1 Possible extensions

The purpose of our model is to investigate the impact of varying adhesion lifetimes
on directed single cell migration. However, to more realistically model a large pop-
ulation of cells, one should incorporate interactions between cells, such as cell–cell
adhesion or crowding effects, and interactions between cells and the ECM. For exam-
ple, some cells have the ability to remodel the ECM, either through exerting physical
forces, or through chemicals which break down the ECM. The former could be cap-
tured by explicitly modelling the ECM as an elastic material that deforms as cells
exert forces on it. This could lead to interesting feedback between cells and the sub-
strate. Another interesting property is the so-called strain-stiffening that can occur,
which can alter the response of cells to the increased stiffness of the ECM close to
large collections of cells e.g. close to tumours. Finally, should future experiments
imply that reinforcements of adhesion sites play only a small role in the observed drift
in durotaxis, our model can easily be extended to include for example asymmetric
forces exerted by the cell or an asymmetric distribution governing new positions of
adhesion sites, both of which would influence the drift velocity. One can also con-
sider using a correlated random walk as the underlying mechanism of motility. In our
model we assumed that the new position of an adhesion site was distributed normally
around the current nucleus position, but one can make it more general by considering
any other suitable distribution. However, in contrast to typical random walk models
where only the first two moments of the jump kernel are of interest, using any other
distribution in our model result in non-standard distributions of the nucleus jump
distribution (data not shown). To the best of our knowledge, the normal distribution
constitutes a special case where computations of all probability density functions are
possible.

Understanding the interactions between cells and their environment is of funda-
mental importance and this paper will hopefully represent a step toward a deeper
understanding of cell migration and its relation to substrate stiffness.
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Appendices

A Derivation of the advection–diffusion equation for the absolute
relationship

We now assume that

λ1 = β + γ (|u1| − |u2|) , λ2 = β − γ (|u1| − |u2|) ,

which can be rewritten in terms of the stiffness, using |ui | = 1/E(xi ):

λ1 = β + γ

(
1

E(X − y)
− 1

E(X + y)

)
,

λ2 = β − γ

(
1

E(X − y)
− 1

E(X + y)

)
.

We expand E in its Taylor series around X and obtain

λ1 = β + γ

⎛

⎝2y
E ′(X)

E(X)2
+

∞∑

i=3,5,...

Ti (X)yi

⎞

⎠

λ2 = β − γ

⎛

⎝2y
E ′(X)

E(X)2
+

∞∑

i=3,5,...

Ti (X)yi

⎞

⎠

where Ti (X) is the i th coefficient in the Taylor series. As we showed in Sect. 3.2,
under the rescaling of space and time, all terms of order y3 and higher will go to zero,
as ε → 0, and is therefore not included in the proceeding calculation. We therefore
have

λ1 = β + γ

(
2y

E ′(X)

E(X)2

)

λ2 = β − γ

(
2y

E ′(X)

E(X)2

)

and Λ = λ1 + λ2 = 2β, along with mixture weights

w1(X − y) = λ1

Λ
, w2(X + y) = λ2

Λ
.

We then obtain

fC (r | X , y) = w1(X − y)
1√

2πσ 2/4
e
− (r−y/2)2

2σ2/4 + w2(X + y)
1√

2πσ 2/4
e
− (r+y/2)2

2σ2/4 .
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The unconditional distribution is then given by

fC (r | X) =
∫ ∞

0

1√
2πσ 2/4

(
w1(X − y)e

− (r−y/2)2

2σ2/4

)
fY (y) dy

+
∫ ∞

0

1√
2πσ 2/4

(
w2(X + y)e

− (r+y/2)2

2σ2/4

)
fY (y) dy

= 1

2β

∫ ∞

0

1√
2πσ 2/4

(
β + γ y

2E ′(X)

E(X)2

)
e
− (r−y/2)2

2σ2/4

√
6

σ
√

π
e
− y2

2σ2/3 dy

+ 1

2β

∫ ∞

0

1√
2πσ 2/4

(
β − γ y

2E ′(X)

E(X)2

)
e
− (r+y/2)2

2σ2/4

√
6

σ
√

π
e
− y2

2σ2/3 dy

Carrying out the integration we obtain

fC (r | X) = 1

2β

(
2β + γ

2E ′(X)

E(X)2
r

)
1√

2πσ 2/3
e
− r2

2σ2/3 .

Inside our transport equation we have the term Λ as well, so we therefore cancel the
factor 1/2β. The transport equation is now

∂q

∂t
(X , t) = −Λ(X)q(X , t)

+
∫

R

q(X − r , t)e
− r2

2σ2/3
1√

2πσ 2/3

(
2β + γ r

2E ′(X − r)

E2(X − r)

)
dr .

We now perform the same rescaling of jump-size and time:

σ = εσ̂ , t = 1

ε2
τ,

for a small parameter ε. Writing q(X , t) = q
(
X , 1

ε2
τ
)

= q̂ (X , τ ) our equation

becomes

ε2
∂q̂

∂τ
(X , τ ) = −Λ(X)q̂(X , τ )

+
∫

R

q̂(X − r , τ )e
− (r/ε)2

2σ̂2/3
1

ε

1√
2πσ̂ 2/3

(
2β + γ r

2E ′(X − r)

E2(X − r)

)
dr .

and we perform the change of variables sε = r and obtain

ε2
∂q̂

∂τ
(X , τ ) = −Λ(X)q̂(X , τ )

+
∫

R

q̂(X − sε, τ )e
− s2

2σ̂2/3
1√

2πσ̂ 2/3

(
2β + γ sε

2E ′(X − sε)

E2(X − sε)

)
ds.
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We now expand q̂ in its Taylor series around X , as well as E ′ and E in series around
X and obtain

ε2
∂q̂

∂τ
(X , τ ) = −Λ(X)q̂(X , τ )

+
∫

R

(
q̂(X , τ ) − sε

∂q̂

∂X
+ s2ε2

2

∂2q̂

∂X2

)
e
− s2

2σ̂2/3
1√

2πσ̂ 2/3

·
(
2β + γ sε

E ′(X)

E2(X)
− s2ε2

d

dx

(
E ′(X)

E2(X)

)
+ O(ε3)

)
ds.

Dividing through by ε2, and taking the limit ε → 0 we finally obtain the equation

∂q̂

∂τ
(X , τ ) = −γ

σ̂ 2

3

∂

∂X

(
q(X , τ )

2E ′(X)

E2(X)

)
+ σ̂ 2

3
β

∂2q

∂X2 (X , τ )

B Crank–Nicolson Scheme

For the PDE
∂q

∂t
(x, t) = F

(
q, x, t,

∂q

∂x
,
∂2q

∂x2

)
,

the Crank–Nicolson method is the average of the forward Euler method at time n and
the backward Euler method at time n + 1

qn+1
i − qni

Δt
= 1

2

(
Fn+1
i

(
x, t, q,

∂q

∂x
,
∂2q

∂x2

)
+ Fn

i

(
x, t, q,

∂q

∂x
,
∂2q

∂x2

))
,

on a discretization of the spatial domain x ∈ [−L, L] into M points of equal spacing
h, xi = −L + hi , and time domain discretized into N points of equal spacing Δt ,
tn = nΔt .

C Distribution of adhesion site distances

In this section any lowercase f is a probability density function and any uppercase
F a cumulative distribution function, with the corresponding random variable as a
subscript.

Assume there are two adhesion sites, x01 and x02 at time t = 0. After k updates, the
positions are xk1 and xk2 . Denote the distance between the sites by Δxk = xk1 − xk2 ,
and the position of the nucleus by μk = (

xk1 + xk2
)
/2. When site i updates, its new

position is given by
xk+1
i = μk + W ,
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where W is a normal random variable with mean 0 and variance σ 2, and i ∈ {1, 2}.
The cumulative distribution function for Δxk is

FΔxk (z) = P(Δxk ≤ z). (19)

We now consider the cumulative distribution after k+1 steps. Here we assume that the
position of the adhesion sites at time-step k is x1 and x2, dropping the superscript k,
andwe denote by x+

1 and x+
2 the update position of site 1 and 2 respectively, depending

on which one that updates. Assuming that site i = 1 updates with probability λ1 and
that site i = 2 updates with probability λ2 , with λ1 + λ2 = 1 we obtain

FΔxk+1(z) = P(Δxk+1 ≤ z)

= λ1P(x+
1 − x2 ≤ z) + λ2P(x1 − x+

2 ≤ z),

and re-writing x+
i = μk + W , and using μk = (x1 + x2)/2 we obtain

FΔxk+1(z) = λ1P (μk + W − x2 ≤ z) + λ2P (x1 − μk − W ≤ z)

= λ1P

(
x1 + x2

2
+ W − x2 ≤ z

)
+ λ2P

(
x1 −

(
x1 + x2

2

)
− W ≤ z

)

= λ1P

(
x1 − x2

2
+ W ≤ z

)
+ λ2P

(
x1 − x2

2
− W ≤ z

)

= λ1P

(
Δxk

2
+ W ≤ z

)
+ λ2P

(
Δxk

2
− W ≤ z

)
.

We now investigate the first term, and notice that

P

(
Δxk

2
+ W ≤ z

)
=

∫ ∞

−∞

∫ z−x/2

w=−∞
fW ,Δxk (w, x) dw dx

=
∫ ∞

−∞

∫ z−x/2

w=−∞
fW (w | x) fΔxk (x) dw dx

Notice that the second equality is obtained from the fact that Δxk and W are inde-
pendent. If we differentiate with respect to z we obtain the pdf of distance between
adhesion sites, and using the fact that W is independent of Δxk we obtain

fΔxk+1(z) =
∫ ∞

−∞
fW

(
z − x

2

)
fΔxk (x) dx

and similarly for the second term we get

P

(
Δxk

2
− W ≤ z

)
=

∫ ∞

−∞
fW

(
−z + x

2

)
fΔxk (x) dx
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Together these two terms gives us the expression

fΔxk+1(z) = λ1

∫

R

fW
(
z − x

2

)
fΔxk (x) dx + λ2

∫

R

fW
(
−z + x

2

)
fΔxk (x) dx,

but because fW is symmetric around 0, and λ1 + λ2 = 1 we end up with

fΔxk+1(z) =
∫

R

fW
(
z − x

2

)
fΔxk (x) dx .

It is easily shown that if f0 is assumed to be a normal distribution with mean 0 and
variance γ 2, the distribution after the update of 1 adhesion site is normally distributed
with mean 0 and variance σ 2 + γ 2/4. One can then ask the question, what is the
variance of the distribution in equilibrium, i.e. when the variance does not change
anymore. It is found simply by solving the equation

σ 2 + γ 2

4
= γ 2,

namely γ 2 = 4σ 2/3. This means that the distribution of Δxk converges to a nor-
mal distribution with variance 4σ 2/3 as k → ∞, where σ 2 is the variance for the
distribution of new position of an adhesion site. The random variable Y defined as

Y k =
∣∣∣∣
Δxk

2

∣∣∣∣

is a half-normal distribution obtained from the normal with zero mean and variance
σ 2/3.
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