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Electrification of Private Mobility
Driving Patterns, Multi-Car Households and Infrastructure
NIKLAS JAKOBSSON

Dept. of Space, Earth and Environment, Chalmers University of Technology

Abstract

Electrification of personal vehicles has the potential to significantly reduce
carbon emissions. However, a large-scale transition to electric vehicles may be
difficult as there are many individuals who collectively need to transition to this
technology. Thus, it is important to understand car users’ needs, and to what
extent a fully battery electric vehicle (BEV) fulfill these needs. In particular,
batteries have been expensive and charging infrastructure scarce, thus creating a
trade-off between the price of the car, and its driving range.

We use several GPS-measured driving data sets, interview data, and charging
infrastructure data to analyse potential BEV adoption in multi-car households.
Furthermore, we develop methods with regards to driving data modelling and
analysis. We also estimate the size of a future charging infrastructure network.

We find that for short-range BEVs (120 km), a noteworthy adaptation is re-
quired for most users. However, within multi-car households, approximately 50%
of the second cars need to adapt less than one day per month. We also assess how
users in two-car households adapt to a BEV replacing one of their ordinary cars.
We find large heterogeneity in how users adapt, where some increase the use of
the BEV compared to the replaced car, and some decrease it. From interview
data we find that most households have experienced no actual problems with the
range limitation, but most would prefer a range of 200 km.

As a methodological contribution, we analyze the effect of modelling driving
data with three probability distributions. Contrary to earlier literature we find that
the Weibull and Log-Normal distributions overall fit driving data better than the
Gamma distribution. But when estimating the frequency of long-distance driving
we find that Weibull and Gamma perform better than Log-Normal. Finally, we
have extended the traditional driving data analysis beyond distance analysis to
destination analysis. One of the results is that BEVs drive a significantly larger
share of their driving to their most common destinations compared to a conven-
tional car.

Keywords: Battery electric vehicles, GPS-measured driving data, two-car house-
holds, user-centered analysis, destination-based analysis
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Chapter 1
Introduction

1.1 Background

Climate change is a major challenge facing humanity. The Intergovernmental
Panel on Climate Change Assessment Report 5 states that the increase in global
mean temperature is likely to exceed 2 degrees Celsius by the year 2100 com-
pared to the pre-industrial level due to anthropogenic greenhouse gas emissions
(GHG) (IPCC (2014)). A significant reduction of greenhouse gas emissions
(GHG) will involve all sectors of society.

The transport sector accounts for a quarter of all GHG emissions in Europe
(Hill et al. (2012)), in Sweden it is 30% (SOU (2013)) of which roughly 63%
come from cars and 93% from all road transport (SCB (2019)). Also, besides
GHG, conventional cars emit local pollutants from fuel combustion, wearing of
brake linings, wearing of tires, and re-suspended road dust, that all contribute to
urban pollution. In 2012, urban pollution, from all sources, caused 3.7 million
premature deaths according to the OECD and World Health Organisation (OECD
(2014)). In Europe WHO estimated "tens of thousands of deaths" due to road
transport pollution in 2005 (Krzyżanowski et al. (2005)).

One way to reduce the impact of these two problems is electrification of cars.
The fully electric vehicle, or battery electric vehicle (BEV) has no tail-pipe emis-
sions and may have lower well-to-wheel GHG emissions depending on the elec-
tricity system within which it operates. Electric vehicles have also been identified
as an important technology to reach the climate targets (Williams et al. (2012),
McCollum et al. (2014)).

But the transportation sector can be difficult to change (McCollum et al.
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2 CHAPTER 1. INTRODUCTION

(2014)). This is partly due to decentralized decision-making in the sense that
many individuals need to collectively switch to a more sustainable solution since
the lions share of transport emissions come from road transport, and cars. A
large-scale transition from internal combustion engine vehicles (ICEV) to BEVs
will require that many vehicle users find the BEV desirable enough to choose it
in lieu of an ICEV. Thus, it is important to understand the needs and requirements
of the users.

From a user’s perspective, currently, the two main drawbacks of the BEV are
that it has a limited electric driving range, based on the size of the battery, and
that the battery is expensive, creating a trade-off between the price of the car,
and the range need of the user. A possible third drawback is that there has been
limited charging infrastructure available for fast re-charging of the battery, and
that high-power re-chargers are expensive to build and may need to be subsidised
(Hardman et al. (2018)). The limited charging infrastructure man thus impede
the possibility to drive far on a single day with a BEV. These drawbacks have
resulted in efforts from the research community to find user groups which can
use a BEV under these circumstances (see Section 1.3), while also motivating
governments to support the introduction of BEVs with different types of subsi-
dies. A technological suggestion from car companies has been the development
of plug-in hybrid electric vehicles (PHEVs) that combine an electric engine with
a conventional engine. This type of vehicle may use the electric engine for shorter
trips and be re-charged at night, while still being usable for long-distance driving
using its conventional engine.

In order to determine a good battery size for a BEV, and how well existing
BEVs fulfil user needs, it becomes important to know how cars actually are used,
and especially the driving over a longer period with a combination of shorter and
longer trips. This has prompted the collection of GPS-measured driving data sets
of different user groups to complement traditional mobility surveys.

1.2 Aim of this thesis

This thesis mainly contains work on GPS-measured driving data sets. The work
is two-fold in that one part concerns users of BEVs and their needs in relation
to their vehicles, with a special focus on multi-car households (mainly Papers
1, 4, and 5), and the other concern development of methods for driving data
analysis (mainly Papers 2 and 5). In addition, a possible mitigation of driving
range limitations is an extensive fast charging infrastructure network, and the
size of such a network has been analysed in Paper 3.
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The overall aims of this thesis have thus been to explore the following two
questions:

• How can driving data contribute to the understanding of a broad BEV adop-
tion in society?

• Do short-range BEVs fulfil the needs in multi-car households?

This research is data-driven. This means that we use empirical data-sets in all
the papers, but employ different methods to analyse these data sets. The specific
methods are presented under their respective categories in 2.2. Throughout the
thesis and papers, I take a user’s perspective in the sense that I analyse the driving
needs and economics of the individual user of a BEV, rather than optimizing
average battery sizes for the whole car fleet.

It is appropriate to already here include a general reflection on this thesis.
It is devoted to analyses of a field exposed to rapid technological development
and then a few years can be a long time. Since the start of this thesis work in
2013 and the first data collection in 2010, BEV development has been fast. The
early cars, with the exception of the longer-range and more expensive Tesla cars,
typically had a battery size of around 24 kWh, such as the Nissan Leaf (model
years 2010-2014), the early Renault Zoe and Volkswagen e-Golf. These short-
range BEVs would yield real-world driving distances of about 120 km, dependent
on weather, temperature and driving speed. At the time of this writing (Fall
2019), many cars are available with real-world driving distances of 250 km and
above, such as the 40 kWh Nissan Leaf (model year 2018), and bigger batteries
are coming, for example the recently announced Volkswagen ID3 with up to 82
kWh. This development have been driven by rapidly falling prices on batteries
(Nykvist and Nilsson (2015)). Thus, in the earlier papers included in this thesis
we are often comparing driving distances with what on today’s car market would
be considered really short-range BEVs of 120 km of range.

1.3 Related work

Early suggestions for potential first user groups to adopt BEVs were that they
are likely to be used in large cities due to their limited range and small size
(Biere et al. (2009)). Also, an early stated-preference-study in the US found
that likely early adopters of BEVs are young or middle-aged, well-educated (BA
or higher degree) and had made life-style changes to help the environment. The
same study found no evidence that household income would affect BEV adoption
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(Hidrue et al. (2011)), nor that being a multi-car household impacted the likeli-
hood to adopt an EV. However, other studies have found that costs and range are
the most important considerations for BEV adoption, such as Egbue and Long
(2012). This is also in line with general knowledge that cost is one of the de-
termining factors for vehicle choice (Bolduc et al. (2008), Horne et al. (2005),
Sprei et al. (2013)). A study from Germany that used empirical data on actual
early adopters, in combination with survey respondents who expressed a strong
desire to purchase a BEV, found that these were middle-aged men with techni-
cal professions living in rural or suburban multi-person households (Plötz et al.
(2014)). In contrast to Hidrue et al. (2011), some other studies found that multi-
car households are more likely to adopt BEVs. Anable et al. (2011) focused on
demographic and attitudinal variables in the adoption likelihood of BEVs and
found that these cars are considered as possible second household cars. Kurani
et al. (1996) also found that being a multi-car household increases the probability
for adoption.

Up until 2016, the usage of GPS-based data to inform electric vehicle studies
was rare. An early study was Pearre et al. (2011) who use measured data on
484 ICEVs in Atlanta USA greater metropolitan area for a period up to a year
and assume that the drivers, if using a BEV, would charge once a day, and have
unchanged driving patterns. In these circumstances, the authors find that 9% of
the vehicles in their sample could fulfil all their driving with a BEV that had
a 160 km range. Another conclusion from the paper was that the variance in
daily driving distances are important for identifying suitable users of BEVs. This
motivates further GPS-based driving data analysis.

Two other early studies that use multi-day GPS-based data were Khan and
Kockelman (2012) as well as Tamor and Milačić (2015) who both use a GPS
measured driving data set for the Seattle region in the US to investigate how BEVs
can be adopted in multi-car households. Khan and Kockelman (2012) investigate
the effect of replacing the car that drives the least in the household with a BEV of
160 km (100 miles) range and find that 80% of multi-car households would need
to adapt their driving less than four days per year, compared to 50% for single-car
households. Tamor and Milačić (2015) differ from Khan and Kockelman (2012)
in assuming that the BEV will drive the longer daily trip of the two vehicles in
a household, as long as this distance is below the vehicle’s range. This leads to
a higher electric travel distance, as well as lower travel cost for the household.
Based on this assumption, they find a BEV with 100 km of range (60 miles) to
obtain the same number of days per year requiring adaptation as a BEV with
range 190 km (120 miles) when using direct replacement over the whole car
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fleet. Tamor and Milačić (2015) also compare the incremental cost of a battery
with higher range to the fuel cost savings of electrifying more travel. They find
that the optimal range of a BEV adopted in a two-car household is 110 km (70
miles) at a battery costs of 350 $/kWh when assuming an acceptance of three
days per year of unfulfilled driving. This would then lead to BEV adoption in
about 30% of two-car households.

After 2016, more studies have been published using GPS-collected driving
data to analyse BEV adoption or related questions. An Italian data set consisting
of 900-1000 ICE cars have been used by the collaborating authors Sodenkamp
et al. (2019) and Wenig et al. (2019). Sodenkamp et al. (2019) differ from other
studies in that they use k-means clustering to create segments of drivers that are
similar to each other with respect to 9 different indicators in the GPS data (such
as round-trip distance, speed, median parking duration, etc.). They name the
identified segments as: frequent local driver, short and long distance commuter,
short and long distance delivery vehicles, service provider vehicle, and company
representative vehicle. The naming of the categories are based on conjecture for
what types of users that would have the specific driving patterns in each group.
The conclusion is that these different segments of drivers have different needs
with regards to battery sizes and charging power. In Wenig et al. (2019) the au-
thors analyse the trade-off between larger battery sizes and an extended charging
infrastructure for PHEVs. Included in the trade-off analysis are several indi-
cators such as electric drive fraction, electric reachability of destinations, grid
impact and peak energy demand. They generally find that for realistic battery
sizes, PHEVs do not need an extensive charging infrastructure. However, a ma-
jor conclusion is also that when segmenting the users along the segments from
Sodenkamp et al. (2019), the different segments can have very different outcomes
on the indicators included in the trade-off between battery size and charging in-
frastructure.

Karlsson (2017) use the SMCD2 data (see Section 2.1) to analyse the poten-
tial to optimize the use of a BEV in two-car households. Using measurements
from both cars driving in 64 two-car households he develops several strategies
that could be used by the households to select either a BEV or an ICEV for
intended trips in order to effectively use the BEV for the longer of these trips,
without using up all the energy in the battery. When allowing for a large degree
of flexibility in car choice he finds that the households can cover 75-80% of their
driven distance using a BEV with medium-sized batteries (120-180 km).

GPS-measured driving data of BEVs in multi-car households has also been
employed in other studies. Jensen and Mabit (2017) compare the usage of BEVs
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and ICEVs in 100 households in Denmark, where each household owned at least
one ICEV to participate in the study. The BEV, that could be one of three dif-
ferent models, but all with less than 90 km driving range in practice according
to the study, replaced one ICEV during the trial period, and data was gathered
on the BEV for 3 months. Data was also gathered for the ICEV that it replaced
one month prior to the study, and one month after the study. The researchers
claim they encouraged the households to use the BEV as the primary car. The
researchers conclude that the BEV is used differently compared to the CV. They
find that it is used less on weekends compared to the ICEV, the BEV is also used
less when there is lower temperatures and higher wind speeds, it is mostly used
for shorter trips during morning peaks on weekdays.



Chapter 2
Methods and Data

2.1 A data-driven approach

This research is based on real-world data sets. Throughout the papers, we use
eight data sets, of which I am the main analyst of five. Five of the eight data sets
consist of GPS measured driving data, one of surveyed driving data, one of BEV
user interviews, and one of charging infrastructure data. Table 2.1 contains an
overview of the driving data sets used, and Table 2.2 gives an overview of the
charging data used. In relation to SCMD3, interview data was gathered for 25
households both before and after the measurement period as well.

Location Method Sample size Avg. observation period
SCMD1 Sweden GPS 429 58 days
SCMD2 Sweden GPS 130 74 days
SCMD3 Sweden GPS 40 103 days

MoP Germany Survey 6399 7 days
PSRC USA GPS 420 260 days

Winnipeg Canada GPS 72 216 days

Table 2.1: Description of driving data sets

Two data sets should be especially highlighted. The Swedish Car Movement
Data (SCMD1) set consists of cars which were randomly sampled from the na-
tional vehicle registry and then had its drivers enquired for participation in the
measurement project. Up until recently, large data sets with representative driv-
ing has not been widely available to researchers. Prior to 2014 discourse con-

7
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Location Number of 50 kW chargers Avg. number of sessions / charger
Sweden 32 573
Norway 192 2011

Table 2.2: Description of the charging data sets. The displayed data is collected from
November 2015 to November 2016. Data is licensed under CC 3.0, attributed to Nobil,
Enova, Norway.

cerning BEVs in electromobility conferences and workshops tended to focus on
trip distances rather than daily distances and were occasionally based on survey
data that systematically under-count total driving distance (Stopher et al. (2007)).
Furthermore, if one, for simplicity, consider average driving distance, either for
individual drivers, or for the whole fleet, these averages tend to be below the range
limitation of BEVs. However, they do not catch how often the range limitation is
actually breached given current movement patterns. That we use real-world GPS
measurements over several months, instead of national or fleet averages of trip or
daily driving, enables us to make statements about how often individual drivers
will be limited by the range of a BEV. In the context of driving data, this is a part
of what we mean by maintaining a user’s perspective.

The second important data set is SCMD3. This data set consists of house-
holds that are a subset of those in SCMD2 where we first measured the driving
of 65 two-car households in Western Sweden. The 65 households were randomly
selected from the vehicle registry for enquiry of participation with some selec-
tion criteria: the households should have a minimum of two actively used driving
licences; have (exactly) two cars, of which at least one used for commuting at
least 10 km one way; and the cars were restricted in terms of engine power, size
and age. In SCMD3 a subset of 25 of the original 65 households were measured
again, but with one car of their choice replaced by a Volkswagen e-Golf with a 24
kWh battery. This data set is, to our knowledge, unique in that we have access to
the driving patterns of both cars in two-car households before and during a BEV
trial. Another key feature of SCMD3 is that the data come from households who
did not themselves take the initiative to obtain an electric car. Instead a selec-
tion of the original 65 households was presented with the option of doing so, to
which the vast majority answered positively, and thus, cannot necessarily be con-
sidered early adopters, but instead might represent an early majority, using the
terminology of Rogers (2003). In this sense, our study differs from most other
travel measurements of electric vehicle users. Note however, that since the sam-
ple size in SCMD3 is quite small, the results should be considered as illustrative
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of possible behaviours rather than representative of car users in general.
Besides the GPS measurements in the SCMD3 data collection, we performed

interviews with the household members. One interview just before the trial pe-
riod started, and one when it ended. Both interview sessions were semi-structured
and contained mainly open-ended questions, however they had different focus.
The first session was intended to gather information on the users’ expectations
of BEVs in general and the trial period in particular, it also gathered informa-
tion on car purchase history, regular and irregular trips that the household may
do, as well as various needs that a car may fulfil for them (e.g., towing, goods
or tool transport etc.). The second session focused on the experiences from the
trial period, initially letting the participants guide the discussions to whichever
topic had made an impression (charging, range limits, size etc.), and later on be-
ing more guided to cover relevant topics. The first interview session averaged 37
min of length, and the second session averaged 43 min of length. All but three
interviews were carried out by two researchers and all but one were at the par-
ticipating households’ home (this interview was carried out at a restaurant). The
interviews were recorded and later transcribed. Notes were also taken separately
by both researchers.

These data sets have different strengths and weaknesses with respect to each
other, the employed methods and the research questions put forward. The SCMD1
data set used in Paper 1 is a medium-sized data set that is intended to be represen-
tative for Swedish drivers. Therefore, we can make statements about differences
between car categories such as first and second cars. However, these statements
should not be considered final. One reason is simply that the average measure-
ment period is only about two months. This means that we do not capture possible
seasonal individual variation in driving that may impact, for instance, how often
users drive above the range limitation1. Another reason is the assumptions we
make in the same paper, one being that cars actually can be classified into two
different car categories called ’first cars’ and ’second cars’. The validity of this
mental model can be discussed, and is further discussed in Paper 1. But against
the backdrop of this thesis, and its overarching question "Do short-range BEVs
fulfil the needs in multi-car households?" we can combine the general conclusion
of Paper 1, with that of the closely connected Paper 4. Since Paper 4 also studies
multi-car households, but does so without a first/second-car distinction, and also
by using different data sets and methods, we strengthen the overall conclusion

1As measurements for different users are spread over the year, it would be possible to com-
pare e.g. the median summer driver with the median spring driver but then we make an implicit
assumption that these can be compared, and we no longer employ a strict user-perspective.
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that short-range BEVs can be adopted in multi-car households.
Concerning the connection between Paper 1 and Paper 4, their different data

sets and methods bestow them with different strengths and weaknesses, but they
complement each other. A notable property of the method and data in Paper 1
is that aspects besides driving distances are unaccounted for, this is as it should,
as the research focus in this paper is the driving range of BEVs and how well
they fit in multi-car households from this perspective. However, if considering
a background question, such as the one phrased in this thesis: "Do short-range
BEVs fulfil the needs in multi-car households?", then this question entails other
aspects than driving. Such aspects can be: possibility of home-charging, need
for towing, or other unknown aspects. This can instead be studied in a BEV
trial where interview data is gathered, such as the one in Paper 4. This is thus a
strength of Paper 4 compared to Paper 1. Also, a main purpose of Paper 4 is to
compare the actual usage of BEVs and adaptation to BEVs with our results from
Paper 1. A clear downside of SCMD3 is the small sample size, and this is due
to the high-cost of data gathering in this case. Due to the small sample, we can
only make statements on possible adaptations in multi-car households, and not
generalizations.

From a practical perspective, GPS measurements often contain broken data
for a variety of reasons. A GPS may take time to find its location after the car is
started and occasionally they may lose satellite reception, resulting in longer trips
being cut up in sequences of small trips. The lost distance driven in the data can
often be recreated due to knowledge of geographical position at start of different
trips (see Björnsson and Karlsson (2015), and Jakobsson et al. (2018) for details
of data cleaning in SCMD1 and SCMD3 respectively). However, this leads to a
lower accuracy when it comes to single trip analysis and location analysis. There-
fore, in most of the results presented we have aggregated trips to daily distances,
this more often leads to accurate distance measurements on individual days since
the driven distance is either not lost, or can be recreated when it has been lost.
This also effectively means that we assume charging once a day in most cases
(overnight charging) when we analyse the data in SCMD1 and MoP.

2.2 Research themes

2.2.1 Days Requiring Adaptation

When fully replacing an ICEV and its driving with a BEV, how easy it is to use
the BEV depends on how often, and when, one would need to recharge it. In



2.2. RESEARCH THEMES 11

areas without public charging infrastructure, it may only be possible to recharge
the BEV overnight. Therefore, it is desirable for a user that the range of the
car is sufficient to last throughout the full day. From Norwegian user surveys, it
was found that the possibility to charge at home at night, and not having to go
to a gas station during the day, is seen as a benefit of the BEV compared to an
ICEV (Figenbaum and Kolbenstvedt (2016)). Therefore, the main indicator we
use to analyse if a BEVs range would be sufficient for a user is how many days
they would drive above the range limitation as measured on their regular ICEVs.
This quantity is denoted ‘days requiring adaptation’ (DRA), as it refer to days in
which the user of the BEV would need to adapt their driving in some way (Pearre
et al. (2011)). Possible adaptations could be, for instance, to recharge during the
day, to move planned trips in time or between cars, to rent another car, or to use
other modes of transport. The DRA measure has also been used by several other
studies (see Section 1.3).

The DRA measure can be directly obtained from the daily driving distances
for each car. For comparison, the DRA for a vehicle is then scaled to annual basis
for all individuals in those data sets that have a long enough measurement period
to perform a direct extrapolation (e.g. SCMD1, PSRC, SCMD3).

In the MoP data used in Paper 1, which has a short measurement period of
seven days we have assumed that daily driving distances follow a Log-Normal
distribution:

f (r) =
exp(−(lnr−µ)2

2σ2 )

r
√

2πσ
(2.1)

From this, the probability for a DRA can be calculated as the integral summed
from the range limitation to infinity:

∫
∞

L f (r)dr = 1−F(L). The annual number
of DRA can then be scaled up as D(L) = 365( n

N (1−F(L)) where n
N is the share

of driving days in the measurement period. Note that the assumption of a Log-
Normal distribution is further discussed in Section 3.2 below.

2.2.2 BEVs in multi-car households

When BEVs are adopted in multi-car households, there are possibilities to allevi-
ate or circumvent the range limitation. The line of argumentation builds on two
assumptions. The first assumption is that these households have cars for different
purposes; where one car is used for towing, longer trips, and when transporting
more people, while another car is used for shorter everyday trips. The second car
usage scenario could then be satisfied by a short-range BEV more easily. The
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second assumption is that households may be able to shift trips between the cars
to circumvent the range limitations of the BEV.

Investigation of these two assumptions requires different types of analysis.
The first assumption that BEVs may be more easily adopted as a second car in
two-car households without any adaptation requires driving pattern analysis of
ICEVs in such two-car, or multi-car, households. This is the topic of Paper 1,
which analyses the SCMD1 and MoP data from this perspective. Note though,
that it is reasonable to assume that some adaptation may be easily done by the
households (such as charging at work, shifting some trips between cars, etc.).
An analysis akin to Paper 1 is thus a conservative estimate for how well BEVs
may be adopted in multi-car households. An alternative approach is to focus
on the second assumption, that households can shift trips in-between the cars in
the household. An analysis which optimizes such shifting could reveal a high
possibility for short-range BEV adoption in two-car households. Such analysis
has been done on the SCMD2 data in Karlsson (2017). However, it is unlikely
that a household will do such an optimization based on the distances and point
of times for the driving only, as various needs from cars, such as trunk size,
towing, sense of personal ownership of the car etc. may play a role in car choice
for different trips. Thus, an optimization of trip shifting may correspond to an
optimistic, or upper-bound, assessment of how well short-range BEVs can be
adopted in two-car households.

To get a sense of where the middle-ground of these approaches may lie, a
more user-centered approach, where we observe the actual use of a BEV in two-
car households, is required. This is one of the topics of Paper 4, which utilize the
SCMD3 data in combination with the SCMD2 data to investigate how two-car
households adapt to the use of a short-range BEV. Besides GPS data analysis,
in Paper 4 we also utilize the pre- and post-trial interviews that were done in
connection with the SCMD3 data gathering. We are thus able to compare the
experienced driving need fulfillment with the expected driving need fulfillment
from analysis of SCMD2.

In Paper 5 we extend the traditional GPS-based analysis that focuses on
driven distances to also include a focus on reached destinations. The motiva-
tion for this is that we know that a number of factors beyond trip distance impact
which car a user selects for a specific trip. This was also evident in the inter-
view material presented in Paper 4, where a few possible motivations were: a
sense of personal ownership over a specific car, a need for towing, and large
trunk size. Which motivation that determined the choice of car for a specific trip
cannot be consistently revealed by GPS data, neither with distance analysis nor
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with destination analysis. But extending the analysis beyond distance may pro-
vide additional information on how cars are used. Also, with our case study of
comparing the usage of BEVs with ICEVs in two-car household, we may reveal
if there are additional systematic differences in the usage of these two car types.

Part of the study in Paper 5 is exploratory, with the intent to investigate how
a destination-based analysis can be used to complement distance analysis when
exploring BEV adoption in two-car households. We thus have a research question
consisting of two parts: "What destination-based measures can be used to analyse
the usage of BEVs and ICEVs in two-car households?", and, "Do destination-
based analysis contribute added understanding to how BEVs are used in two-car
households compared to the traditional distance-based analysis?"

2.2.3 Probability distributions for daily driving distances

As described in Section 2.2.1, we use a Log-Normal distribution to model the
daily driving distances for the MoP data in Paper 1 (see Table 2.1). As briefly out-
lined in this paper, this choice is not obvious, and there are several distributions
that could be considered for modelling daily driving data. With access to data
sets with longer measurement period and a decent sample size, such as SCMD1,
PSRC and the Winnipeg data, we can test whether this probability distribution is
a good choice, which is the topic of Paper 2.

The choice of distribution may be crucial when applied to electric vehicles.
Specific interests may here be in either days requiring adaptation for BEVs, or
electric drive fraction for PHEVs. These measures are mainly influenced by par-
ticularly long, and short, driving, respectively. The choice of distribution would
mainly affect predictions of long distance (the tail of the distribution) and short
distance driving.

Earlier literature has argued that driving distance data follow peaked and
right-skewed distributions, such as the Weibull, Log-Normal and Gamma dis-
tributions. Specifically, Greene (1985) and Lin et al. (2012) analyse two data sets
and argue that the Gamma distribution is the most suitable for driving data. How-
ever, there have also been other findings. Blum (2014) and Plötz et al. (2012) ar-
gue that the Log-Normal distribution provides the best fit for most drivers. Thus,
research is required to judge not only the overall best distribution for driving data,
but also to investigate the effects of choosing one distribution over another for
common measures relating to electric vehicles. These two questions are treated in
Paper 2 where the Log-Normal, Weibull and Gamma distributions are compared
to each other and to empirical data with respect to the DRA and EDF measures.
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2.2.4 Usage of charging infrastructure

An alternative to focus on multi-car households to deal with the range limitation,
as explored in Papers 1 and 4, is to extend the range by usage of public charg-
ing infrastructure. Public charging can either be slow (below 50 kW) or fast (50
kW or higher). The slow and fast chargers serve different purposes in that the
slow ones are more usable when a car stands idle for several hours at a specific
location, such as work, therefore this type of charger is sometimes referred to
as a ’destination charger’. The fast chargers instead best serve their purpose in
situations where a user would not want to stay more than approximately half an
hour, such as for a meal or at a viewpoint along a highway, thus functioning to ex-
tend the range of a BEV. In Paper 3 which analyses fast charging, my co-authors
developed a queuing model for estimating the needed number of fast chargers in
Sweden and Germany. Such a model is valuable because it can give an estimate of
number of chargers, rather than the position of chargers which most earlier work
have focused on (Chen et al. (2013), Ge et al. (2011), Lam et al. (2013)). How-
ever, a model needs input data and to be verified to be reliable. My contribution
to the paper has been to analyse charging data from fast chargers in Sweden and
Norway to function both as input to the model, and as verification of the model
output. In the paper I also present some general statistics of charging infrastruc-
ture usage in Sweden and Norway as of 2016. The data is made available under a
CC3.0 license by Nobil, Enova, Norway (Nobil (2015)). I have also contributed
pre-processing and aggregation of the SCMD1 data that is used together with the
MoP data to determine the re-charging need of the vehicles in the model.

A full description of the queuing model is available in Paper 3. Two aspects
of the charging data is used as input: first, the identified distribution form for
length of charging times, and second, the distribution of charging over the times
of the day. One aspect is used to verify the model output, this is the distribution
of inter-arrival times at charging stations. Additionally, the variation in empirical
charging distribution over the year is used to inform the discussion of the model
results. Note that the charging data cannot provide us with inter-arrival times, it
can only yield inter-plugin times. However, the fraction of new connections that
happen closely in time (< 5 min) after a prior plug-out is very small; it is 1.2% in
the Swedish data, and 2.5% in the Norwegian data. Therefore, inter-arrival times
can be reasonably approximated by inter-plugin times.

In Section 3.3 I present an overview of the more important results from the
charging infrastructure data used in the paper.



Chapter 3
Research Summary

3.1 Battery Electric Vehicles in Multi-Car Households

This section contains results from Papers 1, 4 and 5, each dealt with in a separate
sub-section.

3.1.1 Paper 1 - Are multi-car households better suited for battery electric
vehicles?

While using a short-range BEV, and given no adaptation compared to conven-
tional car usage, a large fraction of users will have problems fulfilling their driv-
ing needs. Figure 3.1 uses the SCMD1 data and shows the share of users with
a certain number of days requiring adaptation (DRA), that is, days where they
would drive over the range limit, w.r.t. range. For a common range of 120 km
a majority of users would need to adapt at least once a month, with more than
20% adapting more than once a week. The group with no DRA increases ap-
proximately linearly with range, adding another two percentage units per extra
10 km of range. Specifically, a BEV with 230 km of range would be needed for
half of the users to fulfil all their driving, and 400 km would be needed for 79%
of the users to fulfil all their driving. This raises the need to identify specific user
groups where driving need could be more easily fulfilled.

In Paper 1 we address the following two questions: 1) Are the second cars in
a multi-car household better suited as BEVs from a driving pattern point of view?
2) Taking into consideration total cost of ownership, are these BEVs economical
compared to conventional vehicles? Here we define first car as the car in a house-

15
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Figure 3.1: Share of cars with different number of DRA as a function of range in the
SCMD1 data. The categories are: cars that fulfil all driving (blue), cars with 0-1 DRA
per month (cyan), cars with 1-2 DRAs per month (green), cars with 0.5-1 DRA per week
(magenta), and cars with more than 1 DRA per week (red).

hold that has the highest annual VKT, while second car is the car with a lower
annual VKT.

Figure 3.2 shows the share of users with no DRA, and with up to 12 DRA
per year separated on first car, second car, and all cars1 in the SCMD1 data. The
group with 12 DRA per year thus represents a group that has to accept some
adaptation of their driving. Here it is clear that second cars are better suited to be
replaced by BEVs compared to first cars, for a range of 120 km, around 30% of
second cars fulfil all their driving compared to first cars, where only 5% fulfil all
their driving. It is also noteworthy that a focus on second cars only, would yield
as high user shares that fulfil all their driving as a focus on all cars accepting
adaptation for 12 days per year.

However, second cars are by definition those cars that have a lower annual
VKT. There is thus a possibility that a focus on cars with low annual VKT would

1All cars include all cars in multi-car households as well as cars in one-car households
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Figure 3.2: Share of vehicles w.r.t. range for an adaptation acceptance level of zero
days, as well as maximally 12 days per annum (blue lines, black lines, respectively)
for first cars, second cars and all cars (dashed line, dashed-dotted line, and full line,
respectively), SCMD1 data.

be an as good, or better, group for adopting BEVs. This is undesirable since a
BEV has a high investment cost and a low operational cost. It would be better if
cars with a high annual VKT should be replaced by BEVs, as these could more
easily economize compared to conventional cars. To investigate this, we calculate
the total cost of ownership (TCO) for using a BEV, a gasoline car, and a diesel car,
for users that have driving patterns according to SCMD1. Important aspects of
this calculation are that we impose a cost for DRAs reflecting the cost of a rental
car, a cost per kWh for the battery, and that we use economic parameters for 2020,
as they were projected by a national investigation into clean transport in Sweden
(SOU (2013)) in 2013. The inclusion of a cost for DRA means that cars not only
need a high annual VKT, but also a low number of DRAs to economize as BEVs.
It is also notable, that the economic conditions in Sweden are significantly more
favourable to BEVs than in Germany. This is due to an included direct subsidy
in Sweden, as well as cheaper electricity and more expensive gasoline and diesel
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compared to Germany. In Figure 3.3 is shown the cumulative share of first cars,
second cars, and cars in one-car households (single cars), that have a lower TCO
when using a BEV compared to the cheapest alternative of a gasoline and diesel
car w.r.t. accepted number of DRAs for a range of 120 km. The SCMD1 data
is displayed in the left sub-panel and the MoP data in the right sub-panel. In
both cases the second car performs better than the first car, though in the MoP
case both categories have very low number of economical cars due to the cheaper
fuel, more expensive electricity, and lack of direct subsidy in Germany compared
to Sweden. For a harsh requirement of no adaptation, almost 14% of Swedish
second cars are economical as BEVs.
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Figure 3.3: Share of economical BEVs w.r.t car category and less than specified number
of DRA. The shares are calculated as quotients of all cars in a specific car category using
a range of 120 km. SCMD1 results to the left, MoP results to the right.

The result from Paper 1 shows that in the general car fleet, a low percentage
of cars would fulfil their driving needs. However, for second cars in multi-car
households, a more substantial share (30%) of cars fulfil all their driving. When
imposing a high cost for DRAs, i.e., equal to the cost for renting a car for these
days, for almost 14% of second cars a BEV would have a lower TCO than a
conventional car. This means that given range limitations of around 120 km, a
focus on multi-car households is warranted.

A reasonable criticism against Paper 1 is that 120 km is a quite low range to
assume for BEVs in 2020. However, this range category will remain relevant in
the future as well. Even though cost for batteries may decrease over time, they
will remain a large part of the full car cost. Large batteries that can run a car for
300 km or more may not be relevant in all usage scenarios. In those cases it may
be desirable to keep the car investment cost low. Our results will thus remain
relevant to highlight that different battery ranges will have market potential in
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the future. Furthermore, there may be usage scenarios, such as driving in a cold
climate, where specific battery technologies could be desirable. For instance, Ni-
MH batteries are about twice as heavy per kWh compared to Li-Ion, but perform
better in cold climate. The knowledge that low range is sufficient in some cases
can facilitate the use of these alternative battery technologies.

3.1.2 Paper 4 - How do users adapt to a battery electric vehicle in a two-car
household?

In Paper 4 we utilize the GPS-measured SCMD2 and SCMD3 data together with
the semi-structured open-ended interviews performed before and after the BEV
trial in SCMD3. Specifically we have one general research question, followed by
four sub-questions:

How do two-car households adapt to a battery electric vehicle?

• RQ1. How well do a BEV fulfil the driving needs of the households?

• RQ2. What are the experiences of everyday BEV usage?

• RQ3. How do households adapt their driving patterns to a BEV?

• RQ4. How can the quantitative adaptation be explained using the qualita-
tive data?

We answer the questions through a mixed-method approach using the quan-
titative and qualitative data. Firstly, we combine results from simultaneous GPS
measurement of both cars’ driving in two-car households using a BEV in combi-
nation with a conventional car with in-depth open-ended interviews on the expe-
riences of the car users in these households (SCMD3 and interviews). Secondly,
we combine this SCMD3 GPS data with similar earlier GPS measurements in
the same households while they still were using two conventional cars (SCMD2).
Thus, we can identify how the users’ driving patterns changed when they used
a BEV in combination with one of their conventional cars. This adaptation in
driving is then also compared to the users’ experienced changes based on the in-
terview data. Here I will focus on results related to RQ3 and some results related
to RQ4, as these aspects are unique for our research. Answers to all the questions,
and a more exhaustive answer to RQ4 is available in Paper 4.

In order to judge how much, and in what way the households change their
driving behaviour (i.e. RQ3 above) we have analysed the distribution of daily
driving distances. As in Paper 1, we aggregate driving distances to daily basis
and compare the driving distances between the household car types. Figure 3.4
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Figure 3.4: Distribution of daily driving distances for the BEV and the replaced car. The
top left figure displays the average of all ten households, the other three figures display
some typical results. Blue colour marks the replaced car, light brown marks the electric
car, and dark brown shows overlap between the two car types.

shows these distributions of daily driving distances as normalized histograms for
the electric car and the conventional car it has replaced, respectively. The top
left sub-panel shows the average distribution over all the households, while the
other sub-panels contain three interesting individual results. In the top left sub-
panel we can see that there is a tendency for the BEV to take driving tasks within a
fairly narrow range of around 40 km to 90 km, while the replaced car increases its
driving in the other ranges. Thus the electric car, when compared to the replaced
car, both reduces the amount of long distance trips (90-140 km) and increases the
number of short distance trips (0-40 km). This might represent both an effect of
range anxiety and a wish to utilize the BEV more. The top right figure shows an
example of a household that to a large extent keeps the same driving distances for
the BEV as for the replaced car; this is also a case of a typical commuting car.
The bottom left and bottom right contain households where the electric car to a
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large extent has increased and decreased driving compared to the replaced cars,
respectively. Most households have behaviours in-between these three examples,
however the three examples show the heterogeneity of behaviour.

By extrapolating the driven distances in the two measurement periods to an-
nual driving distances we can obtain the fraction of total household distance
driven by the BEV in the SCMD3 data, and the corresponding fraction for the
replaced car in the SCMD2 data. This, as well as the ratio between them, are
shown in Table 3.1. In just over half the cases, the fractional change in driving
due to the adoption of a BEV is small, with seven households having a change
below 5%, and an additional five between 5-10% change. In these two groups
there are also three households that lowered the share of driving of the electric
car compared to the replaced one. Of the remaining households, two have a sub-
stantial decrease in driving on the electric car compared to the replaced car, with
22% and 44% reduction respectively, while five have a substantial increase of
12% to 42%. Finally, there is a substantial outlier with an increase of 159%.

When interpreting the results relating to RQ3 from Paper 4, we see that the
degree of adaptation differs between households. This has implications for how
to interpret the results of Paper 1, where the results from Paper 4 suggest that
different vehicles in Paper 1 would differ in how many DRA that they can ac-
cept. Similarly, the results from Paper 4 suggest that the vehicles in the economic
analysis in Paper 1 would have different costs for DRA. However, to understand
how many vehicles that would accept a certain number of DRA, a study similar
to Paper 4 would need to be redone with a larger sample size.

When combining results from the driving data with the interview data (i.e.
RQ4), we find two important results. Some households state that they prefer to
use the BEV over the ICEV, but such a preference may not be visible in the driv-
ing data for these households. Thus, interviews are unreliable predictors of how
households actually are driving. Secondly, according to interviews, no house-
holds had experienced that the range limitation forced them to abstain from trips
they otherwise would have done. Only one household had abstained from a trip
partially due to the range limitation, but that they had other reasons for not per-
forming the trip as well. However, driving data analysis found that only 40% of
the analysed households had no DRA during the SCMD2 measurement period
(assumed BEV range of 130 km). Thus, ICEV driving data analysis of how well
a BEV would fulfil a household’s driving needs may suggest that it is harder for
the household to adopt a BEV compared to what the household’s experiences
would suggest. Or, interpreted differently, analysis of driving data may assume
that households can accept a higher number of DRA than previously thought.
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Household Electric car Replaced car Fractional Increase
1 34% 33% 3%
2 40% 30% 33%
3 67% 50% 34%
4 45% 57% -22%
5 41% 73% -44%
6 65% 63% 2%
7 44% 42% 6%
8 35% 34% 4%
9 31% 29% 9%
10 43% 47% -7%
11 59% 52% 12%
12 58% 63% -8%
13 58% 59% -2%
14 52% 20% 159%
15 49% 48% 2%
16 59% 54% 9%
17 46% 40% 17%
18 56% 40% 42%
19 32% 32% 0%
20 35% 35% 0%

Table 3.1: Share of total household driving distance taken up by the EV in the evaluation
period, the replaced car in the comparison period, and the fractional increase of driving
for the EV compared to the replaced car.

3.1.3 Paper 5 - A destination-based analysis of electric, and conventional,
cars in two-car households

In this paper we find, in addition to the results from Paper 4, that there is het-
erogeneity in how cars are used in the households. In Figure 3.5 the number of
trips to each of the ten most common destinations are displayed for both cars for
four example households. The households are chosen to display different observ-
able behaviors among all 20 households. For all households, both cars have the
same most common destination (which is the home in all cases), while the pat-
terns vary for the remainder of the destinations. In the top-left panel we see an
example of a highly regular choice of car for each destination, where destination
2 and 3 are visited close to exclusively by one of the cars. In this case, desti-
nation 2 and 3 may be the household’s two work locations. The top-right panel
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shows a similar pattern, but with another destination besides the home that is the
second most, and equally, common for both cars; perhaps an additional stop each
day that is inter-changed by the drivers, such as picking up a child from day-care.
The bottom-left panel is an example of a household that prefers to use the electric
car for all destinations, and thus probably exhibits a large amount of car shifting
between the two adult members of the household. The bottom-right panel is an
example of a household where all destinations are visited more equally by both
cars. Thus, we observe heterogeneity in how households utilize their cars for
their most common destinations, with some appearing to prefer the BEV for all
destinations, while others show a strong preference for one of the cars for specific
destinations.
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Figure 3.5: For four households, number of visits by each car type to the household’s
ten most common destinations, ordered according to number of total visits. The top-
left panel is household 12, top-right is household 5, bottom-left is household 11 and the
bottom-right is household 8.

In Figure 3.5 we also see that it is common for the users to drive a large
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part of all their trips to a few very common destinations, with the remainder of
the destinations having few visits. This raises a question of how much of each
household’s driven distance is made up of the most common destinations. It may
be that a user visit several destinations in a sequence before returning home. To
investigate this we need to calculate how far they drive on sequences consisting
of the most common destinations, instead of just the one-way distance to the most
common destinations. We denote such a sequence of trips a trip "chain".

The answer is displayed in Figure 3.6 where the cumulative share of driven
distance for all chains that consist of only the x most common destinations where
x is increased along the x-axis is shown. Again we observe a large heterogeneity,
where 4 BEVs and 1 ICEV drive more than 50% of their total distance on chains
consisting only of their 5 most common destinations (4 most common destina-
tions plus the home). While at the same time 4 ICEVs drive less than 10% of
their total distance on chains including only the 5 most common destinations,
with an additional ICEV and a BEV driving marginally more than 10% of their
total distance on the 5 most common destinations.

We can also observe an overall tendency that BEVs drive a larger share of
their total distance to fewer destinations compared to the ICEVs. This is sup-
ported by a two-sided Wilcoxons signed-rank test with the null hypothesis that
the distribution of the share distance driven on all chains consisting only of the x
(same as in Figure 3.6) most common destinations for the 20 BEVs, subtracted
by the same for the 20 ICEVs, have median zero. This null hypothesis is re-
jected at the 5% significance level for each individual 3≤ x ≤ 10, while it is not
rejected at the 5% significance level for x≤ 2. This implies that there is a differ-
ence of how large share of their total driving that BEVs and ICEVs do on chains
including only their most common destinations. Note that these results should be
interpreted cautiously, as the sampling period over the year for each individual
household may be important, i.e. if vacation trips are included or not.

Thus we can obtain additional insights in our case study of BEV adoption
in two-car households using destination analysis as a complement to distance
analysis. Such as recognizing the heterogeneity in household behavior from this
perspective, and that BEVs drive a larger fraction of their total distance to desti-
nations closer to home.

3.2 On the distribution of daily driving distances

The reasons that probability distributions have been used to model driving data is
that time-series for driving have historically been short, negating the possibility to
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Figure 3.6: Cumulative share of distance driven on all trip chains consisting only of
the most common destinations, where the x-axis is the number of destinations that is
considered most common.

do direct empirical extrapolations. With our access to driving data gathered with
longer measurement periods, we can now check how well different probability
distributions actually model driving data. We do this with respect to the important
measures DRA and electric drive fraction for BEVs and PHEVs respectively.

In this study, we use four data sets to analyse three probability distributions
with respect to daily driving data. The distributions analysed are Log-Normal,
Weibull and Gamma:

Log−Normal : f (r) =
exp(−(lnr−µ)2

2σ2 )

r
√

2πσ
(3.1)

Weibull : f (r) =
k
λ
(

r
λ
)k−1 exp(−( r

λ
)k) (3.2)
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Gamma : f (r) = rk−1 exp(− r
θ
)

Γ(k)θ k (3.3)

The data sets used for analysis is SCMD1, PSRC, the Winnipeg data, and
the MoP data. The data sets have complementary properties in that The MoP
data set has a large number of users and short measurement period, the Winnipeg
data have few users, but a long measurement period, and the SCMD1 and PSRC
data fall in-between these. That the data sets are from different countries with
different geographical settings make our results more robust. As outlined above,
we focus on the following two questions:

• Which is the best overall distribution for daily driving data?

• What consequence does the choice of one distribution have on the results
obtained when calculating electric drive fraction for PHEVs, and days re-
quiring adaptation for BEVs?

We estimate the parameters for the probability distributions by maximum
likelihood estimates. In order to judge the best overall distribution, we employ
four Goodness of Fit (GOF) measures. These are the:

• Akaike information criterion: AIC =−2LL+2(p+1) , p is the number of
model parameters and LL the log-likelihood.

• Root mean squared error: RMSE = ∑i

√
(yi− fi)2

n .

• Mean absolute percentage error: MAPE = ∑i | yi− fi
fi
|/n.

• χ2 statistic: χ2 = ∑i
(yi− fi)

2

fi
.

Where n is the number of driving days, yi the observed and fi the expected
value at ri. We calculate the GOF for each driver in each data set separately.

Table 3.2 shows the share of users for which a given distribution performs
best according to each of the four GOF measures for the four data sets. Contrary
to earlier research, we find a low performance for the Gamma distribution, and a
high performance for either the Log-Normal distribution or the Weibull distribu-
tion depending on the data set used.

To analyse the second question above we calculate the number of DRA for
each distribution. Confidence intervals (95%) are generally calculated as Clopper-
Pearson intervals, the exception is mean and median calculations for the DRA and
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EDF estimates where they are calculated by BCa bootstrap. Electric drive frac-
tion is calculated by simulating 50 000 driving days for each user and distribution.
The resulting individual EDFs are then used to form mean and median EDFs, as
well as shares of users with more than 50% and 80% electric drive fractions.

The full results tables can be observed in Tables 5-8 in Paper 2. Though
there are various differences among the distributions, the most notable is that
in prediction of share DRA Log-Normal differs more from Weibull and Gamma,
than Weibull and Gamma do from each other. What should be especially noted, is
that Log-Normal estimates a higher fraction of DRAs than Weibull and Gamma.
As an example, consider the share of users with DRA<1 for a range of 150 km
in the SCMD1 data. Log-Normal predicts 7.9% of these users to have so few
DRA, while Weibull and Gamma predict 21.2% and 17.5% respectively. Thus
the choice of distribution has a large impact on results when considering DRA.
If one wishes to have a conservative estimate of the number of users who would
be able to fulfil their driving with a BEV, one might choose to model driving data
with the Log-Normal distribution. It should also be noted that the Weibull and
Gamma distribution to a larger extent agrees with the empirically measured data.

Similarly, for the EDF of A PHEV the Log-Normal differs more from the
other distributions, compared to how much Weibull, Gamma and the empirical
calculations differ from each other. Log-Normal consistently estimateS lower
EDF than the other distributions and the empirical calculation. This means that a
researcher interested in a conservative estimate of the EDF might wish to choose
the Log-Normal distribution over the others. However, that the other distributions
and the empirical calculation gives similar results hints at that they may give a
more accurate prediction of what the electric driving share would be for these
users, if they were provided with a PHEV.

With these insights from Paper 2, the results in Paper 1 on the MoP data
should be considered as conservative estimates for how many users short-range
BEVs would be suitable.

3.3 Fast charging infrastructure for BEVs

In this study we estimate the size of a future charging infrastructure network in
Sweden and Germany using a queuing model. Here I will present my contri-
butions to this work, which is to analyse existing charging infrastructure data to
provide input to the model, and verify the output of the model.

We use charging data from Sweden and Norway separately, and limit the
data to that which was measured from November 2015 to November 2016 to get
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exactly one full year, while also limiting the effect of increasing usage of the
network that otherwise may distort the results.

In the queuing model we assume normally distributed charging times. This
can be compared with the empirical charging times from the data. These are
available in Figure 3.7, where kernel density estimates (KDEs) of the empirical
data are plotted together with a fitted normal distribution with a cutoff at 35 min,
which is the time it would take to reach a full charge on short-range BEVs. As
is seen in the figure, a normal distribution is not a perfect match to the empir-
ical data. However, the peak of the distribution (the mean), and the spread of
the distribution (the variance) are positioned somewhat similarly to the KDEs.
These are the two parameters that are relevant for our model, thus the normal
distribution predicts these parameters well. In comparison, other distributions,
which better account for tail probabilities (such as Weibull and Log-Normal) do
not center the peak of the distribution well. Further, it is more important to have
a good fit for the mean and the variance, rather than distribution tails, since long
charging times reflect users that let their vehicle remain connected to the charging
point well after they have been recharged (given current battery sizes).

The queuing model also assumes exponentially distributed inter-arrival times.
Figure 3.8 shows empirical inter-plug-in times. As is clear from the figure, there
is an important day-night influence on arrivals with fewer arrivals to charge at
night and more arrivals at daytime. Norway, which has denser arrivals compared
to Sweden, also has more exponentially distributed inter-arrival times, in line
with the model assumptions. We interpret this as suggesting that the exponential
distribution can be a good choice in a more mature electric vehicle market, es-
pecially when focusing on the rush hour demand, but it may be less good in less
mature markets.

3.4 Synthesis of research results

In this section I will consolidate common topics among the papers. Paper 1 has
often formed the basis for ideas that are explored in the later Papers. This is
especially true for Paper 2 and Paper 4, and to some extent Paper 5. Therefore, I
will highlight some of the connections between these papers below.

In Paper 2 the consequence of choosing a Log-Normal distribution to model
the MoP data, similarly to what was done in Paper 1, is tested and we find that
Log-Normal may predict too many DRA compared to what a larger empirical
data set would give. Thus, potentially altering some of the results in the paper. If
the over-estimation of DRA is even among first cars, second cars, and cars in one-
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Figure 3.7: Charging time distributions for Sweden and Norway. The solid lines are
empirical KDEs. The crosses are the fitted Normal distribution where only data points
below 35 minutes charging time have been included.

car households, then this will not impact the two main conclusions of the paper:
that second cars have fewer DRA, even at the same annual VKT, compared to
first cars and to cars in one-car households; and that the second cars more often
have a lower total cost of ownership as BEVs than as ICEVs compared to first
cars and to cars in one-car households. However, modelling will be required to
know if there is a relevant difference between the over-estimation of Log-Normal
on the first cars, second cars and cars in one-car households. Note though, that
for the SCMD1 data, probability distributions were not used in Paper 1, and this
data also supports the conclusions of the paper.

In Section 2.2.2 I describe how Paper 1 and Paper 4 are closely connected.
With the results from Paper 1 alone, we do not know what reasonable acceptance
levels for DRA are, but we can observe in a medium-sized sample how many
DRA different cars have. In Paper 4 we have a much smaller sample, but we
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Figure 3.8: Kernel density estimate for inter-plug-in times for Sweden and Norway.

know both the number of DRA for both cars prior to the BEV trial, and the ex-
perience of the effect of the range limitation on driving needs. From Paper 1 we
can observe that the households included in Paper 4 have slightly fewer DRAs
compared to the average in Paper 4 (Table 2, Paper 4). This may have made
it easier for the households there to experience problems with the range limita-
tion as little as they did, thus increasing their appreciation of the BEV compared
to what users in another, or bigger, sample might have experienced. However,
from Table 2 in the same paper, it is still clear that, on average, they are able to
adapt to some number of DRA, as only 40% of the households have no DRA on
the replaced car. A possible comparison may be that in SCMD1 between 50%
and 60% of the users of second cars have less than 1 DRA per month (Paper 1,
Figures 4-5), while in the SCMD3 interview data, 15 out of 25 households (i.e.
60%) think that the range limitation was a minor problem in practice. (With an
additional 2 households thinking it was a minor problem, but speculated it may
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be more of a problem in winter) Thus these two data sets together suggest that
short-range BEVs may be sufficient for a slight majority of the second cars in
two-car households.
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Chapter 4
Reflections on this work

This thesis has presented data-driven research that has been done in order to sup-
port an introduction of battery electric vehicles into the transportation system.
We have focused on a possible wider introduction of BEVs, and thus mainly kept
general users in mind.

The underlying motivation for academia to interest itself in electro-mobility,
and the underlying reason for society to motivate incentives to electro-mobility, is
that it may bring about a more sustainable mobility system. Sustainable mobility,
as a broader concept, can be contributed to by e.g. public transport, car sharing,
car pools and demand management through e.g. re-designing cities (Banister
(2008)). Though all of these approaches may be employed in lieu of maintaining
the current car-based society, the car, as well, has its own merits. One is simply
that societal structure is well adapted to the car, which means there are stake-
holders, such as industry, that can be employed in the service of facilitating the
diffusion of the technology. Another is that the car offers a utility that none of the
other solutions fully does, which is the possibility to live away from urban and
sub-urban areas while maintaining access to these areas, and vice versa. Note
though, that the fact that I recognize these merits of the car, does not mean I think
the car is a perfect solution that should be defended in all cases. I do, for example,
question the wide use of cars inside cities, and I believe much of today’s travels,
especially for commuting, could, and should, be replaced by public transport.
However, given the present focus on electro-mobility, let us consider some of the
sustainability implications of the technology.

The two most common environmental arguments for BEVs are that they have
no local emissions, thus reducing urban pollution, and that they have lower over-

33
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all CO2 emissions compared to conventional cars. The counter-argument from an
environmental perspective are usually two-fold, firstly that current battery pro-
duction are energy intensive and dependent on rare earth minerals that are some-
times also mined under bad working conditions, and secondly, that the overall
CO2 emissions are highly dependent on the electricity system and may not even
be lower in some circumstances, such as when having coal power on the mar-
gin (Nordelöf et al. (2014)). All of these points are valid, and with continuously
increasing battery sizes, these points may become more acute. With the results
from this thesis fresh in mind, it may thus be reasonable to promote low-cost low-
range BEVs for those user-groups where this vehicle type is sufficient. The large
effect of the electricity system on BEV CO2 emissions performance should also
not be considered as a fatal flaw of BEVs. What is relevant from an electricity
system point of view is not only what system we have today, but more so what
system we have in 30-40 years when electric cars may have a large market share.
Though it must be kept in mind that the electricity system needs to be cleaned
up in tandem with larger BEV penetration of the market, otherwise the efforts to
introduce BEVs will, from an environmental perspective, have been in vain.

It should be emphasized that the electric car is a technical solution to an
environmental problem. Compared to a large-scale increase of public transport
or demand management, it is more of an end-of-pipe solution. This means that it
will retain its own problems with material use, large energy use, and a lock-in in a
car-based society (Urry (2004)). If a lock-in in a car-based society is good or bad
is a matter of perspective, but when it comes to material use and scarce minerals
we need to keep in mind that some of these are mined under circumstances giving
rise to serious concerns. As an example, in some Congolese mines child workers
are used. In 2015, at least 80 miners died in these mines (Amnesty (2016)).
Given the large amounts of cell-phones and laptops produced, this should not all
be attributed to the electric car, though.

The automotive industry is a significant part of the economy. It directly gen-
erates 6.3% of European GDP, and even more due to ripple effects in connected
industries (ACEA (2016)). A fast decline in car use would reasonably have con-
siderable negative consequences for society on both short and semi-long term.
A transition to an electric car fleet would preserve this industry and its turnover,
thus disrupting society a lot less than other ways to clean up the transport sector.

At the onset of this thesis work, I experienced that two views existed of the
BEV range limitation. One was that the range is too short, and that it needed to
increase for large-scale BEV adoption. The other view was that the range of the
BEVs of the time was sufficient for a large part of the population, and that BEV
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adoption was a matter of education of the public. The early work produced in
this thesis then supported the view that only a minority of the population would
have few DRA with short-range BEVs. With the current, actually very recent,
trend of increasing battery sizes in the BEV market, a relevant purpose of driving
data analysis may be to focus on reasonable upper limits of battery sizes. Such
analyses not only require distance-based driving data analyses but naturally need
to be done in combination with charging infrastructure sizing and placement.
This therefore motivates a further development of destination-based analysis, and
a thorough analysis of which of the currently existing GPS-measured data sets
that are of high enough quality to enable destination-based analysis.
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