

Bengt Jacobson, Vehicle Dynamics, Chalmers University of Technology, Göteborg, Sweden

Why & How High Capacity Transports

My present involvement in Assessment of HCT

https://research.chalmers.se/en/project/8350

project: **Performance Based Standards 2, PBS2**, 2018-2020

- Chalmers University of Technology, Gothenburg, Sweden
- **Nokian Tyres**, Finland
- Parator Industri, Bollnäs, Sweden
- **Scania**, Södertälje, Sweden
- Swedish Transport Administration, Borlänge, Sweden
- Swedish Transport Agency, Norrköping, Sweden
- Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden

WD1 T:... M. 1.11:...

- · University of Oulu, Oulu, Finland
- Volvo Group, Gothenburg, Sweden

WPI - Tire Modelling				
WP2 –Heavy vehicle experiments				
WP3 – Road network categorization				
WP4 – Simulations				
WP5 – PBS Assessment				
WP6 – International cooperation and knowledge spreading				
WP7 – Project management				

How can HCT save CO₂?

$$\boxed{m} \cdot \dot{v} = F_{prop} + F_{brk} - \boxed{m} \cdot g \cdot RRC + \boxed{m} \cdot g \cdot \varphi_{grade} - \frac{\rho A \cdot c_d}{2} \cdot v^2; \quad where \ m = m_{kerb} + m_{load};$$

fewer kerb weights

less grade and rolling resistance

fewer front areas less air resistance

Special HCT assessment? What "(Traffic) Risks" do we see?

Today: Each vehicle **unit separately** approved. Automatically OK to couple some, e.g. one Tractor + one SemiTrailer.

So, what can be "risks" when combining more of approved units?

Traffic Flow

- Stuck in uphill \Rightarrow Startability
- Slow in uphill \Rightarrow Gradeability
- Slow on entry/exit roads ⇒
 Acceleration Capability)
- ...⇒ Low Speed Swept Path
- ...⇒ Frontal Swing
- ...⇒ Tail Swing
- ...⇒ Friction demand on Drive Tyres
- ...⇒ Friction demand on Steering Tyres
- ...⇒ Tracking Ability on a Straight Path

Traffic Safety

- ...⇒ High Speed Steady State Off Tracking
- ...⇒ Steady State Rollover Threshold
- ...⇒ Load Transfer Ratio
- ...⇒ High Speed Transient Off Tracking
- ...⇒ Yaw Damping
- ...⇒ Rearward Amplification
- ...⇒ Braking Stability in a Turn
- ...⇒ Coupling Forces

Each bullet is "Traffic Risk \Rightarrow PBS".

Each **PBS** is motivated by one **Traffic Risk**, which we think is **not** handled by approval of the single units.

We strictly define one (PBS) measure for each risk and set a numerical min/max requirement.

Different assessment methods and PBS

How can we assess HCT?

PBS (for all PBSes:

$Measures_i > Requirement_i$):

- Strict agreements on measures
- Real vehicle test
 - Expensive, poor repeatability, difficult to vary operation parameters, such as road friction
- or Virtual test (computation, simulation)
 - Authorized "assessors" with their own models
 - or Anyone compute with agreed open models

method can i

How to get parameter values?

Prescriptive:

- "Blue prints"
- Envelops in table format

Statistics from real use:

- Assess each Individual vehicle
- Assess each Transport operator

Figure 6.22: A-Double: Description and Dimensions

Table 6.6: Dimensional limit chart for A-double

Vehicle	Ref	Feature	/	Dimensions(Sweden)	Dimensions(Canada)
Overall	(1)	Length of the combi	nation	Max 34m	Max 40 m
	(2)	Width of Vehicl	e	Max 2.6m	${ m Max}~2.6~{ m m}$
	(3)	Height of the Yeh	cle	-	Max 4.15 m
Tractor	(4)	Wheelbase		3.0 - 3.8 m	Min 3.5 m
	(5)	Tandem axle spre	ad	1.37 m	1.2 - 1.85 m
Lead Semi-trailer	(6)	Length		13.6 m	14.5 - 16.2 m
	(7)	Front Cver-han	g	1.6 m	${ m Max}~2~{ m m}$
	(8)	Wheelbase		7.7 - 8.5 m	10.9 - 12.5 m
	(0)	m · 1	,	~ ^	

Lead-Semi-trailer: Wheelbase: 7.7-8.5 m

			(11)	Rear Over-nang	3.5 - 4.3 m	Max 3.4 m
	Cor	nverter Dolly	(12)	Wheelbase	1.3 m	1.2 - 1.85 m
TAT I A			(13)	Drawbar length	3.0 - 5.0 m	Max 3m
Warning: An assessment		l Semi-trailer	(14)	Length	$13.6~\mathrm{m}$	14.5 - 16.2 m
West and the class of the class			(15)	Front Over-hang	$1.6~\mathrm{m}$	Max 2 m
ethod can reduce incentive fo			(16)	Wheelbase	7.7 - 8.5 m	10.2 - 12.5 m
curou can reduce meentive ro	1		(17)	Tridem axle spread	2.6 m	2.4 - 3.7 m
tachnology dayslanmental			(18)	Distance to hinge point	2.4 - 3.6 m	-
technology developments!			(19)	Rear Over-hang	3.5 - 4.3 m	35% of wheelbase

Finland

January 2019, Finland allows: **34,5 m 76 ton**, on whole road network, except some bridges and intersection. Assessed by test and simulation. Using regression \Rightarrow "PBS-based envelope-table".

Table 6. Example of the parameter study results, measures in mm.

Semi- trailer	Full trailer wheel-	Coupling	Coupling from the	Yaw rate rearward amplification [RA]				A]	
wheel- base		hang	bogie	Drawbar length					
base				3500	3750	4000	4250	4500	
		200	2592	2.36	2.35	2.33	2.31	2.29	
	8108	400	2392	2.33	2.32	2.30	2.28	2.26	
		600	2192	2.29	2.28	2.26	2.25	2.22	
		800	1992	2.26	2.25	2.23	2.21	2.19	
		200	2592	2.30	2.29	2.27	2.25	2.23	
	8282	400	2392	2.27	2.25	2.24	2.22	2.20	
	0202	600	2192	2.23	2.22	2.20	2.19	2.16	
		800	1992	2.20	2.19	2.17	2.15	2.13	
		200	2592	2.24	2.23	2.21	2.19	2.17	
	8457	400	2392	2.21	2.20	2.18	2.16	2.14	
	8457	600	2192	2.18	2.16	2.15	2.13	2.11	
		800	1992	2.14	2.13	2.12	2.10	2.08	
		200	2592	2.19	2.17	2.16	2.14	2.12	
04.00	0004	400	2392	2.15	2.14	2.13	2.11	2.09	
8108	8631	600	2192	2.12	2.11	2.10	2.08	2.06	
		800	1992	2.09	2.08	2.06	2.05	2.03	
		200	2592	2.13	2.12	2.11	2.09	2.07	
		400	2392	2.10	2.09	2.08	2.06	2.04	
	8805	600	2192	2.07	2.06	2.05	2.03	2.01	
		800	1992	2.04	2.03	2.02	2.00	1.98	
		200	2592	2.08	2.07	2.06	2.04	2.02	
		400	2392	2.06	2.04	2.03	2.01	1.99	
	8980	600	2192	2.03	2.01	2.00	1.98	1.96	
		800	1992	2.00	1.99	1.97	1.95	1.93	
		200	2592	2.04	2.02	2.01	1.99	1.97	
		400	2392	2.01	2.00	1.98	1.97	1.95	
	9154	600	2192	1.98	1.97	1.96	1.94	1.92	
		800	1992	1.95	1.94	1.93	1.91	1.89	
	High rearward amplification, RA > 2								
	Open-loop lane change test according to ISO 14791 f = 0.40 Hz ja v = 80 km/h								
	open 100p take change test according to 100 147 511 = 0.40 Hz ja V = 00 km/m								

Cross-wind sensitivity

picture from HAN (Joop Pauwelussen)

from Karel Kural, PhD thesis:

No.	Australian PBS Measure	Current EU-Legislation	Proposed EU legislative principles
1	Startability	R No 1230/2012 - Min. slope	R No 1230/2012 - Min. slope
2	Gradeability	R No 1230/2012 - Min. engine power	R No 1230/2012 - Min. engine power
3	Acceleration capability	R No $1230/2012$ - Min. engine power	R No 1230/2012 - Min. engine power
4	Tracking ability	N/A	N/A
5	Directional braking stability	R No 661/2009 - Braking stability	R No 661/2009 - Braking stability
6	Overtaking provision	N/A	N/A
7	Low-speed swept path width	D 97/27 EC - Max. swept area	D 97/27 EC - Max. swept area
8	Steer tyre friction demand	R No 1230/2012 - Min. steer axle load	R No 1230/2012 - Min. steer axle load
9	Frontal swing	N/A	Use Australian definition
10	Tail swing	D 97/27 EC - Tail swing	D 97/27 EC - Max. tail swing
11	Static rollover threshold	N/A	Use Australian definition
12	Rearward amplification	N/A	Use Australian definition
13	Yaw damping	N/A	Use Australian definition
14	Load transfer ratio	N/A	Use New Zealand definition
15	High-speed transient offtracking	N/A	Use Australian definition
16	Handling quality	N/A	N/A
17	Pavement vertical loading	D 96/53/EC - Max. axle load	D 96/53/EC - Max. axle load
18	Pavement horizontal loading	D 96/53/EC - Axle spacing vs. load	D 96/53/EC - Axle spacing vs. load
19	Tyre contact pressure distribution	D 96/53/EC - Air suspension required	D 96/53/EC - Air suspension required
20	Bridge formulae	N/A	N/A

Table 2.11: Comparison of EU legislation with Australian legislation and proposal for future legislative principles.

LastBilsKalkylatorn LBK https://lastbilskalkylator.azurewebsites.net

Sweden introduced a web service (LBK) to assess individual combination vehicles when for 64 ton was allowed 2018. (Actually assesses individual "transport **operations**", since F_z per axle is input.)

Lastbilskalkylator

CLOSER https://closer.lindholmen.se/en

The overall goal for **2030** is to provide the conditions so that 80% of the freight transport work on the road is carried out by HCT vehicles (the targets for **2020** are **5%** and for 2025 45%) and that this means that energy consumption will be 10% lower per tonne meter than 2018

Innovationsdomän	Tidshorisont	Delmål	Ansvarig aktör	Barriärer]	
PBS	2025	Lastbilskalkylatorn har kompletterats med PBS-baserat krav för längre HCT-fordon.	Transportstyrelsen, forskningsinstitut			LBK ⁺
PBS	2030	Ett europeiskt system för SIAP "Smart Infrastructure Access Policy" finns vilket innebär optimering av matchningen fordon Ó infrastruktur	Transportstyrelsen, forskningsaktörer	Brist inom finansiering samt samarbete mellan involverade intressenter.		
Regelverk	2030	Ett globalt regelverk finns på plats för att certifiera hårdvara, mjukvara och processer för uppkopplade fordon och alla tillhörande back-end och molnsystem.	Regeringar	Särintressen		

Presently on remittance in Sweden

https://www.trafikverket.se/contentassets/1160ae4fe6504bba8e3629eee4b60d7c/langre lastbilar pa_det_svenska_vagnatet_for_mer_hallbara_transporter.pdf

Tabell 1. Resultat från förenklad samhällsekonomisk beräkning.

Effektkategori	Samhälls- ekonomisk effekt	Effekt tidigare studie	Resultat, mkr	Känslighets- analys högt marknads- upptag, mkr	Känslighets- analys lågt marknads- upptag, mkr
Producent-/ konsumenteffekter	Fordons-ägare eller godstransport-köpare	177 963	12 916	15 499	10 333
Budgeteffekter	Dieselskatt	-30 733	-2 231	-2 677	-1 784
Externa effekter	Road wear	2 910	211	253	169
	Air pollution	538	39	47	31
	CO2	8 382	608	730	487
	Accidents	3 040	221	265	177
	Transport time	835	61	73	48
	Totalt	162 935	11 825	14 190	9 460

 $\approx 10^9$ €

$LBK^+ \approx OpenPBS_{\underline{http://192.36.94.52:8000/}$

① Not secure | 192.36.94.52:8000

PBS2 project extends the LBK to longer than 24.5 m.

The initiative is called OpenPBS and has 2 front-ends:

- An "assessment front-end" with a simple user interface as in present LBK
- An "R&D front-end", enabling download and editing of models (change any parameters, add equations and parameters to try e.g. extra propelled and steered axles).

Both front-ends are using the same dynamic models on the open format Modelica (https://modelica.org/)

Simulation Results

Present experiment implementation

RegNrs:['BA1', 'DC1', Comb Type: Nordic Combination YD:0.168915246879953 RWA:-1.0 YD:-1.0

> Computed PBS measures

So, whats the problem???

Definition of PBSes:

- ISO gives several selections and can be interpreted differently.—
- Who agree and How? <
- What more than PBSes is needed

Model (equations):

How detailed is necessary?
 How simple is possible?

Parameters (numeric values):

• The vehicle registry does not include all parameters.

Consider: An assessment method can remove incentive for technology developments

e.g.

- Rearward amplification RA ratio of ω_z or a_y ?
- and $RA = \frac{max_t(|\omega_{iz}|)}{max_t(|\omega_{1z}|)}$ or $max_f\left(\frac{|H_{\delta sw \to \omega iz}(f)|}{|H_{\delta sw \to \omega 1z}(f)|}\right)$?
- and is manoeuvre single sine (what Δx ? what Δy ?) or single lane change (what Δx ? what Δy ?)
- and what speed v_x ? and what road friction μ ?

Proposal: First agree on which "risks"

e.g. clash between unit bodies

e.g. is roll important? is xy-planar motion enough?

See: Santahuhta, thesis from University of Oulu, Finland, 2019.

- e.g. suspension data, engine map, gear ratios, ...
- e.g. cornering coefficient=7.5 [N/N]?, ...
- e.g. should operator/driver input F_z per axle or compute from max allowed gross weight and assumed CoG location
 - e.g. steered axle on towed units
 - e.g. control algorithm (IP!), ...

Could CO₂ be a PBS measure?

Euro1, Euro2, ... Legal assessment of **engines**

Vecto can also become tool for next legal assessment of towing vehicles

CO2 a future "PBS measure"? I.e., per **vehicle** (not per unit)?

...or per operation?

from Karel Kural, PhD thesis:

No.	Societal Benefit Measure	Units
1	Carbon dioxide pollution - load-wise	$CO_2/ton.km$
2	Carbon dioxide pollution - volume-wise	CO_2/m^3 .km
3	Fuel consumption - Load-wise	l/ton.km
4	Fuel consumption - Volume-wise	$l/m^3.km$
5	Transport costs - Load-wise	€/ton.km
6	Transport costs - Volume-wise	€/m³.km

Table 2.12: Proposed societal benefit measures for future regulations

Design principles of "Open PBS"

Envisioned solution and top level Requirements on it

An Open PBS Tool

(Open means: Free and Readable and Understandable)

Requirements:

- PBSs independent of Vehicles
- Vehicles specifications ("parameters")
 independent of Vehicle models ("equations")
- Standardized format for dynamic models

Requirements on ⇒ Concepts for an "Open PBS Tool"

Requirements	Conceptual solutions
 Define these 3 independently from each other: PBSs (Manoeuvres & Measures) ("equations & parameters") Vehicle Specs ("parameters") Vehicle Models ("equations") 	Object oriented modelling
Physical and strict models (for adding novelties)	DAE
Understandable and editable for engineers	Modelica => <i>R&D front-end</i>
Runnable for non-experts. Scriptable for experts.	FMI => Assessment front-end
Limited parameter editable for non-experts. (In extreme: Only registration number on each of the units.)	Modelica concepts Registry and Function

Two tools in one...

Concepts selected

Figure 2. Overview of how OpenPBS is structured.

Example: Manoeuvre "High Speed Lane Change"

How does "R&D tool" look?

The "R&D tool" is a Modelica "package" (* .mo). Here opened in the Modelica tool "Dymola":

How does a "Vectorised VehicleModel" look?

Here, Vectorised Lateral Dynamics VehicleModel:

- ≈1 page declarations
- ≈1 page equations

(Dynamic) Equilibria:

```
ay=der(vy)+vx.*wz;
m.*ay=Fy*ones(na,1)-[Fcy;0]
+[0;Fcx].*sin([0;theta])
+[0;Fcy].*cos([0;theta]);
```

Constitution:

```
Fyw = -C.*alpha;
```

Compatibility:

```
for i in 1:nu-1 loop
vx[i+1] = vx[i] *cos(theta[i])
   -(vy[i] +Bcog[i] *wz[i]) *sin(theta[i]);
vy[i+1] +Acog[i+1] *wz[i+1] =
   (vy[i] +Bcog[i] *wz[i]) *cos(thet
   +vx[i] *sin(theta[i]);
end for;
```

ш

Conclusions

Conclusions & Future work

- HCT seems to come on to the roads in EU soon. Already today in Finland!
- Assessment can be arranged based on PBS.
 - Two cooperating assessment tools in Sweden (Finland involved in same project.):
 - LBK (launched)
 - Open PBS, "experiment version" launched:
 - "Assessment front-end": at web
 - "R&D fronte-end": at github at web
 - "Open" means anyone is welcome to try it and contribute
- For sure, other similar tools are developed.
 - E.g. the "framework≈tool" within Karel Kural's PhD thesis work presented later today.

References

- Tuutijärvi , Miro-Tommi, et.al., Method to provide simple tool for combination vehicle dimensioning, 2019, https://rd.springer.com/chapter/10.1007/978-3-030-20131-9 365
- Jacobson et al, An Open Assessment Tool for Performance Based Standards of Long Combination Vehicles, Chalmers reports, 2017, https://research.chalmers.se/publication/251269
- Santahuhta, Ville, MSc thesis, Chalmers University of Technology and University of Oulu, Roll dynamics and tyre relaxation in heavy combination vehicle models for transient lateral manoeuvres, 2019, http://jultika.oulu.fi/Record/nbnfioulu-201909272935 and http://jultika.oulu.fi/Record/nbnfioulu-201909272935
- Kural, Karel, Analysis of High Capacity Vehicles for Europe: application of Performance Based Standards and improving Manoeuvrability, PhD thesis, Eindhoven University of Technology Library. ISBN: 978-90-386-4853-8, 2019
- https://closer.lindholmen.se/sites/default/files/content/resource/files/fardplan hct-vag uppdaterad.pdf
- ACEA, High Capacity Transport Smarter policies for smart transport solutions, 2019, https://www.acea.be/publications/article/paper-high-capacity-transport
- CLOSER, Färdplan HCT väg, 2019, https://closer.lindholmen.se/sites/default/files/content/resource/files/fardplan hct-vag uppdaterad.pdf
- Functional Mock-up Interface. (2016, Dec 03). FMI, Functional Mock-up Interface. Retrieved from www.fmi-standard.org
- Kharrazi, S., & et al. (October 27-31, 2014). Towards Performance Based Standards in Sweden. International Heavy Vehicle Transport Technology Symposium. San Luis, Argentina.
- Kharrazi, S., Karlsson, R., Sandin, J., & Aurell, J. (2015). Performance based standards for high capacity transports in Sweden. VTI. Retrieved from https://www.vti.se/sy/Publikationer/Publikation/prestandabaserade-kriterier-for-hogkapacitetstrans 812287
- Modelica association. (2016, Dec 03). Retrieved from <u>www.modelica.org</u>
- Sundström, P., Jacobson, B., & Laine, L. (2014). Vectorized single-track model in Modelica for articulated vehicles with arbitrary number of units and axles. Modelica conference 2014, March 10-12, 2014. Lund, Sweden. https://research.chalmers.se/en/publication/190501
- Vinnova. (2013-2017). Performance Based Standards for High Capacity Transports in Sweden. Vinnova. Retrieved from http://www.vinnova.se/sv/Resultat/Projekt/Effekta/2009-02186/Performance-Based-Standards-for-High-Capacity-Transports-in-Sweden/

Thanks for your attention. Questions?

