Needs for Physical Models and Related Methods for Development of Automated Road Vehicles

Professor in Vehicle Dynamics, PhD **Bengt Jacobson** (Chalmers University of Technology; Sweden) Industrial researcher, PhD **Peter Nilsson** (Volvo Global Trucks Technology; Sweden) Senior researcher, PhD **Mats Jonasson** (Chalmers University of Technology; Sweden)

Automated Driving

The second secon

Figure 1.: Driverless concepts: Volvo Vera (a) and 360c Concept (b Volvo Trucks and Volvo Car Group, respectively)

Figure 2.: Volvo external steering [22] Reference: [Matthijs Klomp, et al, 2019]

		SAE J3	8016			
SAE level	Name	Narrative Definition	Execution of Steering and Acceleration/ Deceleration	<i>Monitoring</i> of Driving Environment	Fallback Performance of Dynamic Driving Task	System Capability (Driving Modes)
Huma	<i>in driver</i> monito	ors the driving environment				
0	No Automation	the full-time performance by the <i>human driver</i> of all aspects of the <i>dynamic driving task</i> , even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
1	Driver Assistance	the <i>driving mode</i> -specific execution by a driver existance system of either steering or acceleration LKA ion using information about the driving CCOP in a with the expectation that the <i>hun</i> ACC is a rorm all remaining aspects of the <i>dynamic</i> of <i>ang</i> task	Human driver and system	Human driver	Human driver	Some driving modes
2	Partial Automation	the <i>driving mode</i> -specific execution by one or more driver assistance systems of both steering and acceleration deceleration using information about the environment and with the expecting and Luka <i>driver</i> perform all remaining a ACC, ane dynamic driving task	System	Human driver	Human driver	Some driving modes
Autor	nated driving s	ystem ("system") monitors the driving environment				
3	Conditional Automation	the <i>driving mode</i> -specific performance by an <i>automated</i> <i>driving system</i> of all aspects of the dynamic driving task with the expectation that the <i>human driver</i> will respond appropriately to a <i>request to intervene</i>	System	System	Human driver	Some driving modes
4	High Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver $f(a)$ by respond appropriately to a request to interprint 1 a	System	System	System	Some driving modes
5	Full Automation	the full-time p formance by an au FIB system of all aspects of the <i>dynamic driving cask</i> under all roadway and environmental conditions that can be managed by a bumpa driver	System	System	System	All driving modes

Reference: [SAE, 2014]

"Function Architecture" for vehicle motion & energy

Reference: [Nilsson, 2017]

Models for vehicle motion and energy control design

Next speakers

Traffic Situation Management, Dynamically Feasible Trajectories, Peter Nilsson, Volvo Trucks

Examples of challenges for TSM

Trajectory planning

"Trajectory planning is a generalization of path planning, involved with planning the state evolution in time while satisfying given constraints on the states and actuation"

Commonly used methods:

- Numerical optimization (e.g. MPC)
- Graph search (e.g. A*)
- Neural network (e.g. Nvidia PilotNet)
- ...

Trajectory planning example: left curve, tractor semi-trailer

Heavy duty combination vehicles

Example of motion constraints:

- Position of first unit
- Position of trailer units (off-tracking)
- Roll-over threshold (rearward amplification)
- ...

Trajectory planning modelling

Example of modelling:

- One-track models : $\dot{x} = f(x, u, w)$
- Possible states for A-double
 - 1st unit (tractor) : v_x , v_y , $\dot{\psi}_1$
 - 2nd unit (trailer) : $\Delta \psi_1$, $\Delta \dot{\psi}_1$
 - 3rd unit (dolly) : $\Delta \psi_2, \Delta \dot{\psi}_2$
 - 4th unit (trailer) : $\Delta \psi_3$, $\Delta \dot{\psi}_3$

Vehicle variants and trajectory planning challenges

Vehicle variant combinatorics:

- Powertrain : $\approx 10^2$ variants
- Chassis : $\approx 10^3$ variants
- Vehicle load ≈ 7 120t (incl. different heights to CoG)
- Vehicle units : 1-4

Challenge:

Trajectory planning methodology needs to scalable and robust with respect to variant combinatorics

Trajectory planning example: Roundabout, tractor semi-trailer Vehicle Motion Management, Road friction estimation, Mats Jonasson

Challenges for VMM

Reference: [Matthijs Klomp, et al, 2019]

Road condition – road friction

Confusion matrix of road friction

	Low (snow)	High (dry asphalt)					
Low (snow)	Vehicle speed can be adapted to friction	 False slippery warnings AD Vehicle will drive unacceptably slow (not transport efficient) 	- inde iniction				
High (dry asphalt)	 AD Vehicle will drive too fast (not safe) High frequency of accidents 	Vehicle speed can be adapted to friction					
+ Assumed friction							

Methods for road friction estimation

Optical measurement device

Model-based estimator

Machine learning estimator

- Contactless
- Requires a map from texture to friction

- Use the tyre as the sensor
- Requires knowledge about tyre physics

- Use features without knowledge of physics
- Requires training

State-of-the art model-based estimator

Features and correlation to friction

Challenges road friction estimation

- General:
 - Difficult to identify friction for normal driving (low friction utilization)
- Model-based:
 - Model uncertainties for different tyres the physics is hard to model
 - The pre-processing is not accurate enough
- Machine learning:
 - Generalizability of machine learning algorithms to various situations
 - Generalizability would require large testing
 - Training of machine learning algorithms require ground truth road friction is hard to measure

Reference [Jonasson, et al] 2018

Motion Devices, Virtual Verification, Wheel Model, Bengt Jacobson

Models for Virtual Verification

For Virtual Verification:

- Higher **accurate** and larger **validity** range than for control design.
- But **only simulate-able**, no need for linearized, inversion, etc.

...one view of model based engineering

Wheel model as example

Wheel model use cases

Wheel model, Mechanical challenges

Wheel model in its model context

Conclusions

You have seen:

Automated driving needs modelling in many aspects:

- TSM and VMM needs Physical modelling for "Control/algorithm design".
- "Virtual verification" drives
 Physical modelling, incl.
 exchange of models between
 organisation.

References

Matthijs Klomp, et al, *Trends in vehicle motion control for automated driving on public roads*, 2019. <u>https://www.tandfonline.com/doi/full/10.1080/00423114.2019.1610182</u>

Nilsson, Peter, *Traffic Situation Management for Driving Automation of Articulated Heavy Road Transports - From driver behaviour towards highway autopilot*, PhD thesis, Chalmers, 2017. <u>https://research.chalmers.se/publication/251872</u>

Weitao Chen et al, *Integration and Analysis of EPAS and Chassis System in FMI-based co-simulation*, 2019. http://www.ep.liu.se/ecp/article.asp?issue=157%26article=74

SAE, *Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems,* Standard J3016, 2014. https://saemobilus.sae.org/content/j3016_201401

IVSS Road Friction Estimation Part II Report, <u>http://www.ivss.se</u>

US Department of Transportation – Federal Highway Administration

C.-G Wallman. Tema vintermodell – olycksrisker vid olika vinterväglag. Technical Report N60-2001, VTI, 2001.

S. Roychowdhury, M. Zhao, A. Wallin, N. Ohlsson, M. Jonasson, 'Machine learning models for road surface and friction estimation using front-camera images', International Joint Conference on Neural Networks (IJCNN 2018), Rio, Brazil, 2018.

M. Jonasson, N. Olsson, S. R. Chowdhury, S. Muppirisetty, Z. Minming, *Automated Road Friction Estimation using Car-sensor Suite: Machine Learning Approach*, Autonomous Vehicle Software Symposium, Stuttgart, Germany, 2018

Thanks for your attention