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Figure 1.: Driverless concepts: Volvo Vera (a) and 360c Concept (b)
Volvo Trucks and Volvo Car Group, respectively)

Figure 2.: Volvo external steering [22]

Reference: [Matthijs Klomp, et al, 2019]

Reference: [SAE, 2014]
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“Function Architecture” for vehicle motlon & energy
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Models for vehicle motion and energy control design

Vehicle E?Cgronment

Route Management O «

|

o )

' I

Traffic Situation
Oo

N
N
|

Management
Vehicle Motion
Management O
Motion Support

Device Management O

Human Machine Interface

[

physical models

velocity & energy
fuel /

motion relative
lane & traffic

motion & 1nd1v1dual /\

tyre forces -

suﬂ) system / acﬁuaﬁo

[
whee*IHub

data-driven

models

macro traffic

drivers
micro traffic

estimators



Vehicle Environment

R T

Next speakers

Route Management

' I

Traffic Situation

|

Human Machine Interface

Management petel
Vehicle Motion XS
Management Ma
Motion Support X
Device Management Be“%

R A .

|



Trattic Situation Management,

Dynamically Feasible Trajectories,
Peter Nilsson, Volvo Trucks




Examples of challenges for TSM
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Trajectory planning

“Trajectory planning is a generalization of path planning, involved with planning the
state evolution in time while satisfying given constraints on the states and actuation”

Commonly used methods:

Numerical optimization (e.g. MPC)
Graph search (e.g. A*)
Neural network (e.g. Nvidia PilotNet)
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Trajectory planning example:
left curve, tractor semi-trailer



Heavy duty combination vehicles

Example of motion constraints:

* Position of first unit
* Position of trailer units (off-tracking)
* Roll-over threshold (rearward amplification)




Trajectory planning modelling

Example of modelling:

* One-track models: x = f(x,u,w)
* Possible states for A-double
* 1stunit (tractor) : vy, vy, 1,b1
- 2nd unit (trailer) :Avq, A,
* 3rd unit (dolly) :Ay,, Alpz
*  4th unit (trailer) :Ays, Ay,



Vehicle variants and
trajectory planning challenges

Vehicle variant combinatorics:

 Powertrain : = 10”2 variants

* Chassis: = 10”3 variants

« Vehicle load = 7 - 120t (incl. different heights to CoG)
* Vehicle units : 1-4

Distance (m)

Challenge:

Trajectory planning methodology needs to scalable and
robust with respect to variant combinatorics
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Trajectory planning example:
Roundabout, tractor semi-trailer



Vehicle Motion Management,

Road friction estimation,
Mats Jonasson




Challenges for VMM
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Road condition - road friction

More than 10% of all accidents occur because of slippery conditions*

In the US: yearly approx 500 000 accidents of which 1800 are deadly*

Lateral force 5

ABS activation, friction can be found u = fi

Z

Longitudinal force £,

Normal force f

force (N) Definitions:
1 high friction Low friction O<u<04
f=ufef o : Mid friction 04<u<0.7
| High friction 0.7 <u

To estimate friction /

the tyre must at least be low_
excited to the nonlinear /, | friction .
region at “the bend” ~ 5% slip (%)

Most driving take place here, not possible to distinguish between low or high
* Reference: [IVSS Road Friction Estimation Part II] friction

* Reference: [ US Department of Transportation — Federal Highway Administration
** Reference: [Wallman. Tema vintermodell - olycksrisker vid olika vintervaglag]



Confusion matrix of road friction
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Reference: [Matthijs Klomp, et al, 2019]

» True friction



Methods for road friction estimation

Optical measurement device Model-based estimator

v

* Contactless * Use the tyre as the
* Requires a map from sensor
texture to friction * Requires knowledge

about tyre physics

Machine learning estimator

* Use features without
knowledge of physics
* Requires training



State-of-the art model-based estimator

Pre-processing Friction estimator
Wheel speeds, Kinetic and Tyre forces R
Inertial Meas. Syst. ) .
Steering angle » kinematic Tyre slip —

models

Mormalized traction force




Features and correlation to friction

Surface & road type are not available
in the sensor suite -> important to
use a new sensor e.g. a camera
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Challenges road friction estimation

* General:
* Difficult to identify friction for normal driving (low friction utilization)

e Model-based:

* Model uncertainties for different tyres - the physics is hard to model
* The pre-processing is not accurate enough

* Machine learning:
* Generalizability of machine learning algorithms to various situations
* Generalizability would require large testing

* Training of machine learning algorithms require ground truth - road friction is hard
to measure

Reference [Jonasson, et al] 2018



Motion Devices,

Virtual Verification, Wheel Model,
Bengt Jacobson




Models for Virtual Verification
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For Virtual Verification:

* Higher accurate and larger
validity range than for
control design.

* But only simulate-able, no
need for linearized,
inversion, etc.



...one view of model based engineering
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Wheel model as example

104 tonnes, 339




Wheel model use cases

Control Longitudinal vehicle translation
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Wheel model, Mechanical challenges

Continuously Renewed  Relative Velocity Dry Friction Rolling Multiple wheels
Friction Surfaces Direction in Brake Resistance
i / \’\ \ 4

fr = Co - S J & =T—F R—Tg;

S Vx Tr = —sign(w) - (T,c + RRC - R - E,);

SX = m ) R bC zZJ))

[f vehicle standstill
and two or more

[Fx; Fy] — min(ny . Sxy’uv . FZ) . :Sin(Qny) ,y COS(Hny)]; wh ked:
LW = V) ; Statically
\/(R o ” underdetermine
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Wheel model in its model context
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Conclusions



You have seen:

Automated driving needs
modelling in many aspects:

* TSM and VMM needs Physical
modelling for
“Control/algorithm design”.

* “Virtual verification” drives
Physical modelling, incl.
exchange of models between
organisation.
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