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Multi-scale modeling and finite element simulation of diffusion in porous media
NELE POLLMANN
Department of Industrial and Materials Science
Chalmers University of Technology

Abstract

Porous media comprise a large range of natural and industrial materials and are typically
complex on multiple length scales. At lower (micro-scopic) length scales, such media
consist of a solid skeleton and fluid-filled pores in between. At higher (macro-scopic)
length scales, transport of a migrating pore fluid can be observed in addition to the
mechanical stress-strain response. The interaction between the pore fluid and the solid
skeleton determines, in addition to the properties of the individual phases, the fully
coupled response of the medium. Therefore, the investigation of macro-scale properties
needs to take into account the processes between micro- and meso-scopic heterogeneities.
This thesis investigates transport processes in porous media on multiple scales by ap-
plying computational homogenization and finite element simulation. Biot’s equations
of (linear) consolidation are introduced and combined with sharp and diffuse interface
formulations that are established to investigate the effect of meso-scale heterogeneities,
e.g. in form of fractures, on the overall material behavior. The scale transition of the
heterogeneous porous meso-scale towards an homogeneous macro-scale problem is derived
via Variationally Consistent Computational Homogenization.

Taking into account this modeling framework, the thesis investigates:
1) How the numerical modeling of heterogeneous porous media can be used to calibrate
laboratory experiments.
2) How the fluid transport in fractured rock can be modeled by applying sharp and diffuse
interface formulations.
3) How the effective diffusivity of porous media can be derived for the special case of
three-phase concrete, where diffusion takes place preferably on interfaces in the structure.
In this industrial porous material, fluid transport is not a relevant process but rather the
diffusion of chloride ions in the fluid phase is of interest.

All in all, the thesis reveals limits and establishes possibilities by the numerical modeling
of heterogeneities in porous media with the aim to provide a deeper understanding of the
transport processes in porous media on multiple scales.

Keywords: Poroelasticity, Computational Homogenization, Fractured Rock, Three-Phase
Concrete, Hydro-Mechanical Coupling
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Science doesn’t always go forwards. It’s a bit like doing a Rubik’s cube. You sometimes
have to make more of a mess with a Rubik’s cube before you can get it to go right.

Jocelyn Bell Burnell
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1 Introduction

1.1 Motivation

The investigation and simulation of transport processes in porous media is important
for various fields such as geomechanics, hydrology or even medical technologies. Porous
media comprise a large range of natural or industrial materials with a broad spectrum
of applications. The propagation of sound in porous, cancellous bone is important for
medical technologies and among others analyzed in [24, 72]. The migration of immiscible
liquids in porous media is important for environmental remediation [18]. Industrial porous
media such as foams are e.g. used for leight-weight constructions [66], and the transport
of chloride ions in reinforced concrete, a special case of porous media, is essential for
building constructions and subject of ongoing research [40, 80, 84]. The fluid transport in
fractured porous and fluid-saturated rock is e.g. of interest for oil- or gas-exploration as
well as for geothermal energy and subject of several literature studies [62, 78]. During
geothermal energy production, the rock is hydraulically stimulated, i.e. fractures are
induced by the injection of water. These fractures enhance the conductivity of the rock
which is a major part of efficient geothermal energy production. Moreover, the hydraulic
stimulation of rock causes seismic attenuation in the reservoir which may result in large
earthquakes as e.g. studied for a geothermal site in France in [7]. Additionally, it has
been observed that seismic attenuation can be detected in hydrocarbon-saturated rock
[6]. This seismic attenuation is found to be mainly caused by wave-induced fluid flow
in fluid saturated, heterogeneous porous media [49, 60, 63]. This underlines the need
for a suitable toolbox that is able to predict and assess seismic attenuation as well as to
simulate and model the associated transport processes in porous media.
This thesis focuses on two main fields involving transport processes in porous media. First,
the focus is set on fluid transport in fractured porous rock. Second, the chloride diffusion
in porous concrete, which is important for a better understanding of the corrosion process
of reinforced concrete, among others. The investigation of these processes requires to
understand the underlying material on different scales.

1.2 Multi-scale modeling

An established method for the derivation of effective properties, i.e. overall macroscopic
properties, e.g. for reservoir rock or for reinforced concrete constructions, is multi-scale
modeling. In this approach, the material is analyzed on different scales as shown exemplary
in Fig. 1.1. The multi-scale modeling involves typically two scales, the micro- and macro-
scale. The macro-scale is the largest scale, such as the reservoir rock formation with
a typical length scale Lmacro of several hundred meters. This is the observable scale
containing large heterogeneities, e.g. in form of faults or rock layers. On the other
hand, the micro-scale has a characteristic length Lmicro of several millimeters, where the
micro-scale constituents such as solid grains and pore channels can be distinguished. In
between these scales, a meso-scale with characteristic length Lmeso has to be introduced,
if heterogeneities of intermediate dimension are of interest.
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Figure 1.1: Examples of material on different scales: Porous rock, porous concrete and
porous bone on the micro-scale. Fractured rock and aggregate content in concrete on
the meso-scale. Osteoporosis bone, geothermal reservoir, structure made from reinforced
concrete and rock formation on the macro-scale. Lmicro � Lmeso � Lmacro.

The information on each of this scales is connected, i.e., the numerical modeling on the
meso-scale requires information of the micro-scale, and overall macroscopic properties can
only be derived taking into account the meso-scale problem. In this approach, the separa-
tion of scales is assumed, i.e. the characteristic length of the micro-scale is much smaller
than the one of the meso-scale, whereas the characteristic length of the meso-scale is much
smaller than the one of the macro-scale. Hence, Lmicro � Lmeso � Lmacro. Multi-scale
modeling can be applied in various areas of research and is an established method that has
been investigated in a large and growing body of literature [30, 36, 69, 81]. In the studied
cases, the micro- or meso-scale structure comprises heterogeneities such as fractures in
rock or aggregate content in concrete. The pressure gradients between these meso-scale
heterogeneities cause fluid flow and pressure diffusion. When studying wave propagation
at the macro-scale, several studies in literature showed that the wave-induced fluid flow
can be modeled using Biot’s theory of poroelasticity [3, 14, 15, 63]. By assuming that the
diffusion on the meso-scale is a local phenomenon, it is possible to describe the overall
material on the macro-scale by means of a homogeneous, viscoelastic material. Thus,
effective properties on this homogeneous macro-scale can be computed via Computational
Homogenization [22, 29, 32, 38, 39, 67]. Here, the effective properties are obtained from
homogenization over a meso-scale Representative Volume Element (RVE), typically chosen
as a square or cubic domain of length Lmeso. This RVE has to be large enough to be
representative, i.e. to contain all necessary information and heterogeneities, but small
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enough to allow for reasonably low computational effort. A possible, but not further
discussed approach is the FE2 approach studied in detail e.g. in [19, 52]. In this approach,
the macro-scale problem and the RVE problem are solved in a nested fashion, i.e. the
finite element method (FE) is used at both scales iteratively during the computation.

This thesis focuses on the modeling of the meso-scale structure in order to evaluate the
macroscopic behavior without simultaneously solving the macroscopic problem. Two
applications are studied in detail by using homogenization techniques. First, the scale
transition between the meso-scale diffusion in fluid-saturated rock and the effective
material behavior by means of the attenuation is performed. Second, the scale transition
between diffusion of chloride ions in three-phase concrete and the macro-scale properties
by means of the effective diffusivity is investigated.

1.3 Outline of the thesis

The main goal of this thesis is to elaborate on a suitable toolbox to simulate transport
processes in porous media for the examples of rock and concrete. Therefore, the effect
of fluid-filled fracture networks and of different aggregate shape, size and properties
on the overall material properties of rock and concrete are investigated, respectively.
One aspect of the study is the identification of possible advantages or disadvantages of
numerical modeling compared to laboratory measurements of fluid-filled porous rock. An
interpretation of a fracture model is investigated to study the applicability of the method
to account for hydro-mechanical coupling processes.
The thesis starts with the characterization of the underlying material and the relevant
processes in rock and concrete by introducing the Theory of Porous Media and Biot’s
theory of poroelasticity in Chapter 2. Chapter 3 investigates the numerical modeling
of heterogeneities on the meso-scale by different approaches based on the introduced
theoretical framework. Here, the fluid transport in fractured rock is analyzed by taking
into account three different approaches. Additionally, the transport of chloride ions in
concrete is investigated. In Chapter 4, Computational Homogenization is introduced for
a prototype diffusion problem in a variationally consistent way. The thesis is completed
with a summary of the appended papers A-D [54, 55, 56, 57] in Chapter 5 and finalized
with the conclusions and outlook in Chapter 6.
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2 Fluid transport in porous media

2.1 Preliminaries

The investigation of transport phenomena in porous media requires an adequate framework
and knowledge of the underlying material. Porous media comprise a large variety of
materials with various possible applications.
This thesis focuses on porous fractured rock and three-phase concrete. Concrete is an
industrial porous material consisting of water, binder (cement), aggregates and chemical
additives and its micro-structure can be analyzed e.g. by scanning electron microscope
(SEM) [4, 13]. Porous rock, on the other hand, comprises a large range of rock types such
as sedimentary rock (e.g. carbonate rock, clay, sandstone) or igneous rock (e.g. granite).
The investigation of these media is of interest for many geoengineering applications as
they often build oil- or gas reservoirs or serve as geothermal reservoir. Porous rock is
characterized on the micro-scale as a multi-phase material consisting of solid grains and
pore fluid in between, e.g. water (or a mixture of fluids). Specimens of the material
can e.g. be analyzed experimentally by X-ray Computed Tomography [70], resulting in
detailed information about the spatial distribution of the micro-scale constituents.

2.2 Mixture theory for biphasic media

The transport of fluid in porous rock includes, e.g., the transport of gas, chemicals
or particles that are contained in the fluid-saturated rock. The presence of different
constituents in the material results in a hydro-mechanical coupling with the need for a
suitable modeling framework. These coupled processes can be described via multi-phase
continua.
In this thesis, the focus lies on the investigation of biphasic media by means of the Theory
of Porous Media, a phenomenologic, macroscopic theory. By means of a procedure similar
to classical continuum mechanics, the constituents are averaged over a control volume Ω
as shown in Fig. 2.1. On the micro-scale it is possible to distinguish between the solid
skeleton, constituting the solid grains and the pore space including the pore fluid. By
means of a homogenization these constituents are averaged resulting in a mixture. The
two constituents of fluid-saturated rock are the solid and the pore fluid that are denoted
by the subscript s and f, respectively. The superposition of the constituents ϕα, with
α = {s, f} results in a description of the physical behavior of the mixture ϕ, given as

ϕ =
⋃

α

ϕα. (2.1)

The mixture has to behave in accordance with the physical principles of its constituents.
Therefore, an important information are the volume fractions of the constituents introduced
as

nα = dvα/dv, (2.2)
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where the sum of the volume fractions ns + nf=1. The volume fractions can be used to
derive an important property of the porous medium – the overall porosity, which can be
distinguished between total and effective porosity. The first equals the volume fraction of
the fluid φtotal=nf, which is taken as the overall porosity φ in the conducted investigations.
In contrast, the effective porosity φeff only includes the interconnected pore space [68].
The total control volume Ω is derived by the sum of the partial volumes as

V = |Ω| =
∫

Ω

dv =

∫

Ω

dvs +

∫

Ω

dvf. (2.3)

And similar the total mass is introduced as

M =

∫

Ω

dm =

∫

Ω

dms +

∫

Ω

dmf. (2.4)
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Figure 2.1: Homogenization of porous rock on the micro-scale. a) Pore-scale, b) mixture
theory, and c) continuum representation.

Based on the partial mass of the constituents of the mixture it is possible to introduce
the partial and true densities

ρα =
dmα

dv
ραR =

dmα

dvα
, (2.5)

that are connected via their volume fractions according to

ρα = nαραR. (2.6)

On the basis of the introduced properties of the material, the aim is to find balance
relations for the mixture. For more information concerning continuum and mixture theory,
the interested reader is referred to [5, 10, 16, 23]. The derivation of the balance relations
require the introduction of the related kinematics.

Kinematics: Similar to the single-phase continuum theory a motion function is intro-
duced that connects the reference and the current configuration. At the time t = t0 the
material body Ω is in the reference configuration with separate reference points with
position vectors Xα of the fluid and solid constituent with α = {f, s}, respectively.
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Figure 2.2: State of motion of a biphasic continuum with solid and fluid constituents.

By the effect of forces acting on Ω, the body moves into the current configuration at time
t, as shown in Fig. 2.2. In doing so, the points follow their own motion functions χα
towards the points at the current configuration. Here, each point with position vector x is
simultaneously occupied by the particles of both constituents. This relation is described
by

x = χα(Xα, t). (2.7)

During the motion, the material points undergo displacement due to the coupled defor-
mation (stretch Uα) and rotation (Rα) of the body resulting in the deformation gradient
Fα defined as

Fα :=
∂x

∂Xα
= Rα ·Uα. (2.8)

To obtain a frame-invariant (objective) formulation, only the stretch tensor can effect
the stored energy in the model. However, to calculate these tensors (Rα and Uα) an
eigenvalue problem has to be solved. To circumvent this issue, deformation and strain
tensors are introduced. The right Cauchy-Green deformation tensor is defined with the
polar decomposition as

Cα := FTα · Fα = (Rα ·Uα)T · (Rα ·Uα) = UT
α ·Uα. (2.9)

And the Green-Lagrange strain tensor Eα is derived by the difference of squares of the
line elements as

ds2 − dS2
α = dx · dx− dXα · dXα = dXα · (FTα · Fα − I)︸ ︷︷ ︸

=:2Eα

·dXα, (2.10)

7



where ds and dSα are lengths in current and reference configuration, respectively.
The deformation gradient can be expressed by means of the displacement gradient and by
making use of the displacement uα = x−Xα as

Fα := x⊗∇Xα
= I + uα (2.11)

Throughout this thesis, only small deformations are assumed which allows for linearization
of the strain tensor εα[uα] = lin(E(u0 = 0)) = (uα ⊗∇)sym. The velocity fields of the
constituents are defined as

vα :=
∂χ(Xα, t)

∂t
. (2.12)

Lα transports line elements of the current configuration to the change of the elements by

Lα := vα ⊗∇x (2.13)

and can be decomposed in a symmetric and unsymmetric part

Dα =
1

2
(Lα + LTα) Wα =

1

2
(Lα − LTα) (2.14)

Balance relations: The guidelines for the formulation of the balance relations of
mixtures are introduced by Truesdell [76] as metaphysical principles. Following these
principles, the balance of mass, momentum, moment of momentum, energy and entropy
are given subsequently.

The balance of mass reads

dα
dt

[Mα] = M̂α =
dα
dt

∫

Ω

ραdv =

∫

Ω

ρ̂αdv, (2.15)

with the mass production M̂α. (2.15) can be transformed by making use of the transport
of volume elements dvα=JαdV using the Jacobian of each constituent and by localizing
to

(ρα)′α + ρα(∇x · vα) = ρ̂α. (2.16)

Here, the material time derivative is defined as

•′ = •̇+ (• ⊗∇x) · vα, (2.17)

resulting in the localized, partial mass balance

ρ̇α + ∇x · (ραvα) = ρ̂α. (2.18)

The global form of the mass balance, where the sum of the mass production vanishes, is
given as a product of the mass balances of the pore fluid and the solid skeleton as

ρ̇+ ∇x · (ρv) = 0. (2.19)
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The change of momentum of a constituent ϕα is balanced by the long- and short-range
forces Fα acting on it, and by the exchange of momentum Ŝ

α
. Thus, the balance of

momentum is introduced as

[Lα]′α = Fα + Ŝ
α
, (2.20)

where the momentum Lα, the forces Fα and the interaction forces Ŝ
α

, respectively, are
defined as

Lα =

∫

Ω

ραvαdv, Fα =

∫

Ω

ραbαdv +

∫

Γ

tαda, Ŝ
α

=

∫

Ω

ŝαdv. (2.21)

Inserting these relations in (2.20), applying the Cauchy-theorem tα=Tα · n, where Tα is
the partial stress tensor and n is the outer normal vector. Localization of (2.20) leads to

ραaα −Tα ·∇x = ραbα + p̂α. (2.22)

Here, the direct momentum production term p̂α=ŝα − ρ̂αvα is inserted as well as the
acceleration field defined as

aα :=
∂2χα(Xα, t)

∂t2
. (2.23)

Considering that the sum of the total momentum production of the fluid and solid
constituent vanishes (ŝs + ŝf=0), the momentum balance of the biphasic mixture is defined
as

ρa−T ·∇x = ρb, (2.24)

where mass production of the biphasic mixture is assumed to vanish according to

∑

α

ρ̂αvα = 0. (2.25)

Hereby, the stress of the mixture is computed as

T =
∑

α

Tα. (2.26)

the density ρ, the acceleration a and the body forces ρb of the mixture are computed
accordingly.
The energy of a constituent ϕα of a material body Ω is changed by the mechanical and
thermal power and, in addition, the exchange of energy between the constituents. The
balance of energy is given in the global form as

[Eα +Kα]′α = Pαext +Qα + Êα. (2.27)

It contains the internal Eα and kinetic energy Kα, the stress power Pαext, the thermal
power Qα depending on the heat flux qα, and the partial energy production Êα defined

9



as

Eα =

∫

Ω

ραεαdv, (2.28a)

Kα =

∫

Ω

1

2
ραvα · vαdv, (2.28b)

Pαext =

∫

Γ

tα · vαda+

∫

Ω

ρbα · vαdv, (2.28c)

Qα =

∫

Γ

qαda+

∫

Ω

ραrαdv, (2.28d)

Êα =

∫

Ω

êαdv. (2.28e)

Using standard argumentation with Reynold’s transport theorem, Cauchy and Gauss
integral rule, the local form of the balance of energy is derived. This balance equation
can be split to obtain the local form of balance of kinetic energy

1

2
[vα · vα]

′
α = (Tα · vα) ·∇x −Tα : Dα + ραvα · bα + vα · p̂α (2.29)

and the local form of the balance of internal energy

ρα(εα)′α = Tα : Dα − qα ·∇x + ραrα + ε̂α − vα · p̂α, (2.30)

with the algebraic constraint that the sum of energy production êα vanishes. Thus the
energy balances of the mixture are obtained as

1

2
[v · v]

′
= (T · v) ·∇x −T : D + ρv · b, (2.31a)

ρε′ = T : D− q ·∇x + ρr. (2.31b)

Thermodynamic processes are in general irreversible. Thus, the thermal energy cannot
be fully transformed to mechanical energy. This can be described by the balance of
entropy

[Sα]′α = Hα + R̂α, (2.32)

with

Sα =

∫

Ω

ραηαdv (2.33a)

Hα = −
∫

Γ

φαη · nda+

∫

Ω

ραsαηdv (2.33b)

R̂α =

∫

Ω

η̂αdv. (2.33c)
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In local form, related to the quantities of the current configuration, the entropy balance
is defined as

ρα(ηα)′α + ∇x · φαη − ραsαη = ξ̂α, (2.34)

where the total entropy production η̂α can be related to the direct entropy product ξ̂α as

η̂α = ξ̂α + ηαρ̂α. (2.35)

The entropy principle is formulated for the mixture as

∑

α

η̂α ≥ 0. (2.36)

All balance relations result in a system of equations including also the balance of moment
of momentum. As this thesis focuses on the modeling of biphasic poroelastic media under
several restrictions, the discussion of all balance relations with associated relations is not
further discussed and can be found in literature.
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2.3 Biot’s equations of linear consolidation

In case of a biphasic medium, an established approach to study the hydro-mechanical
interactions, is the theory of poroelasticity or consolidation [2, 3, 9, 12, 74, 77, 79], which
is based on the concept of the coupling between the deformation of the solid and the flow
of pore fluid, building the two constituents of the biphasic mixture. If the solid skeleton,
consisting of solid grains, undergoes a deformation, the pore space in between undergoes a
volume change or vice versa, which causes flow of the pore fluid due to pressure gradients.
This results in fluid flow on the micro-scale e.g. in micro-cracks known as squirt-flow [62].
Here, no mass exchange occurs and isothermal conditions are assumed. Additionally, the
Cauchy stress tensors T,Tα can be replaced by σ,σα. Moreover, body- as well as inertia
forces can be neglected resulting in a quasi-static description of the partial momentum
balance of (2.22) as

−σs,f ·∇− p̂s,f = 0. (2.37)

Here, the direct momentum production term vanishes by excluding phase transition
between the two constituents and neglecting mass production, i.e.

p̂s + p̂f = ŝs + ŝf − (ρ̂svs + ρ̂fvf)︸ ︷︷ ︸
no mass production

= 0. (2.38)

The formulation of the total momentum balance requires constitutive relations for the
two constituents. The solid phase (skeleton) is modeled as linear elastic and isotropic
material by Hooke’s law, resulting in the constitutive relation

σs
E := E : ε[u] = 2 G ε+

(
3K − 2

3
G

)
tr (ε)I, (2.39)

where the linear solid strain ε[u] := (u⊗∇)sym is computed from the displacement of
the solid phase u. For the restriction to the linear case, the gradient operator is defined
as ∇•=∂ • /∂x assuming that the gradient operator with respect to the current position
equals the gradient operator with respect to the reference position. K and G are the bulk
and shear modulus of the dry skeleton, respectively. The effective stress σsE of the solid
skeleton is connected to the pore pressure p of the fluid phase in form of the total stress

σ = σs + σf = σs
E − α p I, (2.40)

where

σf = −φ p I, (2.41a)

σs = σs
E − (α− φ)p I, (2.41b)

Here α = 1−K/Ks is the Biot-Willis coefficient with the bulk modulus of the solid grains
Ks. The two field variables are the displacement u of the solid skeleton and the pressure
p of the pore fluid. To be able to solve the problem for these two variables an additional
equation is required, resulting in the u-p-formulation [61] for the numerical derivation.
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In the theory of consolidation the mass of the solid and the fluid constituent has to be
conserved. Therefore the partial mass balance of (2.18) is recalled

(ρs,f)′s,f + ρs,f∇ · vs,f = 0. (2.42)

Here, the material time derivative of (2.17) is applied and the velocity of the fluid phase
can be expressed by the relative velocity related to the solid phase. i.e. vf = wf + vs

resulting in the partial mass balances for the fluid and solid, respectively

(ρf)′f + ρf∇ ·wf + ρf∇ · vs = 0, (2.43a)

(ρs)′s + ρs∇ · vs = 0. (2.43b)

The material time derivative of the partial densities can be obtained by using the
assumption of linear consolidation as (ρs,f)′s,f=ρ̇

s,f. Additionally, (2.6) is taken into

account, i.e. ρs,f=ns,fρs,fR, for a biphasic mixture, where the volume fractions can be
expressed by the use of the porosity as nf=φ, ns=1− φ. The constitutive relations for
the densities are defined in accordance with [77] as

ρ̇fR =
ρfR

Kf
ṗ, (2.44a)

ρ̇sR =
1

Ks

ρsR

1− φ (−σ̇ − φṗ). (2.44b)

Here, Kf is the bulk modulus of the fluid and σ̇ is the rate of the mean stress σ = 1/3trσ
that can be related to the volume strain. These correlations are inserted in (2.43) to
obtain

φ
ṗ

Kf
+ φ̇+ φ∇ ·wf + φ∇ · vs = 0 for the fluid, (2.45a)

−φ̇+
1

Ks
(−σ̇ − φṗ) + (1− φ)∇ · vs = 0 for the solid. (2.45b)

Adding these equations under the consideration that σ̇=K∇ · u̇− αṗ, finally results in

(
φ

Kf
+
α− φ
Ks

)

︸ ︷︷ ︸
=:β

ṗ+ φ∇ ·wf︸ ︷︷ ︸
=:∇·w

+∇ · vs

(
− K

Ks
+ 1

)

︸ ︷︷ ︸
=:α

= 0. (2.46)

The flow of the pore fluid is given by the linear assumption of Darcy’s law as

w := −K · ζ[p], ζ[p] = ∇p. (2.47)

Here, the second order permeability tensor K is derived in the case of isotropy as
K = k/η I, where k and η are the permeability of the material and the effective dynamic
viscosity of the pore fluid, respectively.
Taking into account balance of mass of the fluid and balance of momentum of the mixture
given by (2.18) and (2.24), Biot’s quasi-static equations including boundary conditions
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can be formulated. Here the aim is to derive the displacement field u(x, t) : Ω×R+ → R3

and the pore pressure field p(x, t) : Ω× R+ → R for the system

−σ(ε[u], p) ·∇ = 0 in Ω× (0, T ], (2.48a)

u = up on Γ
(u)
D × (0, T ], (2.48b)

t := σ · n = tp on Γ
(u)
N × (0, T ], (2.48c)

Φ̇(ε[u], p) + w(ζ[p]) ·∇ = 0 in Ω× (0, T ], (2.48d)

p = pp on Γ
(p)
D × (0, T ], (2.48e)

w := w · n = wp on Γ
(p)
N × (0, T ]. (2.48f)

where Φ̇(ε[u], p) is the time-derivative of the storage function given as

Φ(ε[u], p) = φ+ αI : ε[u] + βp. (2.49)

Here, β = φ/Kf + (α − φ)/Ks is the storativity, where Kf is the bulk modulus of the
pore fluid.
The set of partial differential equations(2.48) contains the coupling of the deformation
of the solid phase and the pressure diffusion of the pore fluid within, resulting in an
u-p-formulation. This fundamental equations provide a useful toolbox for the modeling
of heterogeneous porous rock. Thus, Biot’s equations are numerically solved with the
finite element program Comsol Multiphysics. They can be combined with suitable
model assumptions for fluid transport in meso-scale fractures or uncoupled in form of a
1-dimensional diffusion equation, as discussed in Chapter 3.
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3 Porous media with

meso-scale heterogeneities

This chapter investigates the effect of heterogeneities in porous media on the overall
behavior. The focus is set on the numerical modeling of the hydro-mechanical interaction
between fractures and the surrounding matrix. Afterwards, the ion diffusion in meso-scale
concrete is discussed as a special case of a diffusion process in porous media.

3.1 Heterogeneous poroelastic materials

Wave-induced fluid flow is mainly caused by pressure gradients between heterogeneities.
This process is modeled using Biot’s theory as explained in detail in Chapter 2. The
interaction of the solid skeleton and the pore fluid of fluid-saturated porous rock results
in an apparently viscoelastic material behavior. That is, the behavior takes place between
the two extremes of flow of ideal viscous fluid (pore water) and the deformation of ideal
elastic solid (skeleton). In contrast to a pure elastic solid, the material response on a cyclic
loading is frequency dependent in this case, resulting in frequency-dependent attenuation.
In the low-frequency range, the observed attenuation is called seismic attenuation, which
can e.g. be observed during geological exploration.
Typical examples of meso-scale heterogeneities in poroelastic material resulting in seismic
attenuation are e.g. described by patchy saturation or double porosity models. Patchy
saturation describes regions saturated with different fluids. The fluid flow between these
regions is subject of a considerable amount of literature, [33, 43] to name but a few.
A 1-dimensional layered model was introduced by White et al. and studied in numerous
works [14, 15, 82, 83]. The model has also been extended towards a 3-dimensional spherical
patchy saturation model of a sphere embedded in a cubic matrix. The double porosity
model, studied e.g. by [58, 59, 60] assumes that the material consists of regions with
different poroelastic material properties, but saturated by one fluid. In paper A and
B this assumption is chosen in order to transfer and quantify results from numerical
investigation of different setups towards laboratory measurements. The models can be
substituted by viscoelastic material models, i.e. by a combination of elastic and viscous
element, resulting in storage and loss module. Theses modules can be evaluated in form of
the phase velocity and the attenuation (tangent of phase angle) quantified by the inverse,
frequency dependent quality factor 1/Q.
Although, the models discussed above have to be highly complex to properly reflect the
attenuation behavior of the medium. This can be shown by means of an example, such as
the modified Cryer model, which represents a simple 1-dimensional consolidation problem.
Here, a poroelastic and fully fluid-saturated sphere consisting of two domains with different
material parameter is studied under constant hydrostatic stress and drained boundary
conditions as shown in Fig. 3.1 a) [11, 55]. It can be shown that the attenuation of this
example in form of the inverse quality factor computes in the low-frequency limit as the
frequency and in the high-frequency limit by 1/

√
(f) as shown in Fig. 3.1 b). A viscoelastic

material model such as the three-parameter Maxwell-Zener model [23], consisting of a
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more advanced combination of damper and springs, shows a comparable attenuation
behavior. Nevertheless, the high-frequency domain for this model is proportional to 1/f ,
contrary to the actual attenuation behavior of the Cryer model. This shows, that even
for this simple example complex viscoelastic models have to be considered to capture the
process properly. One possibility is numerical simulation of meso-scale poroelasticity.
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Figure 3.1: a) Modified Cryer model: Layered structure of poroelastic domains Ω1 and Ω2

with different material parameters. b) Attenuation 1/Q versus frequency.

For instance the seismic attenuation can be studied by means of the u-p-formulation
in form of transient stress relaxation or creeping test, resulting in the time-dependent
stress-strain response. This presents an established method to calculate attenuation due
to wave-induced fluid flow [42]. The frequency dependent effective stress and strain rates
are computed applying a Fast Fourier Transform (FFT) as explained in detail in [63] and
can be used to compute the inverse quality factor.
Another interesting factor which can be investigated by the introduced methods is the
Skempton coefficient B. It presents an important factor for linear poroelasticity and can
be derived analytically [14, 60]. It quantifies the ratio of changes in fluid pressure by
change of mean stress σM for undrained conditions (∇ · u = 0) and is defined as

B = − ∂p

∂σM

∣∣∣∣
∇·u=0

σM =
1

3
trσ. (3.1)

The simple heterogeneity problems are developed in the following section to account for
more complex meso-scale heterogeneities in porous media, such as fractures.

3.2 Poroelastic materials with fractures

Fluid transport in fractured porous rock is an important topic for many geoengineering
applications. The characterization of natural and (hydraulically) induced fractures as
well as the propagation of these is an important issue e.g. in case of hydraulic stimulation
for geothermal energy production or gas- and oil-exploration. Therefore, it is essential to
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understand the hydro-mechanically processes in fractured rock.
This thesis investigates attenuation processes in stationary (i.e. not evolving) fracture
networks to analyze the hydro-mechanically driven fluid flow in fractured porous rock.
This allows to draw conclusions e.g. on the hydraulic conductivity of the fracture networks.
This is essential for the interpretation of data of seismic exploration, one of the key factors
for the decision concerning suitable reservoirs for geothermal energy production.
The numerical investigation of fluid flow in fractured poroelastic rock requires numerical
models for the fractures. Fractures in porous rock often represent thin regions (conduits)
filled with fluid that cause higher permeability. Their (fracture) aperture is much smaller
than their length. In this thesis, the fractures are assumed to be mechanically and
hydraulically open. They constitute fracture networks that allow for an increased fluid
flow in contrast to the fluid flow in the background material. Fracture networks can be
highly heterogeneous with varying fracture apertures and varying fracture orientations.
They may also occur on different length scales [28].
Different approaches for the numerical modeling of these fracture networks have been
discussed in literature [46, 48, 63, 65, 78]. In the following, the focus lies on three of them:
First, the fracture characterization as poroelastic fractures is investigated as a special
case of patchy saturation. Second, a sharp interface model is introduced and third, the
fractures are modeled in a diffuse fashion. An additional approach which is discussed in
literature, is the implementation of Navier-Stokes and Lamé-Navier equations, where the
rock is treated as linear elastic material containing fractures filled with a compressible
and viscous fluid [1].

Patchy saturation: Biot’s theory of poroelasticity is applied to define a rock containing
heterogeneities with extreme geometrical and physical parameters, considered as fractures.
Both, the fractures and the rock, are modeled as poroelastic domains saturated by the
same fluid. The fractures are modeled as homogeneous and isotropic poroelastic patches
with high porosity, high permeability and low stiffness. The main advantage is that
no additional equation for the flow of fluid in the fractures is necessary. Additionally,
the transition conditions between the fractures and the surrounding matrix are simply
continuity conditions for the field variables (solid displacement and pore pressure). The
fractures can be stochastically generated and arranged in a periodic manner which is
advantageous for Computational Homogenization as discussed in Chapter 4.
The 2-dimensional control volumes contain fractures that are modeled as ellipses with low
fracture aperture in contrary to their length. A 2-dimensional setup is chosen in order
to reduce numerical costs contrary to a 3-dimensional setup. The elliptic description
of the fractures is chosen to avoid singularities caused by vertices at the fracture tips.
In Fig. 3.2 a) different examples of fracture networks are presented. The variation of
the fracture length 2a as well as of the fracture aperture τ allows to study different
aspects of the fracture network. Biot’s equations (2.48) are numerically solved in the
finite element program Comsol Multiphysics. For this purpose, the equation system has
to be transformed into its weak format.
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Figure 3.2: a) Examples of control volumes containing periodic fracture networks. b)
Inverse quality factor versus frequency for varying amount of fractures. More fractures
lead to lower magnitude and higher frequency

The weak form of the system with the aim to find u(x, t), p(x, t) in the appropriately
defined spaces U× P reads

∫

Ω

(ε[u] : E : ε[δu]− αpI : ε[δu]) dΩ =

∫

Γ
(u)
N

tp · δu dΓ ∀δu ∈ U0, (3.2a)

∫

Ω

(αI : ε[u̇]δp+ βṗδp+ ∇p ·K ·∇δp]) dΩ = −
∫

Γ
(p)
N

wpδpdΓ ∀δp ∈ P0, (3.2b)

together with the initial condition

Φ = Φp in Ω at t = 0. (3.3)

U0,P0 are appropriately defined test spaces.
Taking these model equations into account, the effect of the meso-scale heterogeneities on
macro-scale properties is investigated, as shown exemplarily in Fig. 3.2 b) by means of
the inverse quality factor derived for a control volume with varying amount of fractures.
It shows the typical behavior of low- and high- frequency range and the attenuation peak.
The peak represents the point of highest attenuation, i.e. the transition zone. At the
thereto related critical frequency, the relaxation process occurs. As can be seen in Fig.
3.2 b), the attenuation peak is shifted towards higher frequencies, while the attenuation
peak tends to decrease, for increasing amount of fractures. Thus, it can be shown that the
meso-scale heterogeneities in form of fractures affect the macro-scale attenuation. Due to
the fact that this seismic attenuation is mostly caused by wave-induced this fluid flow on
the meso-scale domain, these fluid flow processes are of interest. In this setup, the different
mechanisms of fluid flow on the meso-scale are: 1) fracture flow, i.e. flow within the
fractures, 2) matrix diffusion, i.e. processes of pressure redistribution in the poroelastic
surrounding rock and 3) leak-off, describing the effect of mass exchange between fractures
and matrix. All flow processes are captured by applying the model formulation of patchy
saturation on meso-scale fracture networks in form of thin patches. It can be shown
that the size of these patches, varied by aspect ratio and length, strongly effects the
macro-scale attenuation. Therefore, this investigation points towards interpretation of
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data from reservoir monitoring.
The numerical modeling of fractured rock with the application of the patchy saturation
method has several advantages. The numerical modeling via the u-p-formulation includes
consistent boundary conditions for the two field variables, resulting in the ability to model
complex fracture networks with unstructured meshes for the FE. Another advantage,
due to the implementation with FE, is that the computation of variable time-steps is
possible. The approach provides a useful tool for an efficient modeling of hydro-mechanical
processes on the meso-scale, e.g. with the aim to quantify and to transfer results to
experimental measurements. Though, the aspect ratio of the ellipses that represent the
fractures has to be moderate with 2a/τ ≤ 1000 caused by the numerical limits of the
meshing and the number of degrees of freedom. Additionally, the approach does not
consider the hydro-mechanical coupling at lower dimensions such as caused by dead-end
pores. These pores on the micro-scale do not deform during the fluid flow as described in
detail in [37].

Sharp interface formulation: To account for very thin fractures, i.e. geological breaks
[28] that are characterized by the fact that their length is significantly larger than their
local aperture, a sharp interface model is presented subsequently. This section introduces
the model assumptions and gives a brief summary. More details can be found in paper
C and in the literature [31, 78]. In this approach, the fractures are modeled as sharp
interfaces embedded in a fully fluid-saturated poroelastic rock matrix. The fractures are
modeled as 1-dimensional (2-dimensional) interfaces in a 2-dimensional (3-dimensional)
control volume as shown in Fig. 3.3 a).
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Figure 3.3: Sharp interface model. a) 2-dimensional fractures with fracture aperture τ(x, t)
in a 3-dimensional domain ΩM. b) Fluid-flow mechanisms in between the fractures and
from fracture to surrounding matrix.
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Thus, the fractures are lower-dimensional interfaces with the material parameter τ defined
as the fracture aperture. The matrix is modeled consisting of solid grains and the pore
fluid within, by applying the u-p-formulation for the domain ΩM and ΓF. Here, the
pressure in the matrix is denoted pM. The flow of pore fluid in the fractures is obtained
by combining the balance of mass and balance of momentum in form of a Poiseuille-type
flow rule [1] in the fracture domain ΓF. Due to the dimensional reduction of the fractures,
the fracture domain reduces to an interface (ellipse) with fracture opening τ . The fracture
network consists of nF fractures, where ΓF =

⋃nF

i=1 ΓFi . To couple the Poiseuille-type flow
in the dimensional reduced fractures with the poroelastic background, Biot’s equations
(2.48) are enhanced by a continuity equation for ΓF.
The aim is to find the solid displacement field u(x, t) : ΩM ×R+ → R3, the pore pressure
field in the poroelastic domain pM(x, t) : ΩM × R+ → R, and the fluid pressure in the
fracture domain pF(x, t) : ΓF × R+ → R for the system

−σ(ε[u], pM) ·∇ = 0 in ΩM × (0, T ], (3.4a)

u = up on Γ
(u)
M,D × (0, T ], (3.4b)

t := σ · n = tp on Γ
(u)
M,N × (0, T ], (3.4c)

σ · n + pF n = 0 on ΓF × (0, T ], (3.4d)

Φ̇M(ε[u], pM) + wM(ζ[pM]) ·∇ = 0 in ΩM × (0, T ], (3.4e)

pM = pp on Γ
(p)
M,D × (0, T ], (3.4f)

wM := wM · n = wp on Γ
(p)
M,N × (0, T ], (3.4g)

JwMKF · nF + qL = 0 on ΓF × (0, T ], (3.4h)

Φ̇F(u, pF) + wF(ζF[pF]) ·∇F +
qL

τ
= 0 in ΓFi × (0, T ], (3.4i)

pF = pp on LFi,D × (0, T ], (3.4j)

wF := wF · n = wp on LFi,N × (0, T ], (3.4k)
nF∑

j=1

wF · n|ΓFj
= 0 at ∩nF

j=1 ΓFj × (0, T ], (3.4l)

together with the initial conditions

ΦM = Φp
M on ΩM at t = 0, (3.5a)

ΦF = Φp
F on ΓF at t = 0. (3.5b)

The introduced vector nF is defined as the vector normal to the fracture, LFi is the
exterior boundary of the fractures, J•KF is the jump of a quantity across the fracture and
the constitutive relation for the fluid velocity in the fracture is given as

wF(ζF[pF]) := −KF · ζF[pF], ζF[pF] := ∇FpF = [I− nF ⊗ nF] ·∇pF, (3.6)

with the permeability tensor KF=(τ2/12η)I for the case of isotropy. The fluid velocity
and storage function of the matrix are given in (2.47) and (2.49).
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The storage function for the fluid in the fracture domain is given as

ΦF(u, pF) := 1 + eF +
pF

Kf
, (3.7)

where the interaction between the fractures and the matrix is defined by the volumetric
strain in the fracture and the leak-off of fluid from the fracture into the rock is introduced
as qL. Finally, the pressure field is assumed to be continuous.
With this modeling approach it is i.a. possible to analyze the different fluid-flow mecha-
nisms on the meso-scale as studied in detail in [78]. This is shown in Fig. 3.3 b) by means
of the inverse quality factor obtained for a 2-dimensional box of poroelastic medium
including two perpendicular fractures with an initial high aspect ratio 2a/τ = 1e+4.
The seismic attenuation caused mainly by fracture flow on the meso-scale leads to the
highest peak. Additionally, the critical frequency is high for this case. These effects are
caused by the high hydraulic conductivity of the fractures, allowing for a faster fluid flow
process. An excitation of the setup e.g. in vertical direction leads to a fluid flow from the
horizontal fracture to the vertical fracture. This is caused by the strong deformation of
the horizontal fracture resulting in a high pressure gradient in the fracture network. The
results focusing on the fracture flow could be obtained by setting the permeability of the
matrix extremely low to account for an impermeable surrounding matrix domain. Then,
the fluid flow is mainly located within the fracture. The second fluid flow mechanism, in
form of leak-off, leads to a low attenuation peak and a lower critical frequency as also
visible in Fig. 3.2 b). This is caused by the deformation of the solid skeleton leading to
solid-fluid interaction. Due to a high permeability of the surrounding matrix and fractures
with constant fracture aperture, the fluid flows towards the porous rock. This process
is slower than the fluid flow with in the fractures due to the lower conductivity of the
matrix. The third attenuation that is presented in the figure shows two attenuation peaks,
referring to the two main fluid flow mechanisms. When both processes occur during the
simulation, the leak-off is slightly faster leading to a slightly larger critical frequency
than for the pure leak-off effect. The fracture flow dominates the processes leading to a
significant higher attenuation peak. This second peak of the attenuation overlaps with
the attenuation mainly caused by flow within the fractures.
The main advantage of the modeling of meso-scale fractures in porous rock using the
sharp interface formulation is the possibility to investigate fractures independent of their
fracture aperture. This is an important issue as it can be shown, that attenuation caused
by wave-induced fluid flow increases with decreasing fracture aperture as well as the
coupling effects that get stronger. Another advantage is that the degrees of freedom
can be reduced, as the fractures do not need to be meshed in full dimension. This is
possible due to the assumption of dimensional reduction, i.e. the assumption that the
fluid flow in the fractures is modeled as a 1-dimensional (2-dimensional) process in a
2-dimensional (3-dimensional) poroelastic matrix. Though, the modeling of more complex
fracture networks, especially in 3-dimensional, is limited by the numbers of degrees of
freedom that occur for meshing the surrounding matrix.
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Diffuse interface formulation: One of the numerical models accounting for fractures
in fluid-saturated porous media, that has gained importance in literature, is the phase
field formulation. This theory provides a useful formulation for the application to fracture
problems. The phase field approach for brittle fracture is studied in literature, see e.g. [34,
46, 73]. The combination of the phase field formulation for fractures with a poroelastic
formulation for the background, provides several advantages in comparison with the
introduced approaches to capture the hydro-mechanical processes in fractured porous
media. The application of the phase field method to fracture problems in porous media
is recently discussed in several studies [17, 25, 44, 45, 47, 48]. In these investigations
the focus lies on the numerical modeling of fracture propagation in porous or poroelastic
media and the qualitative description of the coupling mechanisms. The key feature of this
approach is that the fractures are assigned to a scalar damage variable to describe them
in a diffuse fashion, embedded in a poroelastic matrix with side length L as shown in Fig.
3.4 a) for two perpendicular fractures in a 2-dimensional setup. Along the fractures, the
damage variable is chosen d=1 whilst d=0 refers to the undamaged state.
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Figure 3.4: Diffuse interface model. a) control volume with two intersecting fractures b)
Damage field along one fracture. Here d∗ refers to the modified damage field and d is the
standard diffuse damage field. [56]

The approach is based on the implementation of [44, 45, 48], where the local equations
are the balance of fluid mass and balance of linear momentum with related constitutive
relations for the stress, the fluid pressure and the fluid flow. The diffuse interface
formulation is coupled to the u-p-formulation, which is the basis for the investigated
studies of porous media. Miehe et al. [44] propose an anisotropic stress concept by
introducing the decomposition of strains. This is introduced to account for crack opening
and closing, i.e. different behavior under tension or compression. In this thesis, the focus
is set on seismic stimulation of fracture networks with very low excitation amplitudes.
Having these assumptions in mind, the standard u-p-formulation given in (2.48) is
changed to a coupled system, where the model variables are the damage field d(x, t) :
Ω × R+ → [0, 1], the displacement field u(x, t) : Ω × R+ → R3, and the pore pressure
p(x, t) : Ω× R+ → R.

22



The system is defined as

Θ(d, ε[u], p)−D(ḋ) + f(ζ[d]) ·∇ = 0 in Ω× (0, T ], (3.8a)

d = 1 on ΓF × (0, T ], (3.8b)

d = dp on Γ
(p)
D × (0, T ], (3.8c)

f := f · n = fd on Γ
(d)
N × (0, T ], (3.8d)

−σ(d, ε[u], p) ·∇ = 0 in Ω× (0, T ], (3.8e)

u = up on Γ
(u)
D × (0, T ], (3.8f)

t := σ · n = tp on Γ
(u)
N × (0, T ], (3.8g)

Φ̇(d, ε[u], p) + w(ζ[p]) ·∇ = 0 in Ω× (0, T ], (3.8h)

p = pp on Γ
(p)
D × (0, T ], (3.8i)

w := w · n = wp on Γ
(p)
N × (0, T ]. (3.8j)

This thesis restricts on a quantitative analysis of the hydro-mechanical coupling in the
diffuse interface model. Additionally, stationary fractures with prescribed “interior”
boundary conditions are considered. The viscous regularization D(ḋ) including Griffith’s
criterion is considered for propagating fractures and is therefore neglected in this thesis.
Additionally, the constitutive relations for the damage flux f and the damage source term
are simplified and introduced as

f(ζ[d]) := −γ2ζ[d], ζ[d] := ∇d, (3.9a)

Θ(d, ε[u], p) = Θ(d) := d. (3.9b)

The storage function and seepage velocity are given in (2.47) and (2.49), respectively.
The porosity and permeability in the diffuse fracture field are defined via a mixture rule
that is given in detail in paper C. This definitions lead to a decoupling of the damage
conservation law (3.8a) from the equation system accounting for poroelasticity, i.e. (3.8h)
and (3.8e). Thus, the damage field can be derived a priori and the resulting damage
distribution d(x) serves as an input parameter for the problem solved by u-p-formulation.
The constitutive relation for the stress is, contrary to the standard formulation in (2.40),
given as

σ(ε[u], p) := a(d)E : ε− α(d)pI, ε[u] := (u⊗∇)sym. (3.10)

Here, a degradation function a(d) is applied on the material stress of the solid phase of
the poroelastic medium. It is defined as

a(d) = (1− κ)(1− d)2 + κ, 0 < κ� 1. (3.11)

For numerical stability, the small parameter κ is chosen as introduced in [47]. Paper C
proposes the investigation of this degradation function depending on a novel definition of
a modified damage variable d∗ defined as

d∗ =

{
1, d ≥ db,
d
db
, d < db,

(3.12)
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where db is a threshold value derived by the evaluation of the analytical solution for one
single fracture. Here,

db = exp

(
−γ
∗

γ

)
. (3.13)

Thus, the degradation function is reformulated by

a(d∗) = (1− κ)(1− d∗)2 + κ, 0 < κ� 1. (3.14)

This degradation function is assumed to act on the Biot-Willis-coefficient α in the form
α = 1− a(d)K/KS. This is a logical choice when assuming a degradation of the solid
phase of the medium.

PSfrag repla
ements

lo
g 1

0
(1
/Q

)

[

-

℄

log10(f) [1/s℄

referen
e

=

=

=

=

e-

e-

e-

e-

e-

e-

e-

e+

e+

k

Figure 3.5: Attenuation of a domain containing two perpendicular fractures, for varying
permeability of the damage zone k of the control volume given by a mixture rule [56].

Taking into account this system of equations, meso-scale heterogeneities in form of frac-
tures in porous rock can be studied by means of the attenuation as shown exemplary in
Fig. 3.5 for varying permeability of the damage zone. The typical curve including the low-
and high-frequency domain as well as the attenuation peak is presented. The variation of
the permeability in the damage zone is derived following the mixture rule ranging between
the permeability of the surrounding matrix (d=0) and the higher fracture permeability (at
d=1) given in detail in paper C. In the example it ranges between the harmonic and the
arithmetic mean, which causes a shift of the attenuation in frequency. The attenuation
peak remains at the same height, due to the underlying geometry (fracture aperture
τ=1e-5 m) that is the same for all examples. Meaning that the same geometry of two
perpendicular intersecting fractures with the same damage distribution d(x) is used for
the calculations associated to the results in Fig. 3.5 applying the modified damage variable
d∗. It can be seen that the effect of the lower permeable surrounding rock matrix gets
stronger for the harmonic mean of the mixture rule for the permeability resulting in a
lower frequency range of the associated attenuation. And vice versa, the attenuation is
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dominated by the higher permeability of the fracture for the arithmetic mean, which leads
to a faster process, i.e. a higher frequency range of the solution.
A major advantage of the diffuse interface formulation is the straight forward implemen-
tation. That is, the fractures can simply be attached a damage variable and the fracture
network can be derived a priori as a stationary damage field formulation. Additionally,
the damage field can directly be combined with Biot’s equations of consolidation and
provides the possibility to be extended straightforward with Griffith’s theory to account
for fracture growth. It is shown in paper C, that the method using the conventional
damage variable d does not converge to the reference solution (the sharp interface model).
This is mainly caused by the volumetric strain in the damage zone which is concentrated
in one single element. This problem can be overcome by applying the modified damage
variable d∗, that is constant near to the interface resulting in a volumetric strain that
is no longer concentrated in one single element as introduced in paper C. Taking into
account this modification, the diffuse interface model is valuable, i.e. converges towards
the reference solution. The diffuse interface formulation is applicable for high aspect ratio
fractures and provides a simple implementation of interacting fractures. Nevertheless, a
more complex structure would lead to high numerical costs, caused by the high resolution
of the damage zone that is needed to achieve quantitative valuable solutions.

3.3 Uncoupled diffusion in porous media

A special case occurs for an uncoupled diffusion equation. One example of an uncoupled
system was e.g. introduced by Terzaghi [74, 75] for 1-dimensional consolidation. In this
case Biot’s equation can be decoupled resulting in an uncoupled diffusion equation for
the pressure with a specific consolidation coefficient. In this thesis, however, the case
of an uncoupled diffusion equation is solved for the diffusion of chloride ions in porous
concrete. The motivation for this is, that the uncoupled diffusion equation can be solved
for 3-dimensional models. The study is of particular interest for construction engineers, e.g.
in the application for buildings (such as bridges) made from reinforced concrete. Here, the
chloride ions react with the steel causing corrosion which affects the stability of the whole
structure. Previous research findings into transport processes in concrete have revealed
that the transport of chloride ions is one of the most important mechanisms in reinforced
concrete and that meso-scale models are an appropriate tool to study the influence of
heterogeneities on the effective properties of homogeneous macro-scale concrete [80, 84,
87]. With this assumption, the system of equations for porous media introduced in
Chapter 2 can be reduced towards an uncoupled diffusion equation and solved under
static conditions. In this approach, the field variable is the concentration c rather than
the pressure in the investigation concerning natural porous media such as rock. The
resulting equation of stationary mass diffusion is studied in detail in paper D.
On the meso-scale, porous concrete is modeled as a three phase material and an example
of such a structure is given in Fig. 3.6 a). It consists of cement paste as background
material, aggregates and an Interfacial Transition Zone (ITZ). The ITZ is a thin layer
surrounding the aggregates that exhibits a much higher porosity and higher diffusivity
compared to the cement paste. It can be explained to be formed due to a “wall” effect of
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packing of cement paste against the aggregates as described in detail in [71]. The ITZ
has a high effect on the overall material behavior of concrete. A large and growing body
of literature has investigated the ITZ and its thickness, which is found to lie in the range
of 0 to 50 µm possibly depending on the aggregate size [8, 21, 35, 51, 71, 85, 86]. A
possible approach to numerical model the ITZ is the application of the diffuse interface
formulation discussed before. In fact, it is under discussion in literature e.g. [51], that the
porosity of the ITZ varies with a gradient, i.e. it is highest at the surface of the aggregates
and gets lower in direction to the cement paste. This effect could simply be captured
with the application of the phase field method, though the required high resolution of the
zone would be numerically cost intensive as is determined in Section 3.2. It was shown
that the smoothing length and relating thereto the size of the elements near the interface
has to be chosen very small to obtain quantitatively valuable solutions. In this thesis, the
model assumes an average permeability of the ITZ, which allows the modeling of the ITZ
as an interface at the surface of the aggregates.
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Figure 3.6: a) Three-phase concrete. b) mixture based on ASTM Type I Portland cement
with sand and water. c) Fuller’s curve of aggregate mixture. [57].

Taking into account these assumptions, a system of equations is established subsequently.
The goal is to find the mass concentration of ions in the matrix cM : ΩM × R+ → R and
the mass concentration of ions in the ITZ cI : ΓI × R+ → R that solve the system

J[cM] ·∇ = 0 in ΩM, (3.15a)

cM = cP on ΓM,D, (3.15b)

J := J[cM] · n = JP on ΓM,N, (3.15c)

JT[cI] ·∇T + J[cM] · n = 0 on ΓI, (3.15d)

cI = cPI on LI,D, (3.15e)

JT[cI] · n = JP
T on LI,N. (3.15f)

The constitutive relations are

J[c] := −D · ζ[c], ζ[c] := ∇c, (3.16a)

JT[c] := −D̂I · ζT[c], ζT[c] := ∇Tc, (3.16b)
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where continuity of the concentration is applied (c=cM=cI on ΓI) and the tangential
gradient operator that is derived on ΓI is defined as ζT[c]=[I−n⊗n] ·ζ[c]. The diffusivity

tensor D [cm2/s] and D̂ [cm3/s] are, in case of isotropy, defined as

D = DM I, D̂I = D̂I I, (3.17)

where DM is the diffusivity of the matrix and D̂I=f ·DCP. Here, DCP is the diffusivity of
the pure cement paste and the factor f is introduced to describe the diffusivity of the ITZ
efficiently as explained in detail in paper D. Prior studies have noted the importance of
the shape of aggregates in concrete [8, 41] and, therefore, paper D proposes a procedure to
generate the concrete structure. An important input parameter of the numerical models
of concrete is the grading of concrete mixture that is given e.g. in form of sieve curves. In
Fig. 3.6 b) and c) examples for sieve curves including the upper and lower bound are
given for b) a mixture based on ASTM Type I Portland cement with sand and water
[86] and c) for the common aggregate mixture given by Fuller’s curve [84]. The mass of
the aggregates is summed up and given in cumulative m-% versus the mesh size, i.e. the
average diameter of the aggregates. The typical sieve curves provide a large range of sieve
passing over length scales. This means, it includes a lot of very small and few very large
aggregates. An explicit modeling of all these aggregates would lead to highly complex
structures. The generation of such structures and especially the numercial simulation
thereof is inaccessible at reasonable costs. Therefore, paper D proposes a novel procedure
to handle the large range of aggregates given by the typical concrete mixtures, which is
based on an analytical mixture rule. Thus, an efficient modeling of the mass diffusion in
three-phase concrete is possible.

All approaches introduced in this Chapter account for heterogeneities on the meso-scale.
It can be assumed that the diffusion is a local-phenomenon on the meso-scale which allows
to derive effective properties on the macro-scale by computational homogenization which
is introduced in detail in Chapter 4 by the example of a prototype, uncoupled, diffusion
equation.
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4 Variationally Consistent Homogenization

This Chapter introduces computational homogenization, based on first order homoge-
nization, by means of a stationary and uncoupled diffusion equation as prototype for
the introduced equations. For further information concerning the micro to macro scale
transition, the interested reader is referred to [31, 32, 38, 39, 67].PSfrag repla
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4.1 Preliminaries

Heterogeneities such as e.g. fractures in rock or aggregates in concrete strongly affect the
macro-scale behavior of the porous material. The Direct Numerical Simulation of the
particularized domain Ω is numerically extremely cost-intensive. Additionally, it is often
not possible to obtain all details of the structure. Therefore, a macro-scale problem is
introduced which depends on the micro-scale and is assumed to be homogeneous. The
structural effects of the micro-scale are taken into account by applying computational
homogenization. This method assumes two scales – micro- and macro-scale – of which the
macro-scale refers to the large, observable scale (e.g. the reservoir) and the micro-scale is
represented by the RVE problem.
The homogenization of micro-scale properties of porous media is based on the assumption
that the length of the micro-scale RVE is much smaller than the characteristic length of
the macro-scale problem, i.e. L� � Lmacro, see Fig. 4.1). In standard homogenization a
local boundary value problem is considered on the RVE, on which a macro-scale quantity
is imposed by using corresponding boundary conditions.
In this thesis, the notation of the Variationally Consistent Homogenization (VCH) is
used to derive the relevant scale transition relations. The VCH procedure consists of the
following steps: First, the strong and weak form of the system of equations is derived
from the fine-scale model, i.e. the reference model with full microscopic resolution in the

28



macro-scale domain Ω. Afterwards, the first-order homogenization is introduced in the
spatial domain. Here, running averages are introduced, meaning that the domain Ω can
be subdivided in domains Ω� (referred to as RVE). Then, averaging can be applied for
these micro-domains that exist at each point of Ω. The macro-scale problem can then be
stated under consideration of suitable boundary conditions on Γ. The idea is that, for
sufficiently smooth problems, the “true” solution can be approximated by the two-scale
model. To close the system, the micro-scale problem on a RVE has to be introduced.
In this thesis, the RVE-structures are created periodically to minimize boundary layer
effects during VCH. The method is explained subsequently by means of a prototype
diffusion problem. This serves as an example for the general application of the VCH
concerning scale transition of a heterogeneous porous meso-scale towards a homogeneous
macro-scale problem.

4.2 Fine-scale problem

The fine-scale problem refers to the detailed domain Ω with heterogeneous micro-structure,
i.e. the fine-scale features are resolved for the entire problem. The strong formulation of
an uncoupled mass diffusion equation in porous media is based on Fick’s law [20]. The
aim is to find, under static conditions, the concentration c : Ω× R+ → R that solves the
system

J[c] ·∇ = 0 in Ω, (4.1a)

c = cP on ΓD, (4.1b)

J · n = JP on ΓN. (4.1c)

The constitutive relation for the mass flux J is defined as

J[c] := −D · ζ[c], ζ[c] := ∇c, (4.2)

where square brackets •[�] relate to operational dependency of • on � and ζ[c] is the
gradient of the mass concentration c. The diffusivity tensor D is, in case of isotropy,
defined as

D = D I, (4.3)

where D=D1,2,...,n in Ω for n phases with different diffusivity.
The weak form of this system of equations is obtained upon multiplying by the test
function δc ∈ C0, applying the given boundary conditions and integrating by parts. Then
the standard space-variational format for the system in (4.1) is introduced as follows:
Find c(x) in the suitable trial set C that solves

∫

Ω

∇c ·D ·∇δc dΩ = −
∫

ΓN

JPδc dΓ ∀δc ∈ C0, (4.4)

where C0 is the appropriately defined test space.
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4.3 First-order homogenization in the spatial domain

Now the two-scale problem shall be defined, i.e. a micro-scale problem solved on Ω�

and a macro-scale problem solved on Ω. To this end, a running average is introduced on
the cubic domain Ω� which is located at each macro-scale point x̄ ∈ Ω. Therefore, the
space-variational problem in (4.4) is replaced by finding c(x) ∈ CFE2 that solves

∫

Ω

a�(c, δc) dΩ = −
∫

ΓN

JPδc dΓN ∀δc ∈ CFE2 , (4.5)

where the pertinent space-variational form is given as

a�(c, δc) = 〈∇c ·D ·∇δc〉� . (4.6)

Here, the volume averaging operator is introduced as

•̄ = 〈•〉� =
1

|Ω�|

∫

Ω�

• dΩ, (4.7)

The scale-separation is introduced via first-order homogenization, meaning that a macro-
scale quantity is imposed on the micro-scale problem that varies linearly on a RVE.
The micro-scale mass concentration c is decomposed into a macro-scale part cM and a
fluctuation part cs within each RVE in the format

c = cM[c̄] + cs, with cM(x) := c̄+ ζ̄ · (x− x̄), ζ̄ := ζ[c̄]. (4.8)

Note that c̄ is the constant offset of the concentration field in the RVE. And, comparable
to a rigid body mode, it doesn’t contribute to the energy of the system. For convenience,
it can be chosen c̄=0. The two-scale trial and test spaces are defined as

CFE2 := {c|Ω�,j
= cM[c̄] + csj , c

s
j ∈ Cs

�,j, c̄ ∈ C̄}, (4.9a)

C0
FE2 := {δc|Ω�,j

= cM[δc̄] + δcsj , δc
s
j ∈ Cs

�,j, δc̄ ∈ C̄0}, (4.9b)

where C̄ and Cs
�,j are the finite element discretized trial spaces for the macro- and micro-

scale problem on Ω�,j. The trial space for the macro-scale problem is C̄0. The assumption
is applied that there exists a component cs and corresponding space Cs

�,j for each single
RVE Ω�,j in the form

c ∈ CFE2 → (c̄, {csj}) ∈ C̄× ["jCs
�,j]. (4.10)

The two-scale problem is restated, taking into account the interpretation δcsj = δcs inside
Ω�,j, by finding (c̄, {csj}) ∈ CFE2 that solves

∫

Ω

a�(c, cM[δc̄] + δcs) dΩ = −
∫

ΓN

JP[cM[δc̄] + δcs] dΓ ∀δc ∈ C0
FE2 . (4.11)
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4.4 Macro-scale problem

Now, only macroscopic contributions to the test functions are considered, i.e. δcs = 0. As
a result, the homogenized macro-scale problem from (4.11) can be obtained as that of
finding c̄ ∈ C̄ such that

−
∫

Ω

J̄ · [∇δc̄]dΩ = −
∫

Γn

J̄Pδc̄ dΓ ∀δc̄ ∈ C̄0, (4.12)

where J̄P is defined as the suitably homogenized quantity on the Neumann boundary.
The macro-scale flux is defined as

J̄ := 〈J〉� = 〈−D · ζ[c]〉� . (4.13)

Here the transition of the volume average of the mass flux into the surface integral can be
introduced as

J̄ =
1

|Ω�|

∫

Γ�

J [x− x̄] dΓ, (4.14)

where J :=J · n is the boundary flux.
Clearly, the homogenized flux depends on c. In the subsequent section, the RVE-problem
is introduced, such that

J̄ = J̄{ζ̄}, (4.15)

i.e., J̄ is implicitly depending on the homogenized field.1 This is exactly the relation
needed to solve (4.12).

4.5 Micro-scale problem on an RVE

After having defined the macro-scale problem, the micro-scale problem on an RVE is
introduced subsequently. The concentration is decomposed as introduced in (4.8) in the
macro-scale part cM and a fluctuation part cs. The fluctuation part is assumed to be
periodic on Ω� such that

JcsK� = 0 ∀x ∈ Γ+
�. (4.16)

Here, the difference operator J•K�(x) = •(x+)− •(x−) is introduced, where x ∈ Γ+
� are

the image points and x ∈ Γ−� the corresponding mirror points as shown in Fig. 4.2.
This micro-periodicity is applied in a variational form, i.e.

d�(δλ, c) = d�(δλ, ζ̄ · x), ∀δλ ∈ T�. (4.17)

1Here, due to the invariance at a constant value, J̄ will not depend on c̄, but only on its gradient, for
this linear model problem.
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Here, the RVE forms are defined as

d�(λ, c) :=
1

|Ω�|

∫

Γ+

�

λJcK� dΓ, (4.18a)

d�(λ, ζ̄ · x) :=
1

|Ω�|

∫

Γ+

�

λJxK� dΓ · ζ̄, (4.18b)

where λ is a Lagrange multiplier that can be interpreted as a boundary flux on Γ+
�. The

space for λ is defined as

T� = [L2(Γ+
�)]3 (4.19)

with L2 denoting the space of square integrable functions. Thus, the space-variational
RVE format is stated as follows: For a given gradient ζ̄ find c(x) ∈ Cs

�, λ ∈ T� that
solves

a�(c, δc)− d�(λ, δc) = 0, ∀δc ∈ Cs
�, (4.20a)

− d�(δλ, c) = −d�(δλ, ζ̄ · x), ∀δλ ∈ T�. (4.20b)

From the solution of (4.20 a, b) the homogenized flux J̄ may be computed. Hence, J̄=J̄{ζ̄}
is derived by the RVE-problem and returned to the Macro-scale problem in (4.12).
It can be shown, that the Hill-Mandel macro-homogeneity condition [26, 27, 50] is
fulfilled as a property built into the problem formulation of VCH. To prove the Hill-
Mandel criterion, the necessary assumptions and mathematical steps are explained in the
following.
First, the volume averaging rule for the concentration gradient ζ,

〈ζ[c]〉 = ζ̄, (4.21)

needs to be fulfilled. This is verified by considering the identity

δJ̄ · 〈ζ[c]〉� =
1

|Ω�|

∫

Γ�+

(δJ̄ · n) cdΓ =
1

|Ω�|

∫

Γ+

�

(δJ̄ · n)JxK · ζ̄ dΓ. = δJ̄ · ζ̄, (4.22)
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where Gauss’ theorem was used in the first and last identity, and (4.20b) with δλ=δJ̄ · n
for a constant δJ̄ gives the second identity.
Second, the Hill-Mandel macro-homogeneity for any two fields c′ and c′′ are solved for
from (4.20 a,b) with ζ̄=ζ̄

′
and ζ̄

′′
, respectively, must obey

〈
J′ · ζ′′

〉
�

= J̄
′ · ζ̄′′. (4.23)

To prove this relation, it can be concluded that

〈
J′ · ζ′′

〉
�

= a�(c′, c′′) = d�(λ′, c′′) = d�(λ′, ζ̄
′′ · x) =

1

|Ω�|

∫

Γ+

�

λ′JxK dΓ · ζ̄′′, (4.24)

where the second equality follows from (4.20a) with δc=c′′ and the third equality follows
from (4.20b) with δλ=λ′.
Finally, by choosing δc=xi in (4.20b), the component-wise relation

J̄ ′i = a�(c′, xi) = d�(λ′, xi) =
1

|Ω�|

∫

Γ+

�

λ′JxiK dΓ (4.25)

can be obtained, which, inserted in (4.24) completes the proof.
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5 Summary of appended papers

5.1 Paper A: Numerical Investigation of the Effective
Skempton Coefficient in Porous Rock Containing
Fluid-Filled Fracture Networks

Hydro-mechanics of fluid-filled fracture networks in porous rock is investigated. The
paper, therefore, presents a numerical investigation of an effective Skempton coefficient
for different setups. The Skempton coefficient measures the effect of changes in mean
stress on the pore pressure under undrained conditions. It is analyzed in this paper by
the use of numerical modeling to identify the limitations of common measurement setups
in laboratory experiments. Therefore, the behavior of the numerically derived effective
Skempton coefficient is compared to the pseudo-Skempton coefficient, which is known
from laboratory measurements [53]. Throughout this study, the fluid-saturated rock is
modeled as a poroelastic medium by applying Biot’s theory in form of a displacement-
pressure-formulation [2]. Using the scale separation explained in detail in chapter 1 and
further, volume averaging techniques and computational homogenization are performed to
analyze the material properties in time-, as well as frequency domain for the underlying
setups. The paper presents at first a modified Cryer’s problem consisting of a spherical
sample embedded in a mantle, both treated as porous media with different material
properties. Second the study provides stochastically generated fracture networks in a
quadratic sample. The fractures are modeled as ellipses with moderate aspect ratio
constituting highly porous inclusions in a more compact rock.
It was observed that the results of the local pressure measurement (i.e. the pseudo-
Skempton coefficient) vary widely from the volume averaged properties (i.e. the effective
Skempton coefficient). The investigation has revealed that the effective Skempton coef-
ficient contains information about the sample and serves as a valuable quantity for the
analysis of effective hydro-mechanical properties.

5.2 Paper B: Experimental determination of the
Skempton coefficient: Challenges and
opportunities

Pressure diffusion of pore fluid is numerically investigated to examine the crucial role of
adequately designed laboratory measurements in the context of determining the Skempton
coefficient. Here, the study takes up paper A with the goal to transfer the numerical
results to experimental realizations.
The accurate measurement of the Skempton coefficient requires realization of undrained
boundary conditions. But the implementation of this condition is challenging in experi-
mental setups, where a dead volume always occurs due to the presence of tubes, sensors,
connectors and many more. Therefore, the study analyzes the crucial role of this gauge
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volume by using numerical investigations of pressure diffusion due to a volumetric loading
of different samples. A detailed comparison is made between a homogeneous and a hetero-
geneous sample of fluid-saturated rock, modeled as spherical samples that are embedded
in a mantle consisting of pore fluid and representing the dead volume. Thus, the study
investigates a time-dependent boundary value problem combined with pressure-diffusion
controlled flux of pore fluid for Biot’s basic constitutive equations of linear poroelasticity
[3]. The data obtained were evaluated using the ratio of the pseudo-Skempton coefficient
introduced in paper A and [53] and the classic (elastic) Skempton coefficient solved for
different ratios of storage capacities. The storage capacities of the samples were evaluated
as the sum of corresponding volume and specific storage capacity, i.e. the change in fluid
increment depending on the displacements of phases related to change in fluid pressure
[64].
It was found that pressure diffusion influences the Skempton coefficient strongly depending
on the storage capacity of the gauge volume. The paper has observed that valuable results
of the Skempton coefficient can only be obtained if the characteristic time of the pressure
diffusion has passed and for a small gauge volume, i.e. a volume order of magnitude
smaller than the sample volume. These findings confirm the importance of thoroughly
designed experimental setups and laboratory measurements.

5.3 Paper C: Diffuse interface modeling and
Variationally Consistent Homogenization of fluid
transport in fractured porous media

Pressure diffusion in a fractured poroelastic medium is investigated using a diffuse interface
formulation to study how well the method accounts for the underlying hydro-mechanical
coupling processes. The study, therefore, focuses on the sub-problem of hydro-mechanically
triggered fluid transport in mechanically and hydraulically open, stationary fractures that
are embedded in a poroelastic background medium. Within this framework the diffuse
fracture phase field is analyzed in comparison with a sharp interface formulation of hydro-
mechanically coupled fluid transport in fracture networks that serves as reference solution
[31]. Both approaches take into account a poroelastic background medium described
by a displacement-pressure formulation. The additional primary global fields are the
fluid pressure in the fracture for the sharp interface method and the damage variable for
the diffuse formulation. It is found within the scope of this study that the conventional
fracture phase-field formulation fails in a suitable prediction of the fluid transport be-
havior. The paper therefore proposes a modification of the formulation by introducing a
modified damage variable. These model formulations are analyzed numerically for two
benchmark problems. First the outflux of fluid from a single drained fracture under
compression is studied. Second, two perpendicular and intersecting fractures embedded in
a poroelastic matrix are analyzed that serves as prototype RVEs for seismic attenuation
in fluid-saturated fracture networks. The poroelastic RVEs are examined via up-scaling
towards a viscoelastic large-scale model based on Variationally consistent Computational
Homogenization.
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It was observed that the conventional formulation does not converge towards the correct
solution, whereas the modification leads to reasonable results and a very good approxi-
mation with the reference, if the smoothing length of the diffuse fracture is small. The
findings showed that a high resolution of the fracture zone is required for quantitative
results, even though the modified formulation was observed to be less sensitive for the
finite element discretization.

5.4 Paper D: Modeling and computational
homogenization of chloride diffusion in three-phase
meso-scale concrete

Computational homogenization for modeling transport of chloride ions in porous concrete
is introduced to investigate the effects of meso-scale heterogeneities in form of aggregate
content and Interfacial Transition Zone (ITZ) on macro-scale properties. The concrete
is modeled as a three-phase material consisting of the cement paste, the aggregates and
the ITZ. The highly heterogeneous material is characterized by sieve analysis consisting
of an aggregate mixture with a large range of aggregate sizes. Therefore, the paper
develops modeling on different scales by combining numerical Variational Consistent
Homogenization (VCH) with an analytical technique. The analytical assumptions are
based on a mixture rule and account for lower, unresolved, length scales. Here, the
properties of the unresolved length scales are determined a priori and homogenized to be
included in the numerical modeling. The numerical models are generated using particle
size distribution (PSD) for given sieve curves. At first a dense sphere packing is created
based on the PSD. This information is used to generate a weighted Voronoi diagram,
which is modified by a shrinking process to create artificial and periodic RVEs for the
numerical investigations. The numerical investigations are compared with experimental
results to validate the applied method. The overarching goal is to determine the impact
of meso-scale heterogeneities on the effective diffusivity of a homogeneous macro-scale
model.
It was found that the ITZ has a high impact on the macro-scale diffusivity of concrete.
Additionally it could be shown that the numerically obtained results are in a good agree-
ment with experimental studies. Assuming that the thickness of the ITZ is independent
of aggregate size, allowed for accurate calibration of the model parameters. Additionally
the different effects of aggregate size on the homogenized properties were emphasized.
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6 Conclusions and Outlook

The main goal of this thesis is to elaborate a suitable toolbox to simulate transport
processes in porous media. This has been developed for the multi-scale modeling of
transport processes on the example of fluid flow in porous rock and transport of chloride
ions in concrete. The hydro-mechanical effects of fractured meso-scale rock can be
investigated by means of the presented approaches of coupling the behavior of fluid-filled
fractures and the poroelastic material behavior of the surrounding rock. The interpretation
of seismic attenuation provides a useful tool for reservoir characterization, as well as
for the design and interpretation of experimental studies and points in the direction of
studying fracture connectivity. The decoupling of the basic equations can be used to
obtain reliable results for effective diffusivity of porous concrete, taking into account
aggregate distributions and Interfacial Transition Zones.

The main findings are the following:

I) Meso-scale heterogeneities have a large effect on frequency-dependent macro-scale
properties. In case of the examples studied in this thesis this means in particular,
that the wave-induced fluid flow caused by pressure gradients in fractured meso-scale
porous rock has a high influence on the seismic attenuation of a rock reservoir and
that properties like the diffusivity of three-phase porous concrete affect the overall
diffusivity of the macro-scale homogeneous model of concrete.

II) Numerical results can be transferred to experimental realizations. Here, in paper B
the crucial role for accurate design of experimental studies is highlighted.

III) To obtain reliable macro-scale properties is not trivial and requires a suitable toolbox
to capture the processes on multiple scales. An efficient and valuable modeling of
fractures in porous rock with the introduced approaches showed individual limits and
advantages, such as: 1) The reliable quantification of hydro-mechanical processes
with the patchy saturation model but limitation of fracture geometry, studied in
paper A and B, 2) The possibility of the sharp interface model to separate different
flow mechanisms and to account for geological fractures but limitation to not too
complex fracture networks and 3) The advantage of the diffuse interface formulation
to capture complex fracture networks but limitation caused by the high resolution
of fracture zone required for quantitative results, investigated in paper C. The
derivation of macro-scale quantities of porous concrete, as analyzed in paper D,
requires a valuable generation of meso-scale structures and a suitable modeling of
all phases.
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It is of interest for future research to investigate further aspects of the introduced
models, e.g. the following:

I) The possibility to capture the hydro-mechanical coupling between fractures and
porous rock with the diffuse interface formulation needs further insight, and a sys-
tematic analysis of more complex fracture networks and more permeable surrounding
rock is recommended.

II) The combination of the mass diffusion in porous concrete also containing fractures
is of interest for various research fields and would be interesting to consider with
the proposed procedures.

III) An interesting problem is to embed the developed models into FE2 type simulations.
The FE2 approach offers two possibilities. If the sub-scale relation is linear and static
as discussed for diffusion in meso-scale concrete, the homogenization can be directly
carried out in terms of a priori upscaling. If the sub-scale relation is nonlinear
and/or transient, on the other hand, as in the considered case of fractured rock, the
homogenization has to be done in a nested fashion. That means, the macro-scale
and the meso-scale problem need to be derived in a coupled formulation, e.g. the
macro-scale stresses depend on the effective strains derived from the meso-scale
problem.

IV) A further field for future research is to enrich the discussed approaches with non-
linear material behavior such as non-Darcy type diffusion or viscoplastic models for
the solid skeleton.

V) Possible further investigations include also to utilize the approaches in advanced
calibration from experiments at different length scales.
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sous-Forêts. International Journal of Rock Mechanics and Mining Sciences 44.8
(2007), 1091–1105.

[8] H. Chen, Z. Zhu, L. Liu, W. Sun, and C. Miao. Aggregate shape effect on the
overestimation of ITZ thickness: Quantitative analysis of Platonic particles. Powder
Technology 289 (2016), 1–17.

[9] A. H.-D. Cheng. Poroelasticity. Springer, 2016.
[10] O. Coussy. Poromechanics. John Wiley & Sons, 2004.
[11] C. Cryer. A comparison of the three-dimensional consolidation theories of Biot

and Terzaghi. The Quarterly Journal of Mechanics and Applied Mathematics 16.4
(1963), 401–412.

[12] E. Detournay and A. H.-D. Cheng. “Fundamentals of poroelasticity”. Analysis and
design methods. Elsevier, 1993, pp. 113–171.

[13] S. Diamond and J. Huang. The ITZ in concrete–a different view based on image
analysis and SEM observations. Cement and Concrete Composites 23.2-3 (2001),
179–188.
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[69] J. Schröder and M.-A. Keip. Two-scale homogenization of electromechanically

coupled boundary value problems. Computational Mechanics 50.2 (2012), 229–244.
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