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Abstract

The co-evolutionary dynamics of competing populations can be strongly affected by fre-

quency-dependent selection and spatial population structure. As co-evolving populations

grow into a spatial domain, their initial spatial arrangement and their growth rate differences

are important factors that determine the long-term outcome. We here model producer and

free-rider co-evolution in the context of a diffusive public good (PG) that is produced by the

producers at a cost but evokes local concentration-dependent growth benefits to all. The

benefit of the PG can be non-linearly dependent on public good concentration. We consider

the spatial growth dynamics of producers and free-riders in one, two and three dimensions

by modeling producer cell, free-rider cell and public good densities in space, driven by

the processes of birth, death and diffusion (cell movement and public good distribution).

Typically, one population goes extinct, but the time-scale of this process varies with initial

conditions and the growth rate functions. We establish that spatial variation is transient

regardless of dimensionality, and that structured initial conditions lead to increasing times to

get close to an extinction state, called ε-extinction time. Further, we find that uncorrelated ini-

tial spatial structures do not influence this ε-extinction time in comparison to a corresponding

well-mixed (non-spatial) system. In order to estimate the ε-extinction time of either free-rid-

ers or producers we derive a slow manifold solution. For invading populations, i.e. for popu-

lations that are initially highly segregated, we observe a traveling wave, whose speed can

be calculated. Our results provide quantitative predictions for the transient spatial dynamics

of cooperative traits under pressure of extinction.

Author summary

Evolutionary public good (PG) games capture the essence of production of growth-benefi-

cial factors that are vulnerable to exploitation by free-riders who do not carry the cost of

production. PGs emerge in cellular populations, for example in growing bacteria and can-

cer cells. We study the eco-evolutionary dynamics of a PG in populations that grow in

space. In our model, PG-producer cells and free-rider cells can grow according to their
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own birth and death rates. Co-evolution occurs due to public good-driven surplus in the

intrinsic growth rates at a cost to producers. A net growth rate-benefit to free-riders leads

to the well-known tragedy of the commons in which producers go extinct. What is often

omitted from discussions is the time scale on which this extinction can occur, especially in

spatial populations. Here, we derive analytical estimates of the ε-extinction time in differ-

ent spatial settings. As we do not consider a stochastic process, the ε-extinction time cap-

tures the time needed to approach an extinction state. We identify spatial scenarios in

which extinction takes long enough such that the tragedy of the commons never occurs

within a meaningful lifetime of the system. Using numerical simulations we analyze the

deviations from our analytical predictions.

Introduction

Heterogeneity and spatial patterns in population dynamics appear spontaneously in nature, on

a wide range of spatial and temporal scales [1, 2, 3, 4]. Populations of reproducing individuals

are not randomly dispersed, but aggregate according to climate, predatory stress, and resource

levels, all of which can vary in space and time. Structures of this type are, however, not always

the result of external factors, but can also arise due to interactions between individuals within

the population [5]. Thus, growing cell populations can be simultaneously driven by density-

dependent and frequency-dependent selection [6], and the combination of the two mecha-

nisms can lead to novel phenomena [7, 8]. Interactions between individual organisms are

often mediated by their phenotypes. In terms of reproductive success, the fitness of a certain

type often depends on the frequency of other types present in the population. This frequency-

dependence sets the stage for game-theoretic explanations of population dynamics, the pheno-

type becomes a strategy. The ecological public goods game (PGG) [3] describes a scenario in

which a subpopulation releases costly factors, such as enzymes or growth factors, into the envi-

ronment, where they benefit both the producers and non-producers (free-riders).

The PGG is played between producers of the public good and free-riders. Individuals either

produce public good and thus ‘cooperate’, or only reap the benefits, i.e. free-ride and thus

‘defect’ [9]. This population game has been studied by considering a group of N players [10],

in which producers contribute the good at an individual cost κ> 0. In the case that the benefit

of the good is outweighed by the cost of production, free-riders will invade and outcompete

the producers, leading to the tragedy of the commons [11] in which the overall population fit-

ness declines as free-riders take over. This social dilemma-setting may also be observed in can-

cer cell growth kinetics [12, 13], in which a subset of the population produces a growth factor

(e.g. testosterone in prostate, endothelial growth factor in lung cancer, and platelet-derived

growth factor in glioma [14]). These situations call for explicit modeling of space, since the

growth factor tends to be localized to producer cells and is transported by means of diffusion,

which can have a limited range. Komarova et. al. discussed different mechanisms that impact

the time to which we see the emergence of complex traits (e.g. the production of a public

good) [15]. These mechanisms may require the accumulation of multiple individual mutations

that are individually deleterious. Thus one can investigate the mechanisms of sequential hits

vs. the emergence of division of labor based on the occurrence of cheaters and cooperators,

with applications in biofilms, cancer and viral infections such as HIV, where the public good

could also include advantageous genetic material.

In a highly relevant cancer cell setting, Zhang et. al. in [16] employed a three population

Lotka-Volterra model that considered cells requiring exogenous androgen (T+), cells which
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can produce androgen (TP), and cells which do not require androgen (T-). They showed via

mathematical modeling the utility of adaptive therapy to control tumor growth, rather than

hitting the tumor with the maximum tolerated dose (MTD). In a pilot clinical trial [16], the

effectiveness was verified by a large improvement in median survival. In this setting, the T

+ cells act as free-riders, and the TP cells act as producers. The additional drug-resistant clone

cell type T- is relevant in the presence of therapy. In our work here, we consider interactions of

the nature described between the two types T+ and TP. The time for one cell type to overtake

the other is of significant importance, as it is renders whether tumor control is feasible in a bio-

logically or clinically relevant time frame. Chemotherapy and targeted therapy protocols advise

the MTD, which targets to eliminate drug-sensitive cells and often selects for drug-resistance.

Relapse is then caused by proliferation of drug-resistant cells [17, 18, 19]. As an alternative,

adaptive therapy (AT) has recently been used successfully in cancer treatments [20]. AT intro-

duces a variable dosing schedule to control (in theory) the diversity of the cancer, and thus its

growth, without eradicating it. Proliferation of drug-sensitive cells allows for greater competi-

tion (e.g. contact inhibition, resource allocations) between cell types, which inhibits the prolif-

eration of drug-resistant tumor cells. Clinical trials in breast [21], ovarian [22, 23] and prostate

[16] have demonstrated that evolution-based AT strategies can be successfully employed,

potentially indefinitely, and can be superior to standard MTD. The success of these approaches

might critically depend on knowledge about the time scales of extinction of producer cells.

The type of evolutionary game, and also the spatial arrangement can determine the out-

comes of population dynamics [24]. Spatial PGGs have been studied mostly in populations of

fixed size, as this case resembles the essence of competition and co-evolution, e.g. at carrying

capacity. PGG evolutionary dynamics in growing populations has only recently been investi-

gated in a non-spatial setting [8]. The time to reach an equilibrium point, which we denote “ε-

fixation time”, or “ε-extinction time” in the case of a monomorphic equilibrium point, may

depend critically on differences in net growth rates. Cooperation between cell lines was studied

under varying substrate concentrations, and it was observed that segregation occurred more

readily when substrate was limited [25]. These spatial pattern formations occurred as the pop-

ulation moved and grew into an unoccupied domain. Once the population approaches capac-

ity, competition should take over and the dominant clone should fixate. The experiments

however focused on the behavior of the initial front type and showed that variation in outcome

was due to available substrate. The timing of outcomes has not been studied in great detail so

far, partly because standard tools in evolutionary game theory–such as the replicator equa-

tion–can describe homogeneously growing populations [26], but do not capture differences in

net growth rates that result from frequency-dependent selection, e.g. in context of a PGG [27].

However, these time scales play an important role biologically, especially if the time to reach

an equilibrium is longer than the expected lifespan of the system. Tumor growth is a typical

example, where the total tumor burden might kill the patient before one cell type outcompetes

the other.

We take two important steps to extend the logistic population growth model considered in

[8]. First, we allow for spatial variability, which can allow for rich dynamics depending on the

relative magnitude of population dispersal (cell type specific diffusion coefficients). We analyze

spatial heterogeneity in up to three dimensions and show that the ε-extinction time can be

influenced by spatial heterogeneity. By spatial heterogeneity and variability we are referring to

the initial (possibly) uneven distribution of cell and public good concentrations. In particular,

non-random initial conditions can cause large increases in the ε-extinction time. We also con-

sider the public good function to be a nonlinear, sigmoidal function. This non-linear relation-

ship can lead to bi-stability and potential polymorphic equilibria [27, 28, 29]. We are primarily

concerned with how spatial variations impact the time it takes to reach an extinction event. To
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approximate the ε-extinction time in spatial systems, we show under what conditions the well-

mixed (non-spatial) model can elucidate a decent approximation through the time it takes to

travel along the “slow manifold”. In certain parameter regions, we calculate an estimate of the

time spent on this manifold. Numerical simulations are often in good agreement with analyti-

cally estimated ε-extinction times, except when the nonlinearity is strong. In cases of highly

non-linear growth rate, analytical approximations of the slow manifold become increasingly

cumbersome although the non-spatial model provides an accurate estimate of the time. Highly

structured situations can occur if producers and free-riders occupy mutually exclusive regions

in space. In this case, we observe Fisher-like traveling wave solutions, with an interesting tran-

sition between pushed and pulled waves occurring at a critical threshold of the nonlinearity

[30]. Thus, one can explore the time a traveling wave of free-riders needs to move across the

entire domain. The so determined time scales of the eco-evolutionary PGG dynamics could

then effectively be used to infer the underlying fitness functions that drive the co-evolutionary

dynamics of producers and free-riders.

Methods

Ecological public good dynamics in space

Let us assume that producer cells (U) and free-riders (V) are closely related cell types

experiencing the same baseline growth rate α and potentially different death rates μU, μV.

Next, we assume that the public good, produced by U cells, has a non-decreasing effect on the

growth rates, in the form of a multiplicative benefit to the growth rate. This benefit depends on

the local public good or growth factor concentration (density) G, which is determined by the

local producer cell density: G is produced by U cells, at a rate ρ, at a cost to their growth rate κ,

and it is consumed by U and V cells alike at a rate δ. The diffusion rate of the public good is

ΓG. We have neglected a decay rate of the public good based on the fact that there are mole-

cules that can serve as public goods, which exhibit low decay rates due to binding and unbind-

ing with cell surface proteins, which enhances persistence of these molecules in the long-term

(see section 1, S1 Model Analysis).

The cells are assumed to reside and grow on a spatial domain ½0; L�n � Rn, where n = 1, 2, 3

is the dimension of the system. We assume that the domain has no-flux boundary conditions

(e.g. cells cannot enter or leave the domain). We assume that growth, death and competition

processes are purely local and that migration (determined by the cell type specific diffusion

coefficients ΓU,V) is isotropic and involved only with nearest neighbors. We then obtain the

following set of coupled PDEs that model the concentration of producer cells, free-rider cells,

and public good in time and space:

_U ¼ GUr
2U þ ½lðGÞ � k�½1 � ðU þ VÞ�U � mUU; ð1Þ

_V ¼ GVr
2V þ lðGÞ½1 � ðU þ VÞ�V � mVV; ð2Þ

_G ¼ GGr
2Gþ rU � dGðU þ VÞ: ð3Þ

Here, the respective growth rate is

lðGÞ ¼ a
1þ es

1þ es� bG
: ð4Þ

A well-mixed version of this model was studied in [27]. It was shown that saddle-node

bifurcations and other interesting features are in general impossible for a linear public good.
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Richer dynamics are possible when the good enters nonlinearly. Here, σ is a concentration-

independent parameter, and β is the concentration-dependent parameter. These two parame-

ters modulate the size of the nonlinearities in the growth rates. We can think of β as the per

public good “unit” benefit to the growth rate. Whereas σ controls the maximal benefit obtain-

able. The ratio σ/β defines the location of an inflection point in the growth rates, which is the

point that separates regions of synergistic and diminishing return, as a function of increasing

growth factor G. In the small benefit-limit, β� 1, we obtain a linear good λ(G)� α(1 + sGβ),

where s = eσ/(1 + eσ). Finally, producer cells experience a growth rate detriment in amount of

the linear cost κ, as seen in Eq (1). All important parameters and their baseline values are sum-

marized in Table 1. The typical cell size is on the order of micrometers. Thus, in an attempt to

simulate many cells, we focused on spatial domain ranges of L = 0.1–10 cm. The length of time

for a cell cycle is highly variable. A typical cell cycle could range from hours, to days, to weeks,

and the PG-independent proliferation (growth) rate is typically (but not always) higher than

the death rate [8].

We can construct the following non-dimensional form of the spatial model. In the original

model formulation we have eleven parameters and three initial conditions U0(x), V0(x), and

G0(x). With appropriate choices we can reduce the total number of relevant parameters to

nine dimensionless parameters. Although there are many choices for the set of dimensionless

parameters, we choose this set to exploit the typical fact that the time scale of the dynamics for

G are much faster than the time scales of the dynamics of U and V [8, 36]. This is motivated by

the fact that smaller objects (e.g. IGF-I and II) tend to have higher diffusion rates than cells.

After appropriate rescaling, we can use the dimensionless parameters of the non-dimensional

system given in Table 2.

We introduce dimensionless time τ = αt and rescale growth factor concentration by the

ratio of its production to consumption rates, G! (ρ/δ)G. Space is scaled via Lx = Ly = Lz =

(ΓG/δ)1/2, which leads to non-dimensional domain lengths between 1 and 103. In our notation,

the “dot” then means differentiation with respect to dimensionless time τ (instead of t), andr

is the differential operator with respect to the rescaled spatial variables. Then we arrive at the

dimensionless system

_U ¼ gUr
2U þ ðlðGÞ � 1þ aÞ½1 � ðU þ VÞ�U � cU; ð5Þ

_V ¼ gVr
2V þ lðGÞ½1 � ðU þ VÞ�V � crV; ð6Þ

Table 1. Dimensional parameters used in the model given by Eqs (1)–(3). The unit cc-1 means per cell cycle.

Parameter Symbol Typical ranges (values) Reference

Producer’s diffusion coefficient ΓU 10−8 − 10−10 cm2/s [31]

Free-rider’s diffusion coefficient ΓV 10−8 − 10−10 cm2/s [31]

Public good’s diffusion coefficient ΓG 10−7 − 10−4 cm2/s [32, 33]

Cellular intrinsic growth rate α 1 cc-1

Producer’s death rate μU < 1 cc-1

Free-rider’s death rate μV < 1 cc-1

Public good production cost κ � 1 cc-1 [34]

Public good production rate ρ 100-1000 cc-1 [35]

Public good consumption rate δ 100-1000 cc-1

Public good benefit (conc. independent) σ 1-3 [27]

Public good benefit (conc. dependent) β 2-6 [conc.]-1 [27]

Characteristic length of spatial domain L 1-10 cm

https://doi.org/10.1371/journal.pcbi.1007361.t001
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� _G ¼ r2Gþ U � GðU þ VÞ: ð7Þ

Turning to a dimensionless framework allows us to more easily exploit the separation of

time scales inherent in our system. For example, the public good consumption rate is typically

much faster than the proliferation rate, �� 1, and thus spatial equilibration of the public good

G occurs relatively fast. Similarly, we can immediately see from the dimensionless system that

the ratio of death rates between cell types, r, is an important quantity that determines the fate

of cooperation, especially provided the ratio of death rate to proliferation rate in producer

cells, c, is small.

Results

Our analysis in this manuscript focuses on spatial populations, and is based on cell type

specific growth (birth), death and diffusion rates. We focus on two sub-populations: public

good producers and free-riders, and we are interested in the question of how spatial varia-

tions in producer and free-rider densities affect the long-term behavior of their dynamics,

in particular the time to reach a possible equilibrium configuration. The analysis of this sys-

tem is not straightforward because, although producer cells bear a cost and are thus expected

to go extinct, their local concentration and the resulting fluctuations in public good avail-

ability can influence the dynamics in interesting ways. Regardless of dimensionality, we

show that any initial spatial variability is transient and equilibrates to a spatially homoge-

nous solution. Therefore, a well-mixed ODE-model can be sufficient to analyze the long-

term behavior of the spatial system. We construct a coupled dynamical system which models

the behavior of public good producers and free-riders and the spatial distribution of public

good (growth factor) in time and space. We derive slow manifold solutions which allow us

to predict the time to reach an equilibrium ε-(fixation or extinction time) for a wide range

of parameters.

Spatial variation is transient regardless of dimensionality

What is the impact of variability in initial conditions? To address this question, we investigated

the dynamics of the system governed by Eqs (1)–(3) in one, two and three dimensions in its

non-dimensional form Eqs (5)–(7). The non-dimensional length used ranged from L = 10

− 500 for all spatial dimensions (n = 1, 2, 3). To solve Eqs (5)–(7) numerically, we discretized

the domain into grid points. The grid points were then given initial concentrations of the

amount of producer, free-rider and public good present. The distance between grid points, or

the spatial step size, was chosen to be no bigger than Δx = 0.5. We tested smaller grid sizes, but

Table 2. Definition of non-dimensional parameters used in the model given by Eqs (5)–(7). Ranges are given as well as the typical values used throughout the text. εexit

is used to determine the ε-extinction or fixation events.

Dimensionless parameter Symbol Identity Range Typical value

Producer’s diffusion coefficient γU GU d

GGa
10−4 − 102 0.5

Free-rider’s diffusion coefficient γV GV d

GGa
10−4 − 102 0.5

Producer (PG independent) birth rate a 1 � k

a
0.75-0.9 0.9

Producer death rate c mU
a

0-1 0.5

Ratio of free-rider to producer death rate r mV
mU

> 0 1.0

Ratio of cell birth rate to consumption rate � a

d
10−3 − 10−2 2 × 10−3

Neighborhood of a fixed point εexit 10−8

https://doi.org/10.1371/journal.pcbi.1007361.t002

Time scales and wave formation in non-linear spatial public goods games

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007361 September 23, 2019 6 / 22

https://doi.org/10.1371/journal.pcbi.1007361.t002
https://doi.org/10.1371/journal.pcbi.1007361


found no significant changes in the dynamics, only in total CPU time. We solved the PDE

using a Crank-Nicolson scheme with a time step size Δt = 0.01 [37]. We also tested the sensitiv-

ity of the ε-extinction time to different Δt and found that in all cases, Δt = 0.01 was sufficient.

Unless specified differently, we set r = 1, i.e. we assumed that the two types had equal death

rates. Then, simulations were used to calculate the time to reach the neighborhood of a stable

fixed point, with an exit criterion based on the 1-norm distance to the stable fixed point (U�,
V�) as d(U, V) ≔ |U − U�| + |V − V�|< εexit, where the value εexit = 10−8 was used. If the initial

condition was noisy, 100 simulations were used to generate summary statistics.

In all settings of different spatial dimension, we were interested in three types of initial con-

ditions that define the initial cell density (amplitude) at every grid point: (1) Uniformly distrib-

uted values between 0 and 1, (2) domain wall (step function), and (3) oscillatory. To examine

the stability of the more structured density distributions (2) and (3), we also tested the impact

of spatial noise by introducing a random deviation of the cell density in each point in space,

which was chosen no greater than 10% of the max amplitude at each grid point.

Under the assumption of fast diffusion of cells into space, a spatial perturbation typically

equilibrates along the spatial domain faster than an average cell cycle length. Fig 1 shows the

temporal evolution of a typical simulation run, with a random initial condition being drawn

from a standard uniform distribution on each grid point. The oscillations of initial cell densi-

ties were rapidly equilibrated during the first few cell cycles. Once the system had become

roughly homogeneous, the system began to travel along the slow manifold (shown as the

orange, dashed line in the final snapshot), toward free-rider fixation (producer extinction).

In this example, the exit condition was met at τ = 489.38. The average cell concentrations are

shown in the second subplots and shows the phase diagram for the average cell concentrations.

The average quickly reaches the slow manifold and spends most of its time traveling along it.

The final snapshot shows the slow manifold, calculated from the ODE model with a dashed,

orange curve. Although the model is explicitly spatially dependent, the average cell population

rapidly approaches the slow manifold of the spatially averaged cell populations. Random spa-

tial fluctuations do not have a huge impact since on small length scales, they are smoothed rap-

idly (see section 6, S1 Model Analysis).

All numerical solutions approached spatially homogeneous solutions consisting of only a

single population under our parameter assumptions, regardless of dimensionality. We used a

superposition of initial conditions defined by~u0 ¼ p~W þ ð1 � pÞ~R where ~W (Fig 2A) is the

segregated initial condition vector and~R is the random initial condition vector. p can then

be thought of as a type of spatial correlation measure with p = 0 “unstructured” and p = 1

“structured”.

Using random initial conditions, we found that the average time to ε-extinction was also

independent of the dimensionality (Fig 2B). We note that the narrowing of the distribution of

ε-extinction times is not related to the dimension of the system but rather to the number of

grid points. This is easily seen by considering N random numbers drawn from a standard uni-

form distribution. The mean and variance are 1/2 and 1/(12N), respectively. The total number

of grid points Ni where i is the dimension of the system was (N1, N2, N3) = (101, 441, 9261).

We show that uncorrelated spatial structure evolves roughly as the mean of the initial condi-

tion (section 6, S1 Model Analysis). This is confirmed by the fact that the mean of distributions

are all around 211.8 (cell cycles), and starting from the uniform state where each population is

1/2 leads to a time of 211.66 numerically. Finally, if we compare the ratio of variances of ε-

extinction times, we expect that they should be approximately Nj/Ni. The results in Table 3

confirm that the distribution variability is tied to the number of grid points and not to the

actual dimensionality of the system.
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Fig 1. Typical 1D simulation leading to producer extinction. A: Snapshots of the system, represented by concentration of producer cells (U), free-riders (V) and

growth factor (G) over time, measured in cell-cycle length (time advances top to bottom). The population game is played in 1D, the panels show the concentrations in

space. B: Corresponding trajectory of the average number of producers and free-rider densities in their phase space (U = V on the black dashed line). Due to cell

motility, the system reaches the slow manifold (orange-dashed line in bottom panel) fast, and spends most of the time traveling along the slow manifold. The slow

manifold was calculated numerically from the well-mixed, ODE model. Dimensionless parameters used: γU = γV = 0.5, a = 0.9, c = 0.5, r = 1, � = 2 × 10−3, β = 5, σ = 2.

https://doi.org/10.1371/journal.pcbi.1007361.g001
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Structured initial conditions stabilize the population and increase

extinction times

How are ε-extinction times influenced by non-random initial conditions in settings of

different dimensions? The impact of structured initial conditions is particularly relevant to

biological processes where spatial assortment can occur in populations with limited dispersal.

Therefore, we examined how the ε-extinction or -fixation times were affected by more coher-

ent, non-random starting conditions.

Regardless of parameter choices, all final states are homogeneous and correspond to the

stable fixed point of the non-spatial model. We thus investigated analytically the time needed

to reach an equilibrium, or fixed point, using the non-spatial ODE model. To this end, we

extracted an approximation which makes it possible to compare the ODE approach to the spa-

tial PDE model. This approach allowed us to quantify the impact of spatial heterogeneity on

timing to ε-extinction.

The predictive power of a non-spatial approach

Numerical integration of the spatial model suggested that a non-spatial analysis could be

used to determine the time scale of fixation, e.g. when public good producers go extinct. This

Fig 2. The effects of initial conditions and dimensionality. Comparison over dimensionality and random initial condition. A Transition from random to domain

wall initial condition. We let the initial condition~u0 ¼ p~W þ ð1 � pÞ~R where ~W is the domain wall I.C. and~R is the random I.C., hence p can be thought of as a

spatial correlation measure. Two lengths L = 50, 100 are shown. The simulation was done in 1D and 50 simulations were done per point. The error bars correspond to

plus or minus two standard deviations. B Distribution of extinction times by dimension. Dimensionless parameters used γU = γV = 0.5, a = 0.9, σ = 2, β = 5, c = 0.5,

r = 0.9, � = 2 × 10−3.

https://doi.org/10.1371/journal.pcbi.1007361.g002

Table 3. The ratio of computed variances of extinction times and that predicted by the ratio of number of grid

points.

Ratio of variances Computed ratio Nj / Ni

1D/2D 4.8965 441/101� 4.3663

1D/3D 99.2368 9261/101� 91.6931

2D/3D 20.2669 9261/441 = 21

https://doi.org/10.1371/journal.pcbi.1007361.t003
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change to a simple model system is meaningful because all final states are homogenous in

space. The spatially invariant version of our dynamical system is given by

_U ¼ ðlðGÞ � 1þ aÞ½1 � ðU þ VÞ�U � cU; ð8Þ

_V ¼ lðGÞ½1 � ðU þ VÞ�V � crV; ð9Þ

� _G ¼ U � GðU þ VÞ: ð10Þ

First, let us turn to the possible fixed points and their stability in the non-spatial setting. The

system described by Eqs (8)–(10) exhibits three main steady states which exist over a wide

parameter range. Fig 3 shows examples of the dynamics between these steady states in the

(U, V) plane. Additionally, a sample trajectory is shown, which indicates the approach to a slow

manifold that is inherent to all trajectories (if this manifold exists). We can exploit the slow

manifold-dynamics to estimate the time to reach the all-free-rider state. In addition, the linear

stability conditions of the steady states can be calculated (see section 1, S1 Model Analysis):

• Extinction state: (0, 0, G0) where G0 2 [0, 1]. This state is stable if λ(G0)< min(cr, 1 − a + c).

• Producers win: 1 � c
lð1Þ� 1þa ; 0; 1

� �
. This state is stable if a > 1 � lð1Þ þ max lð1Þ

r ; c
� �

.

• Free-riders win: (0, 1 − cr, 0). This state is stable if 1

r > max ða; cÞ.

• Isolated coexistence point:

G� 1 �
cðr � 1Þ

1 � a

� �

; ð1 � G�Þ 1 �
cðr � 1Þ

1 � a

� �

;G�
� �

; ð11Þ

where G� is given in Eq. (S5) (S1 Model Analysis). This state is always unstable.

• Non-isolated coexistence line: (G�, 1 − G�, G�). At least some finite part of this interval con-

taining G� = 0 is stable.

It is interesting to note that in the case of equal death rates (r = 1), the producer-only state is

necessarily unstable, since it is assumed that production of the good comes at a cost (a< 1). It

then follows naturally that, even if we unilaterally lower the death rate of producer cell, r� 1

the producer-only state remains unstable. Furthermore, it was shown that a nonlinear good

of this particular form has at most one coexistence point [27]. In this system, this coexistence

point is in fact always unstable if c 6¼ 0 (section 1, S1 Model Analysis).

Slow manifold evolution. The evolution along the slow manifold is key for the characteri-

zation of the long-term dynamics of the system. Our simulations show that for uncorrelated

initial conditions, after a short amount of time, the average concentration approaches a curve

on which it spends most of its time (Fig 3). This curve is the slow manifold. In general, this

manifold is difficult or impossible to calculate analytically and depends on the stability of the

fixed points, their location and the initial condition (Fig 3A–3C). However, in certain parame-

ter regions, we can obtain decent estimates that allow for an approximate calculation of the

time to ε-extinction dominated by the slow manifold (for details see section 2, S1 Model Anal-

ysis). The procedure is as follows:

• Select a fixed point to investigate (e.g. free-riders).

• Find parameter region where the point is stable through linear stability analysis.
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• Assume the parameters are such that one of the eigenvalues is smaller in magnitude than the

others.

• The eigenvector corresponding to this eigenvalue then determines the linear approximation

of the slow manifold near the stable fixed point.

Fig 3. ODE phase diagrams. The fixed points are labelled by filled (stable) and hollow (unstable) circles. In all cases one observes the slow manifold which

connects the fixed points. Each subplot contains trajectories (green = producers win, red = free-riders win). We also show the impact the nonlinearity has

on the shape of the slow manifold. Comparing B, D, we see that the nonlinearity deviates the manifold from a straight line. A phase diagram where

producers win. Parameter values a = 0.9, β = 5, σ = 2, c = 0.4, r = 1.15. B phase diagram where free-riders win. Parameter values a = 0.9, β = 5, σ = 2, c = 0.4,

r = 1. C phase diagram with bi-stability. Parameter values a = 0.9, β = 5, σ = 2, c = 0.4, r = 1.05. The nonzero death rate c has caused the degeneracy of non-

isolated fixed points to collapse, leaving behind a slow manifold along which the dynamics travel. D phase diagram where free-riders win. Parameter values

a = 0.9, β = 0.5, σ = 2, c = 4, r = 1.

https://doi.org/10.1371/journal.pcbi.1007361.g003

Time scales and wave formation in non-linear spatial public goods games

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007361 September 23, 2019 11 / 22

https://doi.org/10.1371/journal.pcbi.1007361.g003
https://doi.org/10.1371/journal.pcbi.1007361


• Higher order terms can be used to better estimate the slow manifold.

• Calculate the time it takes on the manifold to reach to exit criterion.

As mentioned above, one can include higher order terms approximating the slow mani-

fold. By considering a series expansion, one can further refine this approximation by includ-

ing successively more terms of the slow manifold. However, the algebra is often tedious,

and a large number of terms may be needed, which can make anything beyond the first

two orders impractical. As β! 0, the public good’s impact becomes effectively linear and

we observe that the linear approximation to the slow manifold would perform quite well

(Fig 3D).

We define the time to ε-extinction TU and TV by the amount of time it takes for producers

and free-riders to go extinct, respectively. Their non-dimensional counterparts are denoted by τ.

In numerical procedures we specify an extinction event to occur at the threshold distance from

an all-U or all-V state, given by εexit� 1. Using Eq. (S9) with Eq. (S15) (S1 Model Analysis), we

obtain the estimate for the (non-dimensional) fixation time

tU ¼
ln
�
�
�

U0

εexit

�
�
�

cð1 � arÞ
; ð12Þ

when c� 1, that is the producer cells’ death rate is small compared to proliferation rate. In

dimensional variables, the ε-extinction time of this case can be converted easily

TU ¼

ln
�
�
�
U0

εexit

�
�
�

mU � mV 1 � k

a

� � :
ð13Þ

For the other cases below, the corresponding expression in dimensional variables is some-

what unwieldy. In the case when producer cells’ death and proliferation rates are of compara-

ble magnitude, 1 − cr� 1, we can use Eq. (S9) (S1 Model Analysis) to obtain the estimation

for the time to producer extinction

tU ¼
ln
�
�
�
ð1� c r�εexitÞð1� c r� V0Þ

εexitV0

�
�
�

1 � c r
:

ð14Þ

The ± is needed as we can approach this from either side of the fixed point. Note we cannot

use the concentration of U as it turns out the corresponding eigenvector contains no magni-

tude in that direction. There was no such issue in Eq (12) because we were free to use the

producer population as the eigenvector had magnitude in that direction. Since these concen-

trations must be positive, we can only approach U = 0 from the positive direction. In contrast,

we can approach V = 1 − cr from above or below. The + from above and − from below. If pro-

ducers win, the ε-extinction time of free-riders is given by

tV ¼
ln
�
�
�

V0

εexit

�
�
�

c r � lð1Þ

lð1Þ� 1þa

� � : ð15Þ

This approximation is valid provided that the producer-only state is far from the extinction

state. As the producer-only state moves towards the extinction state, the other eigenvalue
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−[λ(1) − 1 + a − c] determines the slow manifold and our approximation is given by

tV ¼
ln
�
�
�

V0

εexit

�
�
�

lð1Þ � 1þ a � c
: ð16Þ

We can make some basic observations about these approximations. The choice of exit crite-

rion, εexit� 1, which defines when the dynamics reach an arbitrarily small neighborhood of

the fixed point, grows logarithmically as ln|1/εexit|, and not exponentially or with a power law,

as one might expect. As a result, one might derive some confidence in the measured εexit-fixa-

tion time [8] as we have defined it in this paper, especially since fixation time often refers to

the mean fixation time of an individual based Markov chain model of co-evolutionary dynam-

ics [38, 39, 40, 41, 42, 43].

It is interesting to note the validity of the approximation seen in Fig 4. In the case of the

free-rider only state (Fig 4A), we observe that, although the slow manifold-approximation per-

forms well (dashed colored lines), the linear approximation performs well only for small β
(compare the black, dashed curve to the blue curve). This discrepancy makes perfect sense as

the linear approximation of the slow manifold does not take into account the form of the pub-

lic good benefit. As the benefit becomes more nonlinear (β increases), the linear approxima-

tion of the slow manifold to the free-rider only state will perform poorly. However, in the

producer-only state (Fig 4B), we observe excellent agreement using a linear approximation to

the slow manifold for all β. This is because the linear approximation of the slow manifold con-

tains the form of the public good (e.g. λ(1)), and the impact of β as well as the functional form

is retained at the first order approximation.

Coexistence phase. The coexistence phase can only occur when μU,V = 0, and it is degen-

erate. By degenerate we mean that the state is destroyed by any small perturbation in any

relevant parameter, for example a perturbation from c = 0 leads to the destruction of a coex-

istence phase. However, one can still derive useful predictions for the time to coexistence/

mutual ε-extinction (see section 7, S1 Model Analysis). Using Eq. (S17) with Eq. (S8) (S1

Model Analysis), we obtain an approximation of the coexistence time

tcoexist ¼
ln
�
�
�
½U0ð1þzÞ� 1�½1þεexitð1þzÞ�

U0εexitð1þzÞ
2

�
�
�

lðG0Þ
; ð17Þ

where we have defined z ¼ V0=U
1þx
0 , ξ = (1 − a)/λ(G0). Although c = 0 is an unphysical case,

the approximation of the time to this curve provides an estimate for the time to the slow

manifolds. To see this, observe the fact that for c� 1, the degeneracy is broken and the

non-isolated set of fixed points collapses to the boundary equilibria (all-producer or all free-

rider). The time to these states is governed by the time to their respective slow manifolds.

However, the time to the manifold is approximately given by the time to the coexistence

point. This provides justification for why one only needs to consider the time spent on the

slow manifold, as the time to the coexistence point is orders of magnitude faster. The estima-

tion again shows good agreement across all choices of z because the growth rate-form is

retained at the first order approximation (see Fig 4C).

Random spatial heterogeneity has little impact on extinction times. Our first-order

approximations for the ε-extinction time provide useful insight into the parameter sensitivity

of these times. For example, the ε-extinction time is inversely proportional to death rate and

production cost, but directly proportional to the birth rate. Also, it is only logarithmically

dependent on the initial concentrations and the exit threshold (proximity to the equilibrium

point).
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The influence of � = α/δ (the ratio of proliferation rate over public good consumption rate)

entered the approximation at higher orders and was therefore subdominant. Because of this, �

can often be assumed to be a small parameter–within a typical cell cycle, the public good pro-

duced quickly equilibrates fast. Overall, a linear approximation to the slow manifold can be

Fig 4. Extinction and coexistence times. (A-B) The time needed to reach an εexit-radius of the stable fixed point as a function of the non-dimensional death rate c
using 100 random initial conditions (the standard deviation was smaller than the point size): A: Extinction time of producers. We observe that the linear

approximation (Eqs (12) and (14)) to the slow manifold suffers (black, dashed line) as it does not include the impact of β. The colored curves are given by using the

explicit calculation of the time in the well-mixed model (Eqs (8)-(10)). Parameters used: γU = γV = 0.5, a = 0.9, r = 1, � = 2 × 10−3. B: Extinction time of free-riders.

The linear approximation (Eqs (15) and (16)) performs very well as it includes the strength of the nonlinearity β. Note that β = 5, 50 (green and red, respectively)

overlap. Parameters used: γU = γV = 0.5, a = 0.9, r = 1.2, � = 2 × 10−3. C: Time to reach coexistence state/slow manifold. Time needed to within an εexit-radius of the

coexistence manifold as a function of the initial concentration of free-riders (the initial concentration of producers is U0 = 0.01) using uniform conditions. Parameters

used: γU = γV = 0.5, a = 0.9, c = 0, r = 1, � = 2 × 10−3. All simulations were performed in the 1D system. Due to the re-scaling of the non-dimensional system, all times

can be understood in units of the average cell cycle length (1/α).

https://doi.org/10.1371/journal.pcbi.1007361.g004
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used to predict ε-extinction and coexistence times to varying degrees of accuracy, which

depends on the stability of these states (Fig 4).

On a structured domain, the domain length can have a strong impact

To investigate the impact of the domain length, we considered uni-modal, domain wall, and

random initial conditions for the concentrations of producer and free-rider cells, and for the

the public good concentration. Our simulations show that the domain length did not greatly

impact the ε-extinction time when given purely random starting conditions (see Fig 2A with

p = 0 (uncorrelated initial conditions) and section 10, S1 Model Analysis). However, for the

domain-wall and other, more structured conditions, the size of the domain influenced the fixa-

tion time substantially. Note that the invasion of free-riders into the space occupied by produc-

ers is similar to traveling waves observed in standard Fisher equations [44, 45]. We showed

that total ε-extinction time is modified by the time it takes for this wavefront to reach the end

of the unstable region, and the ε-extinction time can be approximated as the superposition

t ¼ tODE þ twave þ twave formation ¼ tODE þ
d
jZj
þ twave formation; ð18Þ

where d is the distance travelled by the Fisher wave, and |η| the speed of the wavefront (see sec-

tion 6, S1 Model Analysis for details).

Free-rider invasion. In the case of an unstable producer-only state, a free-rider popula-

tion initially separated will invade the producers. We consider a domain where a boundary

exists between free-riders and producers. Simulations show a pushed traveling wavefront of

free-riders into the producer-only region. An approximation to the speed of the wavefront is

given by (see section 5, S1 Model Analysis)

jZvj ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cgV
lð1Þð1 � rÞ þ rð1 � aÞ

lð1Þ þ a � 1

� �s

: ð19Þ

and the total time to ε-extinction for c� 1 is given by

tE �
ln
�
�
�

U0

εexit

�
�
�

cð1 � arÞ
þ

d
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1Þ þ a � 1

cgV ½lð1Þð1 � rÞ þ rð1 � aÞ�

s

: ð20Þ

Note that this approximation is valid for c� 1. In the case of c� 1 we would replace

the first term of the approximation (20) by the right hand side of Eq (14). We tested Eq (20)

against different parameter values (see Fig 5A) and found good agreement with the prediction

for β< 1. The poorer agreement comes from the well-mixed slow-manifold approximation

performing poorly with higher β (Fig 4A). The time added to the ODE prediction can be

described by the amount of time needed for the free-rider wavefront to travel the distance nec-

essary to cover the entire finite domain before it takes over.

Producers invasion. In the case of an unstable free-rider-only state, a spatially separated

producer population will invade the free-riders. Unlike the free-rider invasion, the mathemati-

cal description of this producer invasion is more complicated. This is mostly due to the impact

of r (the ratio of free-rider to producer death rate) on the location of the free-rider-only state.

Suppose we are in a region in parameter space where the free-rider-only state is unstable. If

this state is in the region (0,1), we can proceed as we did in the previous section. However if 1

− cr< 0, which is biologically infeasible, the wavefront would travel from the mass extinction

state, rather than the free-rider-only state as before. This is reflected in the different wave

speeds obtained below. Thus, an approximation to the speed of the wavefront is given by
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(see section 5, S1 Model Analysis)

jZuj ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cgUðar � 1Þ

p
if 1 � cr > 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gU ½lðG0Þ þ a � 1 � c�

p
else:

8
<

:
ð21Þ

Fig 5. Extinction times increase linearly with length, and coexistence times increase quadratically with length. A: Producer extinction time vs. length of the

domain. theoretical lines were obtained using Eq (20) (black, blue), and the red and green lines were obtained using the actual time of the slow manifold from the well-

mixed model Eqs ((8)–(10)), with the wave front speed in Eq (19). Parameters used: a = 0.9, c = 0.5, σ = 2.0, r = 0.9, γU = γV = 0.5, � = 2 × 10−3. B: free-rider extinction

time vs. length of the domain. theoretical lines were obtained using Eq (22). Parameters used: a = 0.9, c = 0.5, σ = 2, β = 0.5, γU = γV = 0.5, � = 2 × 10−3. C: Analysis of

the transition from pulled to pushed fronts. This was only observed when the producer invades. As β increases, we shift from the pulled velocity predicted by linear

theory. The transition occurs in the colorless zone. Parameters used: a = 0.9, c = 0.5, r = 1.2, σ = 2, γU = γV = 0.5, � = 2 × 10−3. D: Time to reach coexistence state or

time to slow manifold with c = 0. Dashed line obtained from Eq. (S43) (S1 Model Analysis). Parameters used: a = 0.9, σ = 2, β = 0.5, 5, 50, γU = γV = 0.5, � = 2 × 10−3.

The times to coexistence for different β values deviate by less than 0.1 cell cycles.

https://doi.org/10.1371/journal.pcbi.1007361.g005
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and the total time to ε-extinction for c� 1 is given by

tE �
lð1Þ � 1þ a

c½lð1Þðr � 1Þ � rð1 � aÞ�
ln
�
�
�
V0

εexit

�
�
�þ

d
jZuj

: ð22Þ

Pulled vs. pushed waves. It is often the case that the speed of a wavefront is not impacted

by the nonlinear factors of the growth rates. Traveling waves obeying this property are said to

be “pulled” waves. For large β, the calculated speed is faster than predicted by (pulled) linear

theory, which suggests that there is a transition from pulled waves to pushed waves around

some value of β< 1. Pushed waves, in general depend, on nonlinearities of the system and

are more complicated to calculate [46]. However, for small β we observe good agreement with

Eq (22), see Fig 5B, as the wave front is pulled, and linear. The breakdown of this approxima-

tion was seen only with producer invasions, shown in Fig 5C. Here, we see that the linear

speed predicted increasingly under predicts actual wave speed observed in the pushed phase.

The analytical speed we calculated is the asymptotic value approached as t!1. However,

since our domain is finite, calculating the speed can be tricky as it involves tracking a part of

the wave numerically and calculating its speed. In addition to the wave propagation time, there

is a wave formation time, which can influence the time observed. Furthermore, grid size issues

introduce numerical error. To circumvent these issues and obtain the results shown in Fig 5C,

we note that the total time was given by Eq (18). If we consider the time it takes to ε-extinction

for L = L1 and L = L2 of a wave that needs to travel half the respective domain (recall L is the

non-dimensional length of the system), then we can approximate the wave front speed η via

the relation

Z ¼
L2 � L1

2ðt2 � t1Þ
: ð23Þ

This result was used to compute the points in Fig 5C.

Diffusion times are relevant only in the absence of cell death. The special case of vanish-

ing cellular death rates, c = 0, revealed the possibility of coexistence of producers and free-

riders along a one-dimensional subset of the state space. In this context, it is interesting to

examine the limit as c! 0 in an initially highly structured population, where producer and

free-rider cells are segregated at time 0. In this case, the wavefront speed, e.g. of an expanding

free-rider population, tends to 0. A vanishingly slow wavefront would imply that the ε-extinc-

tion time tends to infinity. The traveling wave is no longer the mechanism that governs equili-

bration. Indeed, the diffusion time that governs cellular dispersion becomes relevant. Scaling

implies that the characteristic time for diffusion is τdiffusion� L2/D, where D is the diffusion

coefficient of both types of cell. For c> 0, the wavefront should move faster than diffusion,

and so this type of scaling with the diffusion constant is not seen for finite cell death rates.

Cellular diffusion should be the driving factor in long time scenarios as c! 0. To test

this, we considered c = 0 and calculated the time to homogeneity. An analytical expression,

Eq. (S43), for this time was calculated (section 7, S1 Model Analysis), which scales with the

square of the system length. The comparison between domain length and the time scale to

reach diffusion-driven coexistence in this special case of diffusion dominated ε-extinction is

shown in Fig 5D. We would expect that this time should not be dependent on the shape of the

nonlinear good because the approach to the state U + V = 1 is rapid compared to the time scale

for full equilibration. Once we are near this line, the impact of the good vanishes as we are

near capacity. We tested this assumption with increasingly non-linear growth rates, β = 0.5, 5,
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50, and found no differences in coexistence times. For example, a domain length L = 20 had

coexistence times, 1065.03, 1065.14 and 1065.16 for β = 0.5, 5, 50, respectively.

Discussion

Here we considered a spatial nonlinear public goods population game model in its determin-

istic form. We have investigated the impact of spatial arrangement of public good producer

cells and free-rider cells on the temporal scales of extinction or coexistence during the co-evo-

lution of these populations on a finite spatial domain. The model typically exhibits fixation of

either producers of the public good or free-riders, which critically depends on the frequency-

dependent birth and death rates, and on properties of the public good itself, such as the cost of

production. While the cost to benefit ratio plays a part in this, the overall dependencies can be

more involved. Our analysis has shown that structured (correlated) initial conditions have a

large impact on the predicted (ε) time to fixation.

The dynamics of unstructured (random) initial conditions can be captured by a non-spatial

approach, for which ε-extinction times can be calculated analytically. In certain parameter

regions, an approximation to this ε-extinction time can be calculated to decent accuracy. How-

ever, the process is cumbersome and when the influence of the public good is strongly nonlin-

ear (β� 1), the approximation requires a large number of terms to properly capture the shape

of the slow manifold that dominates the time scales. The behavior of the ε-extinction time as a

function of the death rates (Fig 4A and 4B) shows a minimum time to ε-fixation time. The rea-

son for this can be understood with two observations. First, we begin with small death rate

c� 1. As this rate increases, both cell-types exhibit faster death rates and so we expect the

time to ε-fixation to go down. However at some point, we observe the reverse, increasing the

death rate is leading to an increasingly long time to reach the free-rider only state. The culprit

is the death rate has become so high, that the fixed point is now “close” to the extinction state,

which is a repeller. This state acts to “slow” the flow towards this point. For the example in Fig

4A, we note that as c! 1, the free-rider only state: 1 − cr approaches 0. This is a transcritical

bifurcation, and the divergence in time to reach the fixed point is well known [47].

For structured initial conditions, e.g. a domain wall, one type takes over the other with time

that increases linearly with the size of the spatial domain. Though this is expected, it is surpris-

ing that this time is not solely dependent on the time it takes for the wave to reach the edge of

the domain. Rather, the total time depends on a linear superposition of the wavefront time,

and the time for the wavefront to equilibrate. We have also shown that the linear Fisher theory

that predicts the wave speed is inaccurate for increasing nonlinearity (large β), similar to the

breakdown of the linear manifold approximation of the slow manifold. In this case, there

exists a transition at a critical βc, which could be a function of all other relevant parameters

that determine whether the wave is pushed or pulled. To find this critical value could be an

exciting avenue of future analytical and computational work.

Our numerical simulations show that all spatial inhomogeneities are ultimately removed,

but are not insignificant in regards to the time it takes to reach spatial homogeneity. Our

results also highlight a point often ignored in the evolutionary dynamics literature, which typi-

cally focuses on the evolutionary stable states (ESS) and focuses less on the temporal dynamics

of selection. Similar tendencies are apparent in the wider field of the study of ecological sys-

tems, where transient behavior has often been secondary to determining long-term stable

states [48]. Our analysis shows that both population dynamical parameters, such as death

rate, the initial condition, and the spatial extent of the population influence the time it takes

to reach the ESS. These results are particularly relevant to cancer, where public goods might

be a common feature of tumor-ecological stability, for example as seen by the evolution of
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autocrine growth factor production [13]. The time to the end of the game may also be quite

long, perhaps greater than the lifetime of the patient.

We also investigated the possibility of diffusion-driven pattern formations via a Turing

bifurcation. A typical requirement is a large difference in the relative magnitude of diffusion

coefficients. We tested different scenarios, but we did not observe any pattern formations, all

solutions approached homogeneity. Furthermore, we show that Turing bifurcations are not

possible in this system (section 8, S1 Model Analysis). This is in contrast to other work, where

heterogeneous spatial solutions and chaos were observed [3, 4].

In summary, we have considered the spatial growth dynamics of producer and free-riders,

determined by a diffusible nonlinear public good, in one, two and three dimensions. Extract-

ing a slow manifold solution, we obtained a good estimate for the time to ε-extinction of a cell

type. For invading populations, i.e. for initially highly segregated sub-populations, we observed

a traveling wave solution. We calculated an estimate of the wavefront speed and showed that

the total time is given by the superposition of the traveling wave speed plus the time the well-

mixed (ODE) solution needs to equilibrate to the average value of the wave profile. These were

in excellent agreement with simulations provided that the nonlinearity was not too strong.

The culprit was the strength of the nonlinearity β. When this was large, the wave transitioned

from pulled to pushed. Our spatial model can be used to generalize the tumor ecological

dynamics presented in [16], which was used to assess adaptive anti-cancer strategies assuming

a well-mixed population. Our spatial considerations can help refine such models and provide

more accurate predictions, which could reveal critical new information with regard to the time

scales of population transformations.

Supporting information

S1 Model Analysis. Linear stability analysis, calculation of ε-extinction times, slow mani-

fold and traveling wave speeds are conducted. We give a proof demonstrating how the

wave front and well-mixed model times combine. We present comparisons of 1D-plane

waves in higher dimensions (Table A). We provide snapshots of two different traveling wave

solutions and show how the approach to the steady state approaches that of the well-mixed

model (Figure A). We investigated uncorrelated (random) I.C. systematically with Moran I’s

statistic and demonstrated that these conditions led to no change in the ε-extinction times

(Table B).

(PDF)

Acknowledgments

We thank Robert S. Gatenby for fruitful discussions and useful comments. Analytical expres-

sion-based numerical calculations were carried out in Wolfram Mathematica 11.1.

Author Contributions

Conceptualization: Philip Gerlee, Philipp M. Altrock.

Data curation: Gregory J. Kimmel, Philip Gerlee.

Formal analysis: Gregory J. Kimmel.

Funding acquisition: Philip Gerlee, Philipp M. Altrock.

Investigation: Gregory J. Kimmel, Philipp M. Altrock.

Methodology: Gregory J. Kimmel, Philipp M. Altrock.

Time scales and wave formation in non-linear spatial public goods games

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007361 September 23, 2019 19 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007361.s001
https://doi.org/10.1371/journal.pcbi.1007361


Project administration: Philipp M. Altrock.

Resources: Philipp M. Altrock.

Software: Gregory J. Kimmel, Philipp M. Altrock.

Supervision: Philip Gerlee, Philipp M. Altrock.

Validation: Gregory J. Kimmel, Philipp M. Altrock.

Visualization: Gregory J. Kimmel, Philipp M. Altrock.

Writing – original draft: Gregory J. Kimmel, Philip Gerlee, Philipp M. Altrock.

Writing – review & editing: Gregory J. Kimmel, Philip Gerlee, Philipp M. Altrock.

References
1. Gowda K, Riecke H, Silber M. Transitions between patterned states in vegetation models for semiarid

ecosystems. Physical Review E. 2014; 89:022701. https://doi.org/10.1103/PhysRevE.89.022701

2. Ratzke C, Gore J. Self-organized patchiness facilitates survival in a cooperatively growing Bacillus sub-

tilis population. Nature Microbiology. 2016; 1:16022. https://doi.org/10.1038/nmicrobiol.2016.22 PMID:

27572641

3. Wakano JY, Nowak MA, Hauert C. Spatial dynamics of ecological public goods. Proceedings of the

National Academy of Sciences USA. 2009; 106:7910–7914. https://doi.org/10.1073/pnas.0812644106

4. Wakano JY, Hauert C. Pattern formation and chaos in spatial ecological public goods games. Journal of

Theoretical Biology. 2011; 268(1):30–38. https://doi.org/10.1016/j.jtbi.2010.09.036 PMID: 20888344

5. Nowak MA, May RM. Evolutionary games and spatial chaos. Nature. 1992; 359:826–829. https://doi.

org/10.1038/359826a0

6. Vincent TL, Brown JS. 2. Cambridge University Press, Cambridge UK; 2005.

7. Brown JS, Cunningham JJ, Gatenby RA. Aggregation effects and population-based dynamics as a

source of therapy resistance in cancer. IEEE Transactions on Biomedical Engineering. 2017; 64

(3):512–518. https://doi.org/10.1109/TBME.2016.2623564 PMID: 28113286

8. Gerlee P, Altrock PM. Extinction rates in tumour public goods games. Journal of The Royal Society

Interface. 2017; 14(134):20170342. https://doi.org/10.1098/rsif.2017.0342

9. Plott CR, Smith VL. Handbook of experimental economics results. vol. 1. Elsevier; 2008.

10. Hauert C, Holmes M, Doebeli M. Evolutionary games and population dynamics: maintenance of cooper-

ation in public goods games. Proceedings of the Royal Society B. 2006; 273:2565–2570. https://doi.org/

10.1098/rspb.2006.3600 PMID: 16959650

11. Hardin G. The tragedy of the commons. Science. 1968; 162:1243–1248. https://doi.org/10.1126/

science.162.3859.1243 PMID: 5699198

12. Pacheco JM, Santos FC, Dingli D. The ecology of cancer from an evolutionary game theory perspec-

tive. Interface focus. 2014; 4(4):20140019. https://doi.org/10.1098/rsfs.2014.0019 PMID: 25097748

13. Tabassum DP, Polyak K. Tumorigenesis: It takes a village. Nature Reviews Cancer. 2015; 15:473–483.

https://doi.org/10.1038/nrc3971 PMID: 26156638

14. Walsh JH, Karnes WE, Cuttitta F, Walker A. Autocrine growth factors and solid tumor malignancy.

Western Journal of Medicine. 1991; 155(2):152–163. PMID: 1926844

15. Komarova NL, Urwin E, Wodarz D. Accelerated crossing of fitness valleys through division of labor and

cheating in asexual populations. Scientific Reports. 2012; 2:917. https://doi.org/10.1038/srep00917

PMID: 23209877

16. Zhang J, Cunningham JJ, Brown JS, Gatenby RA. Integrating evolutionary dynamics into treatment of

metastatic castrate-resistant prostate cancer. Nature Communications. 2017; 8(1):1816. https://doi.org/

10.1038/s41467-017-01968-5 PMID: 29180633

17. Foo J, Michor F. Evolution of resistance to anti-cancer therapy during general dosing schedules. Jour-

nal of Theoretical Biology. 2010; 263:179–188. https://doi.org/10.1016/j.jtbi.2009.11.022 PMID:

20004211

18. Foo J, Michor F. Evolution of resistance to targeted anti-cancer therapy during continuous and pulsed

administration strategies. PLoS Computational Biology. 2009; 5:e1000557. https://doi.org/10.1371/

journal.pcbi.1000557

Time scales and wave formation in non-linear spatial public goods games

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007361 September 23, 2019 20 / 22

https://doi.org/10.1103/PhysRevE.89.022701
https://doi.org/10.1038/nmicrobiol.2016.22
http://www.ncbi.nlm.nih.gov/pubmed/27572641
https://doi.org/10.1073/pnas.0812644106
https://doi.org/10.1016/j.jtbi.2010.09.036
http://www.ncbi.nlm.nih.gov/pubmed/20888344
https://doi.org/10.1038/359826a0
https://doi.org/10.1038/359826a0
https://doi.org/10.1109/TBME.2016.2623564
http://www.ncbi.nlm.nih.gov/pubmed/28113286
https://doi.org/10.1098/rsif.2017.0342
https://doi.org/10.1098/rspb.2006.3600
https://doi.org/10.1098/rspb.2006.3600
http://www.ncbi.nlm.nih.gov/pubmed/16959650
https://doi.org/10.1126/science.162.3859.1243
https://doi.org/10.1126/science.162.3859.1243
http://www.ncbi.nlm.nih.gov/pubmed/5699198
https://doi.org/10.1098/rsfs.2014.0019
http://www.ncbi.nlm.nih.gov/pubmed/25097748
https://doi.org/10.1038/nrc3971
http://www.ncbi.nlm.nih.gov/pubmed/26156638
http://www.ncbi.nlm.nih.gov/pubmed/1926844
https://doi.org/10.1038/srep00917
http://www.ncbi.nlm.nih.gov/pubmed/23209877
https://doi.org/10.1038/s41467-017-01968-5
https://doi.org/10.1038/s41467-017-01968-5
http://www.ncbi.nlm.nih.gov/pubmed/29180633
https://doi.org/10.1016/j.jtbi.2009.11.022
http://www.ncbi.nlm.nih.gov/pubmed/20004211
https://doi.org/10.1371/journal.pcbi.1000557
https://doi.org/10.1371/journal.pcbi.1000557
https://doi.org/10.1371/journal.pcbi.1007361


19. Bozic I, Nowak MA. Resiting resistance. Annual Reviews in Cancer Biology. 2017; 1:203–21. https://

doi.org/10.1146/annurev-cancerbio-042716-094839

20. Gatenby RA. A change of strategy in the war on cancer. Nature. 2009; 459:508. https://doi.org/10.1038/

459508a PMID: 19478766

21. Enriquez-Navas PM, Kam Y, Das T, Hassan S, Silva A, Foroutan P, et al. Exploiting evolutionary princi-

ples to prolong tumor control in preclinical models of breast cancer. Science translational medicine.

2016; 8(327):327ra24–327ra24. https://doi.org/10.1126/scitranslmed.aad7842 PMID: 26912903

22. Gatenby RA, Brown J, Vincent T. Lessons from applied ecology: cancer control using an evolutionary

double bind. Cancer Research. 2009; 69:7499–7502. https://doi.org/10.1158/0008-5472.CAN-09-1354

PMID: 19752088

23. Gatenby RA, Silva AS, Gillies RJ, Frieden BR. Adaptive therapy. Cancer Research. 2009; 69:4894–

4903. https://doi.org/10.1158/0008-5472.CAN-08-3658 PMID: 19487300

24. Durrett R, Levin SA. The Importance of Being Discrete (and Spatial). Theoretical Population Biology.

1994; 46:363–394. https://doi.org/10.1006/tpbi.1994.1032

25. Nadell CD, Foster KR, Xavier JB. Emergence of spatial structure in cell groups and the evolution of

cooperation. PLoS Computational Biology. 2010; 6(3):e1000716. https://doi.org/10.1371/journal.pcbi.

1000716 PMID: 20333237

26. Taylor PD, Jonker L. Evolutionarily stable strategies and game dynamics. Mathematical Biosciences.

1978; 40:145–156. https://doi.org/10.1016/0025-5564(78)90077-9

27. Kimmel GJ, Gerlee P, Brown JS, Altrock PM. Neighborhood size-effects shape growing population

dynamics in evolutionary public goods games. Communications Biology. 2019; 2(53):1–10.

28. Archetti M. Evolutionary dynamics of the Warburg effect: glycolysis as a collective action problem

among cancer cells. Journal of Theoretical Biology. 2014; 341:1–8. https://doi.org/10.1016/j.jtbi.2013.

09.017 PMID: 24075895

29. Li X, Thirumalai D. Share, but unequally: a plausible mechanism for emergence and maintenance of

intratumour heterogeneity. Journal of the Royal Society Interface. 2019; 16(150):20180820. https://doi.

org/10.1098/rsif.2018.0820

30. Gandhi SR, Yurtsev EA, Korolev KS, Gore J. Range expansions transition from pulled to pushed

waves as growth becomes more cooperative in an experimental microbial population. Proceedings

of the National Academy of Sciences. 2016; 113(25):6922–6927. https://doi.org/10.1073/pnas.

1521056113

31. Anderson A, Chaplain M. Continuous and discrete mathematical models of tumor-induced angiogene-

sis. Bulletin of Mathematical Biology. 1998; 60(5):857–899. https://doi.org/10.1006/bulm.1998.0042

PMID: 9739618

32. Nauman JV, Campbell PG, Lanni F, Anderson JL. Diffusion of insulin-like growth factor-1 and ribonucle-

ase through fibrin gels. Biophysical journal. 2007; 92(12). https://doi.org/10.1529/biophysj.106.102699

33. Gerlee P, Altrock PM. Persistence of cooperation in diffusive public goods games. Physical Review E.

2019; 99(6):062412. https://doi.org/10.1103/PhysRevE.99.062412 PMID: 31330651

34. Archetti M, Ferraro DA, Christofori G. Heterogeneity for IGF-II production maintained by public goods

dynamics in neuroendocrine pancreatic cancer. Proceedings of the National Academy of Sciences

USA. 2015; 112:1833–1838. https://doi.org/10.1073/pnas.1414653112

35. Eviatar T, Kauffman H, Maroudas A. Synthesis of insulin-like growth factor binding protein 3 in vitro in

human articular cartilage cultures. Arthritis & Rheumatology. 2003; 48(2):410–417. https://doi.org/10.

1002/art.10761

36. Gerlee P, Altrock PM. Complexity and stability in growing cancer cell populations. Proceedings of the

National Academy of Sciences USA. 2015; 112:E2742–E2743. https://doi.org/10.1073/pnas.

1505115112

37. Crank J, Nicolson P; Cambridge University Press. A practical method for numerical evaluation of solu-

tions of partial differential equations of the heat-conduction type. Mathematical Proceedings of the Cam-

bridge Philosophical Society. 1947; 43(1):50–67. https://doi.org/10.1017/S0305004100023197

38. Goel NS, Richter-Dyn N. Stochastic Models in Biology. Academic Press, New York; 1974.

39. Ewens WJ. Mathematical Population Genetics. I. Theoretical Introduction. New York: Springer; 2004.

40. Taylor C, Iwasa Y, Nowak MA. A symmetry of fixation times in evolutionary dynamics. Journal of Theo-

retical Biology. 2006; 243:245–251. https://doi.org/10.1016/j.jtbi.2006.06.016

41. Altrock PM, Gokhale CS, Traulsen A. Stochastic slowdown in evolutionary processes. Physical Review

E. 2010; 82:011925. https://doi.org/10.1103/PhysRevE.82.011925

42. Altrock PM, Traulsen A, Galla T. The mechanics of stochastic slowdown in evolutionary games. Journal

of Theoretical Biology. 2012; 311:94–106. https://doi.org/10.1016/j.jtbi.2012.07.003 PMID: 22814474

Time scales and wave formation in non-linear spatial public goods games

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007361 September 23, 2019 21 / 22

https://doi.org/10.1146/annurev-cancerbio-042716-094839
https://doi.org/10.1146/annurev-cancerbio-042716-094839
https://doi.org/10.1038/459508a
https://doi.org/10.1038/459508a
http://www.ncbi.nlm.nih.gov/pubmed/19478766
https://doi.org/10.1126/scitranslmed.aad7842
http://www.ncbi.nlm.nih.gov/pubmed/26912903
https://doi.org/10.1158/0008-5472.CAN-09-1354
http://www.ncbi.nlm.nih.gov/pubmed/19752088
https://doi.org/10.1158/0008-5472.CAN-08-3658
http://www.ncbi.nlm.nih.gov/pubmed/19487300
https://doi.org/10.1006/tpbi.1994.1032
https://doi.org/10.1371/journal.pcbi.1000716
https://doi.org/10.1371/journal.pcbi.1000716
http://www.ncbi.nlm.nih.gov/pubmed/20333237
https://doi.org/10.1016/0025-5564(78)90077-9
https://doi.org/10.1016/j.jtbi.2013.09.017
https://doi.org/10.1016/j.jtbi.2013.09.017
http://www.ncbi.nlm.nih.gov/pubmed/24075895
https://doi.org/10.1098/rsif.2018.0820
https://doi.org/10.1098/rsif.2018.0820
https://doi.org/10.1073/pnas.1521056113
https://doi.org/10.1073/pnas.1521056113
https://doi.org/10.1006/bulm.1998.0042
http://www.ncbi.nlm.nih.gov/pubmed/9739618
https://doi.org/10.1529/biophysj.106.102699
https://doi.org/10.1103/PhysRevE.99.062412
http://www.ncbi.nlm.nih.gov/pubmed/31330651
https://doi.org/10.1073/pnas.1414653112
https://doi.org/10.1002/art.10761
https://doi.org/10.1002/art.10761
https://doi.org/10.1073/pnas.1505115112
https://doi.org/10.1073/pnas.1505115112
https://doi.org/10.1017/S0305004100023197
https://doi.org/10.1016/j.jtbi.2006.06.016
https://doi.org/10.1103/PhysRevE.82.011925
https://doi.org/10.1016/j.jtbi.2012.07.003
http://www.ncbi.nlm.nih.gov/pubmed/22814474
https://doi.org/10.1371/journal.pcbi.1007361


43. Altrock PM, Traulsen A, Nowak MA. Evolutionary games on cycles with strong selection. Physical

Review E. 2017; 95:022407. https://doi.org/10.1103/PhysRevE.95.022407 PMID: 28297871

44. Fisher RA. The wave of advance of advantageous genes. Annual Eugenics. 1937; 7:355–369. https://

doi.org/10.1111/j.1469-1809.1937.tb02153.x

45. Bayliss A, Volpert V. Complex predator invasion waves in a Holling–Tanner model with nonlocal prey

interaction. Physica D. 2017; 346:37–58. https://doi.org/10.1016/j.physd.2017.02.003

46. Van Saarloos W. Front propagation into unstable states. Physics reports. 2003; 386(2-6):29–222.

https://doi.org/10.1016/j.physrep.2003.08.001

47. Strogatz S. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and

Engineering (Studies in Nonlinearity). Westview Pr; 2000.

48. Hastings A, Abbott KC, Cuddington K, Francis T, Gellner G, Lai YC, et al. Transient phenomena in ecol-

ogy. Science. 2018; 361(6406):eaat6412. https://doi.org/10.1126/science.aat6412 PMID: 30190378

Time scales and wave formation in non-linear spatial public goods games

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007361 September 23, 2019 22 / 22

https://doi.org/10.1103/PhysRevE.95.022407
http://www.ncbi.nlm.nih.gov/pubmed/28297871
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1016/j.physd.2017.02.003
https://doi.org/10.1016/j.physrep.2003.08.001
https://doi.org/10.1126/science.aat6412
http://www.ncbi.nlm.nih.gov/pubmed/30190378
https://doi.org/10.1371/journal.pcbi.1007361

