
Reinforcement Learning for Slicing in a 5G Flexible RAN

Downloaded from: https://research.chalmers.se, 2025-06-18 03:36 UTC

Citation for the original published paper (version of record):
Raza, M., Natalino Da Silva, C., Öhlen, P. et al (2019). Reinforcement Learning for Slicing in a 5G
Flexible RAN. Journal of Lightwave Technology, 37(20): 5161-5169.
http://dx.doi.org/10.1109/JLT.2019.2924345

N.B. When citing this work, cite the original published paper.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract— Network slicing enables an infrastructure provider

(InP) to support heterogeneous 5G services over a common

platform (i.e., by creating a customized slice for each service).

Once in operation, slices can be dynamically scaled up/down to

match the variation of their service requirements. An InP

generates revenue by accepting a slice request. If a slice cannot be

scaled up when required, an InP has to also pay a penalty

(proportional to the level of service degradation). It becomes then

crucial for an InP to decide which slice requests should be

accepted/rejected in order to increase its net profit.

This paper presents a slice admission strategy based on

reinforcement learning (RL) in the presence of services with

different priorities. The use case considered is a 5G flexible radio

access network (RAN), where slices of different mobile service

providers are virtualized over the same RAN infrastructure. The

proposed policy learns which are the services with the potential

to bring high profit (i.e., high revenue with low degradation

penalty), and hence should be accepted.

The performance of the RL-based admission policy is

compared against two deterministic heuristics. Results show that

in the considered scenario, the proposed strategy outperforms the

benchmark heuristics by at least 55%. Moreover, this paper

shows how the policy is able to adapt to different conditions in

terms of: (i) slice degradation penalty vs. slice revenue factors,

and (ii) proportion of high vs. low priority services.

Index Terms—5G, cloud RAN, dynamic slicing, flexible RAN,

network function virtualization (NFV), optical networks,

reinforcement learning, slice admission control, software defined

networking (SDN).

I. INTRODUCTION

HE 5th generation of mobile networks (5G) needs to

support a wide variety of services over a shared network

infrastructure, i.e., in order to improve the resource usage

efficiency and to lower the infrastructure cost [2]. This can be

enabled by network slicing, i.e., a key component of 5G

Manuscript received October 15, 2018. A preliminary version of this work

was presented at ECOC 2018 [1]. This work was supported by the Kista 5G

Transport Lab (K5) project funded by VINNOVA and Ericsson, and by the

Celtic-Plus sub-project SENDATE EXTEND funded by Vinnova.

M. R. Raza, C. Natalino, L. Wosinska, and P. Monti were with the School

of Electrical Engineering and Computer Science, KTH Royal Institute of

Technology, Sweden. M. R. Raza is now with Ericsson, Stockholm, Sweden

(e-mail: muhammad.rehan.raza@ericsson.com). C. Natalino, L. Wosinska and

P. Monti are now with Chalmers University of Technology, Gothenburg,

Sweden (e-mail: carlos.natalino@chalmers.se; wosinska@chalmers.se;

mpaolo@chalmers.se).

P. Öhlen is with Ericsson Research, Stockholm, Sweden. (e-mail:

peter.ohlen@ericsson.com)

systems [3]. Thanks to concepts such as software defined

networking (SDN) and network function virtualization (NFV),

an infrastructure provider (InP) can virtualize its resources

(i.e., create slices), and share them among different tenants or

service providers (SPs). Each SP then uses these slices to

provision its services (i.e., usually one slice per service).

Slices are created according to the specific requirements

(e.g., latency, capacity, reliability, etc.) of the corresponding

services. In the presence of temporal and/or spatial variations

of such requirements, an InP can improve its resource usage

efficiency by dynamically scaling up/down the provisioned

slices in order to match the variations of service requirements

[2]. However, if a slice cannot be scaled up when needed (i.e.,

due to resource contention), an InP has to pay a penalty

proportional to the degradation level experienced by the

corresponding service. This aspect becomes crucial when the

infrastructure resources are shared among services with

different priorities. In this scenario, the revenue generated by

an InP (i.e., by accepting a slice request) and the penalty

incurred (i.e., due to degradation) are proportional to the

service priority. This means that large revenues are generated

by accepting slices of high priority services. However, if

degradation is experienced at any point in time, an InP will

also have to pay a very large penalty, which, in turn, will have

an impact on the net profit of InP.

In order to maximize the profit on an InP, the challenge is

two-fold. An InP needs to: (i) accept as many slice requests as

possible (i.e., to increase revenue), while at the same time, (ii)

match the variations of service requirements of the slices in

operation as closely as possible (i.e., to limit the degradation

penalties). In this respect, it becomes crucial to have an

intelligent slice admission policy that accepts only those slice

requests which generate high revenue and which, most likely,

will experience (almost) no service degradation. One way of

implementing such a policy is to apply machine-learning-

based techniques, more specifically reinforcement learning

(RL) [4]. RL-based algorithms learn about the association

between actions taken in a given environment and the rewards

associated to them. RL methods are particularly interesting

because they can learn by interacting directly with the

environment to which they are applied to, without the need of

any prior knowledge or real-world dataset, which are not

always easy to retrieve.

The application of RL-based algorithms for improving the

performance of communication networks has recently gained

Reinforcement Learning for Slicing in a 5G

Flexible RAN

Muhammad Rehan Raza, Carlos Natalino, Member, IEEE, Peter Öhlen, Lena Wosinska, Senior

Member, IEEE, and Paolo Monti, Senior Member, IEEE

T

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JLT.2019.2924345

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

interest from both academia and industry. Most of these works

focus on resource scheduling [5, 6, 7] and/or assignment

optimization problems [8, 2]. On the other hand, to the best of

our knowledge, there are no works that apply RL to solve the

slice admission problem.

This paper proposes an RL-based slice admission policy

aimed at maximizing the profit of an InP in the presence of

services with different priorities, i.e., a typical scenario in 5G

networks. The proposed strategy decides which are the slices

that should be accepted by learning how to maximize revenue

(i.e., by accepting as many high revenue slice requests as

possible) while minimizing penalty (i.e., by rejecting those

slice requests for which the expected revenue is less than the

penalty they would likely incur and/or those slice requests that

would likely cause degradation for other running services).

The use case considered in the paper is a 5G flexible RAN

[9], where services from different mobile SPs (MSPs) are

virtualized over the same RAN infrastructure. Two classes of

services are considered: high priority (HP) services (i.e., with

strict latency constraints and high revenue/penalty) and low

priority (LP) services (i.e., with non-strict latency constraints

and low revenue/penalty). The paper presents a thorough

analysis in terms of: (i) different values of slice degradation

penalty vs. slice revenue factors, and (ii) different proportions

of HP vs. LP services. The performance of the proposed RL-

based slice admission policy is compared against a set of

deterministic heuristics. Simulation results show that in the

use case under exam, the proposed RL-based slice admission

policy outperforms the benchmark heuristics by at least 55%.

The rest of paper is organized as follows. Sec. II presents a

literature review. Sec. III presents the system architecture and

more details about the use case under exam. Sec. IV presents

how the RL agent has been designed for optimizing the slice

admission decisions. Sec. V presents a number of

performance evaluation results considering different scenarios.

Finally, Sec. VI provides some concluding remarks.

II. LITERATURE REVIEW

Network slicing has received increasing attention due to its

numerous benefits. Meanwhile, the use of RL-based network

control and management strategies has gained interest recently

due to their promising performance. This section first focuses

on works tackling the network slicing problem (i.e., slice

admission and scaling) using deterministic algorithms. Then, it

reviews a number of works applying RL for resource

scheduling/assignment problems.

The slice admission problem can be solved using

deterministic algorithms. Some of the literature refers to

approaches where incoming network slice requests are put into

one or multiple queues when not enough resources are

available in the network. For example, the authors in [7]

consider a number of heterogeneous queues (i.e., different

queues for different request priorities) and devise a multi-

queuing controller for slice admission that maximizes the
overall network utilization. The performance of the proposed

controller is benchmarked against two simple strategies, i.e.,

first-come-first-served and slice-type-based approaches. The

results show that the proposed controller outperforms the

benchmarks, especially under heavy load conditions. The

authors in [6] investigate the “impatient behavior” of tenants

in a multi-queue slice admission control scenario. More
precisely, a tenant may choose to cancel its slice request and

ask the InP to remove it from the queue(s) if it has to wait

more than a certain amount of time. Results highlight how

making the information about the queue status fully available

to the awaiting tenants creates benefits in terms of resource

efficiency, waiting time and, in turn, overall revenue values.

The authors in [5] derive similar conclusions as in [6] for the

case of slice requests from Internet-of-Things (IoT) tenants,

i.e., the InPs can have bi-directional negotiations with IoT

tenants to allocate network resources efficiently.

Another way to address the slice admission problem (i.e.,

similar to the one considered in this paper) is to discard slice
requests immediately if they cannot be accepted. This, on the

other hand, leads to a loss of potential revenue for the InP. The

authors in [8] propose a slice admission control algorithm

which uses the information from a forecasting module (i.e.,

predicting future traffic levels) during the admission control

phase. Results show significant gains in terms of network

utilization as compared to a scenario when the forecasted

information is not available. The work in [10] also presents a

slice admission strategy based on traffic predictions, i.e., an

incoming slice request is accepted only when it is estimated

that no service degradation will take place for both the
incoming slice request and the slices already in operation.

Results show that the proposed strategy can increase the net

profit of InPs by up to 50.7% as compared to a slice admission

policy that does not use BDA predictions. The authors in [11]

and [12] propose the concept of slice overbooking where more

slice requests are admitted than the overall system capacity in

order to maximize the profit of InPs. Results show that slice

overbooking can provide up to 3-times higher profit compared

to when overbooking schemes are not employed. The work in

[12] presents an optimal slice admission algorithm

maximizing the profit of InPs. However, the algorithm has a

very high computational cost making it impractical for real
scenarios. An adaptive algorithm for practical use based on Q-

learning is also presented. It is shown that this algorithm

achieves close to optimal performance. It is worth noting here

that the work in [12] encourages the use of ML instead of an

optimal algorithm in real scenarios. Furthermore, the use-case

is significantly different from the one considered in this paper.

For example, the footprint of slice requests is fixed (i.e., they

cannot be scaled up/down), and an incoming slice request is

always rejected if the requested resources are not available at

the time of arrival. In contrast, the use-case considered in this

paper involves dynamicity in the footprint of network slices,
and the incoming slice requests with high profit can be

admitted even when not enough resources are available (i.e.,

expecting that other existing slices will scale-down/depart in

future).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JLT.2019.2924345

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Applying RL-based algorithms for improving the

performance of communication networks has gained interest

from both academia and industry. Most of these works focus

on resource scheduling and/or routing optimization problems.

For instance, the work in [14] presents an RL-based radio

resource scheduling policy that maximizes the probability of
meeting Quality-of-Service (QoS) requirements in a 5G radio

access network (RAN). The authors in [15] present an RL-

based framework for the power-efficient resource allocation in

cloud RANs. The work in [16] proposes an RL-based strategy

for scheduling resources in a multi-tenant network with

mobile and cloud SPs. The authors in [17] present an RL agent

that performs routing optimization by automatically adapting

to current traffic conditions with the goal of minimizing the

end-to-end latencies of all connections routed in the network.

The authors in [18] present an RL agent for the cognitive and

autonomous routing of lightpaths in elastic optical networks.

The work in [19] proposes an RL-based routing policy for
provisioning connectivity services with different QoS

requirements. Finally, when looking specifically at use cases

related to network slicing, the authors in [20] present a

preliminary investigation of the benefits of using RL for

intelligently scaling up/down slices according to traffic

patterns of mobile users. On the other hand, to the best of our

knowledge, there are no works that apply RL to solve the slice

admission problem considering the dynamicity of slices, i.e.,

scaling up/down of slices.

III. SYSTEM ARCHITECTURE AND USE CASE DEFINITION

This section describes the flexible RAN architecture as well

as the use case considered in the paper.

A. Flexible RAN System Architecture

Figure 1 presents the system architecture considered in this

work. The data plane comprises a flexible RAN, and the

control plane is based on an orchestrator that performs cross-

domain management of radio, transport, and cloud resources

via different controllers [1].

The flexible RAN architecture includes two types of sites

for running the radio functions, i.e., central offices (COs) and

regional data centers (RDCs) [9]. The COs are located close to

the mobile users, and the RDCs are deployed at distant

locations. In order to be closer to the users, COs are usually

deployed in more locations than the RDCs, and also have

lower capacity. COs and RDCs are connected via an optical

backhaul (OBH) network.

Macro and small cells are deployed according to the cloud

radio access network (C-RAN) concept, where remote radio

units (RRUs) and baseband processing functions (BPFs) are

interconnected through a C1 interface [9]. Each BPF is

connected to a virtualized packet processor (vPP) function,

which carries the data to/from the packet gateway (PGW). The

BPFs run on special purpose processors at the COs (i.e., close

to RRUs) in order to meet the stringent latency requirements

(i.e., 1 [ms]) of the C1 interface [9]. On the other hand, vPPs

and PGWs are virtual network functions (VNFs) running on

general purpose processors (GPPs), which can be instantiated

either at the COs, or at the RDCs, depending on the service

latency constraints. In the latter case, vPPs and PGWs are

connected over the OBH network. The service latency

constraint also governs whether service specific VNFs (i.e.,

referred to as generic application (APP) in Fig. 1) can be

placed at the COs or at the RDCs. The fronthaul connections

(i.e., RRU-BPF) are fixed. However, the backhaul connections

and the VNFs (corresponding to vPP, PGW, APP) can be

established on-the-fly as per service requirement.

B. Use Case Description

It is assumed that the MSPs request the orchestrator (Fig. 1)

to provision RAN resources for different types of services

(i.e., one slice per service). An RL agent inside the

orchestrator is trained to decide about the admission of slice

requests corresponding to different services. In the use case

under exam, two types of services are considered, i.e., LP and

HP. An LP service comes with non-strict latency constraints

(e.g., on-demand media streaming, file transfer) and requires a

slice of GPPs placed at either the CO or the RDC, as well as

connectivity resources in the OBH network, i.e., the green

service in Fig. 1. An HP service, on the other hand, comes

with strict latency constraints (e.g., remote surgery [21]) and

asks for a slice with GPPs placed only at the CO, i.e., the red

service in Fig. 1. Sometimes, an HP service might also require

a few GPPs in RDCs as well as connectivity resources in the

OBH network, e.g., to fetch new content in the CO. Since a

CO can host only a limited number of GPPs (i.e., as compared

to a RDC), the GPPs at the COs are more precious resources

and hence more costly to use compared to the ones at the

RDCs. Consequently, an HP service generates more revenue

than an LP one.

In the scenario under exam, the resource requirements of a

service vary over time. Once a slice has been provisioned, it

needs to be scaled up/down to match the temporal variation in

the number of required GPPs (i.e., at the CO/RDC) and

connectivity resources in the OBH network. The orchestrator

is in charge of both the slice admission and the slice scaling

processes. If the orchestrator is unable to scale up a slice when

required, there is a penalty to be paid proportional to the

amount of resources that cannot be provisioned multiplied by

a penalty factor that depends on the service type (i.e., an HP

service has a higher penalty factor than an LP one).

When the slice of an HP service is accepted, high revenue is

Fig. 1. Flexible RAN system architecture running both HP and LP services.

Orchestrator

Radio Controller Cloud ControllerTransport Controller

Reinforcement Learning

Slice 1 Slice 2 Slice N… Slice 1 Slice 2 Slice N… Slice 1 Slice 2 Slice N…

Mobile Service
Provider 1

..…
Mobile Service

Provider 2
Mobile Service

Provider M

Small
Cell

BPF

BPF

…

PGW

APP1

RRU

vPP

PGW

APP2

vPP

Central Office (CO) Regional Data
Center (RDC)

BPF

vPP

Optical
Backhaul

(OBH) Network
vPP

RRU

Macro Cell

RRU

RRU

Optical
Fronthaul
Network

High priority service

Low priority service

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JLT.2019.2924345

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

generated, but the orchestrator needs to make sure that this

slice can be scaled up when required. This is to avoid the

negative impact of the very high penalty on the generated

revenue (where profit = revenue - penalty). Therefore, when

deciding about slice admission, the orchestrator has to

consider not only the potential revenue generated by

provisioning a slice but also the penalty to be paid if the

required resources are not available when needed. A way to

solve this problem is to consider the possibility to reject the

slice requests of some LP services in order to allow (more

profitable) HP ones to be admitted in the future and to be

scaled up when needed. This can be accomplished via an

intelligent slice admission policy that accounts for all these

aspects.

Figure 2 depicts the intuition behind the proposed

intelligent slice admission policy. We use, for comparison, a

simple policy that aims only at accepting as many slices as

possible, without taking into account any implications on the

service degradation. In both cases, it is assumed that the

orchestrator has no prior knowledge of the temporal variations

in resource profiles of the slices to be provisioned. It is also

assumed to have three resource pools in the network (i.e., one

CO, one OBH, and one RDC), with three resource units each.

The figure 2 shows an HP slice request requiring two

resource units in the CO at the time of arrival (red profile in

the figure), which comes one time unit after an LP slice

request that requires one resource unit in each of the resource

pools at the time of arrival (green profile in the figure). The

simple policy always accepts a slice request if the resources

required at that point in time are available, and hence both

slice requests are accepted. As a result, when the HP slice

needs to be scaled up (i.e., three resource units needed in the

CO one time unit after the slice is accepted), enough resources

are not available and the service is degraded. This leads to a

high penalty to be paid due to the fact that this is an HP

service. On the other hand, an intelligent policy might be able

to understand that, in this particular instance, the overall profit

could be maximized by proactively rejecting the slice of LP

service. This leaves more resources free for provisioning and

scaling the slice of the HP service without having to pay any

degradation penalty.

The next section describes how RL can bring such

intelligence into the slice admission process.

IV. REINFORCEMENT LEARNING BASED SLICE ADMISSION

POLICY

An RL agent is trained to decide whether or not a new slice

request should be accepted. The agent is embedded into a slice

management loop running at the orchestrator, which is

composed of two parts illustrated in Fig. 3. The outer loop

(i.e., solid line) includes: slice admission, setup, scaling, tear-

down, and reward computation (i.e., for the RL agent). The

inner loop (i.e., dashed line) describes the actions taken during

the slice scaling process, i.e., during the holding time of a

slice.

A slice request is specified in terms of the following

parameters: holding time, service priority, number of

resources required (i.e., in the CO, OBH, and RDC) at the

time the slice is requested, and the location of CO (i.e.,

corresponding to the fixed RRU-BPF fronthaul connections of

the slice). After receiving a slice request, the RL agent makes

its decision (i.e., yes/no) about the slice admission. If the slice

request is accepted, the orchestrator proceeds with the setup,

i.e., it reserves the current resources required by the slice for a

duration equal to the slice holding time. The selection of the

RDC as well as the path from the CO to the chosen RDC over

the OBH network is done by a heuristic algorithm.

After a slice is set up, the orchestrator monitors its resource

requirements and decides for a scale up/down when they

exceed/fall-below a given threshold 𝛾. During the holding

time of a slice, the location of the RDC and the path from the

CO to the RDC over the OBH network remain fixed. On the

other hand, the amount of resources allocated to them may

vary during the slice scaling process. The scaling policy is

based on a heuristic algorithm, described in the next section.

At each time instance, the orchestrator computes the net profit

associated with operating a slice (i.e., sum of the revenue

generated by accepting the slice request and the penalty

incurred by not being able to scale up the slice when needed).

After the holding time of a slice expires, it is torn down, i.e.,

all the resources currently allocated to the slice are released.

Finally, the total net profit obtained by operating the slice

during its holding time is computed, i.e., fed back as reward to

RL agent. A high reward makes the agent learn to accept more

slice requests of similar type and in similar conditions in the

future. On the contrary, a low reward may lead to the rejection

of similar slice requests in the future.

As mentioned earlier, the overall objective of the admission

Fig. 2. An example of how the proactive rejection of an LP service can help

to maximize the profit of an InP.

G
P

Ps

Time Time Time

G
P

Ps

C
ap

ac
it

y
u

n
it

s

CO OBH RDC

Simple Policy

G
P

Ps

Time Time Time

G
P

Ps

C
ap

ac
it

y
u

n
it

s

CO OBH RDC

Intelligent Policy

Time

R
es

o
u

rc
es

HP
Service

LP
Service

CO OBH RDC

High Penalty

Service
Simple
Policy

Intelligent
Policy

LP Accept Reject

HP Accept Accept

Fig. 3. Slice admission and management loop running at the orchestrator.

Admission
Policy

Resource
Monitoring

Profit pi(t)
Accumulation

Slice i request
with holding

time Ti

No

Yes

Reinforcement Learning

Reward
for RL

Total Profit
Pi = ∫pi(t)

Slice
Reject

Slice
Setup

Scaling
PolicySlice Tear-

down

t < Tit ≥ Ti

Slice Scaling

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JLT.2019.2924345

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

policy is to maximize the total profit of the InP. This problem

is equivalent to a loss minimization problem, where the loss

has two components: (i) loss of revenue derived by rejecting

the slice requests, and (ii) loss derived by not being able to

scale up the slices in operation when needed (i.e., the

degradation penalty).

Following the above rationale, the objective of the ANN is

to minimize the total loss experienced by the InP. The RL

agent considered in this work is illustrated in Fig. 4. The RL

agent is modeled as a stochastic policy network (PN)

[Mao16], which, in turn, uses an artificial neural network

(ANN) to represent its stochastic policy. The ANN receives as

input: (i) an array describing the resources currently available

at the COs, the RDCs, and links in the OBH network, and (ii)

the specific slice request parameters described at the

beginning of the section. The ANN comprises a number of

fully-connected, hidden layers of neurons. The ANN has two

outputs, representing the probability of accepting or rejecting

the slice request. The output neurons in the PN use the soft-

max activation function, which outputs probabilities in the

range [0-1]. The probabilities output by the ANN dictate the

action taken by the orchestrator.

The ANN is trained in an episodic manner, where a fixed

number of slice requests arrive in each episode. The reward 𝜔

for each action is computed as:

𝜔 ∑
− 𝑎

𝑊𝑎∈𝑆 , (1)

where 𝑆 is the set of all slice requests arrived up to the current

time, 𝑙𝑎 is the loss incurred by slice request 𝑎, and 𝑊 is the

maximum potential revenue that could be generated by a slice

request. In summary, 𝜔 is the sum of the rewards obtained for

all the slice requests (i.e., with each reward the in range of [-1,

0]) up to the current point in time. At the end of an episode,

the cumulative reward for all the actions is computed [22].

This is done to ensure that the effect of all the actions taken

during an episode has an impact on future decisions made by

the ANN. After collecting the set of observations, actions, and

rewards from an episode, a training iteration is performed,

where the PN is optimized by applying the gradient descent

method [16] with the objective of maximizing the reward

function (1) (i.e., minimizing the total loss). The gradients are

used to update the weights of the ANN, which helps it to take

better decisions in the next episode. By gradually increasing

the cumulative reward in each episode, the ANN converges to

a policy which minimizes the total loss.

V. PERFORMANCE EVALUATION

This section describes the scenario used for the performance

evaluation and discusses the results for different cases.

A. Scenario Description

The performance of the proposed RL-based slice admission

policy is evaluated using a custom-built Python-based event-

driven simulator. The simulator uses the NetworkX library

[23] for the graph representation and manipulation of network

resources, and Keras [24] as the machine learning library for

implementing the PN. Three types of events are modeled in

the simulator: arrival, departure, and scaling. The inter-arrival

time and holding time of slice requests are exponentially

distributed. The mean holding time is 24 hours, while the

mean inter-arrival time is varied according to different load

conditions. The scaling events, i.e., when the slices might need

to be scaled up/down, occur periodically with a fixed interval

of one hour.

Results are obtained using a 12-node network topology [1]

depicted in Fig. 5. Five COs and two RDCs are placed at high

degree nodes. It is assumed that the fixed fronthaul

connections between RRUs and BPFs in the COs are already

established. Hence, a slice may ask for only GPPs in a CO and

an RDC, as well as connectivity resources over the OBH

network. Moreover, this work assumes that only one MSP

generates slice requests for HP and LP services, although this

can be generalized to more SPs. The proportion of HP services

over the total number of services (i.e., LP and HP) is denoted

as 𝑝 . The number of resources in each CO, in each link in

the OBH network, and in each RDC is assumed to be 50

GPPs, 50 capacity units, and 80 GPPs, respectively. The per-

hour price paid by an LP service using a resource unit at the

CO, and the RDC is 𝑝𝐶𝑂 4 cost-units (CUs), and 𝑝𝑅𝐷𝐶 1

CU, respectively. The per-hour and per-capacity-unit price for

using a path in the OBH network is 𝑝𝑂𝐵 2 CUs. It is

assumed that the price of a path is independent of number of

hops. The price paid by an HP service 𝑠 using the same

resources as an LP service is higher by an amount proportional

to its revenue factor . Moreover, an HP service 𝑠 also

incurs a penalty (i.e., in case of degradation) higher than an LP

service that is proportional to its penalty factor . The values

of and are assumed to be 1 for an LP service and 5 for

an HP service. Regardless of the priority, the degradation of

an accepted service requiring one resource unit for one hour

results in a penalty times higher than the generated revenue.

The temporal variations of the resource requirements of HP

and LP services are modeled using the profiles reported in

[10]. The value of 𝛾 is set to 60% of the peak value. When a

slice is scaled up (i.e. 𝛾 is exceeded), an HP service requires

Fig. 5. 12-node network topology with 5 COs and 2 RDCs.

1

2

3

8

6

9

RDC

7

4 5

10

11

12

CO

RDC

CO

CO
CO

CO

Fig. 4. Stochastic policy network architecture.

Kista 5G Transport Lab Confidential | K5 project workshop | 2019-01-17 | Page 33

State Take action

Res. available at COs

Res. available at

RDCs

Res. available at

links in OBH

Res. requested at CO,

RDC and OBH

Input Hidden layers Output

Probability of

accepting

Probability of

rejecting

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JLT.2019.2924345

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

20 GPPs in the CO, 5 GPPs in the RDC, and 5 capacity units

in the OBH, while an LP service requires 10 GPPs in both the

CO and in the RDC, plus 10 capacity units in the OBH. When

a slice is scaled down (i.e. requirements go below 𝛾), the

number of required resources (for both HP and LP services) is

decreased by 5 everywhere. As mentioned earlier, scaling is

done using a heuristic algorithm, which adopts an HP first

(HPF) policy, i.e., all the HP services are scaled before the LP

ones. This policy is used by all the tested admission policy

algorithms in order to ensure that the degradation of HP

services is minimal.

The performance evaluation metric is the total loss 𝐿 𝑜 𝑎

experienced by an InP, i.e., the sum of loss derived from

rejected services (𝐿𝑟 𝑗) and loss from degraded services (𝐿𝑑),

with:

𝐿𝑟 𝑗 ∑ × ℎ × ∈𝑅 [(𝑄𝐶𝑂, (𝑎)× 𝑝𝐶𝑂) (𝑄𝑅𝐷𝐶, (𝑎) ×

𝑝𝑅𝐷𝐶) (𝑄𝑂𝐵 , (𝑎) × 𝑝𝑂𝐵)], (2)

𝐿𝑑 ∑ × × ∫ [(𝑁𝐶𝑂, () × 𝑝𝐶𝑂) (𝑁𝑅𝐷𝐶, () ×
𝑎 𝑠+ℎ 𝑠
 =𝑎 𝑠

 ∈𝐴

𝑝𝑅𝐷𝐶) (𝑁𝑂𝐵 , () × 𝑝𝑂𝐵)], (3)

where and 𝐴 denote the set of rejected and accepted services

respectively; ℎ represents the holding time of slice 𝑠;

𝑄𝐶𝑂, (𝑎), 𝑄𝑅𝐷𝐶, (𝑎), 𝑄𝑂𝐵 , (𝑎) denote the resources

required by slice 𝑠 at the arrival time 𝑎 in CO, RDC, and

OBH respectively; 𝑁𝐶𝑂, (), 𝑁𝑅𝐷𝐶, (), 𝑁𝑂𝐵 , () represent the

resources not provisioned to slice 𝑠 due to the degradation at

time in CO, RDC, and OBH respectively.

The performance of the proposed RL-based slice admission

policy is compared against three benchmark strategies: fit,

oversubscription (OS) and resource reservation (RR). The Fit

strategy is a static heuristic that follows a conservative

approach and accepts a slice request only if: (i) the resources

required (i.e., at arrival time) are available at the CO, (ii) an

RDC with enough resources as well as a path connecting the

CO and the RDC with enough capacity are available. The OS

strategy inspired by [11, 12] considers that it is possible to

multiplex the use of resources over time, assuming the time-

varying requirements of slices. The OS strategy is a threshold-

based heuristic that considers an overbooking of up to a

certain percentage of resources, i.e., when computing available

resources an amount higher than 100% is considered. In our

work, we consider the cases where the OS allows 30% (OS-

30) and 50% (OS-50) overbooking. Finally, the RR strategy is

also a threshold-based heuristic that assumes that a percentage

of the resources is reserved for the HP services. This strategy

is inspired by the fact that, in multi-priority networks,

reserving a percentage of the resources for HP services

potentially reduces rejection losses from these services. In our

work, we consider the reservation of 30% (RR-30) and 50%

(RR-50) of the resources for HP services. For all the

admission policies, when a slice request is accepted, the

closest available RDC (with the shortest available path) is

chosen.

For each value of the load, the RL agent is trained for 2500

iterations using 25 different sets, each one comprising 200

slice requests generated synthetically. The test results are

obtained by averaging the results from 25 different sets of

3000 slice requests, which are different from the ones seen by

the ANN during the training phase. The confidence interval of

the test results (i.e., calculated with a 95% confidence level)

represents 3% of the value of the total loss for the Fit strategy

at 12 Erlangs. The designed ANN contains four hidden layers

with 40 neurons each, with ReLU as the activation function.

The ANN is trained with a learning rate of 0.0001.

The next sub-sections presents an analysis of the simulation

results under a number of representative scenarios.

B. Results for Baseline Scenario

For the baseline scenario, the simulation parameters are set

to 1.5, 𝑝 50%, i.e., the degradation penalty is 1.5

Fig. 6. Test results for the baseline scenario (i.e., 1.5, 𝑝 50%). The total loss 𝐿 𝑜 𝑎 (a) is the sum of 𝐿𝑟 𝑗 (b) and 𝐿𝑑 (c).

Fig. 7. Training results for the baseline scenario (i.e., 1.5, 𝑝 50%) at 12 Erlangs. Results are averaged over 25 different sets of 200 slice requests.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JLT.2019.2924345

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

times higher than the revenue factor, and the proportion of HP

and LP services is the same in each set of slice requests.

Figure 6 presents the test results comparing the value of the

average total loss for different values of the load. Fit presents

loss values that are between RR and OS (Fig. 6(a)). This value

is mainly dominated by the rejection loss (Fig. 6(b)), which is

high due to the conservative approach taken by Fit at the

admission control, i.e., it only accepts if current resource

requirements can be met. As a result, the scaling loss is very

low (Fig. 6(c)), but not enough to compensate for the high

rejection loss. It can be observed that by reserving 30% of the

resources for HP services, the RR-30 strategy leads to the

highest value of 𝐿 𝑜 𝑎 . This is caused by an increase in the

rejection loss (Fig. 6(b)) that is not sufficiently compensated

by the decrease in scaling loss (Fig. 6(c)). RR-50 has better

performance in terms of both lower rejection and scaling

losses in comparison to RR-30. At low load, RR-50 performs

similar to RR-30. As the load increases, RR-50 steadily

increases difference from RR-30 and approaches Fit. The

reason is twofold: while RR-50 reserves more resources for

HP services than RR-30, there are more HP services to use the

reserved resources at high load. Meanwhile, less LP services

are accepted (i.e., only 50% of resources are available for LP

services, which reduces the competition for resources during

scaling, causing the scaling loss reduction). The OS admission

policy presents better performance than Fit. As expected,

compared with Fit, OS trades a lower rejection loss for a

(possibly) higher scaling loss. In this scenario, OS-50 presents

a lower total loss because of a slightly higher scaling loss that

is compensated by a lower rejection loss. On the other hand, at

all load values, RL performs better than the heuristics in terms

of 𝐿 𝑜 𝑎 , with 53% improvement over Fit, 60% over RR-50,

and 23% over OS-50, at high load conditions. This is because

RL learns that it can accept all the slice requests by trading a

relatively small increase in 𝐿𝑑 with a significant decrease of

𝐿𝑟 𝑗.

Figure 7 depicts how the RL agent learns over the training

iterations, for a load value of 12 Erlangs. In the figure, the

rejection probability for HP/LP services is averaged over the

corresponding number of HP/LP slice requests. The total

rejection probability is averaged over the total number of slice

requests. At the beginning, i.e., iteration 1, RL behaves

similarly to a random policy, i.e., no knowledge about the

system dynamics. After around 100 training iterations, RL

learns that 𝐿 𝑜 𝑎 can be decreased by accepting more HP

services, i.e., the rejection probability of HP services (Fig.

7(e)) drops to 10-3 at around 100 iterations. Afterward, RL

keeps on trying to decrease 𝐿 𝑜 𝑎 by accepting some of the LP

services until it learns, after 400 iterations, that almost all the

LP services can be accepted (even if this has a minor impact

on the 𝐿 𝑜 𝑎). After 500 iterations, 𝐿 𝑜 𝑎 converges to a

minimum, although RL keeps on trying to further improve the

value of 𝐿 𝑜 𝑎 by slightly adjusting the rejection probabilities

(Figs. 6(e) and 6(f)), but without any significant improvement.

C. Results for Varying the Value of

Figure 8 presents the gain (in percentage) in terms of 𝐿 𝑜 𝑎

achieved by RL when compared to Fit and OS-50, for

different values of . In the figure, 1.5 refers to the

baseline scenario (Figs. 6 and 7). With < 1.5, RL achieves

higher gains over Fit and OS-50 because of the degradation of

an accepted service results in a lower penalty than the baseline

scenario. On the other hand, when 1.5 the gain of RL over

Fit and OS-50 decreases. In this case, 𝐿𝑑 has a higher

contribution to 𝐿 𝑜 𝑎 , and more careful acceptance decisions need

to be taken. Still, RL reduces the 𝐿 𝑜 𝑎 by at least 12% for 2.

Figure 9 presents the training results at a load of 12 Erlangs

with 2. Compared to the training results in Fig. 7 (i.e., the

baseline scenario), RL still learns first to accept more HP slice

requests in order to avoid high rejection losses, reaching 10-3

in around 100 iterations (Fig. 9(e)). At the end of the training,

RL learns that all HP slice requests can be accepted. On the

other hand, RL is more conservative while accepting LP

services, reaching 10-3 in around 500 iterations (Fig. 9(f)).

This is because of the rejection of LP slice requests does not

have a significant impact on 𝐿𝑟 𝑗, but it potentially reduces

Fig. 9: Training results at 12 Erlangs with 2 and 𝑝 50%.

Fig. 8. Gain in terms of 𝐿 𝑜 𝑎 when RL is compared to Fit and OS-50 for

different values of and with 𝑝 50%.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JLT.2019.2924345

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

𝐿𝑑 , i.e., mainly driven by the degradation of HP services.

D. Results for Varying the Value of 𝑝

Figure 10 presents the gains (in percentage) in terms of

𝐿 𝑜 𝑎 when RL is compared to Fit and OS-50 for different

values of 𝑝 (i.e., the proportion of HP services in each set

of slice requests), where 𝑝 50% refers to the baseline

scenario. When the value of 𝑝 < 50%, the gain of RL over

Fit becomes higher. This is because the RL is able to achieve

lower 𝐿𝑑 , as less HP services (having higher than LP

services) are competing for resources during scaling. On the

other hand, when 𝑝 50%, there is more competition for

resources. In this scenario, degradation is likely to happen

more often leaving fewer opportunities for significant

improvements over Fit. This can be attributed to: (i) an

increase in the value of 𝐿𝑑 as more HP services experience

degradation, and (ii) an increase in the value of 𝐿𝑟 𝑗 as more

LP services are rejected in order to create space for a higher

number of HP services. Still, RL achieves at least 48% lower

𝐿 𝑜 𝑎 compared to Fit. When comparing OS-50 with RL,

there is a shift in trends when load increases. At low load and

with a low 𝑝 , OS-50 performs closer to RL, as the lower

competition for resources and a lower percentage of HP makes

it for an easy to solve simple scenario. However, at high load,

OS-50 faces higher competition of resources, and accepting

HP services becomes more problematic. At high load, OS-50

benefits more from higher 𝑝 . RL is able to adapt to the

different load conditions, with gains over OS-50 reaching at

least 18% lower 𝐿 𝑜 𝑎 at high load, and up to 25% at medium

load.

Figure 11 presents the training results at a load of 12

Erlangs with 𝑝 80%. Compared to the training results in

Fig. 7, the losses are much higher due to the higher number of

HP service requests. Moreover, the RL agent learns to reject

more LP services (Fig. 11(f)), i.e., nearly 10-3 for the baseline

scenario and 10-2 for 𝑝 80%. This is because the RL tries

to free up some space for the HP services such that most of

them can be accepted (Fig. 11(e)) to minimize the value of

𝐿 𝑜 𝑎 .

VI. CONCLUSION

This paper presents an RL-based admission policy that can

be used in a 5G flexible RAN where multiple MSPs ask for

resource slices to accommodate services with different QoS

constraints (i.e., LP services with non-strict latency and HP
services with strict latency requirements). The proposed policy

aims at maximizing the profit of an InP. In the study presented

in the paper, the profit maximization objective has been

converted in the equivalent loss minimization counter-part,

where the loss experienced by an InP is defined as the sum of

the loss from rejected services (i.e., potential revenue loss) and

the loss from degraded services (i.e., when a resource slice

cannot be scaled up when needed).

Simulation results show that, in the use case under exam,

the proposed RL-based policy achieves at least 50% lower loss

when compared to static heuristics, and at least 23% lower

loss when compared to threshold-based heuristics. This is
because the RL learns to selectively reject some of the

services that generate low revenues (i.e., LP) in favor of the

ones that are more profitable (i.e., HP). Moreover, the RL is

able to adapt its behavior when the penalty due to service

degradation becomes higher than the loss of revenue due to

slice rejection, or when the proportion of HP and LP services

changes. This highlights that the RL interacts with the system

to understand different parameters, and learns to adapt its

policy accordingly.

REFERENCES

[1] M. R. Raza, et al., “A Slice Admission Policy Based on Reinforcement

Learning for a 5G Flexible RAN,” in Proc. Europ. Conf. Opt. Commun.,

Sep. 2018.

[2] M. R. Raza, et al., “Dynamic slicing approach for multi-tenant 5G

transport networks,” IEEE/OSA J. Opt. Commun. Netw., vol. 10, no. 1,

pp. A77-A90, Jan. 2018.

[3] R. Vilalta, et al., “Optical networks virtualization and slicing in the 5G

era,” in Proc. Opt. Fiber Commun. Conf., Mar. 2018.

[4] R. S. Sutton, et al., “Reinforcement learning: An introduction,” MIT

Press Cambridge, vol. 1, no. 1, 1998.

[5] V. Sciancalepore, et al., “Slice as a Service (SlaaS) Optimal IoT Slice

Resources Orchestration,” in Proc. IEEE Global Commun. Conf., Dec.

2017, pp. 1-7.

[6] B. Han, et al., “Rational Impatience Admission Control in 5G-sliced

Networks: Shall I Bide my Slice Opportunity?,” arXiv:1809.06815v3,

Fig. 11. Training results at 12 Erlangs with 1.5 and 𝑝 80%.

Fig. 10. Gain in terms of 𝐿 𝑜 𝑎 when RL is compared to Fit for different

values of 𝑝 and with 1.5.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JLT.2019.2924345

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Oct. 2018.

[7] B. Han, et al., “A Utility-Driven Multi-Queue Admission Control

Solution for Network Slicing”, arXiv:1901.06399v1, 2019.

[8] V. Sciancalepore, et al., “Mobile traffic forecasting for maximizing 5G

network slicing resource utilization,” in Proc. IEEE INFOCOM, May

2017, pp. 1-9.

[9] E. Westerberg, “4G/5G RAN architecture: how a split can make the

difference,” Ericsson Tech. Review, 2016.

[10] M. R. Raza et al., “A Slice Admission Policy Based on Big Data

Analytics for Multi-Tenant 5G Networks,” J. Lightw. Technol., vol. 37,

no. 7, pp. 1690-1697, Apr. 2019.

[11] J. X. Salvat, et al., “Overbooking network slices through yield-driven

end-to-end orchestration,” in Proc. ACM 14th International Conference

on emerging Networking EXperiments and Technologies (CoNEXT),

Dec. 2018, pp. 353-365.

[12] L. Zanzi et al., “OVNES: Demonstrating 5G network slicing

overbooking on real deployments,” in Proc. IEEE INFOCOM

Workshops, Apr. 2018, pp. 1-2.

[13] D. Bega et al., “Optimising 5G infrastructure markets: The business of

network slicing,” in Proc. IEEE INFOCOM, May 2017, pp. 1-9.

[14] I. S. Comsa, et al., “QoS-Driven Scheduling in 5G Radio Access

Networks - A Reinforcement Learning Approach,” in Proc. IEEE

Global Commun. Conf., 2017.

[15] Z. Xu, et al., “A deep reinforcement learning based framework for

power-efficient resource allocation in cloud RANs,” in Proc. IEEE

Internat. Conf. on Commun., 2017.

[16] C. Natalino, et al., “Machine Learning Aided Resource Orchestration in

Multi-Tenant Networks”, in Proc. IEEE Summer Topicals, Jul. 2018.

[17] G. Stampa, et al., “A Deep-Reinforcement Learning Approach for SDN

Routing Optimization,” arXiv:1709.07080v1, 2017.

[18] X. Chen, et al., “Deep-RMSA: A Deep-Reinforcement-Learning

Routing, Modulation and Spectrum Assignment Agent for Elastic

Optical Networks,” in Proc. Opt. Fiber Commun. Conf., Mar. 2018.

[19] C. Natalino, et al., “Machine-Learning-Based Routing of QoS-

Constrained Connectivity Services in Optical Transport Networks”, in

Proc. OSA Adv. Photon. Congr., NETWORKS, Jul. 2018.

[20] Z. Zhao, et al., “Deep Reinforcement Learning for Network Slicing,”

arXiv:1805.06591v2, 2018.

[21] O. Yilmaz, “5G Radio Access for Ultra-Reliable and Low-Latency

Communications,” Ericsson Research Blog, 2015.

[22] H. Mao, et al., “Resource Management with Deep Reinforcement

Learning,” in Proc. ACM Workshop on Hot Topics in Networks, 2016.

[23] Aric A. Hagberg, et al., “Exploring network structure, dynamics, and

function using NetworkX,” in Proc. Python in Science Conference

(SciPy2008), pp. 11–15, Aug. 2008.

[24] François Chollet, et al., “Keras,” https://keras.io.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/JLT.2019.2924345

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://keras.io/

