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 

Abstract— Network slicing enables an infrastructure provider 

(InP) to support heterogeneous 5G services over a common 

platform (i.e., by creating a customized slice for each service). 

Once in operation, slices can be dynamically scaled up/down to 

match the variation of their service requirements. An InP 

generates revenue by accepting a slice request. If a slice cannot be 

scaled up when required, an InP has to also pay a penalty 

(proportional to the level of service degradation). It becomes then 

crucial for an InP to decide which slice requests should be 

accepted/rejected in order to increase its net profit.  

This paper presents a slice admission strategy based on 

reinforcement learning (RL) in the presence of services with 

different priorities. The use case considered is a 5G flexible radio 

access network (RAN), where slices of different mobile service 

providers are virtualized over the same RAN infrastructure. The 

proposed policy learns which are the services with the potential 

to bring high profit (i.e., high revenue with low degradation 

penalty), and hence should be accepted.  

The performance of the RL-based admission policy is 

compared against two deterministic heuristics. Results show that 

in the considered scenario, the proposed strategy outperforms the 

benchmark heuristics by at least 55%. Moreover, this paper 

shows how the policy is able to adapt to different conditions in 

terms of: (i) slice degradation penalty vs. slice revenue factors, 

and (ii) proportion of high vs. low priority services. 

 
Index Terms—5G, cloud RAN, dynamic slicing, flexible RAN, 

network function virtualization (NFV), optical networks, 

reinforcement learning, slice admission control, software defined 

networking (SDN). 

I. INTRODUCTION 

HE 5th generation of mobile networks (5G) needs to 

support a wide variety of services over a shared network 

infrastructure, i.e., in order to improve the resource usage 

efficiency and to lower the infrastructure cost [2]. This can be 

enabled by network slicing, i.e., a key component of 5G 
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systems [3]. Thanks to concepts such as software defined 

networking (SDN) and network function virtualization (NFV), 

an infrastructure provider (InP) can virtualize its resources 

(i.e., create slices), and share them among different tenants or 

service providers (SPs). Each SP then uses these slices to 

provision its services (i.e., usually one slice per service). 

Slices are created according to the specific requirements 

(e.g., latency, capacity, reliability, etc.) of the corresponding 

services. In the presence of temporal and/or spatial variations 

of such requirements, an InP can improve its resource usage 

efficiency by dynamically scaling up/down the provisioned 

slices in order to match the variations of service requirements 

[2]. However, if a slice cannot be scaled up when needed (i.e., 

due to resource contention), an InP has to pay a penalty 

proportional to the degradation level experienced by the 

corresponding service. This aspect becomes crucial when the 

infrastructure resources are shared among services with 

different priorities. In this scenario, the revenue generated by 

an InP (i.e., by accepting a slice request) and the penalty 

incurred (i.e., due to degradation) are proportional to the 

service priority. This means that large revenues are generated 

by accepting slices of high priority services. However, if 

degradation is experienced at any point in time, an InP will 

also have to pay a very large penalty, which, in turn, will have 

an impact on the net profit of InP. 

In order to maximize the profit on an InP, the challenge is 

two-fold. An InP needs to: (i) accept as many slice requests as 

possible (i.e., to increase revenue), while at the same time, (ii) 

match the variations of service requirements of the slices in 

operation as closely as possible (i.e., to limit the degradation 

penalties). In this respect, it becomes crucial to have an 

intelligent slice admission policy that accepts only those slice 

requests which generate high revenue and which, most likely, 

will experience (almost) no service degradation. One way of 

implementing such a policy is to apply machine-learning-

based techniques, more specifically reinforcement learning 

(RL) [4]. RL-based algorithms learn about the association 

between actions taken in a given environment and the rewards 

associated to them. RL methods are particularly interesting 

because they can learn by interacting directly with the 

environment to which they are applied to, without the need of 

any prior knowledge or real-world dataset, which are not 

always easy to retrieve.  

The application of RL-based algorithms for improving the 

performance of communication networks has recently gained 
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interest from both academia and industry. Most of these works 

focus on resource scheduling [5, 6, 7] and/or assignment 

optimization problems [8, 2]. On the other hand, to the best of 

our knowledge, there are no works that apply RL to solve the 

slice admission problem.  

This paper proposes an RL-based slice admission policy 

aimed at maximizing the profit of an InP in the presence of 

services with different priorities, i.e., a typical scenario in 5G 

networks. The proposed strategy decides which are the slices 

that should be accepted by learning how to maximize revenue 

(i.e., by accepting as many high revenue slice requests as 

possible) while minimizing penalty (i.e., by rejecting those 

slice requests for which the expected revenue is less than the 

penalty they would likely incur and/or those slice requests that 

would likely cause degradation for other running services).  

The use case considered in the paper is a 5G flexible RAN 

[9], where services from different mobile SPs (MSPs) are 

virtualized over the same RAN infrastructure. Two classes of 

services are considered: high priority (HP) services (i.e., with 

strict latency constraints and high revenue/penalty) and low 

priority (LP) services (i.e., with non-strict latency constraints 

and low revenue/penalty). The paper presents a thorough 

analysis in terms of: (i) different values of slice degradation 

penalty vs. slice revenue factors, and (ii) different proportions 

of HP vs. LP services. The performance of the proposed RL-

based slice admission policy is compared against a set of 

deterministic heuristics. Simulation results show that in the 

use case under exam, the proposed RL-based slice admission 

policy outperforms the benchmark heuristics by at least 55%. 

The rest of paper is organized as follows. Sec. II presents a 

literature review. Sec. III presents the system architecture and 

more details about the use case under exam. Sec. IV presents 

how the RL agent has been designed for optimizing the slice 

admission decisions.  Sec. V presents a number of 

performance evaluation results considering different scenarios. 

Finally, Sec. VI provides some concluding remarks. 

II. LITERATURE REVIEW 

Network slicing has received increasing attention due to its 

numerous benefits. Meanwhile, the use of RL-based network 

control and management strategies has gained interest recently 

due to their promising performance. This section first focuses 

on works tackling the network slicing problem (i.e., slice 

admission and scaling) using deterministic algorithms. Then, it 

reviews a number of works applying RL for resource 

scheduling/assignment problems.  

The slice admission problem can be solved using 

deterministic algorithms. Some of the literature refers to 

approaches where incoming network slice requests are put into 

one or multiple queues when not enough resources are 

available in the network. For example, the authors in [7] 

consider a number of heterogeneous queues (i.e., different 

queues for different request priorities) and devise a multi-

queuing controller for slice admission that maximizes the 
overall network utilization. The performance of the proposed 

controller is benchmarked against two simple strategies, i.e., 

first-come-first-served and slice-type-based approaches. The 

results show that the proposed controller outperforms the 

benchmarks, especially under heavy load conditions. The 

authors in [6] investigate the “impatient behavior” of tenants 

in a multi-queue slice admission control scenario. More 
precisely, a tenant may choose to cancel its slice request and 

ask the InP to remove it from the queue(s) if it has to wait 

more than a certain amount of time. Results highlight how 

making the information about the queue status fully available 

to the awaiting tenants creates benefits in terms of resource 

efficiency, waiting time and, in turn, overall revenue values. 

The authors in [5] derive similar conclusions as in [6] for the 

case of slice requests from Internet-of-Things (IoT) tenants, 

i.e., the InPs can have bi-directional negotiations with IoT 

tenants to allocate network resources efficiently.  

Another way to address the slice admission problem (i.e., 

similar to the one considered in this paper) is to discard slice 
requests immediately if they cannot be accepted. This, on the 

other hand, leads to a loss of potential revenue for the InP. The 

authors in [8] propose a slice admission control algorithm 

which uses the information from a forecasting module (i.e., 

predicting future traffic levels) during the admission control 

phase. Results show significant gains in terms of network 

utilization as compared to a scenario when the forecasted 

information is not available. The work in [10] also presents a 

slice admission strategy based on traffic predictions, i.e., an 

incoming slice request is accepted only when it is estimated 

that no service degradation will take place for both the 
incoming slice request and the slices already in operation. 

Results show that the proposed strategy can increase the net 

profit of InPs by up to 50.7% as compared to a slice admission 

policy that does not use BDA predictions. The authors in [11] 

and [12] propose the concept of slice overbooking where more 

slice requests are admitted than the overall system capacity in 

order to maximize the profit of InPs. Results show that slice 

overbooking can provide up to 3-times higher profit compared 

to when overbooking schemes are not employed. The work in 

[12] presents an optimal slice admission algorithm 

maximizing the profit of InPs. However, the algorithm has a 

very high computational cost making it impractical for real 
scenarios. An adaptive algorithm for practical use based on Q-

learning is also presented. It is shown that this algorithm 

achieves close to optimal performance. It is worth noting here 

that the work in [12] encourages the use of ML instead of an 

optimal algorithm in real scenarios. Furthermore, the use-case 

is significantly different from the one considered in this paper. 

For example, the footprint of slice requests is fixed (i.e., they 

cannot be scaled up/down), and an incoming slice request is 

always rejected if the requested resources are not available at 

the time of arrival. In contrast, the use-case considered in this 

paper involves dynamicity in the footprint of network slices, 
and the incoming slice requests with high profit can be 

admitted even when not enough resources are available (i.e., 

expecting that other existing slices will scale-down/depart in 

future).  
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Applying RL-based algorithms for improving the 

performance of communication networks has gained interest 

from both academia and industry. Most of these works focus 

on resource scheduling and/or routing optimization problems. 

For instance, the work in [14] presents an RL-based radio 

resource scheduling policy that maximizes the probability of 
meeting Quality-of-Service (QoS) requirements in a 5G radio 

access network (RAN). The authors in [15] present an RL-

based framework for the power-efficient resource allocation in 

cloud RANs. The work in [16] proposes an RL-based strategy 

for scheduling resources in a multi-tenant network with 

mobile and cloud SPs. The authors in [17] present an RL agent 

that performs routing optimization by automatically adapting 

to current traffic conditions with the goal of minimizing the 

end-to-end latencies of all connections routed in the network. 

The authors in [18] present an RL agent for the cognitive and 

autonomous routing of lightpaths in elastic optical networks. 

The work in [19] proposes an RL-based routing policy for 
provisioning connectivity services with different QoS 

requirements. Finally, when looking specifically at use cases 

related to network slicing, the authors in [20] present a 

preliminary investigation of the benefits of using RL for 

intelligently scaling up/down slices according to traffic 

patterns of mobile users. On the other hand, to the best of our 

knowledge, there are no works that apply RL to solve the slice 

admission problem considering the dynamicity of slices, i.e., 

scaling up/down of slices. 

III. SYSTEM ARCHITECTURE AND USE CASE DEFINITION 

This section describes the flexible RAN architecture as well 

as the use case considered in the paper. 

A. Flexible RAN System Architecture  

Figure 1 presents the system architecture considered in this 

work. The data plane comprises a flexible RAN, and the 

control plane is based on an orchestrator that performs cross-

domain management of radio, transport, and cloud resources 

via different controllers [1].  

The flexible RAN architecture includes two types of sites 

for running the radio functions, i.e., central offices (COs) and 

regional data centers (RDCs) [9]. The COs are located close to 

the mobile users, and the RDCs are deployed at distant 

locations. In order to be closer to the users, COs are usually 

deployed in more locations than the RDCs, and also have 

lower capacity. COs and RDCs are connected via an optical 

backhaul (OBH) network.  

Macro and small cells are deployed according to the cloud 

radio access network (C-RAN) concept, where remote radio 

units (RRUs) and baseband processing functions (BPFs) are 

interconnected through a C1 interface [9]. Each BPF is 

connected to a virtualized packet processor (vPP) function, 

which carries the data to/from the packet gateway (PGW). The 

BPFs run on special purpose processors at the COs (i.e., close 

to RRUs) in order to meet the stringent latency requirements 

(i.e., 1 [ms]) of the C1 interface [9]. On the other hand, vPPs 

and PGWs are virtual network functions (VNFs) running on 

general purpose processors (GPPs), which can be instantiated 

either at the COs, or at the RDCs, depending on the service 

latency constraints. In the latter case, vPPs and PGWs are 

connected over the OBH network. The service latency 

constraint also governs whether service specific VNFs (i.e., 

referred to as generic application (APP) in Fig. 1) can be 

placed at the COs or at the RDCs. The fronthaul connections 

(i.e., RRU-BPF) are fixed. However, the backhaul connections 

and the VNFs (corresponding to vPP, PGW, APP) can be 

established on-the-fly as per service requirement.  

B. Use Case Description 

It is assumed that the MSPs request the orchestrator (Fig. 1) 

to provision RAN resources for different types of services 

(i.e., one slice per service). An RL agent inside the 

orchestrator is trained to decide about the admission of slice 

requests corresponding to different services. In the use case 

under exam, two types of services are considered, i.e., LP and 

HP. An LP service comes with non-strict latency constraints 

(e.g., on-demand media streaming, file transfer) and requires a 

slice of GPPs placed at either the CO or the RDC, as well as 

connectivity resources in the OBH network, i.e., the green 

service in Fig. 1. An HP service, on the other hand, comes 

with strict latency constraints (e.g., remote surgery [21]) and 

asks for a slice with GPPs placed only at the CO, i.e., the red 

service in Fig. 1. Sometimes, an HP service might also require 

a few GPPs in RDCs as well as connectivity resources in the 

OBH network, e.g., to fetch new content in the CO. Since a 

CO can host only a limited number of GPPs (i.e., as compared 

to a RDC), the GPPs at the COs are more precious resources 

and hence more costly to use compared to the ones at the 

RDCs. Consequently, an HP service generates more revenue 

than an LP one. 

In the scenario under exam, the resource requirements of a 

service vary over time. Once a slice has been provisioned, it 

needs to be scaled up/down to match the temporal variation in 

the number of required GPPs (i.e., at the CO/RDC) and 

connectivity resources in the OBH network. The orchestrator 

is in charge of both the slice admission and the slice scaling 

processes. If the orchestrator is unable to scale up a slice when 

required, there is a penalty to be paid proportional to the 

amount of resources that cannot be provisioned multiplied by 

a penalty factor that depends on the service type (i.e., an HP 

service has a higher penalty factor than an LP one). 

When the slice of an HP service is accepted, high revenue is 

 
Fig. 1.  Flexible RAN system architecture running both HP and LP services. 
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generated, but the orchestrator needs to make sure that this 

slice can be scaled up when required. This is to avoid the 

negative impact of the very high penalty on the generated 

revenue (where profit = revenue - penalty). Therefore, when 

deciding about slice admission, the orchestrator has to 

consider not only the potential revenue generated by 

provisioning a slice but also the penalty to be paid if the 

required resources are not available when needed. A way to 

solve this problem is to consider the possibility to reject the 

slice requests of some LP services in order to allow (more 

profitable) HP ones to be admitted in the future and to be 

scaled up when needed. This can be accomplished via an 

intelligent slice admission policy that accounts for all these 

aspects.  

Figure 2 depicts the intuition behind the proposed 

intelligent slice admission policy. We use, for comparison, a 

simple policy that aims only at accepting as many slices as 

possible, without taking into account any implications on the 

service degradation. In both cases, it is assumed that the 

orchestrator has no prior knowledge of the temporal variations 

in resource profiles of the slices to be provisioned. It is also 

assumed to have three resource pools in the network (i.e., one 

CO, one OBH, and one RDC), with three resource units each. 

The figure 2 shows an HP slice request requiring two 

resource units in the CO at the time of arrival (red profile in 

the figure), which comes one time unit after an LP slice 

request that requires one resource unit in each of the resource 

pools at the time of arrival (green profile in the figure). The 

simple policy always accepts a slice request if the resources 

required at that point in time are available, and hence both 

slice requests are accepted. As a result, when the HP slice 

needs to be scaled up (i.e., three resource units needed in the 

CO one time unit after the slice is accepted), enough resources 

are not available and the service is degraded. This leads to a 

high penalty to be paid due to the fact that this is an HP 

service. On the other hand, an intelligent policy might be able 

to understand that, in this particular instance, the overall profit 

could be maximized by proactively rejecting the slice of LP 

service. This leaves more resources free for provisioning and 

scaling the slice of the HP service without having to pay any 

degradation penalty.  

The next section describes how RL can bring such 

intelligence into the slice admission process. 

IV. REINFORCEMENT LEARNING BASED SLICE ADMISSION 

POLICY 

An RL agent is trained to decide whether or not a new slice 

request should be accepted. The agent is embedded into a slice 

management loop running at the orchestrator, which is 

composed of two parts illustrated in Fig. 3. The outer loop 

(i.e., solid line) includes: slice admission, setup, scaling, tear-

down, and reward computation (i.e., for the RL agent). The 

inner loop (i.e., dashed line) describes the actions taken during 

the slice scaling process, i.e., during the holding time of a 

slice. 

A slice request is specified in terms of the following 

parameters: holding time, service priority, number of 

resources required (i.e., in the CO, OBH, and RDC) at the 

time the slice is requested, and the location of CO (i.e., 

corresponding to the fixed RRU-BPF fronthaul connections of 

the slice). After receiving a slice request, the RL agent makes 

its decision (i.e., yes/no) about the slice admission. If the slice 

request is accepted, the orchestrator proceeds with the setup, 

i.e., it reserves the current resources required by the slice for a 

duration equal to the slice holding time. The selection of the 

RDC as well as the path from the CO to the chosen RDC over 

the OBH network is done by a heuristic algorithm. 

After a slice is set up, the orchestrator monitors its resource 

requirements and decides for a scale up/down when they 

exceed/fall-below a given threshold 𝛾. During the holding 

time of a slice, the location of the RDC and the path from the 

CO to the RDC over the OBH network remain fixed. On the 

other hand, the amount of resources allocated to them may 

vary during the slice scaling process. The scaling policy is 

based on a heuristic algorithm, described in the next section. 

At each time instance, the orchestrator computes the net profit 

associated with operating a slice (i.e., sum of the revenue 

generated by accepting the slice request and the penalty 

incurred by not being able to scale up the slice when needed).  

After the holding time of a slice expires, it is torn down, i.e., 

all the resources currently allocated to the slice are released. 

Finally, the total net profit obtained by operating the slice 

during its holding time is computed, i.e., fed back as reward to 

RL agent. A high reward makes the agent learn to accept more 

slice requests of similar type and in similar conditions in the 

future. On the contrary, a low reward may lead to the rejection 

of similar slice requests in the future. 

As mentioned earlier, the overall objective of the admission 

 
Fig. 2.  An example of how the proactive rejection of an LP service can help 

to maximize the profit of an InP. 
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Fig. 3.  Slice admission and management loop running at the orchestrator. 
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policy is to maximize the total profit of the InP. This problem 

is equivalent to a loss minimization problem, where the loss 

has two components: (i) loss of revenue derived by rejecting 

the slice requests, and (ii) loss derived by not being able to 

scale up the slices in operation when needed (i.e., the 

degradation penalty).  

Following the above rationale, the objective of the ANN is 

to minimize the total loss experienced by the InP. The RL 

agent considered in this work is illustrated in Fig. 4. The RL 

agent is modeled as a stochastic policy network (PN) 

[Mao16], which, in turn, uses an artificial neural network 

(ANN) to represent its stochastic policy. The ANN receives as 

input: (i) an array describing the resources currently available 

at the COs, the RDCs, and links in the OBH network, and (ii) 

the specific slice request parameters described at the 

beginning of the section. The ANN comprises a number of 

fully-connected, hidden layers of neurons. The ANN has two 

outputs, representing the probability of accepting or rejecting 

the slice request. The output neurons in the PN use the soft-

max activation function, which outputs probabilities in the 

range [0-1]. The probabilities output by the ANN dictate the 

action taken by the orchestrator.  

The ANN is trained in an episodic manner, where a fixed 

number of slice requests arrive in each episode. The reward 𝜔 

for each action is computed as: 

𝜔   ∑
−  𝑎

𝑊𝑎∈𝑆 ,            (1)  

where 𝑆 is the set of all slice requests arrived up to the current 

time, 𝑙𝑎 is the loss incurred by slice request 𝑎, and 𝑊 is the 

maximum potential revenue that could be generated by a slice 

request. In summary, 𝜔 is the sum of the rewards obtained for 

all the slice requests (i.e., with each reward the in range of [-1, 

0]) up to the current point in time. At the end of an episode, 

the cumulative reward for all the actions is computed [22]. 

This is done to ensure that the effect of all the actions taken 

during an episode has an impact on future decisions made by 

the ANN. After collecting the set of observations, actions, and 

rewards from an episode, a training iteration is performed, 

where the PN is optimized by applying the gradient descent 

method [16] with the objective of maximizing the reward 

function (1) (i.e., minimizing the total loss). The gradients are 

used to update the weights of the ANN, which helps it to take 

better decisions in the next episode. By gradually increasing 

the cumulative reward in each episode, the ANN converges to 

a policy which minimizes the total loss.  

V. PERFORMANCE EVALUATION 

This section describes the scenario used for the performance 

evaluation and discusses the results for different cases. 

A. Scenario Description 

The performance of the proposed RL-based slice admission 

policy is evaluated using a custom-built Python-based event-

driven simulator. The simulator uses the NetworkX library 

[23] for the graph representation and manipulation of network 

resources, and Keras [24] as the machine learning library for 

implementing the PN. Three types of events are modeled in 

the simulator: arrival, departure, and scaling. The inter-arrival 

time and holding time of slice requests are exponentially 

distributed. The mean holding time is 24 hours, while the 

mean inter-arrival time is varied according to different load 

conditions. The scaling events, i.e., when the slices might need 

to be scaled up/down, occur periodically with a fixed interval 

of one hour. 

Results are obtained using a 12-node network topology [1] 

depicted in Fig. 5. Five COs and two RDCs are placed at high 

degree nodes. It is assumed that the fixed fronthaul 

connections between RRUs and BPFs in the COs are already 

established. Hence, a slice may ask for only GPPs in a CO and 

an RDC, as well as connectivity resources over the OBH 

network. Moreover, this work assumes that only one MSP 

generates slice requests for HP and LP services, although this 

can be generalized to more SPs. The proportion of HP services 

over the total number of services (i.e., LP and HP) is denoted 

as 𝑝   . The number of resources in each CO, in each link in 

the OBH network, and in each RDC is assumed to be 50 

GPPs, 50 capacity units, and 80 GPPs, respectively. The per-

hour price paid by an LP service using a resource unit at the 

CO, and the RDC is 𝑝𝐶𝑂  4 cost-units (CUs), and 𝑝𝑅𝐷𝐶  1 

CU, respectively. The per-hour and per-capacity-unit price for 

using a path in the OBH network is 𝑝𝑂𝐵  2 CUs. It is 

assumed that the price of a path is independent of number of 

hops. The price paid by an HP service 𝑠 using the same 

resources as an LP service is higher by an amount proportional 

to its revenue factor    . Moreover, an HP service 𝑠 also 

incurs a penalty (i.e., in case of degradation) higher than an LP 

service that is proportional to its penalty factor    . The values 

of     and     are assumed to be 1 for an LP service and 5 for 

an HP service. Regardless of the priority, the degradation of 

an accepted service requiring one resource unit for one hour 

results in a penalty   times higher than the generated revenue. 

The temporal variations of the resource requirements of HP 

and LP services are modeled using the profiles reported in 

[10]. The value of 𝛾 is set to 60% of the peak value. When a 

slice is scaled up (i.e. 𝛾 is exceeded), an HP service requires 

 
Fig. 5.  12-node network topology with 5 COs and 2 RDCs. 
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20 GPPs in the CO, 5 GPPs in the RDC, and 5 capacity units 

in the OBH, while an LP service requires 10 GPPs in both the 

CO and in the RDC, plus 10 capacity units in the OBH. When 

a slice is scaled down (i.e. requirements go below 𝛾), the 

number of required resources (for both HP and LP services) is 

decreased by 5 everywhere. As mentioned earlier, scaling is 

done using a heuristic algorithm, which adopts an HP first 

(HPF) policy, i.e., all the HP services are scaled before the LP 

ones. This policy is used by all the tested admission policy 

algorithms in order to ensure that the degradation of HP 

services is minimal.  

The performance evaluation metric is the total loss 𝐿 𝑜 𝑎  

experienced by an InP, i.e., the sum of loss derived from 

rejected services (𝐿𝑟 𝑗) and loss from degraded services (𝐿𝑑  ), 

with: 

𝐿𝑟 𝑗  ∑    × ℎ  × ∈𝑅 [(𝑄𝐶𝑂, (𝑎  )× 𝑝𝐶𝑂)  (𝑄𝑅𝐷𝐶, (𝑎  ) ×

𝑝𝑅𝐷𝐶)  (𝑄𝑂𝐵 , (𝑎  ) × 𝑝𝑂𝐵 )],                  (2)  

𝐿𝑑   ∑    ×  × ∫ [(𝑁𝐶𝑂, ( ) × 𝑝𝐶𝑂)  (𝑁𝑅𝐷𝐶, ( ) ×
𝑎 𝑠+ℎ 𝑠
 =𝑎 𝑠

 ∈𝐴

𝑝𝑅𝐷𝐶)  (𝑁𝑂𝐵 , ( ) × 𝑝𝑂𝐵 )],                    (3) 

where   and 𝐴 denote the set of rejected and accepted services 

respectively; ℎ   represents the holding time of slice 𝑠; 

𝑄𝐶𝑂, (𝑎  ), 𝑄𝑅𝐷𝐶, (𝑎  ), 𝑄𝑂𝐵 , (𝑎  ) denote the resources 

required by slice 𝑠 at the arrival time 𝑎   in CO, RDC, and 

OBH respectively; 𝑁𝐶𝑂, ( ), 𝑁𝑅𝐷𝐶, ( ), 𝑁𝑂𝐵 , ( ) represent the 

resources not provisioned to slice 𝑠 due to the degradation at 

time   in CO, RDC, and OBH respectively.  

The performance of the proposed RL-based slice admission 

policy is compared against three benchmark strategies: fit, 

oversubscription (OS) and resource reservation (RR). The Fit 

strategy is a static heuristic that follows a conservative 

approach and accepts a slice request only if: (i) the resources 

required (i.e., at arrival time) are available at the CO, (ii) an 

RDC with enough resources as well as a path connecting the 

CO and the RDC with enough capacity are available. The OS 

strategy inspired by [11, 12] considers that it is possible to 

multiplex the use of resources over time, assuming the time-

varying requirements of slices. The OS strategy is a threshold-

based heuristic that considers an overbooking of up to a 

certain percentage of resources, i.e., when computing available 

resources an amount higher than 100% is considered. In our 

work, we consider the cases where the OS allows 30% (OS-

30) and 50% (OS-50) overbooking. Finally, the RR strategy is 

also a threshold-based heuristic that assumes that a percentage 

of the resources is reserved for the HP services. This strategy 

is inspired by the fact that, in multi-priority networks, 

reserving a percentage of the resources for HP services 

potentially reduces rejection losses from these services. In our 

work, we consider the reservation of 30% (RR-30) and 50% 

(RR-50) of the resources for HP services. For all the 

admission policies, when a slice request is accepted, the 

closest available RDC (with the shortest available path) is 

chosen. 

For each value of the load, the RL agent is trained for 2500 

iterations using 25 different sets, each one comprising 200 

slice requests generated synthetically. The test results are 

obtained by averaging the results from 25 different sets of 

3000 slice requests, which are different from the ones seen by 

the ANN during the training phase. The confidence interval of 

the test results (i.e., calculated with a 95% confidence level) 

represents 3% of the value of the total loss for the Fit strategy 

at 12 Erlangs. The designed ANN contains four hidden layers 

with 40 neurons each, with ReLU as the activation function. 

The ANN is trained with a learning rate of 0.0001. 

The next sub-sections presents an analysis of the simulation 

results under a number of representative scenarios. 

B. Results for Baseline Scenario 

For the baseline scenario, the simulation parameters are set 

to   1.5, 𝑝    50%, i.e., the degradation penalty is 1.5 

 
Fig. 6. Test results for the baseline scenario (i.e.,   1.5, 𝑝    50%). The total loss 𝐿 𝑜 𝑎  (a) is the sum of 𝐿𝑟 𝑗 (b) and 𝐿𝑑   (c).  

 
Fig. 7. Training results for the baseline scenario (i.e.,   1.5, 𝑝    50%) at 12 Erlangs. Results are averaged over 25 different sets of 200 slice requests. 
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times higher than the revenue factor, and the proportion of HP 

and LP services is the same in each set of slice requests. 

Figure 6 presents the test results comparing the value of the 

average total loss for different values of the load. Fit presents 

loss values that are between RR and OS (Fig. 6(a)). This value 

is mainly dominated by the rejection loss (Fig. 6(b)), which is 

high due to the conservative approach taken by Fit at the 

admission control, i.e., it only accepts if current resource 

requirements can be met. As a result, the scaling loss is very 

low (Fig. 6(c)), but not enough to compensate for the high 

rejection loss. It can be observed that by reserving 30% of the 

resources for HP services, the RR-30 strategy leads to the 

highest value of 𝐿 𝑜 𝑎 . This is caused by an increase in the 

rejection loss (Fig. 6(b)) that is not sufficiently compensated 

by the decrease in scaling loss (Fig. 6(c)). RR-50 has better 

performance in terms of both lower rejection and scaling 

losses in comparison to RR-30. At low load, RR-50 performs 

similar to RR-30. As the load increases, RR-50 steadily 

increases difference from RR-30 and approaches Fit. The 

reason is twofold: while RR-50 reserves more resources for 

HP services than RR-30, there are more HP services to use the 

reserved resources at high load. Meanwhile, less LP services 

are accepted (i.e., only 50% of resources are available for LP 

services, which reduces the competition for resources during 

scaling, causing the scaling loss reduction). The OS admission 

policy presents better performance than Fit. As expected, 

compared with Fit, OS trades a lower rejection loss for a 

(possibly) higher scaling loss. In this scenario, OS-50 presents 

a lower total loss because of a slightly higher scaling loss that 

is compensated by a lower rejection loss. On the other hand, at 

all load values, RL performs better than the heuristics in terms 

of 𝐿 𝑜 𝑎 , with 53% improvement over Fit, 60% over RR-50, 

and 23% over OS-50, at high load conditions. This is because 

RL learns that it can accept all the slice requests by trading a 

relatively small increase in 𝐿𝑑   with a significant decrease of 

𝐿𝑟 𝑗.  

Figure 7 depicts how the RL agent learns over the training 

iterations, for a load value of 12 Erlangs. In the figure, the 

rejection probability for HP/LP services is averaged over the 

corresponding number of HP/LP slice requests. The total 

rejection probability is averaged over the total number of slice 

requests. At the beginning, i.e., iteration 1, RL behaves 

similarly to a random policy, i.e., no knowledge about the 

system dynamics. After around 100 training iterations, RL 

learns that 𝐿 𝑜 𝑎  can be decreased by accepting more HP 

services, i.e., the rejection probability of HP services (Fig. 

7(e)) drops to 10-3 at around 100 iterations. Afterward, RL 

keeps on trying to decrease 𝐿 𝑜 𝑎  by accepting some of the LP 

services until it learns, after 400 iterations, that almost all the 

LP services can be accepted (even if this has a minor impact 

on the 𝐿 𝑜 𝑎 ). After 500 iterations, 𝐿 𝑜 𝑎  converges to a 

minimum, although RL keeps on trying to further improve the 

value of 𝐿 𝑜 𝑎  by slightly adjusting the rejection probabilities 

(Figs. 6(e) and 6(f)), but without any significant improvement. 

C. Results for Varying the Value of   

Figure 8 presents the gain (in percentage) in terms of 𝐿 𝑜 𝑎  

achieved by RL when compared to Fit and OS-50, for 

different values of  . In the figure,   1.5 refers to the 

baseline scenario (Figs. 6 and 7). With  < 1.5, RL achieves 

higher gains over Fit and OS-50 because of the degradation of 

an accepted service results in a lower penalty than the baseline 

scenario. On the other hand, when   1.5 the gain of RL over 

Fit and OS-50 decreases. In this case, 𝐿𝑑   has a higher 

contribution to 𝐿 𝑜 𝑎 , and more careful acceptance decisions need 

to be taken. Still, RL reduces the 𝐿 𝑜 𝑎  by at least 12% for   2.  

Figure 9 presents the training results at a load of 12 Erlangs 

with   2. Compared to the training results in Fig. 7 (i.e., the 

baseline scenario), RL still learns first to accept more HP slice 

requests in order to avoid high rejection losses, reaching 10-3 

in around 100 iterations (Fig. 9(e)). At the end of the training, 

RL learns that all HP slice requests can be accepted. On the 

other hand, RL is more conservative while accepting LP 

services, reaching 10-3 in around 500 iterations (Fig. 9(f)). 

This is because of the rejection of LP slice requests does not 

have a significant impact on 𝐿𝑟 𝑗, but it potentially reduces 

 
Fig. 9: Training results at 12 Erlangs with   2 and 𝑝    50%. 

 

 
Fig. 8. Gain in terms of 𝐿 𝑜 𝑎  when RL is compared to Fit and OS-50 for 

different values of   and with 𝑝    50%. 
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𝐿𝑑  , i.e., mainly driven by the degradation of HP services. 

D. Results for Varying the Value of 𝑝    

Figure 10 presents the gains (in percentage) in terms of 

𝐿 𝑜 𝑎  when RL is compared to Fit and OS-50 for different 

values of 𝑝    (i.e., the proportion of HP services in each set 

of slice requests), where 𝑝    50% refers to the baseline 

scenario. When the value of 𝑝   < 50%, the gain of RL over 

Fit becomes higher. This is because the RL is able to achieve 

lower 𝐿𝑑  , as less HP services (having higher     than LP 

services) are competing for resources during scaling. On the 

other hand, when 𝑝    50%, there is more competition for 

resources. In this scenario, degradation is likely to happen 

more often leaving fewer opportunities for significant 

improvements over Fit. This can be attributed to: (i) an 

increase in the value of 𝐿𝑑   as more HP services experience 

degradation, and (ii) an increase in the value of 𝐿𝑟 𝑗  as more 

LP services are rejected in order to create space for a higher 

number of HP services. Still, RL achieves at least 48% lower 

𝐿 𝑜 𝑎  compared to Fit. When comparing OS-50 with RL, 

there is a shift in trends when load increases. At low load and 

with a low 𝑝   , OS-50 performs closer to RL, as the lower 

competition for resources and a lower percentage of HP makes 

it for an easy to solve simple scenario. However, at high load, 

OS-50 faces higher competition of resources, and accepting 

HP services becomes more problematic. At high load, OS-50 

benefits more from higher 𝑝   . RL is able to adapt to the 

different load conditions, with gains over OS-50 reaching at 

least 18% lower 𝐿 𝑜 𝑎  at high load, and up to 25% at medium 

load. 

Figure 11 presents the training results at a load of 12 

Erlangs with 𝑝    80%. Compared to the training results in 

Fig. 7, the losses are much higher due to the higher number of 

HP service requests. Moreover, the RL agent learns to reject 

more LP services (Fig. 11(f)), i.e., nearly 10-3 for the baseline 

scenario and 10-2 for 𝑝    80%. This is because the RL tries 

to free up some space for the HP services such that most of 

them can be accepted (Fig. 11(e)) to minimize the value of 

𝐿 𝑜 𝑎 . 

VI.  CONCLUSION 

This paper presents an RL-based admission policy that can 

be used in a 5G flexible RAN where multiple MSPs ask for 

resource slices to accommodate services with different QoS 

constraints (i.e., LP services with non-strict latency and HP 
services with strict latency requirements). The proposed policy 

aims at maximizing the profit of an InP. In the study presented 

in the paper, the profit maximization objective has been 

converted in the equivalent loss minimization counter-part, 

where the loss experienced by an InP is defined as the sum of 

the loss from rejected services (i.e., potential revenue loss) and 

the loss from degraded services (i.e., when a resource slice 

cannot be scaled up when needed).  

Simulation results show that, in the use case under exam, 

the proposed RL-based policy achieves at least 50% lower loss 

when compared to static heuristics, and at least 23% lower 

loss when compared to threshold-based heuristics. This is 
because the RL learns to selectively reject some of the 

services that generate low revenues (i.e., LP) in favor of the 

ones that are more profitable (i.e., HP). Moreover, the RL is 

able to adapt its behavior when the penalty due to service 

degradation becomes higher than the loss of revenue due to 

slice rejection, or when the proportion of HP and LP services 

changes. This highlights that the RL interacts with the system 

to understand different parameters, and learns to adapt its 

policy accordingly. 
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