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Joint Power-Efficient Traffic Shaping and Service
Provisioning for Metro Elastic Optical Networks

Mohammad Hadi, Member, IEEE and Erik Agrell, Fellow, IEEE

Abstract—Considering the time-averaged behavior of a metro
elastic optical network, we develop a joint procedure for resource
allocation and traffic shaping to exploit the inherent service diver-
sity among the requests for a power-efficient network operation.
To support quality of service diversity, we consider minimum
transmission rate, average transmission rate, maximum burst
size, and average transmission delay as the adjustable parameters
of a general service profile. The work evolves from a stochastic
optimization problem, which minimizes the power consumption
subject to stability, physical, and service constraints. The optimal
solution of the problem is obtained using a complex dynamic
programming method. To provide a near-optimal fast-achievable
solution, we propose a sequential heuristic with a scalable and
causal software implementation, according to the basic Lyapunov
iterations of an integer linear program. The heuristic method has
a negligible optimality gap and a considerable shorter runtime
compared to the optimal dynamic programming, and reduces the
consumed power by 72% for an offered traffic with unit variation
coefficient. The adjustable trade-offs of the proposed scheme offer
a typical 10% power saving for an acceptable amount of excess
transmission delay or drop rate.

Keywords—Traffic shaping, Quality of service, Metro elastic
optical networks, Dynamic programming, Lyapunov optimization.

I. INTRODUCTION

POWER consumption in metro networks is an increasingly
important issue, and mainly motivated by considerable

traffic growth, dynamic traffic patterns, and diverse quality of
service (QoS) requirements [1]–[3]. If the power efficiency
does not improve proportionally to the unprecedented metro
traffic growing rate, then the metro will consume an unac-
ceptably large amount of energy [2]. Fixed resource allocation
techniques are not suitable solutions to support dynamic metro
traffic patterns since they waste power when the overall traffic
volume is far from its peak [4]–[7]. Traditional resource
allocation methods without QoS management cannot be used
to offer a power-efficient network operation because they do
not provide different levels of QoS and dissipate power by
a resource allocation beyond the actual need of a service
level agreement [5], [8]. Software-defined networking (SDN)
is a promising management framework that offers a suitable
control plane with the required state information to manage
the flexibility of the tunable parameters of the data plane
[7], [9]. To efficiently exploit the offered SDN manageability,
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we need a power-efficient resource allocation scheme to be
fast enough to reallocate available resources according to the
dynamic network behavior, and to be sufficiently general to
support diverse QoS requirements [9]–[11].

Traffic shaping is a well-studied topic of computer science,
whose applications for power-efficient resource allocation in
optical networks can be promising. Unfortunately, typical traf-
fic shaping methods in computer science cannot be employed
for optical networks because they do not consider the physical
network interactions [12, sec. 5.4]. Furthermore, the available
SDN-based traffic engineering techniques are developed over
a simple abstraction of the data plane flexibility and cannot
support intensive flexibility of the elastic optical networks [13].
There are some research works on power-efficient resource
allocation in the core optical networks [14]–[20]; however, they
do not consider the fast traffic dynamism and QoS diversity of
the metro elastic optical networks (MEONs). Some researchers
have studied the problem of resource allocation in MEONs, but
without a detailed attention to the deep interactions between
power consumption, service requirements, and network status
[4], [21], [22]. We proposed a stochastic QoS-aware algorithm
for dynamic resource allocation in MEONs in [23], where the
transmission delay is not directly set in the service profile.

In this paper, transmission delay is included explicitly
among the service-characterizing parameters. This provides
a general service profile with adjustable parameters of min-
imum transmission rate, average transmission rate, maximum
burst size, and especially, the average transmission delay.
We consider an elastic and practical transponder structure
with configurable modulation, tunable spectrum, and accurate
signal-to-noise ratio (SNR) commitments, which is fed by a
traffic shaper having limited buffer length and possible data
drop. Hitless fast reconfiguration of elastic transponders is
a promising research area with several experimental demon-
strations [2], [11]. Our focus is on an SDN-based cross-layer
network management, where network management occurs in
the centralized control plane, and traffic shapers are connecting
elements of the packet to optical sublayers in the data plane.
We concentrate on the importance of traffic shaping and
develop an optimization problem, which jointly configures
traffic shapers and elastic transponders for a minimized amount
of total time-averaged transponder power consumption subject
to stability, physical, and QoS constraints. Considering the
average delay, the solution of the formulated optimization
problem cannot be derived using the Lyapunov drift op-
timization; unlike [23], where the results are obtained by
direct application of the Lyapunov optimization tool. Although
the optimal solution is obtained by dynamic programming,
soon the curse of dimensionality appears. To alleviate this
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Fig. 1: System model architecture. (a) Optical node. (b) Traffic shaper. BVXC,
bandwidth-variable cross-connect; BVT, bandwidth-variable transponder.

Configuration
Process

Fig. 2: Pipelined three-stage configuration process.

curse, a fast and accurate heuristic algorithm is proposed
based on the basic Lyapunov drift technique. The heuristic
needs an iterative optimization of an integer linear program
(ILP) to shape the traffic streams according to an adaptation
between the transponder configuration and network status. The
heuristic yields almost the optimal solution and its convergence
speed is fast enough to track fluctuating metro traffic patterns
adaptively. This fine adaptation improves the power efficiency
by offering a power consumption proportional to the average
traffic load, not its peak. The consumed power can also be
traded for the tolerable amount of transmission delay or drop
rate.

The paper continues with describing the system model in
Sec. II. The proposed joint power-efficient traffic shaping and
resource provisioning scheme is formulated in Sec. III and its
useful extensions are discussed in Sec. IV. The optimal and
near-optimal solutions of the formulated optimization problem
are derived in Secs. V and VI, respectively. Simulation results
are included in Sec. VII. Finally, the paper is concluded in
Sec. VIII.

II. SYSTEM MODEL

Let Zba be the set of integers from a to b, inclusively. We
consider an MEON characterized by an arbitrary topology
graph that operates in discrete time intervals n P Z80 with
interval duration T . The optical fiber bandwidth is divided

into N equal-bandwidth frequency slots with a granularity of
W . Topology links in an MEON are short enough to enable
optical transmission without any intermediate amplification
along fiber links. Therefore, we assume that each fiber link
has only a pair of input and output amplifiers, whose gains
equal to the switching and fiber loss, respectively. As shown
in Fig. 1(a), each topology node is equipped with a buffer-less
cross-connect and a bank of transponders in the optical layer.
The cross-connects are bandwidth-variable and can switch an
arbitrary range of the fiber spectrum. Transmit and receive
transponders are elastic and their modulation format, spectrum
width, and central frequency can be repeatedly reconfigured.
The transmit transponder is fed by a limited-length buffer
queue in the packet sublayer, where the traffic shaping process
occurs.

A centralized SDN controller starts a pipelined configu-
ration process in each interval n. As shown in Fig. 2, the
configuration process includes three consecutive stages of
investigate, allocate, and execute, and therefore, it takes three
intervals provided that each stage ends within T . The controller
begins the configuration process with the investigate stage in
interval n and queries all optical nodes to update network
state information. Next, the controller goes to the allocate
stage in interval n ` 1 and uses the collected network status
information of interval n to run a resource allocation algorithm
and configure the network elements. Finally, in the execute
stage, the controller reconfigures the network to operate within
interval n`2 according to the new configuration calculated in
the interval n`1. As illustrated in Fig. 2, different stages of the
last three consecutive configuration processes can proceed in
parallel, i.e., the process has a pipeline depth of 3. The stages
may have different time durations but they should complete
their actions within an interval width T [23]. The time duration
of each stage has its limiting factors and cannot be reduced
below a certain bound. In view of the demonstrated hitless
transponders and proposed fast SDN-based control signalling
methods [10], [11], the allocation stage usually has the dom-
inant time duration, which is limited by the computational
complexity of the resource allocation algorithm [23].

There are I connection requests, each having its own
service profile Si, i P ZI1. The service profile is an array
Si “ pMi, Ri, Bi, Diq, whose elements denote minimum
transmission rate, average transmission rate, maximum burst
size, and average transmission delay, respectively. The actual
transmission rate of connection i is time-varying, but its
instantaneous values are lower-limited by Mi, and its time-
average equals Ri. Bi denotes the available buffering space for
a burst of traffic that arrives suddenly, but is still transmitted by
the average rate Ri. Transmitted bits can experience different
transmission delay, but on average, they have a delay of Di.

As enlarged in Fig. 1(b), the traffic shaping process of
connection i settles in its transmit queue with a backlog size
qirns P ZQi

0 and a limited storage size Qi. The queue is
filled by an arbitrary random process airns, which denotes
the number of arrived bits in interval n, and is emptied by a
connecting light-path, which guarantees the required minimum
and average rates. If the input arrival violates the agreed service
profile parameters, dirns arrived bits will be dropped in interval
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n. According to Little’s theorem, for a stable steady state, the
average number of queued bits is upper-bounded by DiRi [24,
sec. 1], [25]. The queue size should be enough to accommodate
the average number of the queued bits DiRi and have a free
space for the burst size of Bi; therefore, we implicitly have
Qi ě DiRi `Bi.

Connection i is routed over one of its available J paths
Pi “ pPi,1, ¨ ¨ ¨ , Pi,Jq. Each connection i has a pair of
transmit and receive transponders in its source and destination
nodes, respectively, with reconfigurable parameters of firns
and si,krns, which denote the start slot and the number of
servicing slots for modulation k in interval n. We force con-
nection i to select at most one of K available modulations and
therefore, si,krns ‰ 0 for at most one value of k. Modulation
k has spectral efficiency Ck and requires a spectrum width
narrower than Ui,j,k along path Pi,j . Considering transmission
attenuation, switching loss, amplified spontaneous emission
noise, approximated nonlinear interference, SNR margin, and
different SNR threshold of each modulation format [26], the
values of Ui,j,k can be precomputed according to [27, Sec. IV-
A]. In fact, the SNR relates inversely to the spectrum width and
therefore, Ui,j,k is the spectrum width for which the received
SNR over path Pi,j equals the sum of the SNR margin and
SNR threshold of modulation k. There should be at least G
guard slots between the assigned slots of two connections with
intersecting paths.

Transponders, cross-connects, and amplifiers are the main
sources of power consumption in an MEON. The power
consumption of the amplifiers and cross-connects mainly de-
pends on the network topology and has no significant traffic-
dependency. Therefore, we focus on the power consumption
of the elastic transponders, which is directly affected by the
traffic dynamism [28]. The power consumption of the transmit
and receive transponders for connection i with modulation k
in interval n is modelled as pi,krns “ si,krnspE ` FCkq,
where the constant E denotes the fixed consumed power per
slot and the slope coefficient F relates the consumed power
to the selected modulation k [19], [28], [29]. The parameters
being used in the paper are summarized in Tab. I.

III. MATHEMATICAL PROBLEM FORMULATION

For a power-efficient network management, we need to
consider full state information of the network over time and
configure traffic shapers and elastic transponders according
to the QoS requirements and physical limitations. This inter-
connected resource allocation process is the solution of the
stochastic optimization problem

min
xrns,trns

drns,f rns,srns

I
ÿ

i“1

K
ÿ

k“1

si,kpE ` FCkq ` V
I
ÿ

i“1

di s.t. (1a)

qi ´
Di

T

`

ai ´ di
˘

ď 0, i P ZI1 (1b)

W
K
ÿ

k“1

Cksi,k ě Ri, i P ZI1 (1c)

TABLE I: Constants, variables, and operators along with their corresponding definitions.

Type Notation Definition

In
di

ce
s

i, i1 P ZI
1 Connection index

j, j1 P ZJ
1 Path index

k P ZK
1 Modulation index

n, n1 P Z80 Interval index
r P Z80 Frame index

In
pu

t
Pa

ra
m

et
er

s

I P Z81 Number of connections
J P Z81 Number of paths
K P Z81 Number of modulations
N P Z81 Number of slots
G P Z81 Minimum guard slots
T P Rě0 [s] Interval width
W P Rě0 [Hz] Slot bandwidth
V P Rě0 Drop penalty coefficient
L P Rě0 Lyapunov coefficient
E P Rě0 [W] Power bias constant
F P Rě0 [W] Power slope coefficient
Mi P R

ě0 [bit/s] Minimum rate
Ri P rMi,8q [bit/s] Average rate
Bi P R

ě0 [bit] Maximum burst
Di P R

ě0 [s] Average delay
S “ pSiq “ ppMi, Ri, Bi, Diqq Service profile array
P “ pPiq “ ppPi,jqq Shortest path array
Q “ pQi P Z

8
0 q [bit] Buffer length array

C “ pCk P R
ě0
q [bit/s/Hz] Spectral efficiency array

U “ pUi,j,k P R
ě0
q [Hz] Maximum spectrum array

arns “ pairns P R
ě0
q [bit] Arrival rate array

O
ut

pu
t

Pa
ra

m
et

er
s

f rns “ pfirnsq Start slot array
prns “ ppi,krnsq rW s Power consumption array
yrns “ pyirnsq Delay virtual queue array
zrns “ pzirnsq Rate virtual queue array
qrns “ pqirnsq [bit] Actual queue array
drns “ pdirnsq [bit] Dropped bit array
srns “ psi,krnsq Servicing slot array
trns “ pti,i1 rnsq Relative location array
xrns “ pxi,j,krnsq Path & modulation array

O
th

er
Pa

ra
m

et
er

s

� Actual queue space
� Virtual queue space

 Event space
�pω,qq Action space
Φ P p0, 1s Renewal probability
ϕrns Renewal random process
αrrs Renewal start interval
γrns Virtual queue array
ωrns Event array
δrns Action array
µpqq Optimal cost
µ Optimal cost vector
ηpδ,ω,γ,qq Incurred cost
ηpδ,ω,γq Incurred cost vector
ρpδ,ω,q,q1q Transition probability
ρpδ,ωq Transition matrix

op
er

-
at

or
s x Time-average

Opxq Order
Etxu Expectation

W
K
ÿ

k“1

Cksi,krns ěMi, i P ZI1, n P Z
8
0 (1d)

airns ` qirns ´Qi ´ TW
K
ÿ

k“1

Cksi,krns ď dirns,

i P ZI1, n P Z
8
0 (1e)

Wsi,krns ď
J
ÿ

j“1

Ui,j,kxi,j,krns, i P ZI1, k P Z
K
1 ,

n P Z80 (1f)
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firns `
K
ÿ

k“1

si,krns ď N, i P ZI1, n P Z
8
0 (1g)

J
ÿ

j“1

K
ÿ

k“1

xi,j,krns ď 1, i P ZI1, n P Z
8
0 (1h)

ti,i1rns ` ti1,irns “ 1, i, i1 P ZI1, n P Z
8
0 : i ‰ i1 (1i)

firns `
K
ÿ

k“1

si,krns `G ď fi1rns `N
´

3´ ti,i1rns´

K
ÿ

k“1

xi,j,krns ´
K
ÿ

k“1

xi1,j1,krns
¯

, i, i1 P ZI1,

j, j1 P ZJ1 , n P Z
8
0 : i ‰ i1, Pi,j X Pi1,j1 ‰ ∅ (1j)

qirn` 1s “ max
!

0, airns ` qirns ´ dirns

´ TW
K
ÿ

k“1

Cksi,krns
)

, i P ZI1, n P Z
8
0 (1k)

where the bar signs denote the time-averaged values with
the definition x “ limnÑ8

1
n

ř

n1PZn´1
0

Etxrn1su [25], [30].
The optimization is over the binary arrays xrns and trns,
and nonnegative integer arrays drns, f rns, and srns, which
denote the tunable parameters of the traffic shapers and elastic
transponders, such as path, modulation, start slot, number of
servicing slots, and number of dropped bits.

The objective function (1a) is a mixed expression of the total
time-averaged transponder power consumption and number
of dropped bits with an adjustable weighting coefficient V .
Increasing V pushes the optimization to reduce drop rate,
while a lower value of V gives the optimization priority to
the consumed power. Constraint (1b) is a simple adoption of
Little’s theorem and guarantees the required average delay
Di [24, sec. 1], [30]. Constraints (1c) and (1d) assure the
prescribed average rate Ri and minimum rate Mi, respectively.
Constraint (1e) drops the incoming bits that cannot be accom-
modated in the finite buffer length Qi. SNR limitations are
considered in constraints (1f) by keeping the assigned spectrum
widths below their permitted upper-bound values Ui,j,k, where
the binary variable xi,j,krns equals 1 if connection i uses
path Pi,j and modulation k in interval n, and otherwise 0.
For an infeasible modulation k over path Pi,j , Ui,j,k “ 0,
which in turn forces si,krns “ 0 in constraint (1f) to avoid
selection of an infeasible modulation. This constraint may
force si,krns “ 0 for all modulations k, then it means that
connection i is inactive in interval n. The assigned slots settle
in the acceptable range of the fiber spectrum by constraints
(1g). According to constraints (1h), at most one modulation
and one path can be selected for each connection. Constraint
(1i) determines the relative locations of the assigned slots,
where the Boolean variable ti,i1rns equals 1 if firns ď fi1rns,
and 0 otherwise. Constraint (1j) prevents two neighboring
spectrum widths from overlapping by keeping G guard slots
between them, where Pi,j X Pi1,j1 ‰ ∅ means that paths Pi,j
and Pi1,j1 have at least one common link. Assuming qir0s “ 0,
the queue backlogs are updated recursively by constraint (1k).

The optimization problem (1) is a purely theoretical con-

struction, which jointly optimizes the variables for all n P Z80 .
It has IpJK`K`I`1q variables and OpI2J2`IK`I2`6Iq
constraints in each interval. Furthermore, the number of vari-
ables and constraints evolve linearly with the number of
intervals. The future state of the network is needed to solve (1),
and this is not possible for a causal implementation. Even if
(1) is truncated to a finite number of intervals with known state
information, the resulting complexity and runtime will impede
a practical deployment. Therefore, a causal and sequential
algorithm is needed to follow the dynamic state of the network
and derive the optimal solution of (1).

IV. EXTENSIONS AND VARIATIONS

Clearly, a more accurate model with less computational
complexity provides more power efficiency but the accuracy
and complexity are usually traded for each other. For example,
a complex SNR expression improves accuracy and allows to
reduce SNR margin and improve power efficiency while its
computational complexity entangles the configuration process
and leads to power deficiency by degrading the adaptation ca-
pability to track traffic fluctuations. Although the optimization
problem (1) can cover a wide range of operational scenarios, it
can also be extended to take various additional conditions and
constraints into account. Here, we list a few such possibilities
and discuss their implementations and implications. These
extensions usually influence the accuracy and complexity in
opposite directions, where the overall impact depends on the
input parameters listed in Tab. I.

A. Reconfiguration Constraints
Sometimes, reconfiguration is a hard process. For instance,

rerouting can lead to service interruption and therefore, some
operators may desire no or rare rerouting. Such reconfiguration
limitations can be considered by adding extra constraints
to (1), as illustrated in [23]. The reconfiguration constraints
usually fix part of the optimization variables such as xrns and
consequently, reduce the computational complexity. Moreover,
different reconfiguration possibilities can have distinct cost
values. A clear example is the number of dropped bits dirns,
whose time-averaged value appears with the cost penalty V
in the objective function (1a). Similarly, the cost of other
reconfigurations, such as changing modulation formats or
paths, can be included in the objective function through distinct
penalty coefficients and arbitrary mathematical dependencies
to the variables in Tab. I. Depending on the mathematical
format of the cost penalty terms, the extended formulation may
be more or less complex.

B. More Complex SNR Constraints
As mentioned in Sec. II, the coefficients Ui,j,k were precom-

puted according to [27, Sec. IV-A] by considering the additive
noise and an approximated nonlinear interface as well as a
generic SNR margin to account for the worst-case mismatch
between calculated and real SNR values. This gives the SNR
constraint (1f) a very simple, linear form, which allows fast
optimization even for large networks. As an alternative, (1f)
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can be replaced with a more accurate expression, such as [26,
Eq. (7)], which accurately models the nonlinear interference
depending on the actual bandwidth allocation. This approach
can give a more efficient resource utilization and improve the
power efficiency, but it may also change the structure of the
problem (1) such that its optimization can only be possible
for relatively small networks, or large networks with a long
reconfiguration period [15]. The impact of the SNR margin on
power efficiency will be discussed in Sec. VII.

C. Adaptive Guard Bandwidth

Guard bandwidth can mitigate nonlinear impairments at the
price of more resource usage [27]. Although we fix the guard
bandwidth G in (1), it can be adaptively selected in each
interval to meet SNR requirements for a lower amount of
allocated resources. To do this, we can define different guard
bandwidths and select the best one by adding extra constraints
to (1). As a simpler method, constraint (1j) can be revised intel-
ligently to adaptively tune guard bandwidths. Clearly, the guard
bandwidth should be selected proportional to the power of
nonlinear interferences, which in turn is a function of xi,j,krns,
si,krns, and firns [26], [27]. Roughly, the guard bandwidth in
constraint (1j) can be approximated by a linear combination
of the optimization variables to adaptively be tuned without
changing the complexity order of the formulation.

D. More Complex Power Models

The power consumption of the transponders, which severely
depends on the traffic, was directly included in (1) [28].
Alternatively, the objective function (1a) can be extended to
have more terms, such as [29, Eqs. (3) and (4)], to take the
power consumption of optical amplifiers and cross-connects
into account. The new power terms can complicate the problem
(1) by injecting more variables to the optimization process such
as node, add, and drop degrees, which are not significantly
influenced by traffic fluctuations. Such a more accurate power
model can allow to optimize the operation of other network
elements and improve power efficiency, especially for rela-
tively small networks, where the optimization complexity is
affordable. For large networks, the excess amount of traffic-
dependent power efficiency may not worth the imposed com-
putational complexity [15].

In the next sections, without loss of generality, we focus on
the optimization problem (1) and show how its solution can
be derived. Undoubtedly, the proposed solution methods are
general and can be applied to any variations of the problem
(1) described above.

V. OPTIMAL SOLUTION

Lyapunov drift optimization is a lucrative tool for solving
stochastic optimization problems with time-averaged expres-
sions, which partitions the complex main problem into simpler
subproblems such that the iterative solution of the subproblems
achieves the optimum response of the main problem. In the
basic Lyapunov optimization, where the queue update equation

(1k) is the only queue-dependent constraint, a simple deter-
ministic optimization subproblem is involved in each iteration.
Since (1) is further constrained by the queue states through
(1b) and (1e), we cannot use the basic form of the Lyapunov
optimization [23], [30]. An efficient extension of the basic
Lyapunov optimization that can cope with this problem is
renewal theory [25], where the involved subproblems require
more complex non-deterministic optimizations. In this theory,
the time line is decomposed into successive renewal frames
n “ αrrs, ¨ ¨ ¨ , αrr ` 1s ´ 1 for r P Z80 , where αrrs
denotes the start interval of frame r, when all the queues are
simultaneously empty, and αr0s “ 0. To force the queues
to repeatedly visit a renewal state of being simultaneously
empty, we drop all unserved bits in all queues and increment
r at the end of every interval n with probability Prtϕrns “
1u “ Φ ą 0. The renewal process ϕrns is an independent
and identically distributed (i.i.d.) Bernoulli random process
over intervals and independent of the arrival random processes,
which are also assumed to be i.i.d. over intervals in the
renewal theory. While these forced renewals create inefficiency
in the network operation by unwanted dropped bits, they
make the network mathematically analyzable. Furthermore, the
unwanted renewal drops can be made arbitrarily low with a
small choice of Φ. It can be shown that a system optimized
without forced renewals has a performance that is no better
than a system with forced renewals, but where all drops from
forced renewals are counted as delivered throughput [30].

Now, let the actual queue space � include all possible values
for qrns. Define the event array ωrns “ parns, ϕrnsq P

, where the event space 
 contains all possible events,
and the action array δrns “ pxrns, trns,drns, f rns, srnsq P
�pωrns,qrnsq, whose corresponding space set �pωrns,qrnsq
is a function of ωrns and qrns. Assuming a renewal operation,
we can follow Algorithm 1 to approach arbitrarily closely the
optimum value of (1) [30]. In this algorithm, a virtual queue
is assigned to each time-averaged constraint and is updated
using a similar recursive equation as the actual queues in
(1k). We refer to γrns “ pyrns, zrnsq P � as a virtual queue
array, whose elements are devoted to time-averaged constraints
(1b) and (1c), respectively, and � is the corresponding space
set. The constant L, named the Lyapunov penalty coefficient,
is used to control the proximity to the optimal solution.
Algorithm 1 initializes the actual and virtual queues by a
proper-size zero array 0 and then starts a renewal frame at
αr0s “ 0. For each frame r P Z80 , we observe actual and
virtual queues and define the objective function

αrr`1s´1
ÿ

n“αrrs

ηpδrns,ωrns,γrαrrss,qrnsq (2)

where the incurred cost

ηpδ,ω,γ,qq “
I
ÿ

i“1

E

#

yi
`

qi ´
Di

T
pai ´ diq

˘

` zi

´

TRi ´ TW
K
ÿ

k“1

Cksi,k

¯

` L
´

K
ÿ

k“1

pi,k ` V di

¯
ˇ

ˇ

ˇ
γ

+

(3)
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and δ, ω, γ, and q are given values of the sets �pω,qq, 
,
�, and �, respectively. For each interval n, actual and virtual
queues are updated by (1k) and

yirn` 1s “

max
!

0, yirns ` qirns ´
Di

T
pairns ´ dirnsq

)

, i P ZI1 (4)

zirn` 1s “

max
!

0, zirns ` TRi ´ TW
K
ÿ

k“1

Cksi,krns
)

, i P ZI1. (5)

Minimizing (2) is a weighted stochastic shortest-path prob-
lem, which can be solved by dynamic programming [25], [31,
sec. 2]. We let ρpδ,ω,q,q1q denote the transition probability
from state q P � to state q1 P � given known values of
ω P 
 and δ P �pω,qq, and let µpqq be the optimum expected
sum cost to the end interval of the frame, provided that we
start in state q P �. By basic dynamic programming, the
optimal action for given values of ωrns and qrns in an interval
n P tαrrs, ¨ ¨ ¨ , αrr ` 1s ´ 1u is [31, sec. 2]

min
δP�pωrns,qrnsq

!

ηpδ,ωrns,γrαrrss,qrnsq

`
ÿ

q1P�

ρpδ,ωrns,qrns,q1qµpq1q
)

. (6)

To solve (6), we need the values of µpqq for frame r, which
are in turn obtained by Bellman’s equation [31, sec. 1]

µ “ E
!

min
δP�pω,qq

rηpδ,ω,γrαrrssq ` ρpδ,ωqµs
)

(7)

where µ and ηpδ,ω,γrαrrssq are the optimal and incurred
cost vectors, respectively, whose entries include µpqq and
ηpδ,ω,γrαrrss,qq for all possible values of q P �. Further,
ρpδ,ωq is transition probability matrix and the expectation is
over the distribution of ω.

Unfortunately, the size of the state space in (6) and (7) grows
exponentially with the number of state variables. Known as
the curse of dimensionality, this phenomenon renders dynamic
programming intractable in practical implementations. Even
for a limited state space, (6) and (7) are complex nonlinear
optimization problems, which can often only be solved for
small network topologies using numerical methods [30].

VI. NEAR-OPTIMAL SOLUTION

Although Algorithm 1 yields the optimum solution of (1),
the involved dynamic programming is very time-consuming
and therefore, we cannot finely track the instantaneous fluctua-
tions of the traffic. This directly contradicts the agile and real-
time network management required for the metro networks.
To tackle this problem, we propose the heuristic Algorithm
2 based on the basic Lyapunov drift theory. The idea behind
Algorithm 2 is that we can ignore renewal events and their
corresponding complex dynamic programming, and take a
step-wise routine to update the network status using the basic
Lyapunov iterations [23], [25]. Algorithm 2 involves an ILP
in each interval, which can be solved fast enough to follow

Algorithm 1: Optimal Dynamic Program Algorithm
input: I , J , K, N , G, T , W , V , L, E, F , S, P, Q, C, U,
arns, Φ

output: xrns, trns, drns, f rns, srns, prns, qrns, yrns, zrns

initialize renewal process by r “ ´1 and ϕr´1s “ 1
initialize queues by qr0s “ 0, yr0s “ 0, and zr0s “ 0
for n “ 0, 1, 2, ¨ ¨ ¨ do

if ϕrn´ 1s “ 1 then
r Ð r ` 1
set frame start interval αrrs to n
update incurred cost terms in (2)
find optimal costs by solving (7)

end
update ϕrns by a random binary with Prtϕrns “ 1u “ Φ
find optimal action by solving (6)
update qrns, yrns, and zrns using (1k), (4), and (5)

end

Algorithm 2: Fast Lyapunov Drift Algorithm
input: I , J , K, N , G, T , W , V , L, E, F , S, P, Q, C, U,
arns

output: xrns, trns, drns, f rns, srns, prns, qrns, yrns, zrns

initialize queues by qr0s “ 0, yr0s “ 0, and zr0s “ 0
for n “ 0, 1, 2, ¨ ¨ ¨ do

minimize objective (8) constrained to (1d)–(1j)
update qrns, yrns, and zrns using (1k), (4), and (5)

end

dynamic metro traffic streams. Algorithm 2 achieves a near-
optimal solution at the cost of consuming a bit more power.
However, it is more capable to track the dynamic patterns of
the metro traffic and shape the traffic streams more effectively
for a power-efficient operation and therefore, its optimality gap
is negligible. The algorithm begins with initializing the queues
by zero. Then, for each interval n P Z80 , we observe the
network arrival and queuing status, and solve an ILP including
the constraints (1d)–(1j) in interval n and the objective [23]

min
xrns,trns

drns,f rns,srns

I
ÿ

i“1

”

Lp
K
ÿ

k“1

pi,krns ` V dirnsq ` yirns
`

qirns ´
Di

T

pairns ´ dirnsq
˘

` zirns
´

TRi ´ TW
K
ÿ

k“1

Cksi,krns
¯ı

. (8)

After (8) is solved, the queues are updated by (1k), (4), and
(5). In the next intervals, the sequence of solving the ILP and
updating the queues continues, as explained in Algorithm 2.

VII. NUMERICAL RESULTS

We use simulation results to validate the performance of
Algorithms 1 and 2 in different scenarios. Simulations run
on a desktop computer with a Corei7-7700K processor and
16 GB installed physical memory. We employ MATLAB and
YALMIP for general coding development, while GUROBI
and CPLEX are used for solving the optimization problems.
Optimal costs and actions in Algorithm 1 are calculated using
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Fig. 3: Sample metro network topologies with fiber length in km. (a) a realistic large
topology. (b) an artificial small topology.
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Fig. 4: Distributions of the optimality gaps for the near-optimal solution of Algorithm 2
compared to the optimal solution of Algorithm 1.
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Fig. 5: Runtime of the loop in Algorithms 1 and 2 versus number of connections I .

the method described in [30]. Unless otherwise mentioned,
the constant parameters are set to J “ 1, K “ 5, T “ 5
s, N “ 320, W “ 12.5 GHz, G “ 1, V “ 1000,
L “ 1, E “ 151.2 W, F “ 37.5 W, and Φ “ 0.003
[28]. Connection requests are routed over their shortest paths
and available modulation formats are polarization-multiplexed
(PM) binary phase shift keying (PSK), PM-quadrature PSK,
PM-8 quadrature amplitude modulation (QAM), PM-16QAM,
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Fig. 6: Power efficiency with respect to the fixed resource allocation scheme versus
traffic variation coefficient for different minimum transmission rates Mi.
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Fig. 7: Excess power consumed to increase SNR margin from 0 dB to a desired value
for different numbers of available modulation formats K.
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Fig. 8: Example of time-varying transmission rate for a connection with service profile
Si “ p25 Gbit/s, 50 Gbit/s, 0 Gbit, 10 msq.

and PM-32QAM with Ck “ 2k, k P ZK1 bits per dual
polarization symbol, respectively [20], [26]. We set the at-
tenuation coefficient, nonlinear constant, optical frequency,
spontaneous emission factor, switch loss, and SNR margin to
0.22 dB/km, 1.3 1/W/km, 193.55 THz, 1.58, 3 dB, and 3 dB,
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Fig. 9: Example of time-varying transmission delay for a connection with service profile
Si “ p25 Gbit/s, 50 Gbit/s, 0 Gbit, 10 msq.
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Fig. 10: Power efficiency compared with a scenario without transmission delay and drop
rate for different values of mean transmission delay

řI
i“1Di{I and mean drop rate

řI
i“1 di{ai{I .

respectively, to precompute Ui,j,k. The network topology in
Fig. 3(a), which is loosely modelled after a real commercial
network topology covering the city of Stockholm and its
surrounding urban areas [32], is used for practical evaluation
of Algorithm 2. For the most time-consuming computations,
the artificial small network topology in Fig. 3(b) is employed.
Unless otherwise specified, the average rates Ri and average
delays Di are uniformly selected from r0, 100s Gbit/s and
r0, 1000s ms, respectively. Furthermore, Mi “ 0, Bi “ 0, and
Qi “ DiRi. Arrival processes airns are i.i.d. over all intervals
and connections, with a log-normal distribution of an average
RiT and unit variation coefficient in each interval [33].

We compare the accuracy and runtime of Algorithms 1 and
2 in Figs. 4 and 5, respectively, using the small network in
Fig. 3(b). The objective function (1a) is a mixture of two
time-averaged terms for the consumed power and drop rate,
and therefore, we need to consider both terms for comparing
the accuracy. Fig. 4 shows the distributions of the consumed
power and drop rate relative errors for a high number of
simulation runs. To provide a fair comparison, the same service
profiles and traffic flows were used for both algorithms in

each simulation run. The average consumed power and drop
rate relative errors are 0.37% and 0.31%, respectively. Thanks
to these very low relative errors, Algorithm 1 can be simply
replaced with Algorithm 2 without any noticeable performance
degradation. According to the runtime curves in Fig. 5, this
brings a speed improvement of more than three orders of
magnitude, which is vital for a scalable implementation of the
algorithm and its ability to track the dynamic traffic behavior of
the metro network. Also, Algorithm 2 can be solved more than
100 times faster than its counterparts in backbone networks,
where the SNR constraints are the main source of computa-
tional complexity [15], [20], [26]. We also consider the SNR
requirements in the proposed formulation, but describe them
using the linear constraint (1f) and move a main part of the
complexity to the precomputation stage to considerably reduce
the runtime of Algorithm 2. The short runtime of Algorithm
2 allows to decide on the network configuration based on the
latest status information, offers a reconfiguration period of a
couple of seconds, and enables adaptive tracking of dynamic
traffic patterns with a burst duration less than a minute [15],
[34].

Fig. 6 illustrates the power efficiency versus traffic variation
coefficient for the real network topology in Fig. 3(a). Each
curve represents a different ratio Mi{Ri. Here, the power effi-
ciency is the amount of saved power by Algorithm 2 compared
with a traditional resource allocation scheme that considers the
worst operational conditions and fixes the configuration of the
network elements [23]. Higher values of the power efficiency
indicate more saved power. In a typical scenario with the traffic
variation 1, the power efficiency is 72%, which means that
Algorithm 2 consumes 72% less power than the traditional
resource allocation scheme. This improvement results from the
adaptation mechanism embedded in the proposed algorithms.
In fact, our methods follow the average behaviors of the
network and not its worst operational conditions, which allows
allocating the available resource according to the actual needs
of the connections in each interval. Increasing the minimum
rates Mi fixes part of the allocated resources and consequently,
reduces the adaptation mechanism and power efficiency.

The proposed formulation supports adaptive modulation
selection and considers physical SNR limitations using the
linear constraint (1f). This constraint provides a cross-layer
tool to analyze the physical behavior of the network and
its linear structure is a novel property that expedites the
convergence speed of Algorithm 2, as illustrated in Fig. 5.
To further solidify this claim, we report in Fig. 7 the amount
of excess power consumed to increase the SNR margin from
0 dB to a desired value. Each curve corresponds to a different
set of selectable modulations, each having the K lowest-order
modulations from the introduced modulation formats. Clearly,
increasing the SNR margin results in more consumed power.
This implies that the power efficiency is improved when using
more sensitive receive transponders with a lower required SNR
margin. The sensitivity of the transponders is more important
when a higher number of modulations is available, as can
be seen in Fig. 7. In fact, high-order modulations are more
prone to noise and require a higher SNR threshold, which is
not achieved for higher SNR margins, especially for longer



9

light-paths. This limits the possibility of adaptive modulation
selection and consequently, increases the assigned bandwidth
and power consumption.

A significant benefit of the proposed algorithms is their
ability to support a general set of QoS parameters. In Figs.
8 and 9, we show how Algorithm 2 guarantees the QoS
for a randomly selected connection i with the service profile
Si “ p25 Gbit/s, 50 Gbit/s, 0 Gbit, 10 msq. As shown in Fig.
8, the transmission rate changes over time, but its values stay
above the required minimum rate of Mi “ 25 Gbit/s. The
average transmission rate approaches the desired average rate
of Ri “ 50 Gbit/s after a short transient. The same statement
holds for the average transmission delay and its prescribed
average value Di “ 10 ms is achieved after a short transient,
as can be seen in Fig. 9. Note that the transmission rate behaves
like the one reported in [23], but investigating the behavior of
the transmission delay is a new contribution.

Algorithm 2 offers adjustable parameters L and V to trade
the consumed power against transmission delay and drop rate,
respectively. Such trade-offs enhance the flexibility of the net-
work management and the network administrator can use them
to reduce operational cost or improve subscription experience.
These useful trade-offs are illustrated in Fig. 10, where the
power efficiency is defined as the amount of saved power
compared with a reference scenario having no transmission
delay Di “ 0,@i and drop rate di “ 0,@i. According to
the numerical results, we can reduce the consumed power by
10% if the network can tolerate a mean transmission delay
1
I

ř

iPZI
1
Di and a mean drop rate 1

I

ř

iPZI
1
di{ai of 125 ms

and 5%, or 250 ms and 0%, respectively. Note that the trade-
offs concern the mean values and therefore, some connections
with strict QoS, such as Di “ 0 or di “ 0, may still exist.

VIII. CONCLUSIONS

We apply the concept of traffic shaping to resource alloca-
tion in metro elastic optical networks. We develop a stochastic
optimization problem to dynamically shape input traffic flows
and provide an adaptation between allocated resources and
actual needs of the shaped traffic flows. The proposed for-
mulation considers physical-layer interactions to minimize the
total time-averaged transponder power consumption for a set
of defined QoS requirements. A general collection of minimum
transmission rate, average transmission rate, average transmis-
sion delay, and maximum burst volume is used to describe
the QoS requirements of a connection request. Although the
optimum solution of the problem can be obtained by dynamic
programming, the resulting complexity and runtime will be
too large for practical deployment. To provide a causal and
practical implementation, a heuristic solution is proposed using
the Lyapunov drift theory. The near-optimal solution of the
heuristic is achieved more than several orders of magnitude
faster with a negligible optimality gap than with dynamic
programming. Therefore, the heuristic is accurate and fast
enough to offer a power-efficient operation with a typical 72%
of power efficiency by tracking the dynamic traffic behavior
of the metro network. The consumed power can be traded
for transmission delay and drop rate using the controllable

parameters of the proposed method. In a typical scenario, these
trade-off relationships reduce the consumed power by 10% if
the service profiles can tolerate an overall average transmission
delay and drop rate of 125 ms and 5%, respectively.
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