
A procedure for automatic adaptation to the user in intelligent virtual
agents

Downloaded from: https://research.chalmers.se, 2025-10-14 12:50 UTC

Citation for the original published paper (version of record):
Wahde, M. (2019). A procedure for automatic adaptation to the user in intelligent virtual agents.
Multi Conference on Computer Science and Information Systems, MCCSIS 2019 - Proceedings of
the International Conferences on Interfaces and Human Computer Interaction 2019, Game and
Entertainment Technologies 2019 and Computer Graphics, Visualization, Computer Vision and
Image Processing 2019, 2019: 353-357. http://dx.doi.org/10.33965/ihci2019_201906c047

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



A PROCEDURE FOR AUTOMATIC ADAPTATION  

TO THE USER IN INTELLIGENT VIRTUAL AGENTS 

Mattias Wahde 
Department of Mechanics and Maritime Sciences, Chalmers University of Technology 

412 96 Göteborg, Sweden 

ABSTRACT 

This paper describes procedures for improving the functionality of task-oriented intelligent virtual agents (IVAs) and 
carrying out adaptation to the user in such agents. The functionality improvement is based on automatic extension of 
input patterns (rules), using a database of interchangeable phrases. This extension results in greater flexibility both 

regarding the user’s input and the agent’s output. The adaptation to the user relies on a complexity measure, allowing the 
agent to assess the level of complexity of the user’s input and thus to adapt the complexity level of its response. For the 
case of a simple travel information agent, the pattern extension procedure resulted in an increase in the number of 
available patterns of around a factor 20, greatly enhancing the agent’s capacity of adapting its output to the user.  

KEYWORDS 

Task-Oriented Agents, Intelligent Virtual Agents, User Adaptation 

1. INTRODUCTION 

Intelligent virtual agents (IVAs) are systems that allow a human user to interact with a computer in a natural 
way, for example using speech and gestures, and receiving speech output in return, often along with an 

animated three-dimensional on-screen avatar. Such systems are becoming increasingly important in many 

different application fields including, but not limited to, customer service, automatic booking systems for 

restaurants, transportation etc., health care and elderly care, travel information systems, and so on (see e.g. 

Laranjo et al, 2018; Chen and Cheng, 2010). However, an important aspect of such systems which is 

sometimes overlooked is their ability to adapt their (spoken) output to the user. At a first glance, this might 

seem like a minor point, but the manner in which a person is addressed, whether by an agent or a human, 

does in fact have a large impact on the person’s perception of the interaction: Some users may prefer an agent 

that gives very brief, factual answers, whereas others may prefer more verbose and affective speech. 

Moreover, the suitable manner of speech may also depend on the user’s age. That is, if two users are, say,  

8 and 88 years old, respectively, an IVA should ideally be able to address them in different ways, focusing on 

simplicity when interacting with the 8-year old and clarity when interacting with the 88-year old user. 
Broadly speaking, IVAs can be divided into two main categories, task-oriented agents and chatbots 

(Jurafsky and Martin, 2018), where the former are intended to interact with users on a specific task (such as, 

for example, a reservation request), giving accurate, reliable, and relevant information to the user, whereas 

chatbots are focused on maintaining a discussion over a large range of topics, but in a more vague and  

non-committal manner. A currently popular approach to IVAs is to build end-to-end systems using neural 

networks and deep learning (see e.g. Wen et al, 2016). However, due to their black-box nature, such systems 

are very difficult to analyze and to modify in a controlled fashion, for example in order to achieve user 

adaptation as described above. On the other hand, IVAs with more traditional approaches often rely on the 

identification and interpretation of dialogue acts that classify a speaker’s intent into a finite set of classes 

(Stolcke et al, 2000), and is used when parsing the user’s input and determining the appropriate response. 

While there has been a considerable amount of work on automatic recognition of dialogue acts, the accuracy 
of that process is around 77% at best (Mezza et al, 2018) over a large benchmark corpus (the Switchboard 

dialogue act corpus, SWDA), even though higher accuracy has been achieved on smaller data sets or using 

fewer classes than the 42 used by Stolcke et al (2000). In addition to the limited recognition accuracy for 

International Conferences Interfaces and Human Computer Interaction 2019; Game and Entertainment Technologies 2019; 
and Computer Graphics, Visualization, Computer Vision and Image Processing 2019

353



dialogue acts, it is also not clear how to achieve controlled adaptation to the user in an IVA based on 

dialogue acts.  

A simpler approach is to use a set of specific input patterns or rules (typically hand-crafted) for matching 

user input, coupled with a set of output patterns for generating the agent’s output. Such approaches were used 
in many early IVAs but have fallen out of fashion, in favor of IVAs based on the two approaches described 

above. Indeed, it is hard to specify input patterns in a sufficiently general way to handle the great variability 

in possible user inputs (i.e. the many ways in which a given query can be phrased). However, starting from a 

rather small set of hand-crafted rules, a procedure (introduced in this paper) can be devised for automatically 

extending the set of allowed inputs, as well as the set of possible outputs, using dictionary information. 

Applying this procedure, one can thus obtain an IVA that can both handle input and output variability and 

dynamically adapt its speech complexity to that of the user, with the help of a complexity measure for the 

user input, also defined below. The purpose of this short paper is twofold, namely (1) to introduce a 

procedure for extending a limited set of hand-crafted rules to a more complete set (see Section 3.1) and  

(2) to describe a method for adapting an agent’s output to the user’s input (see Section 3.2), in both cases 

using the framework of the DAISY dialogue manager, which will now be described briefly. 

2. THE DAISY DIALOGUE MANAGER 

In this work, a dialogue manager (DM) for task-oriented agents known as DAISY (an abbreviation of 

Dialogue Architecture for Intelligent Systems) has been used. DAISY operates in three stages: First, the 

system processes the user’s input (either speech or text). DAISY allows several methods for input processing 

(including, for example, the use of dialogue act recognition). However, for the purpose of this study, and 
motivated by the considerations in the previous section, a rule-based approach has been used, where the 

user’s input is matched to a set of input patterns (exemplified below). Next, if the user’s input matches any of 

the allowed input patterns, cognitive processing takes place, in the form of a sequence of elementary actions 

that make use of data in the agent’s long-term memory (LTM), working memory (WM), or both. Finally, the 

agent formulates the output using patterns of a similar kind. A typical user-agent interaction thus consists of a 

triplet I-C-O, where I represents the input processing, C the cognitive processing, and O the presentation of 

the agent’s output.  

Note that the patterns need not be rigid, neither for input nor for output: They can (and often do) involve 

so called query tags for the variable parts of the user’s input. As a simple example, a travel information agent 

may have an input pattern (one among many) of the form “When is the next bus to <Q1>?” where the 

contents of <Q1> would be compared to a set of bus stops, providing a match if the name of the bus stop is 
available in the agent’s database. In DAISY, patterns can be condensed, allowing several options to be 

represented in a compact fashion. For example, the condensed pattern “[Can, Would] you [help, assist] me, 

please?” is a short-hand representation of four specific patterns (“Can you help me, please?”, “Would you 

help me, please?” etc.).  

An agent based on DAISY also maintains information about the context of conversation and can thus, for 

example, interrupt an ongoing dialogue, answer an unrelated question, and then return to the original 

dialogue. Furthermore, DAISY features inference from context, allowing an agent to respond to questions 

that require knowledge of the current (or previous) context of conversation. A full description of DAISY will 

not be given in this short paper; see instead Wahde (2019). 

3. ADAPTATION TO THE USER 

The procedure for the agent’s adaptation to the user takes place in two stages. First, there is an offline stage 

in which the patterns (both for user input and agent output) are extended to maximize the capability of the 

agent to understand the user’s input and give it opportunity for user adaptation, something that requires that 

the agent should be able to formulate its output, in a given situation, in several different ways. Second, during 

interaction with the user, the agent measures the complexity of the user’s input, and attempts to adapt its 

output accordingly. 
 

ISBN: 978-989-8533-91-3 © 2019

354



3.1 Pattern Extension 

For this stage, it is assumed that a developer has first generated a rather small set of hand-crafted input 

patterns, which will act as a starting point. Typically, with the authoring tool that has been implemented for 

DAISY, such a specification can be completed quite rapidly. For the next stage, i.e. extending the set of input 

patterns to handle the great variability in user input, the original intention was to use a synonym dictionary on 

a word-by-word basis. However, even though it is easy to take into account word classes (for example, 

distinguishing the verb “present” as in “present a paper” from the same noun, meaning “gift”), many words 

have, of course, several meanings within the same word class, thus making it difficult to automatically extend 
patterns using synonyms (Ferret, 2010). Thus, the automatic pattern extension procedure was instead 

implemented on the level of synonymous phrases that typically consist of more than one word.  

In order to achieve maximum accuracy, crucial for a task-oriented agent, the procedure is based on a new 

pre-defined database of interchangeable (i.e. synonymous) phrases1, rather than making use of a corpus-based 

automatic approach as was done by Manishina et al (2016) and Pavlick et al (2015). Moreover, the dictionary 

features dynamic phrases, i.e. phrases containing unspecified words. For example, the phrase “the next <Q> 

departs” is synonymous with “the next <Q> leaves”, regardless of whether <Q> represents (for example) 

“train”, “flight”, “bus”, or “tram”. Such constructs provide higher accuracy than just (in this example) 

replacing the word “departs” by “leaves”, without considering the context. 

The construction of the phrase synonym database involves a considerable effort, but on the other hand it 

can be done once and for all. In order to make sure that the phrases are relevant for human-agent dialogue, a 

pre-processing method can be applied by which the words in the phrases are checked against a large corpus 
of spoken dialogue, retaining only phrases containing words that appear frequently in speech. A simple 

example of a pattern extension is as follows: Starting from the original pattern “When would you like to go?”, 

and using phrase substitutions such as “when would you => at what time would you”, “like to go => wish to 

go” etc., an extended pattern was generated that, in condensed form (see also Section 2 above), takes the 

shape “[When, At what time] [would, do] you [like, wish, want, prefer] to [go, depart, travel]?”. 

3.2 Complexity Matching 

In order to adapt to the user’s way of speaking, the agent must somehow measure, or at least estimate, the 

level of complexity of the user’s speech. A coarse-grained option for doing so would be to equip the agent 

with a camera, allowing it to assess the approximate age of the user. While possible as a complement to the 

approach described below, camera-based user age estimation would only provide partial information, at best. 

Thus, a more reliable approach would be to infer the level of complexity of the user’s input.  

Several measures of speech complexity (or quite often the reverse, i.e. speech simplicity) exist, one of the 

most well-known, and thoroughly validated, being the Flesch-Kincaid (F-K) readability measure (Kincaid  

et al, 1975). However, this measure is primarily intended for analyzing a body of text spanning many 

sentences, and can give inaccurate or at least counter-intuitive results when applied to single sentences. 
Moreover, the F-K measure is not designed specifically for use with spoken input, where sentences are often 

very short, sometimes just a single word. Thus, while the F-K measure is indeed implemented as an 

alternative in DAISY, here a much simpler complexity measure has been used, namely the number of 

syllables in the user’s input. One could also have used the number of words, but this measure was deemed 

too primitive and coarse-grained (keeping in mind, again, that the user’s input often consists of only a few 

words). With the chosen syllable-based measure, a better estimate is obtained. For example, compare the two 

semantically equivalent user-input sentences (in response to a statement by the agent regarding, say, a 

museum): (I) “Can you show an image of it?” (8 syllables), and (II) “Can you please display a visual 

representation of the museum?” (19 syllables). Even though the second sentence is perhaps a bit too 

contrived to be a likely user input, it illustrates the complexity measure quite well, when contrasted with the 

first sentence. 

The complexity matching procedure operates as follows: For a given user input, the agent registers the 
level of complexity (denoted c) using the measure just described. Next, if a matching pattern is found, the 

agent computes its relative complexity, by first sorting the complexity values for all versions of the matching 

                                                
1 The database is available at http://www.me.chalmers.se/~mwahde/DoIP/doipDescription.html 

International Conferences Interfaces and Human Computer Interaction 2019; Game and Entertainment Technologies 2019; 
and Computer Graphics, Visualization, Computer Vision and Image Processing 2019

355



pattern (expanding the condensed pattern as illustrated in Section 2) in ascending order, and then computing 

the rank of the user input.  

For example, if a condensed pattern can be expanded to 48 different specific patterns (which is the case 

for the condensed pattern shown at the end of Subsection 3.1), and the actual user input would be ranked  
(for example) as the 39th, the relative complexity r is computed as r =39/48 = 0.8125. This relative measure 

is used instead of the absolute complexity value c, since there is no reason to believe that the agent’s 

selection of possible outputs would cover the same complexity range as the inputs. Instead, when responding 

to the user (after processing the input), the agent would repeat the procedure, ranking the complexity values 

of the possible output patterns, and selecting (for output) the pattern whose relative complexity is closest to 

that of the user input. Continuing the example, if the condensed output pattern (not shown here) allows for 16 

different specific patterns, ranked in ascending order of complexity, the output would in this example be 

chosen as the pattern with index 16 x 0.8125 = 13. Of course, if the index thus computed is not an integer, the 

index should be set as the nearest integer.  

 

      

Figure 1. Left panel: A dialogue between an agent and a user who is in a hurry, and therefore expresses requests in a very 

brief manner. Right panel: A dialogue between the same agent and a more verbose and relaxed user. As can be seen in the 
dialogues, the agent adapts its output to the user’s input in both cases, using the procedure described in Subsection 3.2 

4. PRELIMINARY RESULTS AND DISCUSSION 

The methods for pattern extension and complexity matching described above have been implemented and are 

currently undergoing testing. In order to test the pattern extension method, a travel information agent was 

implemented with the capability of giving information of the kind exemplified in Figure 1. The phrase 

synonym dictionary is not yet complete (i.e. covering phrases useful in any topic). Instead, in its current 

form, it contains a set of basic phrases that are relevant in any context and a set of phrases specifically 

relevant for a travel information system of the kind exemplified in the figure.  

For the sample dialogue in Figure 1, the hand-crafted agent (i.e. the starting point) contained a total of  
7 input patterns and 7 output patterns, distributed over the various user-agent interactions defined in the 

dialogue. Next, the pattern extension procedure was applied, resulting in a total of 118 input patterns and  

165 output patterns, representing a combined increase by a factor of 20.2. The magnitude of the increase in 

the number of patterns depends on several factors, but the numbers just given provide an indication of the 

typical magnitude. Moreover, in this agent, rather than rigidly selecting the output pattern index as described 

in Section 3.2 above, a modification was implemented such that the output pattern is selected from a range of 

indices centered on the computed index, to allow also greater variability in the agent’s output, which is an 

important factor to consider in task-oriented agents.  

The initial results regarding adaptation to the user, which are qualitative in nature, show that the agent 

does indeed generate output that matches the level of complexity of the user’s input rather well. These initial 

tests will be followed by a more rigorous examination, where a large group of users will be exposed to agents 
either with or without user adaptation, and will then give (subjective, but detailed) feedback on the user 

experience for the two cases. Another rather natural observation is the fact that the complexity matching 

works well only if the agent has a large set of specific patterns (both for input and for output) to choose from, 

thus making the first step (pattern extension) a crucial component of the system.  

ISBN: 978-989-8533-91-3 © 2019

356



5. CONCLUSION 

A procedure for automatic extension of patterns (rules) for intelligent virtual agents has been introduced, 

allowing greater variability in the user’s input and also making it possible for an agent to adapt the 

complexity level of its output to that of the user, provided that a database of synonymous phrases is available. 

Such a database is currently under construction. Once it has been completed, it should prove useful in many 

different task-oriented agents. A specific method for adaptation to the user’s style of speech in task-oriented 

agents has also been introduced and briefly described. Preliminary results, for the case of a simple travel 

information agent, indicate that the pattern extension method leads to a large increase in the set of patterns, 
and that the method for adaptation to the user achieves the intended objective of automatic matching to the 

user’s style of speech. 

REFERENCES 

Chen, B. and Cheng, H. H., 2010. A review of the applications of agent technology in traffic and transportation systems, 
IEEE Transactions on Intelligent Transportation Systems, Vol. 11, No. 2, pp. 485-497. 

Ferret, O., 2010. Testing semantic similarity measures for extracting synonyms from a corpus. Proceedings of the 
Seventh International Conference on Language Resources and Evaluation (LREC'10), Malta, pp. 3338-3343. 

Jurafsky, D and Martin, J.H. 2018.  Speech and Language Processing (3rd ed.), Prentice-Hall, New Jersey. 
Kincaid, J.P. et al 1975. Derivation of new readability formulas (automated readability index, fog count, and Flesch 

reading ease formula) for Navy enlisted personnel. Research Branch Report 8–75. Chief of Naval Technical Training.  

Laranjo, L. et al 2018. Conversational agents in healthcare: A systematic review. Journal of the Americal Medical 

Informatics Association, Vol. 2, No. 9, pp. 1248-1258. 

Manishina, E. et al 2016. Automatic corpus extension for data-driven natural language generation. Proceedings of the 
Tenth International Conference on Language Resources and Evaluation (LREC'16), Paris, France, pp. 3624-3631. 

Mezza, S. et al 2018. ISO-standard domain-independent dialogue act tagging for conversational agents. Proceedings of 
the 27th International Conference on Computational Linguistics, Santa Fe, NM, USA, pp. 3539-3551 

Pavlick, E. et al 2015, PPDB 2.0: Better paraphrase ranking, fine-grained entailment relations, word embeddings, and 
style classification. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 
7th International Joint Conference on Natural Language Processing, Beijing, China, Vol. 2, pp. 425-430 

Stolcke A. et al 2000 Dialogue act modeling for automatic tagging and recognition of conversational speech. 
Computational Linguistics, Vol. 26, No. 3, pp. 339-373 

Wahde, M. 2019. A dialogue manager for task-oriented agents based on dialogue building-blocks and generic cognitive 

processing. Proceedings of the 9th Workshop on Applications of Software Agents (in press) 

Wen, T.-H. et al 2016. A network-based end-to-end trainable task-oriented dialogue system. arXiv preprint arXiv: 
1604.04562.  

International Conferences Interfaces and Human Computer Interaction 2019; Game and Entertainment Technologies 2019; 
and Computer Graphics, Visualization, Computer Vision and Image Processing 2019

357




