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Abstract—Future autonomous systems require wireless connec-
tivity able to support extremely stringent requirements on both
latency and reliability. In this paper, we leverage recent develop-
ments in the field of finite-blocklength information theory to illus-
trate how to optimally design wireless systems in the presence of
such stringent constraints. Focusing on a multi-antenna Rayleigh
block-fading channel, we obtain bounds on the maximum number
of bits that can be transmitted within given bandwidth, latency,
and reliability constraints, using an orthogonal frequency-division
multiplexing system similar to LTE. These bounds unveil the fun-
damental interplay between latency, bandwidth, rate, and relia-
bility. Furthermore, they suggest how to optimally use the avail-
able spatial and frequency diversity. Finally, we use our bounds to
benchmark the performance of an actual coding scheme involving
the transmission of short packets.

I. INTRODUCTION

The next generation of wireless cellular systems (5G) is ex-
pected to be a key enabler of future autonomous systems, be them
connected vehicles, smart meters, or automated factories [1], [2].
The characteristics of the wireless data traffic typically generated
within these autonomous systems is, however, drastically differ-
ent from the one encountered in traditional broadband wireless
applications: short data packets (on the order of hundreds of bits)
that need to be delivered with stringent requirements in terms
of latency and reliability.

For example, machine-type communication (MTC) for factory
automation may involve the transmission of packets containing
100 information bits within 100 µs and with packet error proba-
bility not exceeding 10−9 [3], [4]. In traffic safety applications,
one may need the packet error probability not to exceed 10−5 [5].
These requirements are much more stringent than the ones that
current wireless cellular systems, i.e., long term evolution (LTE),
need to handle. Standardization activities are currently ongoing
within the 3rd generation partnership project (3GPP), with the
aim of evolving LTE and achieving these new requirements.

One way to reduce latency is to assign to each user a re-
source block (RB) consisting of a smaller number of orthog-
onal frequency-division multiplexing (OFDM) symbols than
currently done in LTE.1 This yields a shorter transmission time
interval (TTI). The impact of a reduced TTI on the performance
of LTE has been recently analyzed in [6], [7].

In order to increase reliability, one can use the available
transmit and receive antennas to provide spatial diversity rather
than spatial multiplexing. This has been investigated in [3], [4] in

a factory-automation scenario, under the assumption that perfect
channel state information (CSI) is available at the receiver.

The problem of optimally designing a communication system
operating under a stringent latency constraint can be addressed in
a fundamental fashion using the finite-blocklength information
theoretic bounds recently developed by Polyanskiy et al. [8].
Using these tools, Durisi et al. [9] developed bounds on the
maximum coding rate over multi-antenna Rayleigh block-fading
channels. Since these bounds do not assume the a priori availabil-
ity of perfect CSI, they unveil the fundamental tradeoff between
exploiting spatial and time-frequency diversity (to obtain high
reliability) on the one hand, and reducing channel-estimation
overhead on the other hand. The bounds in [9], however, require
Monte-Carlo simulations and are difficult to compute for packet
error probabilities below 10−6. An alternative approach to obtain-
ing achievability bounds on the maximum coding rate is through
random-coding error exponent analyses [10]. The random coding
error exponent of Rayleigh-fading channels for the case when
no CSI is available at the receiver has been obtained in [11] for
the single-input single-output case. However, no error exponent
results are available for the no-CSI multiple-antenna case.

Contribution: In this paper, we analyze the problem of
designing an OFDM based system (such as LTE) able to satisfy
a given set of requirements on reliability, latency, and bandwidth
occupancy. The specific contributions are as follows. We use
the information theoretic bounds recently developed in [9] for
the multiple-antenna Rayleigh block-fading channel to analyze
the tradeoff between latency, bandwidth, and rate for the case
when each transmit packet comprises a certain number of RBs
that are assumed to be orthogonal in time and frequency, and
subject to independent fading. Our analysis applies to both the
uplink (UL), where we assume a fixed average power per use
of the channel in time, and to the downlink (DL), where we
assume instead a power spectral density (PSD) constraint. The
analysis is performed for a target packet error probability of
10−5. To understand how to optimally use spatial and frequency
diversity when the requirement on packet error probability is
10−9 or lower (ultra-reliable communications), we extend the
error-exponent analysis in [11] to the case of multiple-antenna
systems and provide an upper bound on the error probability
for the case when the input distribution is the so called unitary
space-time modulation (USTM) [12]. Finally, we use our bounds

1In LTE release 13, an RB comprises 12 adjacent subcarriers over 7 consecu-
tive OFDM symbol durations; in this paper, however, we allow an RB to span
an arbitrary number of adjacent subcarriers and consecutive OFDM symbols.
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Fig. 1. An example of three different UE resource allocations. Here, ns = 6,
no = {2, 3, 4}. The fading process is assumed constant over an RB and the
RBs are assumed to fade independently (RB spacing larger than the channel
coherence bandwidth).

to benchmark the performance of a coding scheme based on pilot
transmission and convolutional encoding of the information bits.

Notation: Uppercase letters such as X denote scalar ran-
dom variables and their realizations are written in lowercase, e.g.,
x. We use two different fonts to write deterministic matrices (e.g.,
X) and random matrices (e.g., X). The superscript H denotes
Hermitian transposition and tr(·) and det(·) denote the trace
and the determinant of a given matrix, respectively. The identity
matrix of size a × a is written as Ia. We denote by V(·) the
Vandermonde determinant [13, p. 22]. The distribution of a
circularly symmetric complex Gaussian random variable with
variance σ2 is denoted by CN

(
0, σ2

)
. Finally, log(·) indicates

the natural logarithm, [a]
+ stands for max{0, a}, b·c is the floor

operator, Γ(·) denotes the Gamma function, and E[·] denotes the
expectation operator.

II. SYSTEM MODEL

We consider a wireless multiple-antenna communication sys-
tem employing OFDM, similar to what is used in LTE [14]. As
shown in Fig. 1, a UE is assigned ` RBs that are orthogonal in
frequency, and constitute a packet.2 An RB consists of no OFDM
symbols, each one spanning ns consecutive subcarriers. Hence,
an RB contains a total of nc = nons time-frequency slots, also
referred to as resource elements in LTE. Note that no is related to
the packet duration (in LTE, this quantity is referred to as TTI),
whereas ns` is related to the bandwidth assigned to a given UE.
In LTE, the duration of an OFDM symbol is approximately 71.4
µs and the subcarrier spacing is 15 kHz. Hence, an RB consisting
of no = 7 OFDM symbols and ns = 12 subcarriers occupies
180 kHz and lasts for 0.5 ms. Obviously, decreasing the number
no of OFDM symbols within each RB results in shorter delays.
This is currently under investigation within 3GPP [6].

We assume the channel fading to stay constant within each
RB and to change independently from RB to RB (block-fading
model [12]). This assumption is reasonable for propagation

2In LTE UL, the product ns` has to be a multiple of 2, 3 and 5 due to
implementation constraints. This will not be taken into account in this paper.

environments characterized by low delay and Doppler spreads.
One such example is the so called LTE pedestrian model, where
the coherence bandwidth and the delay spread are approximately
23 MHz and 200 ms, respectively [15]. The number of frequency
diversity branches, i.e., the number of independent fading real-
izations within a given packet, is equal to the number of resource
blocks `. We shall focus on Rayleigh fading. We shall also
assume that the channels between each transmit-receive antenna
pair fade independently (no spatial correlation).

The channel input-output relation within the kth RB, for the
case when the number of transmit antennas is nt and the number
of receive antennas is nr, can be expressed as:

Yk = XkHk + Wk, k = 1, . . . , `. (1)

Here, Xk ∈ Cnons×nt and Yk ∈ Cnons×nr are the transmitted
and received matrices, respectively; Hk ∈ Cnt×nr is the fading
matrix, whose entries are identical and independently distributed
(i.i.d.) CN (0, 1) random variables. Finally, Wk ∈ Cnons×nr ,
which denotes the thermal noise at the receiver, has independent
CN (0, 1)-distributed entries. The processes {Hk} and {Wk} are
i.i.d. across k and are mutually independent.

Throughout the paper, we shall assume that the realizations
of the random fading matrices {Hk}`k=1 are unknown to the
transmitter and the receiver. As discussed in, e.g., [9], [16], and
[17], this allows us to take into account the potential rate loss
caused by the transmission of training sequences for channel
estimation at the receiver.

Next, we define a channel code for the channel (1) using
standard information-theoretic terminology (see, e.g., [8], [9]).

Definition 1: An (`, ns, no,M, ε, ρ)–code for the channel (1)
consists of

• An encoder f : {1, . . . ,M} → Cnons×nt` that maps
a message J ∈ {1, . . . ,M} to a codeword C(J) ∈
{C1, . . . ,CM}. Each codeword can be expressed as a
concatenation of ` subcodewords, each spanning an RB.
Specifically, Cm = [Cm,1, . . . ,Cm,`], m ∈ {1, . . . ,M},
where Cm,k ∈ Cnons×nt for k = 1, . . . , `. Each subcode-
word satisfies the power constraint

tr
(
CH
m,kCm,k

)
= ρ. (2)

• A decoder g : Cnons×nr` → {1, . . . ,M} that satisfies the
maximum error probability constraint

max
1≤j≤M

Pr
{
g
(
Y`
)
6= J | J = j

}
≤ ε (3)

where Y` = [Y1, . . . ,Y`] is the channel output induced by
codeword X` = [X1, . . . ,X`] = f(j) through (1).

For the UL, we shall set ρ in (2) as follows:

ρ = noρu/`. (4)

Here, ρu can be thought as the average SNR per use of the
channel in time (recall that the noise is assumed to have unit
variance). In the DL, we shall instead assume a constraint on
the PSD, i.e., on the average SNR per time-frequency slot.
Specifically,

ρ = nonsρd. (5)



The subcodeword power constraints (4) and (5) imply the
per-codeword power constraints tr

(
CH
mCm

)
= noρu and

tr
(
CH
mCm

)
= nons`ρd,m = 1, . . . ,M , for the UL and the DL,

respectively. Constraint (4) is motivated by the limited battery
power at the UE, whereas constraint (5) captures that cellular
base-stations need to fulfill spectral transmission masks.

The maximum coding rate R∗ denotes the largest number
of bits per time-frequency slot that can be transmitted with
probability of error no larger than ε, for given ρ, ns, ` and no:

R∗ , sup

{
log2(M)

nsno`
: ∃ (`, ns, no,M, ε, ρ) –code

}
. (6)

For a given subcarrier spacing and a given OFDM symbol
duration, R∗ is related to the largest number of bits bnons`R

∗c
that can be transmitted with reliability (1 − ε) through the
channel (1) for given latency and bandwidth constraints.

III. FINITE-BLOCKLENGTH BOUNDS

Finite-blocklength bounds for the multiple-antenna Rayleigh
block-fading channel were recently proposed in [9]. Here, we
will review these bound and adapt them to our setting (differently
from [9], we allow coding over frequency, which requires a
different power normalization). The following definition will
turn out useful.

Definition 2: Assume that nc = nons is larger than the total
number of antennas, nt + nr. Let Σk be an nc × nc diagonal
matrix with positive diagonal entries. Let ξ be a positive real
constant, q = min{nt, nr} and p = max{nt, nr}. For k =
1, . . . , ` we define the random variable

Sk(Σk, ξ) = c(Σk)− tr
(
ZHk Zk

)
− log(ψ(�, ξ)) (7)

where {Zk}`k=1 are independent complex Gaussian nons × nr

matrices with i.i.d. CN (0, 1) entries and � = diag(Λ1, . . . ,Λnr)
is a diagonal matrix whose diagonal entries are the ordered eigen-
values of ZHk ΣkZk. The function, c(Σk) is given as follows:

c(Σk) = nt(nc − nt) log

(
ρ

nt

)
− nr log(det(Σk))

− nt(nc − nt − nr) log

(
1 +

ρ

nt

)
+

nt∑
u=1

log(Γ(u))−
nc∑

u=nc−q+1

log(Γ(u)) . (8)

Furthermore,

ψ(�, ξ) =
det(M(�, ξ))
V(�)

nr∏
i=1

exp(−Λi/(1 + ρ/nt))

Λnc−nr
i

(9)

where

[M(�, ξ)]i,j =



Λnt−j
i γ̃

(
[nc + j − p− nt]

+
,Λiξ

)
,

1 ≤ i ≤ nr, 1 ≤ j ≤ nt;

exp(−Λiξ)
[
∂nt−j

∂δnt−j δ
nc−i

∣∣
δ=ξ

]
,

nr < i ≤ p, 1 < j ≤ nt;

Λnc−j
i exp(−Λiξ) ,

1 ≤ i ≤ nr, nt < j ≤ p

(10)

with

γ̃(n, x) ,
1

Γ(n)

x∫
0

tn−1 exp(−t) dt (11)

denoting the regularized incomplete Gamma function.
With the help of Definition 2, we shall provide in the next two

theorems an achievability (lower) and a converse (upper) bound
on the maximum coding rate R∗ defined in (6).

Theorem 1: The max. coding rate R∗ is lower-bounded as

R∗ ≥ max

{
log2(M)

nsno`
: εub(M) ≤ ε

}
(12)

where

εub(M) = E

exp

−[∑̀
k=1

Sk(Σk, ξ)− log(M − 1)

]+
 .

(13)

Here, Sk(Σk, ξ) is defined in (7), ξ = ρ/(nt + ρ), and Σk =
diag(ρ/nt + 1, . . . , ρ/nt + 1︸ ︷︷ ︸

nt

, 1, . . . , 1︸ ︷︷ ︸
nc−nt

).

Proof: The bound is obtained by applying the dependence
testing bound [8, Thm. 22] to the channel (1) with input distri-
bution chosen as USTM. For details, see [9, Thm. 1].

Theorem 2: The max. coding rate R∗ is upper-bounded as

R∗ ≤ sup
{Σk}`k=1

inf
γ>0

1

nsno` log(2)

×

γ − log

[Pr

{∑̀
k=1

Sk

(
Σ̃k, ξ

)
≤ γ

}
− ε

]+
 .

(14)

Here, Sk(Σ̃k, ξ) is defined in (7), ξ = ρ/(nt + ρ) and the
matrices {Σ̃k}`k=1 are given as follows

Σ̃k =

[
Σk + Int

0
0 Inc−nt

]
(15)

with {Σk}`k=1 being nt×nt diagonal matrices with nonnegative
elements satisfying the power constraint tr(Σk) = ρ.

Proof: The proof relies on the metaconverse theorem [8,
Thm. 28]. The auxiliary distribution is chosen as the output
distribution induced by an USTM input through the channel (1).
For details, see [9, Thm. 2 and Remark 2].

In the next section, the bounds in Theorem 1 and Theorem 2
will be used to characterize R∗ for given latency and bandwidth
occupancy constraints. Our implementation of the numerical
routines needed for the evaluation of these bounds (available as
part of spectre–short-packet communications toolbox [18])
requires Monte-Carlo analysis, rendering these bounds difficult
to compute for packet error probabilities below 10−5. To address
this problem, we shall complement these bounds with an achiev-
ability bound on R∗ based on Gallager’s random coding error
exponent that can be easily computed for low error probabilities.

Theorem 3: Let nc = nons be larger than the total number
of antennas nt + nr. Fix a rate R and let q = min{nt, nr}. Let
also Y = XH + W where H and W are defined as in (1) and



X = (ρ/nt)�, where � ∈ Cnons×nt is unitary and isotropically
distributed. Finally, let � = diag(Λ1, . . . ,Λnr

) denote the
ordered eigenvalues of YHY. The average error probability ε̄ is
upper-bounded by

ε̄ ≤ min
0≤µ≤1

exp(−`(E(µ)− µR)) (16)

where

E(µ) = c(µ)

− logE�

[(∏nr

i=1 e
ξΛiΛnr−nc

i

V(�)
det(M(�, ξ))

)(1+µ)
]

(17)

with ξ = ρ/((1 + ρ) (1 + µ)) and

c(µ) = (1 + µ) log


(

1 + ρ
nt

)nrnt
1+µ

ξnt(nc−nt)
∏nt

i=1 Γ(i)∏nc

i=nc−q+1 Γ(i)

 .

(18)

The matrix M(�, ξ) in (17) is defined in (10). Furthermore,
the probability distribution function of the ordered eigenvalues
(Λ1, . . . ,Λnr) is given by

f�(Λ) =
exp(−

∑nr

i=1 λi) (
∏nr

i=1 λi)V(Λ)
2∏nr

i=1 Γ(nc − i+ 1) Γ(nr − i+ 1)
. (19)

Proof: This result follows essentially from [11] by choosing
USTM as input distribution. The details are omitted due to space
constraints.

Remark 1: The average error probability ε̄ in (16) can be
converted into maximum error probability (see (3)) by following
a standard procedure (see, e.g., [19, p. 204]).

Unfortunately, the expectation in Theorem 3 seems formidable
to solve in closed form. However, for small nr, say nr ≤ 3, it
can be efficiently evaluated numerically.

IV. NUMERICAL RESULTS

In this section, we shall use the bounds (12), (14), and (16)
to derive guidelines on the optimal design of the OFDM system
described in Section II as a function of the latency, bandwidth,
and reliability constraints.

The numerical evaluation of the upper bound (14) is chal-
lenging because it requires one to maximize over the diagonal
matrices {Σk}`k=1. Throughout this section we simplify the
numerical evaluations by assuming Σk = (ρ/nt) Int . The
accuracy of this approximation was validated numerically in [9].

A. Dependency of R∗ on ` and no

In this section, we shall use the bounds in Theorem 1 and 2 to
investigate how R∗ depends on the number of resource blocks `
and the number of OFDM symbols no. We shall consider both a
1×2 and a 2×2 multiple-input multiple-output (MIMO) system
in the UL and both a 2 × 1 and a 2 × 2 MIMO system in the
DL. The target packet error probability is 10−5. Furthermore,
we shall assume throughout this subsection that the number of
subcarriers per RB, ns, is 12 and consider both the case no = 2
and no = 4 OFDM symbols. For an OFDM symbol duration of
71.4 µs (including cyclic prefix) as in LTE, these values of no

yield a packet duration of 142.8 µs and 285.6 µs, respectively.

We shall also assume a subcarrier spacing of 15 kHz (again as
in LTE) so that we can relate the product ns` to the bandwidth
assigned to a given UE.

Our results for the UL are reported in Fig. 2 (1×2 MIMO) and
Fig. 3 (2× 2 MIMO). As expected, achievability and converse
bounds are loose for small values of ` and become progressively
tighter as ` (and, hence, the packet size nons`) increases. As
expected,R∗ is larger for the case no = 4 because the packet size
is larger, which allows for more resilience against the additive
noise. The crossing between the converse curve for the case no =
2 and the one for the case no = 4 for values of ` smaller than 3 is
merely a consequence of the looseness of our converse bound for
very small values of ` (note that this crossing does not occur for
the achievability bound). As far as the dependency of R∗ on `
is concerned, we observe that our bounds are not monotonic
in `, but that there exists an optimal ` (roughly about ` = 5
for the no = 4 case) beyond which the maximum coding rate
decreases. To the left of this optimal value, the main bottleneck is
the limited time-frequency diversity, whereas to the right of this
optimal value the main bottleneck is the low power per resource
block available (the power scales inversely with `, see (4)).

In Fig. 3, we consider the 2 × 2 MIMO case. We see that
adding a second transmit antenna is beneficial for small values
of `. Indeed, for the case no = 4, the achievable bound peaks
at about 0.94 bits per time-frequency slots compared to 0.54
bits per time-frequency slots in the 1 × 2 case. Furthermore,
this peak occurs at smaller values of ` (3 instead of 5), which
implies that the additional spatial diversity provided by the
second antenna reduces the need for frequency diversity. This
results in bandwidth savings. We note also that, as ` increases,
the rate gains resulting from the use of a second antenna diminish.
This is accordance to the well-known result that in the low-SNR
regime, using a single antenna is optimal when the channel is
not known to the receiver [20].

The DL scenario is analyzed in Fig. 4 for the 2× 1 and 2× 2
cases. Since now the available power increases with ` because
of the PSD constraint (5), all curves become monotonic in `. As
shown in the figures, our bounds allow one to estimate accurately
the bandwidth and latency required to operate at a given rate. We
see for example that for the 2× 1 MIMO case, one can operate
at a rate of approximately 1.4 bits per time-frequency slot using
a packet of duration 285.6 µs (no = 4) and a bandwidth of
1.26 MHz, or alternatively a packet of duration 142.8µs (no = 2)
and a bandwidth of 1.44 MHz.

B. Optimal use of spatial and frequency diversity

To investigate how to optimally use spatial and frequency
diversity, we analyze in this section a DL system with a variable
number of transmit antennas nt and a single receive antenna
(nr = 1). We consider a scenario in which 130 information
bits are transmitted over nons` = 168 time-frequency slots
(R ≈ 0.77). We shall assume no = 2 and investigate how the
error probability behaves as a function of ρd for different values
of ` and nt. Note that since the total packet length is fixed to 168,
larger values of ` imply smaller RBs. Specifically, each OFDM
symbol is assumed to span ns = 84/` subcarriers.
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Fig. 2. Achievability bound (12) and converse bound (14) on the maximum
coding rate in a UL 1 × 2 system for different number of resource blocks `.
Here, ρu = 20 dB, ε = 10−5, and ns = 12.
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Fig. 3. Achievability bound (12) and converse bound (14) on the maximum
coding rate in a UL 2 × 2 system for different number of resource blocks `.
Here, ρu = 20 dB, ε = 10−5, and ns = 12.

In Fig. 5, we plot the achievability bound (16) after converting
it to maximum error probability [19, p. 204] for the case nt ∈
{1, 2, 4} and ` = {4, 12} (which yield ns = 21 and ns = 7,
respectively). For the 8× 1 case and both ` = 4 and ` = 12, we
compare the achievability bound (16) to the achievability and
converse bounds (12) and (14) up to the values of ε for which
these two bounds can be computed. As expected, (16) is less
accurate than (12) for moderate error probabilities. For example,
when nt = 8 and ` = 4, the gap between these two achievability
bounds is 0.26 dB at ε = 10−4. The gap turns out to be larger for
smaller nt values. For example, when nt = 1, the gap between
the two bounds at ε = 10−4 (not shown in the figure) is 3.8 dB.

We see from the figure that at ε = 10−9 the minimum
value of SNR ρd predicted by our bound (16) is achieved by
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Fig. 4. Achievability bound (12) and converse bound (14) on the maximum
coding rate in a DL 2×1 and a DL 2×2 system for different number of resource
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time-frequency slot. The achievability bound (12) and converse bound (14) are
included for comparison for the cases nt = 8 and ` = {4, 12}.

selecting nt = 8 and ` = 4, which yields 32 independent fading
branches. A similar SNR value is needed when nt = 4 and
` = 12, yielding 48 fading branches. The figure also illustrates
that further increasing the number of fading branches, as in the
nt = 8, ` = 12 case, is not effective because one is limited
by the channel estimation overhead. Reducing the number of
diversity branches as in the nt = 1, ` = 12 case is also not
effective, because of the lack of diversity (which is reflected by
the more gentle slope of the curves).

C. Practical coding schemes

We finally benchmark the performance of an actual coding
scheme against the bounds provided in Theorems 1 and 2. We
consider a 1 × 2 MIMO system in UL and assume no = 2,
ns = 12, and ` = 8, which results in a packet length of 192



time-frequency slots consisting of 8 RBs. We also assume that
92 information bits are transmitted, which results in a rate of
92/192 ≈ 0.48 bits per time-frequency slot. Within each RB,
we reserve np time-frequency slots for pilot transmission. In the
remaining (nons − np)` slots we transmit coded bits mapped
into QPSK symbols. As coding scheme, we consider a tail-biting
(368, 92) convolutional code with a memory-15 nonsystematic
encoder, which is designed for the case np = 1 (indeed, 368
coded bits yield 184 QPSK symbols, which together with the 8
pilot symbols, yield the desired blocklength of 192). For values
of np larger than 1, the encoder output is punctured. Specifically,
two coded bits are punctured for each additional pilot symbol.

At the receiver side, the pilot symbols are used to estimate the
channel coefficients by means of a maximum-likelihood (ML)
estimator. Thereafter, maximum ratio combining is performed
and the bit-wise log-likelihood ratios are derived and given as
input to the decoder. A sub-optimum list decoding algorithm
based on ordered statistics has been used for the simulations.
Specifically, ordered statistics decoding with test patterns of
maximum weight equal to 3 has been adopted. This was shown
to provide a negligible loss with respect to ML decoding for
codes of length up to a few hundred bits [21].

The packet error probability-SNR tradeoff of this coding
scheme is depicted in Fig. 6 for np = {1, 2, 4, 6, 8}. As a
benchmark, we also depict the performance predicted by the
finite-blocklength bounds in Theorem 1 and 2. We note that, for
the chosen coding scheme, the optimal number of pilots turns
out to be np = 6. For this value of np, the SNR gap between the
coding scheme and the achievability bound (12) is about 2.68 dB
at ε = 10−2. Furthermore, our numerical results illustrate that
the performance of our coding scheme is extremely sensitive to
the chosen number of pilot symbols.

V. CONCLUSION

We considered the problem of designing an OFDM-based
system, similar to LTE, operating under stringent constraints on
latency and reliability. Information-theoretic finite-blocklength
bounds turned out to provide valuable insight on how to choose
the system bandwidth as a function of the desired reliability
and latency constraints, and how to exploit the available spatial
and frequency diversity. We also used our bounds to benchmark
the performance of an actual coding scheme, which relies on
convolutional encoding and the transmission of pilot symbols.
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