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Robust lateral control of long-combination vehicles under
moments of inertia and tyre cornering stiffness uncertainties

Maliheh Sadeghi Kati , Hakan Köroğlu and Jonas Fredriksson

Division of Systems and Control, Department of Electrical Engineering, Chalmers University of Technology,
Gothenburg, Sweden

ABSTRACT
A robust steering-based controller synthesis is presented for an A-
double combination vehicle with a steerable dolly. The controller
ensures robust stability and performance in the face of uncertainties
in the cornering stiffness of the tyres and the moments of inertia of
the semitrailers, which are treated as time-varying and time-invariant
parameters respectively. A descriptor-type representation of the
system is employed since a standard state-space model depends
rationally on the moments of inertia. The controller synthesis is for-
mulated as an H∞-type static output feedback, which uses infor-
mation from only one articulation angle. The driver steering input is
also used by including a static feed-forward. The proposed synthesis
method is based on linear matrix inequality (LMI) optimisation. The
controller is verified based on the simulation results obtained from
both (approximate) linear and (high-fidelity) nonlinear vehicle mod-
els. The results indicate significant improvement in the high-speed
lateral performance of the A-double in the presence of parametric
uncertainties.
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1. Introduction

Lateral control of long-combination vehicles for low and high speeds has long been an
active research area. The majority of the lateral control approaches for long-combination
vehicles (e.g. [1–6]) are based on the assumption that parameters and variables of the con-
sidered vehicle model for control designs are known and measurable or can be estimated.
Consequently, the applicability of the control systems are restricted by the accuracy of vehi-
cle parameters such as yaw moment of inertia, mass, location of center of gravity and tyre
cornering stiffness coefficients.

However, new technologies such as on-board weighing (OBW) or weigh-in-motion
(WIM) [7,8] make it possible to measure and monitor the axle load as well as the total
mass and consequently estimate the centre of gravity of each vehicle unit. On the other
hand, the moment of inertia of the vehicle units and the cornering stiffness of the tyres
are inevitably the most uncertain vehicle parameters that are difficult or impossible to be
accurately measured or estimated. These parameters may vary depending on many factors
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such as the variety of possible loading conditions, variation of tyre inflating pressure, road
surface condition, weather condition, etc. Therefore, there is a crucial need to design the
controller in such a way that the controlled vehicle not only maintains robust stability in the
presence of parameter uncertainties and un-modelled dynamics but also achieves a desir-
able level of robust performance. This approach of design in the presence of parametric
uncertainty, called robust control, requires no information about the uncertain parame-
ters besides the knowledge of their minimum and maximum values and also lower and
upper bounds on the rates-of-variation of time-varying parameters. Only a few works in
the literature suggest robust syntheses for heavy-duty vehicles (e.g. [9–15]) considering
robustness against uncertainties in the vehicle parameters such as the vehicle longitudinal
speed, road adhesion coefficient, cargo loads in trailers, the tyre cornering stiffness and
actuator model uncertainty. To the best of our knowledge, no existing research on heavy
vehicles has addressed robust syntheses to deal simultaneously with uncertainties in both
tyre cornering stiffness and yaw moment of inertia.

In this paper, the design of a robust lateral controller is considered for an A-double
combination vehicle (tractor-semitrailer-dolly-semitrailer) equipped with an active dolly
steering system as shown in Figure 1(a). The main objective of the controller is to guarantee
robust stability and improve the lateral performance of the vehicle at high speeds in the
face of parametric uncertainties such as the cornering stiffness of the tyres and the yaw
moments of inertia of the semitrailers. The controller design problem is formulated based
on a static output feedback synthesis in which only one easily measurable state variable
is required. As the measurement of the driver steering is also available, a combined static
output feedback and static feed-forward controller is proposed. The synthesis problem is
formulated as an H∞-type design problem and can conveniently be solved by using linear
matrix inequality (LMI) optimisations.

A great deal of research on developing lateral dynamics control systems employs a linear
time-invariant (LTI) tyre model in which it is assumed that the tyre cornering stiffness is a
constant parameter. However, the reliability of the LTI tyre model under different driving
conditions, especially in evasive manoeuvers (e.g high lateral acceleration manoeuvers),
has been a major concern and these models have limitations to represent nonlinear dynam-
ics of the tyres. To deal with the problem of tyre nonlinearity, it is possible to synthesise the
robust controller for the uncertain linear vehicle model with tyre cornering stiffness as an
uncertain parameter within a known interval [9,16–18]. In order to have a more accurate
tyre model and capture some important un-modelled tyre dynamics, the cornering stiffness
can also be viewed as a time-varying uncertain parameter [19–21]. In this fashion, a linear

Figure 1. A-double combination vehicle.
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time-varying (LTV) tyre model can be used in which the cornering stiffness is treated as a
time-varying uncertain parameter. In addition, the moments of inertia enter rationally in
the system matrices of the linear vehicle model. Therefore, a descriptor-form system rep-
resentation of the linear vehicle model is considered as a more convenient model to work
with if compared to the standard state-space description, which would have rational depen-
dence on the moments of inertia. The LMI optimisations are thus formulated based on a
representation of the system in the descriptor form with affine parameter dependence in
the system matrices. With affine parameter dependence in all the descriptor form matrices,
one will then be faced LMI conditions with affine or polynomial parameter dependence,
for which it is easier to obtain finitely many LMIs for synthesis (see [22]).

The paper is organised as follows. In the next section, a nonlinear and a linear dynamic
model of the A-double combination vehicle (briefly denoted as the A-double) are described
that are used for the analysis and synthesis purposes. The robust control synthesis is then
introduced in Section 3. The application to the lateral control of the A-double is then
explained in Section 4, where the simulation results are also presented. Finally, the paper
is concluded with a summary and some concluding remarks in Section 5.

2. Vehicle models

In this study, two vehicle models for the A-double are considered: approximate (linear) and
high-fidelity (nonlinear). First a detailed description of the linear vehicle model is provided
which will be utilised in the design of the controller. This is then followed by brief expla-
nation of a high-fidelity nonlinear vehicle model, referred to as the Volvo Transport Model
(VTM), which is used in order to evaluate the designed controller.

2.1. Linear vehicle model in descriptor form

For mechanical systems, the descriptor form is usually obtained through the Lagrangian
formulation, which is an alternative to the Newtonian approach. A major advantage of
the Lagrangian formulation over Newtonian approach is that it can eliminate constraints
and coupling forces between the units at the linking joints with a proper choice of the
generalised coordinates [23]. Therefore in this study, a linear single-track model of the A-
double is derived with five degrees of freedom (i.e. lateral and yaw motions of the tractor
and three yaw motions of the towed units caused by the articulation joints) based on the
Lagrangian formulation [24,25]. In the derivation of the proposed linear model, the lon-
gitudinal velocity vx is considered as a constant value and all angles are assumed to be
small.

Let us now briefly describe the Lagrangian approach with which a model is derived for
the A-double. First the Lagrange function L = T − V is introduced which is the differ-
ence between the total kinetic energy T and the total potential energy V of the system.
Since the planar motion is considered in this model, the potential energy is set to zero. The
Lagrangian equations are then obtained by differentiating the Lagrange function L with
respect to the generalised coordinates and their time derivatives as follows:

d
dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= Qi, i = 1, . . . , n. (1)
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In this equation, qi is the i’th generalised coordinate, while Qi represents the corresponding
generalised external force. The vector of generalised coordinates is formed for the A-double
as

qT = [Y1 ϕ1 θ1 θ2 θ3], (2)

where Y1 and ϕ1 are the lateral displacement of the centre of gravity and the yaw angle of
the tractor, respectively. The remaining elements are the articulation angles between the
attached units: θ1 is the articulation angle between the tractor and the first semitrailer, θ2 is
the articulation angle between the first semitrailer and the dolly and θ3 is the articulation
angle between the dolly and the last semitrailer (see Figure 1(b)). The linear vehicle model
is considered to be accurate under the assumption that steering and articulation angles are
small. The schematic diagram of the linear vehicle model is depicted in Figure 1(b), where
the axle groups in the driven axles of the tractor, the semitrailers and the dolly are lumped
together into a single axle in the middle of each axle group.

The total kinetic energy of the system, which is the sum of the kinetic energies of the
four units, is given as

T = 1
2

4∑
j=1

(mjv
2
j + Izjω

2
zj), (3)

where vj, ωzj , mj and Izj are the translational velocity, the yaw rate, the mass and the yaw
moment of inertia of the vehicle unit j, respectively. The generalised forces Qi are also
expressed as

Qi =
N∑

k=1

Fk
∂rk

∂qi
, (4)

where N is the number of forces and Fk’s are the tyre forces with the position vector rk and
with the longitudinal and lateral components Fxk and Fyk , respectively. The longitudinal
acceleration is considered to be zero which means that the vehicle is travelling with a con-
stant longitudinal velocity. Therefore in the following, it is assumed that the longitudinal
tyre forces are equal to zero.

Often in a linear bicycle model, a linear time-invariant (LTI) tyre model is used in which
it is assumed that the tyre behaves linearly up to a certain slip angle. Hence, the lateral tyre
force (Fyk) on each axle is considered as a linear function of the lateral slip angle (αyk) as

Fyk = Cαkαyk , k = 1f , 1r, 2, 3, 4, (5)

where the proportionality constant Cαk is the sum of the cornering stiffness of the tyres on
each axle group and is determined by the slope of Fyk versus αyk curve at αyk = 0. In the
bicycle vehicle model, it is assumed that the effects of all tyres on one axle are combined
into one single virtual tyre. Also with the assumption that the axles in each axle group are
combined together in the centre of the axle group, the subscripts 1f , 1r, 2, 3 and 4 denote
the front axle of the tractor, the rear axles of the tractor, the first semitrailer axle group, the
dolly axles and the second semitrailer axle group, respectively. In the linear models, it is
usually assumed that the cornering stiffness remains constant irrespective of the slip angle.
But in real-time, this assumption might not be valid, since the tyre cornering stiffness may
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vary due to several factors like temperature, tyre normal load, road wear, tyre pressure, tyre-
road friction and other unpredictable environmental factors that are difficult to measure
directly. Therefore in more accurate models, the cornering stiffness needs to be viewed as
a time-varying parameter.

In order to justify this, the system with the high-fidelity VTM model is simulated for a
pseudo-random steering input as in Figure 2(b) at a longitudinal velocity of 80 km h−1. In
the VTM, the tyre forces are implemented by using the well-known Pacejka model [26],
which captures many often-ignored tyre characteristics. The resulting variation of the lat-
eral force versus the lateral tyre slip angle is presented in Figure 2(a). The proportionality
constant, i.e. the ratio Fyk/αyk , clearly changes when moving along this curve. In other
words, Equation (5) would provide an accurate description of the tyre characteristics only
with a Cαk that varies with time. Moreover, the tyre dynamics are highly influenced by load
variations, uneven road surfaces, tyre-road friction coefficient, temperature, inflation pres-
sure and tyre conditions. This means that the curve in Figure 2(a) can cover even a larger
area due to the changes caused by different factors. Therefore, in this study, a time-varying
cornering stiffness parameter is considered by modifying Equation (5) as

Fyk = Cαk(t)αyk , Cαkmin ≤ Cαk(t) ≤ Cαkmax , (6)

where Cαkmin and Cαkmax are the lower and upper bounds of the cornering stiffness param-
eters of the kth axle group. These lower and upper bounds can be determined based on
the typical variation range of the slip angle during the travel. Indeed the slopes of the lines
that delimit the Fyk versus αyk curves from above and below within the considered range of
the slip angle could be used, respectively, as the upper and lower bounds for the cornering
stiffness parameter (see Figure 2). With this assumption, it is possible to capture important
un-modelled and nonlinear characteristics of the tyres to some extent by still working with
a linear vehicle model.

Figure 2. Variationof Fyk on the last axle of the second semitrailer as a functionofαyk and corresponding
applied random steering input for low (μ = 0.3) and high (μ = 0.8) tyre-road friction conditions (VTM
simulation results) at longitudinal velocity of vx = 80 km h−1
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As the last step of the derivation of a model based on Lagrangian formulation, one needs
to insert the Equations (4) and (3) in (1) with positions, velocities and forces expressed in
the global coordinate frame as can be found in Appendix 2. The final equation is then
obtained in the following form

Mq(σ (t))q̈(t) + Cq(σ (t))q̇(t) + Kq(σ (t))q(t) = Bq(σ (t))δdolly(t) + Hq(σ (t))δdriver(t).
(7)

The input signal δdolly ∈ Rnu is the control input vector and δdriver ∈ Rnd is the driver steer-
ing input as the measurable disturbance input to the system, respectively. In our case, the
considered control input δdolly is the steering angles applied to the dolly axles. The matrix
Mq is the inertial matrix which is usually symmetric and positive definite, Cq is the damp-
ing matrix, Kq is the stiffness matrix, Bq is the force distribution matrix and Hq is the
Jacobian of the constraint equation. The matrices Mq, Cq, Kq, Bq and Hq based on the
vehicle parameters are provided in Appendix 2. All vehicle parameters are assumed to be
known except the moments of inertia of the two semitrailers and the cornering stiffness of
the tyres in the axles of the vehicle.

A generic symbol σ(t) ∈ Rp is used to represent the vector of uncertain (possibly)
time-varying parameters, whose rate-of-variation is denoted as ν(t) � σ̇ (t). As will be
highlighted in the sequel, it is more convenient in our synthesis method to view σi as the
percentage deviation of the i’th uncertain system parameter from its nominal value. It is
assumed that lower and upper bounds are available for the uncertain parameter values as
well as their derivatives. The uncertainty is thus described by introducing the sets

U � {σ ∈ R
p : σ i ≤ σi ≤ σ̄i, i = 1, . . . , p},

V � {ν ∈ R
p : νi ≤ νi ≤ ν̄i, i = 1, . . . , p}, (8)

where ∗i/∗̄i indicate the lower/upper bounds on ∗i, respectively. A complete uncertain
system description is obtained by accompanying (7) with (σ (t), ν(t)) ∈ U × V, ∀t ≥ 0.

Now considering the state vector as xT
q � [qT q̇T], the state-space model of the system

of (7) in the descriptor form can be written as follows:[
I 0
0 Mq(σ (t))

]
︸ ︷︷ ︸

E (σ (t))

[
q̇(t)
q̈(t)

]
︸ ︷︷ ︸

ẋq(t)

=
[

0 I
−Kq(σ (t)) −Cq(σ (t))

]
︸ ︷︷ ︸

A (σ (t))

[
q(t)
q̇(t)

]
︸ ︷︷ ︸

xq(t)

+
[

0
Bq(σ (t))

]
︸ ︷︷ ︸

B(σ (t))

δdolly(t)

+
[

0
H(σ (t))

]
︸ ︷︷ ︸

Hq(σ (t))

δdriver(t). (9)

Two states Y1 and ϕ1 are removed from xq to obtain the state-space model to be used in
the design. It should be stressed that this is possible, thanks to the structure of the matrix
K. As a result, the state vector of the vehicle model xv ∈ Rnv is formed as

xv = [θ1 θ2 θ3 vy1 ωz1 θ̇1 θ̇2 θ̇3]T , (10)

where ωz1 = ϕ̇1. By removing the relevant row blocks from all matrices and also the rel-
evant column blocks from E and A , the dynamics of the system are expressed in the
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descriptor framework as follows:

Ev(σ (t))ẋv(t) = Av(σ (t))xv(t) + Hv(σ (t))δdriver(t) + Bv(σ (t))δdolly(t). (11)

It should be noted that in the mechanical systems the descriptor matrix Ev is usually a
non-singular matrix and is hence invertible. It is observed that the moments of inertia
uncertainties appear naturally in the descriptor matrix Ev and the cornering stiffness of
the tyres appear only in the matrices Av , Hv and Bv .

2.2. Nonlinear vehicle model

The nonlinear high-fidelity vehicle model of the A-double, denoted as Volvo Transporta-
tion Model (VTM) is developed by Volvo Group Trucks Technology (VGTT). The VTM
vehicle model is constucted by using a Matlab Simulink based toolbox developed for vehi-
cle dynamics modelling and function development at VGTT. The VTM library contains
detailed sub-models of the heavy vehicles such as chassis, frames, axles, tyres, suspensions,
steering system, power-train and brakes. The Pacejka Magic Formula [26] is used to model
the tyres and in this tyre model, a combined slip, dynamic relaxation, tyre normal load
dependency and rolling resistance are used. Some vehicle combinations in the VTM library
have been tested and validated against real test data and proved to be sufficiently accurate
in predicting the actual vehicle behaviour [27,28].

3. Robust controller synthesis

The controller synthesis is formulated based on an H∞-type design problem in which
a bound has to be ensured on worst-case energy gains from finite-energy disturbance
inputs to performance outputs of the system described in (11). In order to evaluate the
performance of the system, a performance output signal z ∈ Rnz is introduced as

z(t) = Cvxv(t) + Gvδdriver(t) + Dvδdolly(t), (12)

where the matrices Cv , Gv and Dv will be determined depending on the considered z.
These matrices might also have uncertain parameter dependence, which it is omitted here
for simplicity. As a part of the general linear model, a measurement vector y ∈ R

ny is also
introduced. The signal y, which contains the available states of the system for feedback and
also the driver steering input for feed-forward, is formed as

y(t) = Svxv(t) + Rvδdriver(t). (13)

Since the H∞ norm measures the input-to-output gain of the system for finite-energy
input signals, one needs to restrict the class of disturbances under consideration in order
to have a suitable problem formulation. This is especially the case here, since – with no
measurement noise assumed – the driver steering angle δdriver is the only external distur-
bance input applied to the system. In order to model the driver behaviour, a stable filter is
introduced, which would typically be of low-pass or band-pass type. With this model, it is
assumed that the frequency content of the driver steering is concentrated in a particular



1854 M. SADEGHI KATI ET AL.

range of frequency. A state-space realisation of the driver model can be represented as

ẋb(t) = Abxb(t) + Bbw(t),

δdriver(t) = Cbxb(t) + Dbw(t),
(14)

where xb ∈ Rnb and w ∈ Rnw are the artificial state vector and disturbance input, respec-
tively. Finally, the state-space realisation of the whole system is obtained by using the
equations in (11)–(14) as follows:[

Ev(σ (t)) 0
0 I

]
︸ ︷︷ ︸

E(σ (t))

[
ẋv(t)
ẋb(t)

]
︸ ︷︷ ︸

ẋ(t)

=
[
Av(σ (t)) Hv(σ (t))Cb

0 Ab

]
︸ ︷︷ ︸

A(σ (t))

x(t) +
[
Hv(σ (t))Db

Bb

]
︸ ︷︷ ︸

H(σ (t))

w(t)

+
[
Bv(σ (t))

0

]
︸ ︷︷ ︸

B(σ (t))

δdolly(t),

z(t) = [
Cv GvCb

]︸ ︷︷ ︸
C

x(t) + [
GvDb

]︸ ︷︷ ︸
G

w(t) + [
Dv

]︸︷︷︸
D

δdolly(t),

y(t) = [
Sv RvCb

]︸ ︷︷ ︸
S

x(t) + [
RvDb

]︸ ︷︷ ︸
R

w(t). (15)

In this representation, x ∈ Rnx is the extended state vector and the dimensions of the sys-
tem matrices can be identified from compatibility. The system representation described
so far is assumed to be obtained in a way that is suitable for synthesis (e.g. no unstable
states that are not controllable). Nevertheless, since a robust static output feedback syn-
thesis problem is considered for an uncertain system, it is left to the synthesis LMIs to
implicitly specify the necessary requirements on the system.

The controller synthesis is considered based on static output feedback in a way that
implicitly includes static feed-forward thanks to the construction of the measurement sig-
nals as in (13). In order to formulate a static output feedback synthesis problem, it is only
required to express the control input δdolly as

δdolly(t) = Ky(t), (16)

where K is the gain matrix to be designed and contains two components (i.e. K = [Kfb Kff ]):
the feedback gain Kfb and the feed-forward gain Kff . This approach is thus a one-degree of
freedom controller synthesis formulated as a standard static output feedback. Note that in
order to have a two-degrees of freedom synthesis, the feed-forward filter needs to be dealt
with separately.

The H∞ synthesis aims at ensuring bounds on the energy gain from the disturbance
input w to the performance output z. An H∞ synthesis problem can then be formulated as
follows: given a linear model described as in (15), synthesise a gain matrix K such that the
controlled closed-loop system is stable and the following L2-gain condition is satisfied:

‖z‖2 < γ ‖w‖2, ∀w(·) with 0 < ‖w‖2 < ∞ and x(0) = 0. (17)

In this expression, the scalar γ is the desired level of L2-gain performance. When the sys-
tem and the controller are linear time-invariant, the performance objective given in (17)
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is an H∞ constraint on the transfer function/matrix from w to z and can be re-expressed
equivalently as

‖Tzw‖∞ � sup
Re{s}>0

‖Tzw(s)‖ < γ , (18)

where ‖ · ‖ represents the maximum singular value.
Now a procedure for H∞ static output feedback synthesis is described. The synthesis is

based on extended (dilated) LMI conditions adapted from [29] with a modification to be
applicable to the descriptor systems as provided from the previous work in [30]. The basic
idea behind the dilation is that the state-feedback gain K is constructed independently of
the Lyapunov matrix Y in order to reduce the potential conservatism [29]. In this fashion,
the controller is constructed with the gain matrix obtained according to

K = NW−1, (19)

where N ∈ R
nu×ny and W ∈ R

ny×ny are the matrix variables to be determined. The matrix
inequality for static output feedback synthesis is now recalled from [29] and expressed for
the standard state-space description of (15). In this fashion, the LMI condition is obtained
as

He

⎡
⎢⎢⎢⎢⎣

−φW φ(SY − WS) φR 0
E−1BN (E−1AY + E−1BNS) E−1H 0

0 0 −γ

2
I 0

DN (CY + DNS) G −γ

2
I

⎤
⎥⎥⎥⎥⎦ ≺ 0, (20)

where He M � M + MT and φ ∈ R+ is an arbitrary (yet fixed) scalar. In order to derive
an LMI condition that is applicable for descriptor systems, one needs to apply a congruence
transformation to (20) with the block-diagonal matrix blockdiag(I, E, I, I).

In conclusion, the L2-gain constraint of (17) will be satisfied if there exist 0 ≺ Y = YT ∈
Rnx×nx , N and W such that the following LMI condition is satisfied:

N � He

⎡
⎢⎢⎢⎢⎣

−φW φ(SY − WS)ET φR 0
BN (AY + BNS)ET H 0
0 0 −γ

2
I 0

DN (CY + DNS)ET G −γ

2
I

⎤
⎥⎥⎥⎥⎦ ≺ 0. (21)

Note that this is an LMI condition when φ is fixed. Hence, in order to find the smallest
value of γ , one can perform minimisations over γ for a grid of φ values. The gain matrix
is then computed as in (19) with the N and Y matrices associated with the smallest γ .

By then calculating K from (19) and inserting (16) in the first two equations of (15), a
new state-space realisation of the closed-loop system is obtained as

Eẋ(t) = (A + BKS)︸ ︷︷ ︸
A

x(t) + (H + BKR)︸ ︷︷ ︸
H

w(t),

z(t) = (C + DKS)︸ ︷︷ ︸
C

x(t) + (G + DKR)︸ ︷︷ ︸
G

w(t). (22)
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In the sequel, it will be discussed how the LMI condition in (21) can be used to synthe-
sise a robust controller for the system (15) whose dynamics depend on (time-invariant
or/and time-varying) uncertain parameters. The system matrices of the plant given in (15)
have affine parameter dependence (i.e. E(σ ) = E0 + ∑p

i=1 Eiσi, where E0, E1, . . . , Ep are
known fixed matrices). Thanks to this affine dependency, the optimisation problem can
be formulated in a way to ensure stability as well as the performance objective of (17)
for all parameter values σ ∈ U. In this fashion, the solvability condition (21) appears as
a parameter-dependent LMI (PLMI) that needs to be satisfied over the whole uncertainty
region, that is, in the form

N (σ ) = N0 + N1σ1 + · · · + Npσp ≺ 0, ∀σ ∈ U. (23)

In order to have a less conservative design of the controller, the Lyapunov matrix Y
can be chosen to depend on the uncertain parameters (i.e. Y = Y0 + ∑p

i=1 Yiσi). In
the case of uncertain time-varying parameter σi, a modification in the (2,2) block
of N in (20) is needed by adding − ∑p

i=1(∂Yi/∂σi)νi and consequently adding
−E

∑p
i=1(∂Y(σ )/∂σi)νiET in the (2,2) block of N in (21) as follows:

N (σ , ν) � He

⎡
⎢⎢⎢⎢⎢⎢⎣

−φW φ(SY − WS)ET φR 0

BN
(

AY + BNS − 1
2

E
∑p

i=1
∂Y
∂σi

νi

)
ET H 0

0 0 −γ

2
I 0

DN (CY + DNS)ET G −γ

2
I

⎤
⎥⎥⎥⎥⎥⎥⎦ ≺ 0,

∀(σ , ν) ∈ U × V. (24)

It should be noted that the matrices W and N are chosen without any dependence on
the unmeasurable parameters and the other matrices are assumed as affine-parameter-
dependent matrices. In (24), the parameter dependence is suppressed in the system
matrices and Y for notational simplicity. In this setting, the LMI conditions need to be
satisfied over the whole region of uncertainty, i.e. at infinitely many points.

In order to formulate optimisation problems based on finitely many LMIs, a relaxation
scheme or a gridding technique can be applied. The gridding methods might result in bet-
ter performance than relaxation schemes but the computational burden is much higher
[31]. Moreover, if the gridding is not fine enough, one might obtain a controller which
in fact violates the performance requirement. Therefore, a relaxation scheme is employed
that is suitable for the considered uncertainty region (see [32] and the references therein).
Since the parameter-dependence is affine and the uncertainty region is a hyper-rectangle,
the multi-convexity approach of [33] can be adopted. In this case, the LMI conditions are
imposed only at the vertices of the parameter boxes in (8):

N (σ , ν) ≺ 0, ∀(σ , ν) ∈ Uvex × Vvex. (25)

In this condition, Uvex and Vvex are the sets of 2p vertices of each parameter box in (8) and
are identified as

Uvex � {σ ∈ R
p : σi ∈ {σ i, σ̄i}, i = 1, . . . , p},

Vvex � {ν ∈ R
p : νi ∈ {νi, ν̄i}, i = 1, . . . , p}. (26)
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In this fashion by employing the above relaxation scheme, considering p uncertain param-
eters, infinitely many LMIs will be decreased to 22p LMIs. In order to ensure that (25) is
sufficient for (24), one needs to impose an additional constraint. This constraint is defined
based on the concept of multi-convexity, that is, convexity with respect to each uncer-
tain parameter while others are assumed to be constant [33]. To this end, in addition to
imposing the LMI constraints (25) on the vertices of Uvex × Vvex, the second derivatives
of the LMI constraint with respect to each uncertain parameter should also be positive
semi-definite:

Pj(σ , ν) = ∂2N (σ , ν)

∂σ 2
j


 0, ∀(σ , ν) ∈ Uvex × Vvex, j = 1, . . . , p. (27)

Note that (27) is to be satisfied only at the vertices of the hyper-rectangle thanks to the fact
that the inequality has affine dependence on the uncertain parameters. For the systems
with the parameter dependency as in (15), the multi-convexity conditions imposed at the
vertices of the hyper-rectangle read as

Pj(σ , ν) = He

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 2φSYjET
j 0 0

0
2(AYjET

j + AjYjET + AjYET
j

+BjNSET
j ) − Ej

∑p
i=1

∂Y
∂σi

νiET
j

0 0

0 0 0 0
0 2CYjET

j 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦


 0. (28)

Since this is a non-strict LMI, which implicitly contains an equality condition, it needs
further attention for a successful application of the synthesis method. For a numerically
reliable implementation, one needs to slightly modify (25) in such a way that the resulting
multi-convexity constraint turns (28) into a strictly feasible LMI. Conditions modified in
this fashion are expressed as follows:

T1(σ )

⎛
⎝N (σ , ν) +

p∑
j=1

σ 2
j Mj

⎞
⎠ T T

1 (σ ) ≺ 0, ∀(σ , ν) ∈ Uvex × Vvex,

T2(σ )
(
Pj(σ , ν) + 2Mj

)
T T

2 (σ ) � 0, ∀(σ , ν) ∈ Uvex × Vvex, j = 1, . . . , p,

Mj � 0, j = 1, . . . , p. (29)

Note that Mj’s are introduced in these inequalities as slack variables in accordance with the
suggestion of [33] and they can be specialised to Mj = εjI with scalar εj ≥ 0 to reduce
the number of variables if necessary. With this modification, it is more convenient to
choose σj’s as the deviations of the uncertain system parameters from their nominal values.
Indeed it then becomes possible to recover the standard nominal synthesis LMI when there
is no uncertainty (i.e. σj → 0), since the multi-convexity conditions would then always
be satisfied with sufficiently large εj’s. For possible further conditioning, the congruence
transformations with invertible T1 and T2 is also introduced based on our experience.
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For instance, if the standard system representation is well-conditioned, one might prefer to
use its realisation matrices (E−1A, E−1B, . . .) in the LMI conditions instead of using (25).
To this end, one would simply choose T1 = blockdiag(I, E−1, I, I). Finally, it should be
noted that the positive-definiteness condition Y0 + ∑p

i=1 Yiσi � 0 should also be imposed
at the vertices of the hyper-rectangle.

4. Controller design and simulations

In this section, the synthesis procedures developed in the previous sections are applied
to the linear vehicle model of the A-double. The associated simulation results are then
provided by using the nonlinear VTM vehicle model. It is assumed that both dolly axles
are steered with the same amount of the steering angle. The LMI optimisation problems in
this paper are solved in Matlab by using YALMIP [34] as the interface and SeDuMi [35] as
the SDP solver.

4.1. Control design using linear vehicle model

The main objective of the control system is to enhance the lateral performance of the A-
double by attenuating undesired dynamic responses in the towed units especially during
high-speed critical driving situations such as obstacle-avoidance. The A-double is consid-
ered with a total weight of about 80 tonnes and a total length of 31.5 m. In order to achieve
the lateral performance improvement, the yaw motion oscillations in the last semitrailer
are mitigated via active steering of the dolly axles. In order to minimise the yaw rate of
the last semitrailer without leading to undesirable behaviour in the dolly, the performance
signal is chosen as z = [

ωz4 δdolly
]T , where ωz4 is the yaw rate of the last semitrailer and

δdolly is the steering control input applied to the dolly axles.
All vehicle parameters are assumed to be known except the moments of inertia of the

first and second semitrailers (Iz2 and Iz4 ), and the cornering stiffness of the tyres in the axles
of the vehicle (Ci, i = 1f , 1r, 2, 3, 4). C1f is the sum of the tyre cornering stiffness on the first
axle of the tractor. The sum of the tyre cornering stiffness of the second and third axles of
the tractor is equal to C1r . In the same way, the total sum of the tyre cornering stiffness of
joint axles of the first semitrailer, the dolly and the second semitrailer are defined as C2,
C3, C4, respectively. The model thus has seven uncertain parameters, which are listed in
Table 1 together with their minimum and maximum values. It is assumed that for each
tyre, the cornering stiffness varies inside a sector delimited by two lines passing through
the origin in Figure 2: a line with the minimum slope as Cαkmin and another line with the
maximum slope as Cαkmax covering the area of interest in the time-varying Fyk versus αyk
curve. It should be noted that Iz2 and Iz4 are time-invariant parameters, while all of the Ci’s
are treated as time-varying parameters. The rates of variation of time-varying uncertain
parameters are bounded by |Ċi| ≤ 50, i = 1f , 1r, 2, 3, 4, which is observed to be a suitable
choice for the considered scenarios depicted in Figure 2.

It is also noted from Table 1 that the uncertain parameters used in our system repre-
sentation are defined as percentage deviations from the nominal values, e.g. σ1 = I◦

z2(1 +
σ1), where I◦

z2 = (Imin
z2 + Imax

z2 )/2 is viewed as the nominal value. In the uncertain sys-
tem of (15), the system matrices depend affinely on σi and the particular form of the



VEHICLE SYSTEM DYNAMICS 1859

Table 1. Minimum and maximum values of uncertain parameters.

Parameter Description Min Max Unit

Iz2 = I◦z2
(1 + σ1) Yaw moment of inertia of 1st semitrailer 2.5 · 105 4.5 · 105 kg m2

Iz4 = I◦z4
(1 + σ2) Yaw moment of inertia of 2nd semitrailer 2.5 · 105 4.5 · 105 kg m2

C1f = C◦
1f

(1 + σ3) Cornering stiffness of truck front axle 3 · 105 5 · 105 N rad−1

C1r = C◦
1r

(1 + σ4) Cornering stiffness of truck driven axles 9 · 105 12 · 105 N rad−1

C2 = C◦
2 (1 + σ5) Cornering stiffness of 1st semitrailer axles 9.5 · 105 14 · 105 N rad−1

C3 = C◦
3 (1 + σ6) Cornering stiffness of dolly axles 9 · 105 13 · 105 N rad−1

C4 = C◦
4 (1 + σ7) Cornering stiffness of 2nd semitrailer axles 9.5 · 105 14 · 105 N rad−1

C1f = Cα1 , C1r = Cα2 + Cα3 , C2 = Cα4 + Cα5 + Cα6 , C3 = Cα7 + Cα8 , C4 = Cα9 + Cα10 + Cα11

dependency is identified as

E = E0 +
2∑

j=1
Ejσj, A = A0 +

7∑
j=3

Ajσj, B = B0 + B6σ6, H = H0 + H3σ3,

where Ej, Aj, Bj and Hj are known fixed matrices which can be obtained by using the equa-
tions and expressions given in Section 2.1 and in Appendix 2. The E matrix has dependence
on the moments of inertia, while the A matrix depends on the cornering stiffness of the
tyres. In fact the reason behind using the descriptor form of the state space model is to
avoid dealing with rational dependence on the moments of inertia in the standard state-
space form. Thus the approach of [22] is followed to formulate tractable LMI problems for
controller synthesis. To reduce conservatism a parameter-dependent Lyapunov matrix is
assumed of the form

Y(σ ) = Y0 + Y1σ1 + Y2σ2 + Y3σ3 + · · · + Y7σ7.

In this study, only one (out of 8) state (θ2) and one external signal (δdriver) are consid-
ered as available measurements: y = [θ2 δdriver]T . Thus, a combined version of static output
feedback and feed-forward controllers is synthesised in the presence of parameter uncer-
tainties. It is assumed that the frequency content of the driver steering is concentrated
within the frequency range [fl, fh] = [0.05, 3.5] Hz. Note that in a single lane change, a
human driver is capable of a steering frequency of maximum 3.5 Hz, as stated in [36].
The driver is hence modelled with a second-order band-pass filter with a pass-band of
[0.05, 3.5] Hz.

The controller gain is synthesised by minimising the value of γ under (29) and Y(σ ) �
0, ∀σ ∈ Uvex. The matrices Mj are chosen as Mj = εjI and good numerical conditioning
is obtained with T1 = blockdiag(I, E−1, I, I) and T2 = blockdiag(I, 10−6I, I, I). The enor-
mous computational complexity of the problem (32903 constraints in terms of 17 variables)
prevented an extensive search over φ. After some simplified design exercises, the range
is first reduced to [3, 10] and a line search is performed with 14 grid points. The min-
imum γ values and the associated controllers are found with parameter-dependent and
parameter-independent Y as follows:

Y = Y0 + 

p
j=1Yjσj : φ = 5.0, γ = 5.0, K = [−0.5165 − 0.0274],

Y = Y0 : φ = 5.5, γ = 9.5, K = [−0.4401 − 0.0612].
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It is observed from the γ values that the choice of parameter-dependent Y leads to signifi-
cantly improved performance. In the sequel, the system with the controller corresponding
to the parameter-dependent Lyapunov function is analysed.

4.2. Verification of controller effectiveness and robustness

Certification of a controller is admittedly a challenging task for uncertain systems and more
so when the uncertain parameters are time-varying. In order to verify the effectiveness and
robustness of our controller, the following steps are performed both for the controlled and
uncontrolled cases:

• Frozen parameter analysis with the linear model to illustrate the effectiveness and
robustness of the controller in the case of time-invariant parameters and to determine
the worst-case parameter values

• Frequency domain analysis based on the data obtained from VTM simulations (with
worst-case parameter values) in which a steering input with rich frequency content is
applied

• Time domain analysis based on the data obtained from VTM simulations (with worst-
case parameter values) in which single sine wave steering inputs are applied with varying
frequencies

• Analysis of time histories of various physical signals in the case of a single sine wave
steering input with worst-case frequency

These steps are explained in detail in the following subsections.

4.2.1. Frozen Parameter Analysis
In order to evaluate the synthesised controller, first the magnitude plot of the transfer func-
tion Tωz4ωz1

from ωz1 to ωz4 is analysed. The magnitudes of this transfer function can be
viewed as a lateral performance measure known as rearward amplification (RA) in the
second semitrailer in the frequency domain. The rearward amplification is defined as the
ratio between the lateral acceleration or yaw rate of the towed units to that of the first unit.
Smaller values of RA imply lower oscillations in the towed units and consequently indicate
better lateral dynamic performance. The RA in the frequency domain, denoted as RAf, is
then defined as the peak magnitude of the transfer function Tωziωz1

from ωz1 to ωzi and is
thus obtained as

RAf
i � max

ω
|Tωziωz1

(jω)| = max

∣∣∣∣∣ Tωziw(jω)

Tωz1 w(jω)

∣∣∣∣∣ , i = 2, 3, 4, (30)

where ωz1 and ωzi are the yaw rates of the tractor and the vehicle unit i in the A-double,
and Tωz1w and Tωziw are the transfer functions from w to ωz1 and ωzi , respectively.

In order to evaluate the performance of the LTI vehicle model, a frozen parameter anal-
ysis is performed. In this approach, the parameter values are assumed to be fixed and the
resulting transfer functions are analysed. Since all cornering stiffness parameters are time-
varying uncertainties with trajectories varying within magnitude and derivative bounds,
good performance should be achieved also when the derivative is zero. It should be noted
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Figure 3. Yaw rate RAf
4 versus frequency plots obtained from the linear model by using magnitude plots

and in the VTM model by using chirp-steering (solid curves) and random-steering methods (dashed
curves) at vx = 80 km h−1.

that the zero derivative should be within the minimum and maximum derivative values,
which is the case in our design.

Figure 3(a) presents the overlay plots for different values of the uncertain parameters
within the uncertainty region (100 top worst cases chosen among 47 = 16, 384 uniformly-
spaced grid points) for both the uncontrolled and the controlled system. It is observed from
this figure that the imposed L2-gain constraint pushes down significantly the peak mag-
nitudes in the transfer function for different perturbed parameters values. The robustness
of the controller can be inferred from the observation that the curves for the controlled
vehicle cover a relatively smaller area in comparison with the curves for the uncontrolled
vehicle.

In order to perform selective simulations in the sequel that verify robustness in the
face of nonlinearities and time-variations, the worst cases are identified from Figure 3
together with the associated parameter values. The worst-case H∞ norms (i.e. peak
magnitude over frequency) for the uncontrolled and controlled cases are determined
as 3.68 (at the frequency of 0.42 Hz) and 1.97 (at the frequency of 0.3 Hz), respec-
tively. The parameter values associated with both worst-cases are determined as the
following:

Iz2 = 4.5 · 105 and Iz4 = 4.5 · 105 [in kg m2],

C1f = 3 · 105, C1r = 12 · 105, C2 = 9.5 · 105, C3 = 9 · 105 and C4 = 9.5 · 105[in N rad−1].

4.2.2. Frequency domain analysis based on VTM simulations
In order to further analyse and verify the performance of the controller, simulations are
performed with the high-fidelity VTM model by fixing the parameters to the worst-case
values obtained from frozen parameter analysis. For the cornering stiffness parameters, this
is done by adjusting the slope of the Fyk versus αyk curve in the linear region. Excitation
of nonlinear behaviour would hence correspond to variations of the uncertain parameters
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in time in our uncertain system model. Two frequency-domain excitation approaches are
then used in order to validate the effectiveness of the controller in the high-fidelity VTM
model.

In the first approach, the simulations are performed by using a chirp (swept-sine) as the
driver steering input with an amplitude of 0.86◦ and with a frequency sweep from 0 to 1 Hz
in 180 s [37]. In the second approach, a random driver steering input is chosen in which
both the frequency and amplitude of the steering input are varied randomly and continu-
ously. In order to ensure that enough data is collected to capture the whole frequency range,
the steering input is applied for at least 12 min as recommended in ISO 14791 [38,39]. The
applied chirp and random steering inputs are shown in Figure 4. It should be noted that in
the case of uncontrolled vehicle, the steering input applied to the dolly axles is zero. These
admittedly unrealistic steering inputs are chosen since we still aim for a frequency-domain
analysis of the rearward amplification based on Fast Fourier Transforms (FFTs). In this
analysis, the RAf values are obtained at a grid of frequencies by first dividing the FFT of
the yaw rate in the second semitrailer with the FFT of the yaw rate in the tractor and then
computing the magnitude.

Figure 3(b) presents the empirical yaw rate RAf estimates when the parameters are set
to their worst-case values. The maximum RAf over the considered frequency range for the
uncontrolled and controlled cases are determined as 3.88 (at the frequency of 0.37 Hz) and
1.91 (at the frequency of 0.28 Hz), respectively. The general shapes of the curves resemble
the linear analysis results seen in Figure 3(a). However the maximum RAf value in the
VTM model in the uncontrolled case is a bit higher and in the controlled case slightly
smaller than the linear model. It is also interesting to see a great agreement between the
results obtained from the random and chirp steering input approaches.

In order to facilitate a better evaluation of the overall vehicle behaviour, the yaw rate
and lateral acceleration RAf of the towed vehicle units are all presented in Figure 5. We
first note from Figure 5(b) that the RA values for the lateral acceleration in the semi-trailer
are also reduced significantly by favour of control. To ensure desirable vehicle behaviour,
we need to check whether there is any undesirable increase in the RA values of the other

Figure 4. Applied driver steering input (for both controlled and uncontrolled vehicle) and dolly steering
input (for controlled vehicle) in the VTM vehicle model at vx = 80 km h−1.
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Figure 5. Yaw rate and lateral acceleration RAf for the towed vehicle units versus frequency plots in the
VTM model by using random-steering input at vx = 80 km h−1; uncontrolled vehicle (solid curves) and
controlled vehicle (dashed curves)

units in the controlled case in reference to the passive case. For the first semi-trailer, we
detect from Figure 5(b) a harmless increase in the RA values of the lateral acceleration
within the frequency band [0.4, 0.6] Hz. We notice from Figure 5(a) a more noteworthy
increase in the RA values of the yaw rate in the dolly below 0.3 Hz. Since the RA increases
in both of these cases would hardly jeopardise the stability, the controlled vehicle can be
considered to have superior overall performance.

4.2.3. Time domain analysis for single lane change simulations
In this subsection, the performance of the controller is analysed in realistic single lane
change (SLC) manoeuvers, which are modelled by single sine-wave driver steering inputs
(see Figure 7). The simulations are performed with uncertain parameters set to their
worst-case values and with SLC manoeuvers applied with selected frequencies within a
range. The analysis is then performed based on the time-domain computation of rearward
amplification.

The yaw rate RAt of the vehicle unit i in the A-double is defined based on the time-
domain signals as

RAt
i � ‖ωzi‖∞

‖ωz1‖∞
, i = 2, 3, 4, (31)

where ‖ · ‖∞ represents the peak value over time. It is important to note at this point that
the RA varies with varying steering input frequency in both frequency and time domain
computations, which are likely to differ from each other. In fact, the time-domain values are
obtained as a result of the transient behaviour of the vehicle, while the frequency domain
RAf values are mainly obtained based on the steady-state response. Though highly corre-
lated, the two definitions lack a clear mathematical relation with each other. Furthermore,
it is hard to compute RAt analytically for linear systems, while the RAf can be calculated
directly from the realisation matrices and covers the entire frequency range [13,40].
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Figure 6. Yaw rate RAt
4 versus frequency and peak values of the applied driver steering input (in both

the uncontrolled and controlled cases) and the dolly steering input (in the controlled case).

The SLC manoeuvers are simulated at a fixed longitudinal velocity of 80 km h−1 with
steering input frequencies ranging from 0.05 to 1 Hz. To facilitate a fair comparative eval-
uation, the amplitude of the driver steering input is adjusted in each case in a way to
have a peak lateral acceleration of 1.5 m s−2 at the first axle of the tractor unit (i.e. peak
|ay11 | = 1.5 m s−2). This is done mainly to ensure that the tyre forces remain mostly in the
linear region of the tyre force curve. However, this level of lateral acceleration was also con-
sidered as a reasonable value for investigating heavy vehicles with a lateral acceleration RAt

of 2 or higher. For instance for a heavy vehicle with a lateral acceleration RAt of 2 and a peak
of |ay11 | = 1.5 m s−2, the peak lateral acceleration of the last unit will be 3 m s−2, which is
less than the rollover threshold level of 3.5 m s−2 recommended according to Australian
Performance Based Standard [41].

The variation of (both yaw rate and lateral acceleration) RAt
4 versus the steering input

frequency is presented in Figure 6(a) for the vehicle with the parameter values associ-
ated with the worst-case performance. This is accompanied by Figure 6(b) in which the
peak values of the applied driver and dolly steering angles that lead to a peak value of
|ay11 | = 1.5 m s−2 are displayed. Figure 6(a) clearly illustrates the effectiveness of the con-
troller in reference to the passive case. The robust performance of the controller is also
verified by this plot in that the RAt stays below 2 even in the worst case. As identified from
Figure 6(b), the reductions in the RAt values in the controlled case are achieved by apply-
ing dolly steering angles with peak values below 4.02◦. It should finally be noted that the
RAt values in Figure 6(a) are smaller than the RAf values in Figure 3(b), but both RAs still
show similar variation with frequency.

4.2.4. Analysis of a single lane change manoeuver with worst-case frequency
The analysis results from the previous subsection can be used to detect the worst-case
steering input frequencies, for which the RAt values become largest. From Figure 6(a),
the worst-case SLC frequencies in the uncontrolled and controlled cases are identified as
0.3 and 0.25 Hz, respectively. In the sequel, the time histories of various physical signals
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Figure 7. Applied steering angles in the first axle of the tractor and the axles of the dolly in a SLC (vx =
80 km h−1, driver steering frequency = 0.25 Hz, peak |ay11 | = 1.5 m s−2).

associated with different units are analysed closely, both in uncontrolled and controlled
cases, when the steering input frequency is set to 0.25 Hz. Although the benefit of control
is observed more strikingly at 0.3 Hz, we have chosen the worst-case frequency associated
with the controlled case especially to illustrate the robustness of the controller.

The driver steering input applied in this case and the resulting dolly steering angles are
displayed in Figure 7. The yaw rate variation in various units are presented in Figure 8.
As indicated on the plots, the yaw rate RAt of the second semitrailer is reduced from 2.7
in the uncontrolled case to 1.7 in the controlled case. The lateral acceleration signals are
measured in the centre of gravity of each unit and are displayed in Figure 9. It should again
be identified from the plots that the lateral acceleration RAt of the second semitrailer is
reduced from 2.3 to 1.6 by favour of dolly steering.

Figure 8. Time history of the yaw rate of various units of the A-double in a SLC (vx = 80 km h−1, driver
steering frequency = 0.25 Hz, peak |ay11 | = 1.5 m s−2)
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Figure 9. Time history of the lateral acceleration of various units of the A-double in an SLC (vx =
80 km h−1, driver steering frequency = 0.25 Hz, peak |ay11 | = 1.5 m s−2).

Another important lateral performance measure is high-speed transient offtracking
(HSTO), which is defined as the lateral deviation of the path of the axles in the towed
units if compared to the path of the first axle of the tractor (denoted as axle11) during an
SLC manoeuver. The path of the first axle of the tractor and also the last axles of the other
units in this specific SLC manoeuver are depicted in Figure 10. The obtained HSTO values
at the centre of axles 6 (axle23), 8 (axle32), and 11 (axle43) of the A-double are also listed
in Figure 10. The HSTO in the second semitrailer is reduced from 1.28 to 0.86 m by active
dolly steering. A comparative look into Figure 10(a,b) reveals that the trajectory of the con-
trolled vehicle is slightly different from that of the uncontrolled vehicle in the steady-state
(with lateral displacements of 4.05 and 4.22 m, respectively). It is thus concluded that the
RA suppression and the increased yaw damping ratio caused by the active dolly steering in
the controlled vehicle makes its steady-state lateral displacement shorter than that of the

Figure 10. Path of the first axle of the tractor and the last axle of the towed units of the A-double in a
SLC (vx = 80 km h−1, driver steering frequency = 0.25 Hz, peak |ay11 | = 1.5 m s−2)
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uncontrolled vehicle in an open loop SLC manoeuver in which there is no corrective driver
input [42].

It is thus concluded that the RAt and HSTO are significantly decreased in the controlled
vehicle if compared to the uncontrolled vehicle. In reference to Figure 7, it is observed that
this is realised with dolly angles that stay below a peak magnitude of 4.02◦.

5. Summary and conclusions

A robust static output-feedback controller is developed for high-speed lateral improve-
ment of the A-double via active steering of the dolly axles. The robust lateral controller is
designed by taking into account both the cornering stiffness of the tyres and the moments
of inertia of the semitrailers as uncertain vehicle parameters. In order to better capture the
nonlinear behaviour of the tyres, a linear time-varying tyre model is used. Moreover to
avoid dealing with the system matrices that have rational dependence on the moments of
inertia, a descriptor form representation of the linear model is considered. As a result, a
time-varying parameter-dependent linear model in descriptor form is achieved to be used
in the control synthesis. It is assumed that only measurements of the driver steering input
and the articulation angle between the first semitrailer and the dolly are available for feed-
back. Therefore, a static feedforward is also included in static output feedback formulation
as well in order to take into account the driver steering input. Moreover, in order to char-
acterise the frequency content of the driver steering behaviour, a simple bandpass filter is
considered as the driver model.

The synthesis procedure is based on LMI optimisation and delivers controllers that
ensure robust stability as well as robust performance improvement in the presence of
considered parametric uncertainties. This approach requires only the minimum and
maximum values of uncertain parameters and also lower and upper bounds on the rates-
of-variation of time-varying uncertain parameters. The synthesis is formulated based on
H∞-type synthesis in which a bound has to be ensured on worst-case energy gains from
the driver steering input to the yaw rate of the last semitrailer in order to mitigate the
undesired motion amplification in the last semitrailer in response to the driver steering.

As a result, the LMI solvability conditions appear as parameter-dependent LMIs that
need to be satisfied over the whole uncertainty range, which leads to infinitely many LMI
conditions. To reduce the conservatism, the Lyapunov matrix is chosen to have affine
dependence on the uncertain parameters. The multi-convexity approach is employed to
achieve finitely many LMI conditions.

The simulation results using both the linear and the high-fidelity vehicle models have
shown significant improvement in lateral performance of the A-double in terms of yaw
rate and lateral acceleration rearward amplification and high-speed transient offtracking.
The controller effectiveness was verified using both time-domain and frequency-domain
approaches. As a future task, the controller performance should be further verified in the
real environment with a test vehicle.
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Appendix 1: Linear vehicle model parameters

The vehicle parameters used in the linear vehicle model are listed in Table A1.

Table A1. Vehicle model parameters.

Parameter Description Value Unit

m1 Mass of tractor 9840 kg
m2 Mass of 1st semitrailer 31,570 kg
m3 Mass of dolly 3400 kg
m4 Mass of 2nd semitrailer 33,740 kg
a1 Distance between COG∗ and 1st axle of tractor 1.5411 m
a2 Distance between COG and front coupling point of 1st semitrailer 4.5089 m
a3 Distance between COG and front coupling point of dolly 4.0847 m
a4 Distance between COG and front coupling point of 2nd semitrailer 4.2355 m
c1 Distance between COG and rear coupling point of tractor 2.2339 m
c2 Distance between COG and rear coupling point of 1st semitrailer 5.8911 m
c3 Distance between COG and rear coupling point of dolly 0.2253 m
b1 Distance between COG and centre of rear axles group of tractor 2.5089 m
b2 Distance between COG and centre of rear axles group of 1st semitrailer 3.1911 m
b3 Distance between COG and centre of rear axles group of dolly 0.2553 m
b4 Distance between COG and centre of rear axles group of 2nd semitrailer 3.4645 m
ωc Centre frequency of driver model 2.6284 rad s−1

ζ Damping ratio of driver model 1.9347

Note: ∗Represents centre of gravity.

Appendix 2: Linear vehicle model equations

To derive the motion of the vehicle, it is more convenient to transform the velocities in the iner-
tial coordinates to the body fixed system. To this end, the following transformation matrix in 2D
Euclidean space is performed

R2(φ) =
[

cos(φ) sin(φ)

− sin(φ) cos(φ)

]
.
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The velocities of different units used in Equation (3) are defined in the corresponding center of
gravity of each unit and are obtained as

v1 = [vx1 vy1 ],

v2 = [vx1 vy1 − c1ωz1 ] + [0 − a2ωz2 ] R2(θ1),

v3 = [vx1 vy1 − c1ωz1 ] + [0 − l2ωz2 ] R2(θ1) + [0 − a3ωz3 ] R2(θ1 + θ2),

v4 = [vx1 vy1 − c1ωz1 ] + [0 − l2ωz2 ] R2(θ1) + [0 − l3ωz3 ] R2(θ1 + θ2)

+ [0 − a4ωz4 ] R2(θ1 + θ2 + θ3),

where l2 = a2 + c2, l3 = a3 + c3. Note that the yaw rates and yaw angles of the three units are
expressed in the coordinate system of the first unit (ωz1 = ϕ̇1) as follows:

ωz2 = ωz1 + θ̇1, ωz3 = ωz1 + θ̇1 + θ̇2, ωz4 = ωz1 + θ̇1 + θ̇2 + θ̇3,

ϕ2 = ϕ1 + θ1, ϕ3 = ϕ1 + θ1 + θ2, ϕ4 = ϕ1 + θ1 + θ2 + θ3.

The tyre forces including the lateral forces and the slip angles in Equation (4) are expressed in the
global frame can be written as follows:

F1f = [Fx1f
Fy1f

]R2(φ1 + δdriver), Fy1f
= C1f α1f , α1f = − arctan

(
vy1f

vx1f

)
+ δdriver ,

F1r = [Fx1f
Fy1r ]R2(φ1), Fy1r = C1r α1r , α1r = − arctan

(
vy1r

vx1r

)
,

F2 = [Fx2 Fy2 ]R2(φ2), Fy2 = C2α2, α2 = − arctan

(
vy2t

vx2t

)
,

F3 = [Fx3 Fy3 ]R2(φ3 + δdolly), Fy3 = C3α3, α3 = − arctan

(
vy3t

vx3t

)
+ δdolly,

F4 = [Fx4 Fy4 ]R2(φ4), Fy4 = C4α4, α4 = − arctan

(
vy4t

vx4t

)
,

Recall that since no braking or acceleration are assumed and a constant longitudinal velocity is con-
sidered, longitudinal forces are set equal to zero. The velocities of different axles groups used in the
calculation of the slip angles are obtained as the following

v1f = [vx1f
vy1f

] = [vx1 vy1 + a1ωz1 ]R2(φ1),

v1r = [vx1r vy1r ] = [vx1 vy1 − b1ωz1 ]R2(φ1),

v2t = [vx2t
vy2t

] = [vx1 vy1 − c1ωz1 ]R2(φ1) + [0 − (a2 + b2)ωz2 ]R2(φ2)

v3t = [vx3t
vy3t

] = [vx1 vy1 − c1ωz1 ]R2(φ1) + [0 − l2ωz2 ]R2(φ2) + [0 − (a3+b3)ωz3 ]R2(φ3),

v4t = [vx4t
vy4t

] = [vx1 vy1 − c1ωz1 ]R2(φ1) + [0 − l2ωz2 ]R2(φ2)

+ [0 − l3ωz3 ]R2(φ3) + [0 − (a4 + b4)ωz4 ]R2(φ4),
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The positions of the tyres used in Equation (4) are expressed in global coordinates and are defined
as

r1f = [
X1 + a1 cos(φ1) Y1 + a1 sin(φ1)

]
,

r1r = [
X1 − b1 cos(φ1) Y1 − b1 sin(φ1)

]
,

r2 = [
X1 − c1 cos(φ1) − (a2 + b2) cos(φ2) Y1 − c1 sin(φ1) − (a2 + b2) sin(φ2)

]
,

r3 =
[
X1 − c1 cos(φ1) − l2 cos(φ2) − (a3 + b3) cos(φ3)

Y1 − c1 sin(φ1) − l2 sin(φ2) − (a3 + b3) sin(φ3)

]T
,

r4 =
[
X1 − c1 cos(φ1) − l2 cos(φ2) − l3 cos(φ3) − (a4 + b4) cos(φ4)

Y1 − c1 sin(φ1) − l2 sin(φ2) − l3 sin(φ3) − (a4 + b4) sin(φ4)

]T
,

where r1f and r1f are the positions of the front axle and the center of the driven axles group, respec-
tively. r2, r3 and r4 are also the center position of the axle groups in the first semitrailer, the dolly
and the second semitrailer, respectively. Finally, the matrices Mq, Kq, Cq, Hq and Bq are obtained
as the following:

Mq =

⎡
⎢⎢⎢⎣

M11 M12 M13 M14 M15
∗ M22 M23 M24 M25
∗ ∗ M33 M34 M35
∗ ∗ ∗ M44 M45
∗ ∗ ∗ ∗ M55

⎤
⎥⎥⎥⎦ , Kq =

⎡
⎢⎢⎢⎣

0 0 K13 K14 K15
0 0 K23 K24 K25
0 0 K33 K34 K35
0 0 K43 K44 K45
0 0 K53 K54 K55

⎤
⎥⎥⎥⎦ ,

Bq = −C4

⎡
⎢⎢⎢⎣

−1
(c1 + l2 + a3 + b3)

(l2 + a3 + b3)

(a3 + b3)

0

⎤
⎥⎥⎥⎦ , Hq = C1

⎡
⎢⎢⎢⎣

1
−a1

0
0
0

⎤
⎥⎥⎥⎦ , Cq =

⎡
⎢⎢⎢⎣

C11 C12 C13 C14 C15
∗ C22 C23 C24 C25
∗ ∗ C33 C34 C35
∗ ∗ ∗ C44 C45
∗ ∗ ∗ ∗ C55

⎤
⎥⎥⎥⎦ /vx

+

⎡
⎢⎢⎢⎣

0 m1 + m2 + m3 + m4 0 0 0
0 −m2(c1 + a2) − m3(c1 + l2 + a3) − m4(c1 + l2 + l3 + a4) 0 0 0
0 −m2a2 − m3(l2 + a3) 0 0 0
0 −m3a3 − m4(l3 + a4) 0 0 0
0 −m4a4 0 0 0

⎤
⎥⎥⎥⎦ vx,

Here ∗’s represent entries that are identifiable from symmetry. The elements of Mq (represented as
Mij):

M11 = m1 + m2 + m3 + m4, M12 = −m2(c1 + a2) − m3(c1 + l2 + a3) − m4(c1 + l2 + l3 + a4),

M13 = −m2a2 − m3(l2 + a3) − m4(l2 + l3 + a4),

M14 = −m3a3 − m4(l3 + a4), M15 = −m4a4,

M22 = Iz1 + Iz2 + Iz3 + Iz4 + m2(c1 + a2)2 + m3(c1 + l2 + a3)2 + m4(c1 + l2 + l3 + a4)2,

M23 = Iz2 + Iz3 + Iz4 + m2a2(c1 + a2) + m3(l2 + a3)(c1 + l2 + a3)

+ m3(l2 + a3)(c1 + l2 + a3) + m4(l2 + l3 + a4)(c1 + l2 + l3 + a4),

M24 = Iz3 + Iz4 + m3a3(c1 + l2 + a3) + m4(l3 + a4)(c1 + l2 + l3 + a4),

M25 = Iz4 + m4a4(c1 + l2 + l3 + a4),

M33 = Iz2 + Iz3 + Iz4 + m2a2
2 + m3(l2 + a3)2 + m4(l2 + l3 + a4)2,

M34 = Iz3 + Iz4 + m3a3(l2 + a3) + m4(l3 + a4)(l2 + l3 + a4),
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M35 = Iz4 + m4a4(l2 + l3 + a4), M44 = Iz3 + Iz4 + m3a2
3 + m4(l3 + a4)2,

M45 = Iz4 + m4a4(l3 + a4), M55 = Iz4 + m4a2
4.

The elements of Kq (represented as Kij):

K13 = −(C2 + C3 + C4), K14 = −(C3 + C4), K15 = −C4,

K23 = C2(c1 + a2 + b2) + C3(c1 + l2 + a3 + b3) + C4(c1 + l2 + l3 + a4 + b4),

K24 = C3(c1 + l2 + a3 + b3) + C4(c1 + l2 + l3 + a4 + b4), K25 = C4(c1 + l2 + l3 + a4 + b4),

K33 = C2(a2 + b2) + C3(l2 + a3 + b3) + C4(l2 + l3 + a4 + b4),

K34 = C3(l2 + a3 + b3) + C4(l2 + l3 + a4 + b4),

K35 = C4(l2 + l3 + a4 + b4), K43 = C2l3 + C3(a3 + b3 + a4 + b4),

K45 = C4(l3 + a4 + b4), K53 = K54 = K55 = C4(a4 + b4).

The elements of Cq (represented as Cij):

C11 = C1f + C1r + C2 + C3 + C4,

C12 = −C1f a1 + C1r b1 − C2(c1 + l2) − C3(c1 + l2 + a3 + b3) − C4(c1 + l2 + l3 + a4 + b4),

C13 = −C2(a2 + b2) − C3(l2 + a3 + b3) − C4(l2 + l3 + a4 + b4),

C14 = −C3(a3 + b3) − C4(l3 + a4 + b4), C15 = −C4(a4 + b4),

C21 = C1f a1 − C1r b1 − C2(c1 + a2 + b2) − C3(c1 + l2 + a3 + b3) − C4(c1 + l2 + l3 + a4 + b4),

C22 = C1r a
2
1 + C1r b

2
2 + C2(c1 + a2 + b2)2 + C3(c1 + l2 + a3 + b3)2

+ C4(c1 + l2 + l3 + a4 + b4)2),

C23 = C2(a2 + b2)(a1 + a2 + b2) + C3(l2 + a3 + b3)(a1 + l2 + a3 + b3)+
+ C4(l2 + l3 + a4 + b4)(a1 + l2 + l3 + a4 + b4),

C24 = C3(a3 + b3)(a1 + l2 + a3 + b3) + C4(l3 + a4 + b4)(a1 + l2 + l3 + a4 + b4),

C25 = C4(a4 + b4)(a1 + l2 + l3 + a4 + b4),

C33 = C2(a2 + b2)2 + C3(l2 + a3 + b3)2 + C4(l2 + l3 + a4 + b4)2,

C34 = C3(a3 + b3)(l2 + a3 + b3) + C4(l3 + a4 + b4)(l2 + l3 + a4 + b4),

C35 = C4(a4 + b4)(l2 + l3 + a4 + b4), C44 = C3(a3 + b3)2 + C4(l3 + a4 + b4)2,

C45 = C4(a4 + b4)(l3 + a4 + b4), C55 = C4(a4 + b4)2.
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