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Abstract
Background Numerous studies have reported the beneficial effects of strontium on bone growth, particularly by stimulating
osteoblast proliferation and differentiation. Thus, strontium release around implants has been suggested as one possible
strategy to enhance implant osseointegration.
Aim This study aimed to evaluate whether the local release of strontium ranelate (Sr-ranelate) from implants coated with
mesoporous titania could improve bone formation around implants in an animal model.
Materials and methods Mesoporous titania (MT) thin coatings were formed utilizing the evaporation induced self-assembly
(EISA) method using Pluronic (P123) with or without the addition of poly propylene glycol (PPG) to create materials with
two different pore sizes. The MT was deposited on disks and mini-screws, both made of cp Ti grade IV. Scanning electron
microscopy (SEM) was performed to characterize the MT using a Leo Ultra55 FEG instrument (Zeiss, Oberkochen,
Germany). The MT was loaded with Sr-ranelate using soaking and the drug uptake and release kinetics to and from the
surfaces were evaluated using quartz crystal microbalance with dissipation monitoring (QCM-D) utilizing a Q-sense E4
instrument. For the in vivo experiment, 24 adult rats were analyzed at two time points of implant healing (2 and 6 weeks).
Titanium implants shaped as mini screws were coated with MT films and divided into two groups; supplied with Sr-ranelate
(test group) and without Sr-ranelate (control group). Four implants (both test and control) were inserted in the tibia of each
rat. The in vivo study was evaluated using histomorphometric analyses of the implant/bone interphase using optical
microscopy.
Results SEM images showed the successful formation of evenly distributed MT films covering the entire surface with pore
sizes of 6 and 7.2 nm, respectively. The QCM-D analysis revealed an absorption of 3300 ng/cm2 of Sr-ranelate on the 7.2 nm
MT, which was about 3 times more than the observed amount on the 6 nm MT (1200 ng/cm2). Both groups showed
sustained release of Sr-ranelate from MT coated disks. The histomorphometric analysis revealed no significant differences in
bone implant contact (BIC) and bone area (BA) between the implants with Sr-ranelate and implants in the control groups
after 2 and 6 weeks of healing (BIC with a p-value of 0.43 after 2 weeks and 0.172 after 6 weeks; BA with a p-value of 0.503
after 2 weeks, and 0.088 after 6 weeks). The mean BIC and BA values within the same group showed significant increase
among all groups between 2 and 6 weeks.
Conclusion This study could not confirm any positive effects of Sr-ranelate on implant osseointegration.
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Graphical Abstract

1 Introduction

Treatments using dental implants are widely used and have
been recognized as a valuable option for restoring missing
teeth [1]. Every year, approximately 10 million dental
implants are inserted for oral rehabilitation, with a high
success rate overall [2]. In some reports, titanium implants
have been associated with success rates of more than 95%
[3, 4]. In general, the success rate is dependent on numerous
factors, such as; the surgical technique, the bone condition,
the implant material, the patient conditions, and the per-
formance of the surgical team [5].

Following implant surgery, there are different stages in
the healing process before bone maturation is reached,
starting shortly after the surgery and continuing for months
or years afterwards [6]. Challenges remain in treating con-
ditions associated with poor bone quality or an impaired
healing process. Thus, ensuring good implant stability is
crucial for implant survival.

To improve osseointegration, many strategies have
emerged focusing on implant surface modifications [7]. For
example, the implant surface roughness on the micrometer
level has shown to have a large impact, and it has been
observed that a moderately rough surface demonstrates
favorable clinical results [8]. A so increased surface
roughness is reported to enlarge the implant surface area,
which may increase bone-implant contact [9]; which may
result in an improved biomechanical interlocking of the
implants in bone, thus be one explanation of the improved
clinical results [10].

To further improve implants, surface modifications at the
nano level has been suggested [11, 12]. The mechanisms of
action induced by these nanofeatures are still not fully
understood, but numerous studies have reported that nano-
features can influence the bone healing process in a positive

manner [13]. Nanofeatures are believed to effect protein
adsorption and thereby affect cell adhesion and alter cell
shape [14, 15]. Furthermore, nanostructured surfaces might
facilitate calcium phosphate precipitation, which may
accelerate the early stability of implants [16–18]. For
instance, in some animal experiments, greater bone forma-
tion has been observed around titanium implants coated
with CaP nanoparticles compared with pure titanium
implants [19, 20].

Mesoporous coatings, having nanostructures in the
arrangement of well-ordered pores in the size regime of
2–50 nm, have recently been suggested as a promising
surface modification of implants. Such coatings are typi-
cally characterized by a homogenously distributed porous
structure with high drug-loading capacity, which allows
them to be used as a host for drugs and other chemical
substances [21, 22]. Some studies have reported a sustained
release profile of drugs using implants with a mesoporous
coating [21, 23]. The release rate can be controlled by
modifying the pore width and surface chemical properties
[24].

In dental implant research, the release of drugs from a
mesoporous implant coating is primarily used to enhance
bone regeneration [25, 26]. Galli et al. [27], for example,
evaluated titanium implants coated with thin mesoporous
TiO2 films loaded with magnesium in rabbit bone. After
three weeks, local release of magnesium was associated
with greater bone formation at the implant site. In another
study, Ti implants coated with 200-nm thick mesoporous
films were loaded with osteoporosis drugs (raloxifene and
alendronate) and examined in rats [21]. After four weeks,
both drugs were associated with significantly improved
bone-implant fixation.

Strontium is one possible drug candidate proposed to
improve osseointegration of implants [28, 29]. Interestingly,
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strontium has shown similar biological effects as calcium
and is also known for its anti-osteoporotic properties [30].
Thus, some studies have investigated the effects of strontium
release on bone formation around implants [28, 31, 32].
Strontium administration was reported to have a positive
influence on bone metabolism [33, 34]. It was believed that
strontium has dual effects in improving bone formation: sti-
mulating osteoblastic cell proliferation and differentiation and
decreasing the activity of osteoclasts [33, 35].

Some in vitro studies have reported an increase in
osteoblast attachment and proliferation of calcium phos-
phate bone substitutes with the incorporation of strontium
[36, 37]. Strontium-containing hydroxyapatite (Sr-HA)
bone cement was evaluated in revision hip replacement
study in goats [38]. Subsequently, after nine months of
implantation, the use of Sr-HA revealed good bioactivity
and strong bone-bonding ability. Hence, the administration
of strontium is assumed to be an effective strategy for
improving bone formation around implants. With conven-
tional oral administration of strontium, increased bone
levels has been observed when given to dialysis patients
[39]. However, some side effects were reported with high
oral doses of strontium, such as bone hypomineralization
and drug rash with eosinophilia [40–42].

Alternatively, local administration of strontium has been
of interest to enhance implant osseointegration while
minimizing the risk of potential adverse side reactions.
Many researchers have investigated the incorporation of
strontium into an implant surface using different methods.
For example, surfaces consisting of Titanium/Sr nanotubes
have been evaluated and it was shown that incorporation of
strontium within the nanotubes enhanced the proliferation
of mesenchymal stem cells and osteoblastic differentiation
in rats [43]. Park et al. [29] evaluated Ti–6Al–4V alloy
implants incorporated with strontium ions produced using a
hydrothermal treatment. The implants were inserted in tibial
and femoral condyles of rabbits. Four weeks after implan-
tation, implants containing strontium showed significantly
more bone-implant contact in both cortical and cancellous
bone. In another experiment using rats, Ti implants were
coated with hydroxyapatite, with or without strontium,
using a sol–gel dip-coating method [44]. Implants dip-
coated with strontium showed significantly higher bone
formation and stronger fixation compared to implants
without this chemical element. In addition, strontium
ranelate was examined in an osteoporotic animal model and
revealed maintained bone formation level, which eventually
prevented trabecular bone loss [45].

Despite the numerous studies showing positive results
owing to local administration of strontium on ossoeinte-
gration of implants, it is difficult to determine the true
therapeutic effect of strontium. In all above mention
examples, strontium has been chemically included within

the implant or implant coating, either together with titanium
or calcium phosphate, thus inevitably affecting the topo-
graphy, morphology, chemistry and solubility of the
implant surface, which all are known factors affecting
ossoeintegration. This circumstance causes it challenging to
evaluate the effect of strontium alone, since controls not
including strontium are different on several instances.

This present study aimed to evaluate whether the release
of Sr-ranelate from an implant surface coated with meso-
porous TiO2 films could improve bone formation around
implants in an animal model. One advantage with this drug-
delivery technology is that the only difference between test
and control is the presence of strontium, hence the effect
that strontium has on ossoeintegration without impact of
other factors can be assessed.

2 Materials and methods

2.1 Materials

Sr-ranelate was purchased from Sigma–Aldrich (Ger-
many). Pluronic P123 (tri-block copolymer of (ethylene
glycol)20–(pro-pylene glycol)70–(ethylene glycol)20), tita-
nium (IV) tetraethoxide, and hydrochloric acid were pur-
chased from Sigma–Aldrich (Germany). Ethanol (99.5%)
was provided by Solveco AB (Sweden). Milli-Q water,
having an ultrapure grade (18.2 MΩ) was used for all
preparations. Titanium QCM-D sensors (QSX 310, Q-
sense) were used for the drug uptake and release tests. For
the in vivo study, 96 Mini-screws made of titanium grade
IV (Neodent, Curitiba, Brazil), with 2.5 mm length and
1.5 mm diameter were used.

2.2 Material preparation

Mesoporous TiO2 (MT) films were deposited on both
QCM-D sensors and implant mini-screws using the eva-
poration induced self-assembly (EISA) method, as pre-
viously described [46]. In brief, 2.1 g of titanium (IV)
tetraethoxide was mixed with 1.6 g concentrated hydro-
chloric acid (37%) to form a titania precursor solution. The
mixture was stirred vigorously until a homogeneous solu-
tion was formed. Then, 0.5 g of P123 was dissolved in 8.5 g
ethanol with vigorous stirring followed by mixing with the
precursor solution. Another solution was prepared simulta-
neously following the same techniques but with the addition
of poly propylene glycol (PPG) to P123 (1:1 by weight) to
enable the formation of larger pores [47]. The aim was to
form MT having pores of 6 nm (P123) and 7.2 nm (P123+
PPG), in accordance with previous work [24].

The solutions were stirred gently for approximately 24 h.
The next day, spin coating was performed by applying
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80 µL of the mesporous titania precursor solutions at
4000 rpm for 60 s. Subsequently, the coated surfaces were
left for 1 day at room temperature to complete the self-
assembly process. The next day, the coated surfaces were
calcined by heating with a heating ramp of 1 °C/min from
RT to 350 °C. Then, the coated surfaces were left at 350 °C
for 4 h to remove the template and to cross-link the titania.
For the drug loading, MT coated-implants were soaked in a
solution of strontium ranelate dissolved in Milli Q water
(0.8 mg/ml) and kept there for one day. Afterward, they
were removed and dried gently using nitrogen gas.

2.3 Scanning electron microscopy (SEM)

Scanning electron microscopy was used to visualize the
surface morphology of the MT films. A Leo Ultra55 FEG
Instrument (Zeiss, Oberkochen, Germany) was used with an
accelerating voltage of 2–5 kV. An in-lens secondary elec-
tron detector was utilized for top view visualization of the
coated surfaces.

2.4 Drug absorption and release

The uptake and release of Sr-ranelate from the MT surfaces
were investigated using QCM-D (Q-sense E4). Titanium
QCM-D disks were coated with mesoporous TiO2 made
using P123 or P123-PPG as templates. Uncoated QCM-D
disks were used as control. For the experiments, Sr-ranelate
dissolved in Milli-Q H2O (1 wt% strontium) was first
introduced onto the surfaces, to monitor the absorption, and
then exchanged with Milli-Q H2O, to monitor the release.
The experiments were performed under a constant flow of
50 mLmin−1 and at RT. The observed change in frequency
(Δf) was used to calculate the change in mass (Δm) of the
adsorbed Sr-ranelate (ng cm−2) using the Sauerbrey equa-
tion [48]:

Δm ¼ �C � Δf
n

where, C refer to the mass sensitivity constant (17.7 ngHz−1

cm−2) and n is the overtone number [49]. Using the
calculated mass, the amount of Sr-ranelate absorption and
release could be followed as a function of time.

2.5 Animals and surgical procedures

Twenty-four 6-month-old Sprague Dawley female rats were
included in this study. The animal surgery was performed
under the approval from the ethical committee for animal
experiments at the Ecole Nationelle Veterinaire D’Alfort,
Masion D’Alfort, France.

At the day of surgery, the rats were anesthetized through
inhalation of isoflurane 1% dissolved in O2. Then, an
incision was made in the skin over the medial face of the
tibia. A full-thickness periosteal flap was elevated, and the
medial tibia plate was exposed. The implant site was pre-
pared using a sequence of 1-mm- and 2-mm-diameter burs,
under constant irrigation of saline solution.

The mini-screws coated with MT were placed in both
sides randomly following four experimental groups:

Group 1: mini-screws coated with 6 nm MT.
Group 2: mini-screws coated with 7.2 nm MT.
Group 3: mini-screws coated with 6 nm MT and loaded

with Sr-ranelate.
Group 4: mini-screws coated with 7.2 nm MT and loaded

with Sr-ranelate.
Each rat received screws in the tibia on both sides, with a

total of four screws per animal, two tests and two controls
(Fig. 1).

After two and six weeks of healing, the rats were sacri-
ficed by pentobarbital overdose. The implants with the
surrounding bone were removed from the tibia and fixed in
70% ethanol for histological processing.

2.6 Histological analysis

A total number of 96 implants were retrieved with the
surrounding bone and processed for histological analyses

Fig. 1 Descriptive surgical procedures: a A flap was raised and the implant site was prepared using a sequence of 1-mm- and 2-mm-diameter burs.
b Implants placement with 2 mm distance between the screws
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(12 per group for each time point). The retrieved bone
blocks were processed in series of dehydrations in ethanol
and immersed in light-curing resin (Technovit 7200 VLC—
Heraeus Kulzer, Wehrheim, Germany) and finally embed-
ded in the resin. Thereafter, the resin-embedded samples
were subjected to undecalcified ground sectioning using
Exakt sawing and grinding equipment [50]. The sections
were ground to a final thickness of around 20 µm and his-
tologically stained with Toluidine blue-pyronin dye. For
histological evaluations, the stained sections were examined
using an optical microscope (Eclipse ME600—Nikon Co.,
Tokyo, Japan). For histomorphometry, the following para-
meters were calculated; the percentage of bone-implant
contact (BIC), the percentage of bone area between threads
(BA), and the percentage of new bone area (new-BA)
between threads. The histomorphometric analysis was per-
formed using the Image J software (National Institutes of
Health, Bethesda, MD, USA).

2.7 Statistical analysis

The non-parametrical Kruskal–Wallis test (SPSS Statistics
v. 22, IBM Corp., USA) was used to evaluate the differ-
ences between all groups in the animal experiment. Mann-

Whitney U test was used to compare the histomorphome-
trical values within same group after 2 and 6 weeks. The
significance level was set at P= 0.05. All data were plotted
as mean ± standard deviation.

3 Results

3.1 Surface evaluation

SEM evaluation revealed a well-ordered porous structure of
the two different MT films formed on titanium disks
(Fig. 2). The measured pore size was 6 nm for the film
synthesized with P123, and 7.2 nm for the film synthesized
by adding PPG to P123. Images of the film cross-sections
revealed film thicknesses of approximately 300 nm (P123)
and 750 nm (P123 and PPG), Fig. 2. The observed differ-
ence in the MT thickness is believed to be a result of change
in the solution viscosity caused by the addition of PPG.

3.2 Drug absorption and release rate

Quartz crystal microbalance with dissipation monitoring
(QCM-D) was used to study the absorption and release

Fig. 2 SEM micrographs
showing: a a top view of MT
thin film formed using P123 as
template, b a top view of MT
thin film formed using P123+
PPG as template, c a cross-
sectional view of MT thin film
formed using P123 as template,
and d a cross-sectional view of
MT thin film formed using
P123+ PPG as template

Journal of Materials Science: Materials in Medicine (2019) 30:116 Page 5 of 12 116



behavior of Sr-ranelate from the two MT surfaces, that is,
with 6 and 7.2 nm pore sizes, as shown in Fig. 3. The flow
rate of 50 mL/min used in this test demonstrate an accel-
erated condition compared to the in vivo situation in bone
tissue. The differences in pore size and film thickness of the
two films were shown to highly affect the loading capacity
and release of Sr-ranelate. Using the Sauerbrey equation,
the analysis revealed an absorption maximum of 3300 ng/
cm2 of Sr-ranelate on the 7.2 nm MT, which was about 3
times more than the observed amount on the 6 nm MT
(1200 ng/cm2). Both groups showed similar release kinetics
in which an initial fast release was observed followed by
sustained release of Sr-ranelate after solution exchanged
with Milli-Q water (Fig. 3).

3.3 In vivo experimentation

No rats died during the surgery or during the healing period
and all the animals healed uneventfully. No signs of
infection or disabilities in motion were observed.

3.4 Histological results

The qualitative evaluations of the histological sections
showed that deeply stained woven bone had formed around
the surface of all implants after 2 weeks of healing. After
6 weeks, more new bone had formed around the surface of
all implants filling the area between the threads. Overall,

both evaluated surfaces showed similar bone response after
2 and 6 weeks.

The histomorphometric analyses for BIC, BA, and new-
BA are summarized in Table 1 and Figs 4–7. After two and
six weeks, higher percentages of BIC and BA observed
around screws incorporated with Sr-ranelate (Figs 8–11).
Layers of newly formed bone lining the implant threads
characterized many of the implants incorporated with Sr-
ranelate (Fig. 11). In addition, large remodeling lacunae
with osteoblasts were visible at this area. However, the
statistical analysis revealed that the differences between
control and test groups were not significant. For BIC, the P
value was 0.430 at 2 weeks and 0.172 at 6 weeks. For BA,
the P value was 0.503 at 2 weeks and 0.088 at 6 weeks. The
mean BIC and BA values within the same group showed
significant increase among all groups between 2 and
6 weeks (Fig. 7).

4 Discussion

Several studies have claimed that the use of strontium can
enhance the formation of new bone and reduce bone
resorption [32, 51, 52]. However, systemic administration
of strontium might be associated with some unpleasant side
effects, such as diarrhea [18]. As an alternative to systemic
administration, local drug-delivery at the bone-implant
interface has gained attention. Such local administration

Fig. 3 QCM-D results showing Sr-ranelate absorption and release
from MT films. The asterisk (*) indicates the time when Sr-ranelate
solution was exchanged with flow of Milli-Q H2O

Table 1 Summary of the
histomorphometric
measurements

BIC % (SD) BA % (SD) New-BA % (SD)

Group 2 weeks 6 weeks 2 weeks 6 weeks 2 weeks 6 weeks

Control (6 nm) 52 (11) 71 (8) 42 (8) 51 (10) 34 (6) 34 (13)

Control (7.2 nm) 51 (12) 66 (11) 42 (8) 52 (12) 35 (10) 39 (11)

Sr (6 nm) 58 (10) 76 (9) 47 (7) 60 (8) 34 (8) 38 (6)

Sr (7.2 nm) 59 (8) 76 (9) 45 (6) 59 (7) 35 (5) 33 (7)

Fig. 4 Bone-implant contact percentage along threads. P value= 0.43
at 2 weeks and 0.172 at 6 weeks
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may be beneficial to patients as it avoids possible side
effects and has immediate effects at minimal but efficient
concentrations.

So far, most of the methods used for local delivery of
strontium to the bone-implant interface have been based on
incorporating strontium into the implant surface. Such
incorporation may change the surface properties of the
implant, such as surface morphology and material chemistry
[43, 53, 54]. As a consequence, several factors might have
contributed to the observed changes in tissue response,
making it impossible to identify if the observations are due
to the effect of Sr alone.

Of particular interest to implants research, mesoporous
titania (MT) loaded with bone-stimulating agents can be
used to enhance implant osseointegration. By changing the
surface characteristics of the MT films, the absorption and
release behavior of the loaded substance can be altered. This
property was proven in this work, as the difference in pore
size changed the Sr-renalate absorption and release rates
significantly. MT with a 7.2 nm pore size demonstrated
almost triple the loading capacity compared to mesoporous
Ti with a 6 nm pore size. Since the 7.2 nm MT films was 2
times thicker than the 6 nm MT films, also the pore size had
an effect on the capacity. While the clinical therapeutic

effect of the released drug is directly linked to the dose,
further optimization of both pore size and film thickness can
be performed for optimal effect. In addition, the drug-
loading capacity and kinetics can be further controlled by
altering and surface chemistry [55, 56].

Cecchinato et al. [57] investigated in vitro the absorption
and release of magnesium from MT implant coatings with
pore sizes similar to the ones used in this study. They found
higher amount of magnesium absorbed into the MT coating
with 7 nm (450 ng/cm2) compared to 6 nm (300 ng/cm2).
Our QCM-D results demonstrated higher amount of
immobilized Sr compared to what have been reported with
magnesium. When the projected screw surface area,
0.2 cm2, is taken into account this corresponds to 660 ng
(7.2 nm) and 240 ng (6 nm) Sr-renalate loading into the MT

Fig. 5 Bone area percentage between threads. P value= 0.503 at
2 weeks and 0.088 at 6 weeks

Fig. 6 Percentage of new bone area between the threads. P value=
0.78 at 2 weeks and 0.464 at 6 weeks

Fig. 7 Histomorphometrical values; BIC% a, BA% b, and new-BA%
c, within the same group between 2 and 6 weeks. The significance
level was set at P= 0.05
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Fig. 8 Histological micrographs obtained after 2 weeks of healing for implants coated with MT: a 6 nm, b 7.2 nm, c 6 nm loaded with Sr-ranelate,
and d 7.2 nm loaded with Sr-ranelate. Scale bar is 200 µm

Fig. 9 Histological micrographs obtained after 6 weeks of healing for implants coated with mesoporous films: a 6 nm, b 7.2 nm, c 6 nm loaded
with Sr-ranelate, and d 7.2 nm loaded with Sr-ranelate. Scale bar is 200 µm
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coatings per implant. If we then assume a diffusion distance
of 1 mm, the distribution volume is at the order of 0.1 cm3.
The resulting Sr-renalate concentrations become 6.6 µg/ml
(7.2 nm) and 2.4 µg/ml (6 nm). These Sr concentrations are

within the optimized values of 0.21 and 21.07 µg/ml of Sr
ranelate that has been shown to induce mesenchymal stem
cells to differentiate into osteoblasts as determined in a
previous in vitro study by Sila-Asna et al. [35]. The authors
further showed that high concentrations of up to 210.7 µg/
ml might be associated with delayed effects on osteoblastic
differentiation. Other studies have reported that the effect of
strontium on bone is complex and dose-related [58].

In our in vivo experiment, using rats as an animal model,
the healing process was observed after two and six weeks to
evaluate bone formation around implants with and without
Sr-ranelate. Although rat bone have biological dissimilarities
to human bone [59], the use of these animals is common in
implant research [44]. It should be noted that rats have a
shorter healing-time and bone turnover period compared to
humans, which facilitates the evaluation of osseointegrated
implants at different healing stages within a shorter time
frame [60]. The rats were examined at two weeks to assess
early bone formation, as the healing process is expected to
start shortly before that, and they were examined after six
weeks, when the bone formation process is expected to be
completed. To accommodate the small bone size of the rats,
miniature titanium screws were used in this experiment.

Before surgery, Sr-ranelate was loaded into the MT by
simple immersion followed by gentle drying to remove
excess solution. It is hypothesized that the addition of Sr-
ranelate will not be associated with any change to the sur-
face morphology. Since Sr-renalate is water soluble, hence
any Sr-renalate that might be present, if unlikely, on the
implant surface would directly dissolve upon contact with
blood and a pure MT surface would be revealed. As a direct
consequence of this, the use of our MT system makes it
possible to directly evaluate the presence of Sr, without the
inference of changes in surface topography or implant
material chemistry.

For the histomorphometric analyses, parameters such as
BIC, BA, and new-BA are commonly used to quantify
osseointegration. This is a two-dimensional analysis suitable
to directly observe bone formation along implant threads.
The results from this study could not demonstrate improved
osseointegration for implants containing Sr-ranelate inde-
pendent if the pore diameter was 6 or 7.2 nm. Even though
superior values of BIC and BA were seen for implants
containing Sr-ranelate in both early and late healing stages,
these values were not significantly different between test and
control. Although the beneficial effects of incorporating
strontium into implant surfaces have been reported in
numerous studies, the absence of significant differences
between the control and test implants in this work could be
due to the fact that Sr alone has an insignificant effect on
osseointegration in healthy animals [29, 61].

Because of its anti-osteoporotic properties, the use of Sr-
ranelate in the medical field is mainly for treatment of

Fig. 10 Histological micrograph at high magnification for early bone
formation around implants coated with MT, 6 nm, after 2 weeks of
healing. New bone starts to fill the areas between cortical bone and
implant. Cortical bone (CB) is visualized in pale red while the New
Bone (NB) is visualized in purple

Fig. 11 Histological micrograph at high magnification for formed bone
along the threads for the screw coated with MT, 6 nm, and loaded with
Sr-ranelate after 6 weeks of healing time. Large number of osteoblasts
can be seen over the formed bone layer to help build new bone.
Cortical bone (CB) is visualized in pale red while New Bone (NB) is
visualized in purple
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osteoporosis [18, 34]. This is the central reason for why
some of the investigated endoosseous implants incorpo-
rated with strontium were performed using osteoporotic
animal models [44]. Thus, the effects of strontium on bone
might be less evident when using animals with normal
bone conditions. Although the positive effects of Sr on
implant ossoeintegration in normal bone condition were
reported by other authors [29, 32]. Park et al. [29] eval-
uated in vitro and in vivo Ti–6Al–4V alloy implants
incorporated with strontium by the use of a hydrothermal
treatment. In their study, the control (untreated) and
hydrothermally treated surfaces showed similar surface
roughness values; however, surface chemistry was
obviously different. Evaluation of cell attachments and
percentage of bone area revealed comparable results
between test and control surfaces. However, significantly
greater removal torque and BIC values were seen for the
Ti64/Sr implants.

Small animals like rats have been reported to have great
healing capacity, which make the process of detecting
differences during bone healing less straightforward [62].
Another explanation for the lack of significant differences
between test and control is that all groups showed
enhancements in osseointegration related to the presence of
the mesoporous films, which have been reported to sti-
mulate cell attachment and differentiation. As previously
discussed, MT coatings can increase the surface area and
facilitate implant integration with bone [46]. Interestingly,
we observed early bone apposition lining the implant
threads for groups containing Sr-ranelate (Fig. 11). This
could be due to the presence of Sr-ranelate, which probably
promoted osteoblastic differentiation.

5 Conclusion

In summary, the highly porous structure of mesoporous
TiO2 film is a suitable host material for drug-delivery
applications. This study could not confirm the positive
effects of Sr-ranelate on implant incorporation in bone of
healthy rats.
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