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Abstract
Let i : X → P

N be a projectivemanifold of dimension n embedded in projective space
P
N , and let L be the pullback to X of the line bundle OPN (1). We construct global

explicit Koppelman formulas on X for smooth (0, ∗)-forms with values in Ls for any
s. The same construction works for singular, even non-reduced, X of pure dimension,
if the sheaves of smooth forms are replaced by suitable sheavesA∗

X of (0, ∗)-currents
with mild singularities at Xsing . In particular, if s ≥ reg X − 1, where reg X is the
Castelnuovo–Mumford regularity, we get an explicit representation of the well-known
vanishing of H0,q(X , Ls−q), q ≥ 1. Also some other applications are indicated.

Keywords Projective variety · Integral formula · dbar-equation

Mathematics Subject Classification 32A26 · 32C30 · 32J99

1 Introduction

During the last decade, global Koppelman formulas for ∂̄ on various special projective
varieties have been constructed, see, e.g., [17–19,22–24]. The aim of this paper is to
present a quite general explicit construction of intrinsic1 Koppelman formulas on any
projective, possibly non-reduced, subvariety i : X → P

N of pure dimension n.
Let us first assume that X is smooth; even in this case, such global formulas are

previously known only in case X is (locally) a complete intersection inPN . Let L → X
be the restriction of the ample line bundleOPN (1) to X , and let E0,q

X (Lr ) denote the

1 Here “intrinsic” means that the operators in the formula only depend on intrinsic forms on X .
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Global Koppelman Formulas 2291

sheaf of smooth (0, q)-forms on X with values in Lr . We introduce integral operators
K : E0,q+1(X , Ls) → E0,q(Xreg, Ls) and P : E0,q(X , Ls) → E0,q(X , Ls) such that
the Koppelman formula

φ(z) = ∂̄Kφ + K(∂̄φ) + Pφ (1.1)

holds on X . In some situations, see below, we can choose the operators so thatPφ = 0;
if ∂̄φ = 0, then ψ = Kφ is a smooth solution to ∂̄ψ = φ on X . In certain cases, we
can choose P such that P : E0,0(X , Ls) → O(PN ,O(s)). Then Pφ is a holomorphic
extension to P

N of a holomorphic section φ of Lr on X . We get no new existence
results; the novelty is that we have explicit formulas for the global solutions and for
the holomorphic extensions. The operators K are given by kernels k(ζ, z) that are
defined on X × X and integrable in ζ for any z ∈ X . Simply speaking the operators
locally behave like standard integral operators for ∂̄ in C

n ; in particular, they extend
to L p-spaces, etc., and all classical local norm estimates hold.

Let us now turn our attention to the case when i : X → P
N is a subvariety of pure

dimension n. In case X is reduced, there are well-known definitions of smooth forms
and currents on X , cf. Sect. 3. In [9] are introduced reasonable definitions of sheaves
E0,∗
X of smooth (0, ∗)-forms and suitable sheaves of currents even in the non-reduced

case, see Sect. 6 below. In [6] and [9] are introduced, by means of local Koppelman
formulas, fine sheaves Ak

X (in fact, modules over E0,∗
X ) of (0, q)-currents on X , or

any pure-dimensional analytic space, with the following properties: There are sheaf
inclusions E0,q

X ⊂ Aq
X with equality on Xreg , whereas Aq

X have “mild” singularities
at Xsing , and

0 → O → A0
X

∂̄→ A1
X

∂̄→ · · · (1.2)

is a (fine) resolution of the structure sheafOX of holomorphic functions on X . By the
abstract de Rham theorem, we therefore have canonical isomorphisms

Hk(X , Ls) � Ker (Ak(X , Ls)
∂̄→ Ak+1(X , Ls))

Im (Ak−1(X , Ls))
∂̄→ Ak(X , Ls))

, k ≥ 1. (1.3)

In this paper, we construct integral operators

K : Aq+1(X , Ls) → Aq(X , Ls), P : Aq(X , Ls) → E0,q(X , Ls)

such that again the Koppelman formula (1.1) holds on X . In the reduced case, the
operatorsK are given by kernels k(ζ, z) that are defined on Xreg×X , locally integrable
in ζ for z ∈ Xreg , P are given by kernels p(ζ, z) that are smooth on Xreg × X , and
the integrals

Kφ(z) =
∫
X
k(ζ, z)∧φ(ζ ), z ∈ Xreg, Pφ(z) =

∫
X
p(ζ, z)∧φ(ζ ), z ∈ X ,

exist as principal values at Xsing . For the non-reduced case, see Sect. 6. As in the
smooth case, in good situations Pφ vanishes so we get explicit solutions to ∂̄ψ = φ,
and extensions of holomorphic sections from X to PN .
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2292 M. Andersson

Remark 1 It was proved already in [21] that if X is a local reduced complete inter-
section and φ is a smooth ∂̄-closed form, then there is locally a smooth solution to
∂̄ψ = φ on Xreg . The case with a general X was proved only in [5]. The analogous
result for a local non-reduced space is a special case of the main result in [9]. It is
known that in general there is no solution that is smooth across Xsing , see, e.g., [6,
Example 1.1].

Let JX be the homogeneous ideal in the graded ring S = C[z0, . . . , zN ] associated
with X . Let S(−r) be the module S but with the grading shifted by r . There is a free
graded resolution

0 → MN0

aN0−→ · · · a3−→ M2
a2−→ M1

a1−→ M0 (1.4)

of the homogeneous module MJ := S/JX ; i.e.,

M0 = S, Mk = S(−d1k ) ⊕ · · · ⊕ S(−drkk ),

ak = (ai jk ) are matrices of homogeneous forms with

deg ai jk = d j
k − dik−1 (1.5)

(1.4) is exact, and the cokernel of the right-most mapping is precisely S/JX . Since 0
is not an associated prime ideal of JX it follows from [11, Corollary 20.14] that one
can choose (1.4) such that N0 ≤ N . Our integral formulas are explicitly constructed
out of a resolution (1.4).

Recall that the (Castelnuovo–Mumford) regularity of X is defined as the regularity
of the ideal JX which turns out to be 1 plus the regularity of the module S/JX , so that

reg X = max
k,i

(dik − k) + 1,

if (1.4) is a minimal free resolution of S/JX , cf. [12, Ch. 4]. It is well known, see,
e.g., [12, Proposition 4.16], that

Hq(X , Ls−q) = 0, s ≥ reg X − 1, q ≥ 1, (1.6)

and that the natural mapping

O(PN ,O(s)) → O(X , Ls) (1.7)

is surjective for s ≥ reg X − 1.
In [4, Example 3.4] is described an extension operator that provides an explicit

proof of surjectivity of (1.7), in case X is reduced. The non-reduced case is obtained in
precisely the same way following the ideas in [9]. By appropriate choices of operators
Kwe can give an explicit proof of the vanishing of (1.6), provided that X is irreducible.
That is, we have
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Global Koppelman Formulas 2293

Theorem 1.1 Let X be a, possibly non-reduced, irreducible, subvariety of PN of pure
dimension n and assume that s ≥ reg X − 1. For each q ≥ 1 there is an integral oper-
ator K : Aq(X , Ls−q) → Aq−1(X , Ls−q) such that ∂̄Kφ = φ if φ ∈ Aq(X , Ls−q)

and ∂̄φ = 0.

In fact, for fixed q it is enough that s ≥ max�≤N−q di� − (N −q); this follows from
the proof below. When X is not irreducible a slightly less sharp version of the theorem
still holds, see Proposition 7.2.

Koppelman formulas on P
n were found by Götmark, [17], and on more general

symmetric spaces in [18]. In [20], explicit formulas for the ∂̄-equation are used on a
smooth Riemann surface embedded in P

2, for L1-estimates. Similar formulas were
also introduced in [19], cf. Sect. 8.2 below. Koppelman formulas for global, even non-
reduced, complete intersections are constructed in the recent papers [23,24], cf. Sect. 8
below.

As already mentioned, the main novelty in this paper is Koppelman formulas for
an arbitrary embedded projective variety X . We think that these formulas will be
of interest even when X is smooth. We prove Theorem 1.1 as an illustration of the
utility and indicate some other applications in Sect. 7.1. We hope that our Koppelman
formulas will be useful for other purposes as well.

In Sect. 2 we describe, based on [3,4,17], how one can obtain weighted integral
formulas on P

N . We need some elements from residue theory that we have collected
in Sect. 3. In Sects. 4 and 5, we then describe the construction of our Koppelman
formulas on a pure-dimensional subvariety. In order to keep the technicalities on a
reasonable level, we restrict here to the case where X is reduced. The reader who is
mainly interested in the smooth case can just think that Xsing is empty, in that way
avoiding a lot of technicalities. In Sect. 6, we discuss the non-reduced case.

Remark 2 The local study of the ∂̄-equation on non-smooth spaces by L2-methods
was initiated by Pardon and Stern, [31–33], and has been developed by a number of
authors since then, notably Fornaess, Gavosto, Ovrelid, Ruppenthal, Vassiliadou, see.,
e.g., [14–16,28–30,34,35].

The equation has also been studied by local and semi-global integral formulas in,
e.g., [5,6,21,25,26,37]. ��

2 Integral Representation on P
N

We first describe how one can generate weighted Koppelman formulas on P
N for

sections of a holomorphic vector bundle F → P
N . This is an adaption of an idea from

[1] to PN , following [3,4]; see also [17].
Let π : CN+1

z \ {0} → P
N
z be the natural projection and let U ⊂ P

N be an open
set. Recall that a form ξ in π−1U ⊂ C

N+1
z \ {0} is projective, i.e., the pullback of a

form ξ in U , if and only if ξ is homogeneous and δzξ = δz̄ξ = 0, where δz and δz̄
are interior multiplication by

∑N
0 z j (∂/∂z j ) and its conjugate, respectively. We will

identify forms in U by projective forms in π−1U .
Let Oz(k) denote the pullback of O(k) → P

N
z to P

N
ζ × P

N
z under the projection

P
N
ζ × P

N
z → P

N
z and define Oζ (k) analogously.
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2294 M. Andersson

Throughout this paper we will only consider forms and currents that only contain
holomorphic differentials with respect to ζ , whereas anti-holomorphic differentials
with respect to both z and ζ may occur.

Notice that

η = 2π i
N∑
0

zi
∂

∂ζi
,

is a section ofOz(1) ⊗Oζ (−1) ⊗ T1,0(PN
ζ ) on PN

ζ ×P
N
z . Contraction δη by η defines

a mapping

δη : C�+1,q(Oζ (k) ⊗ Oz( j)) → C�,q(Oζ (k − 1) ⊗ Oz( j + 1)),

where C�,q(Oζ (k) ⊗Oz( j)) denotes the sheaf of currents of bidegree (�, q) that take
values in Oζ (k) ⊗ Oz( j). Notice that δη only affects holomorphic differentials with
respect to ζ . Given a vector bundle L → P

n
ζ × P

n
z , let

Lν(L) =
⊕
j

C j, j+ν(Oζ ( j) ⊗ Oz(− j) ⊗ L).

If

∇η = δη − ∂̄,

then ∇η : Lν(L) → Lν+1(L) and ∇2
η = 0. Furthermore, if L ′ is a line bundle

and φ,ψ are sections of Lν(L) and Lν′
(L ′), respectively, then φ∧ψ is a section of

Lν+ν′
(L ⊗ L ′), and

∇η(φ∧ψ) = ∇ηφ∧ψ + (−1)degφφ∧∇ηψ.

Notice that

b = |ζ |2 z̄ · dζ − (z̄ · ζ )ζ̄ · dζ

|ζ |2|z|2 − |ζ̄ · z|2

is a (1, 0)-form on PN
ζ × P

N
z \ � with values in Oζ (1) ⊗ Oz(−1) such that δηb = 1;

here � is the diagonal in PN
ζ × P

N
z .

Lemma 2.1 The form

B = b

∇ηb
= b

1 − ∂̄b
= b + b∧∂̄b + · · · + b∧(∂̄b)N−1

is an integrable section of L−1 and

∇ηB = 1 − [�]dζ , (2.1)
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where the last term is the component of the current of integration [�] that has full
degree N in dζ .

Proof Let us consider the affinization where ζ0 �= 0. In the affine coordinates ζ ′
j =

ζ j/ζ0, j = 1, . . . , N , and the frame z0/ζ0 for Oz(1) ⊗ Oζ (−1), we have

η = 2π i
N∑
1

(ζ ′
j − z′j )

∂

∂ζ ′
j
.

It is readily checked that |b| ≤ C |ζ ′ − z′| and |δηb| ≥ C |ζ ′ − z′|2, and therefore (2.1)
follows, cf. [1, Example 4]. ��

Given a vector bundle F → P
N , let Fz denote the pullback of F to P

N
ζ × P

N
z

under the natural projection P
N
ζ × P

N
z → P

N
z and define Fζ analogously. A weight

with respect to F is a smooth section g of L0(Hom (Fζ , Fz)) such that ∇ηg = 0
and g0 = IF on the diagonal in P

N
ζ × P

N
z , where g0 denotes the term in g with

bidegree (0, 0). In general, we let lower index on a form denote degree with respect
to holomorphic differentials of ζ . Notice that if g is a weight with respect to F , then
from (2.1) we get

∇η(g∧B) = (g − [�]dζ )IF . (2.2)

Identifying terms of full degree in dζ thus

∂̄(g∧B)N = ([�]dζ − gN )IF .

By Stokes’ theorem we get the following Koppelman formula, cf. [17] and [18].

Proposition 2.2 Let g be a weight with respect to F → P
N . Then for φ ∈

E0,q(PN , F ⊗ O(−N )) we have

φ(z) = ∂̄z

∫
ζ

(g∧B)N∧φ +
∫

ζ

(g∧B)N∧∂̄φ +
∫

ζ

gN∧φ. (2.3)

Example 1 It is easy to check that

α = α0,0 + α1,1 = z · ζ̄

|ζ |2 − ∂̄
ζ̄ · dζ

2π i |ζ |2

is a projective form in L0(Oζ (−1) ⊕ Oz(1))) such that

∇ηα = 0. (2.4)

Since α0 is equal to IO(1) on the diagonal, α is a weight with respect to F = O(1).
For each natural number ρ therefore g = αρ is a weight with respect to F = O(ρ).
For � ≥ −N , we thus have the Koppelman formula

φ(z) = ∂̄z

∫
ζ

(α�+N∧B)N∧φ +
∫

ζ

(α�+N∧B)N∧∂̄φ +
∫

ζ

(αN+�)N∧φ. (2.5)
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2296 M. Andersson

Since α is holomorphic in z and has no differentials dz̄, the last term in (2.5) vanishes
if q ≥ 1, and for degree reasons also if q = 0 and � ≤ −1.

We thus have an explicit proof of the well-known vanishing H0,q(PN ,O(�)) = 0
for � ≥ −N if 1 ≤ q ≤ N , and for q = 0 if � ≤ −1.

Remark 3 Using the transposed integral operators in Example 1, we get an explicit
proof of the vanishing HN ,q(PN ,O(�)) = 0 for � ≤ N , 0 ≤ 1 ≤ N − 1. Since
KPN = O(−N − 1) we therefore get that H0,q(PN ,O(�)) = 0 for � ≤ −1, 0 ≤ q ≤
N − 1.

Let us now consider a weight with respect to O(−1). Let

τ = dz̄ · dζ

2π i |z|2 =
∑N

0 dz̄ j∧dζ j

2π i |z|2 .

Then

β = 2π i
[
δζ

δz̄τ

1 − τ

]
= 2π i

[δζ δz̄τ

1 − τ
+ δζ τ∧δz̄τ

(1 − τ)2

]

is a projective form. More explicitly,

β = z̄ · ζ

|z|2 + z̄ · ζ

|z|2
dz̄ · dζ

2π i |z|2 + z̄ · dζ∧ζ · dz̄
2π i |z|4 + · · · , (2.6)

so each term has the same degree in dζ as in dz̄, and is holomorphic in ζ .

Proposition 2.3 The form β is a weight with respect to O(−1).

Proof Clearly, cf. (2.6), β0,0 = IO(−1) on the diagonal. We claim that

∇η

δz̄τ

1 − τ
= 1. (2.7)

Since δζ anti-commutes with ∇η and δζ1 = 0 the proposition follows. To see (2.7),
notice that

δητ = − z · dz̄
|z|2 , ∂̄τ = δητ∧τ, δηδz̄τ = 1,

so that

∂̄δz̄τ = τ + δητ∧δz̄τ = τ + γ.

Therefore,
∇ηδz̄τ = 1 − τ − γ, (2.8)

and
∇ητ = δητ∧(1 − τ), (2.9)
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Global Koppelman Formulas 2297

so that
∇ητ∧δz̄τ = (1 − τ)∧γ. (2.10)

It follows that

∇η

δz̄τ

1 − τ
= 1 − τ − γ

1 − τ
+ ∇ητ∧δz̄τ

(1 − τ)2
= 1,

in view of (2.8), (2.9), and (2.10). ��

Thus for (0, q)-forms φ with values inO(�), � ≤ −N , we get from Proposition 2.2
the Koppelman formula

φ(z) = ∂̄

∫
ζ

(B∧β−N−�)N∧φ +
∫

ζ

(B∧β−N−�)N∧∂̄φ +
∫

ζ

(β−N−�)N∧φ.

For degree reasons the last term vanishes if 0 ≤ q ≤ N − 1, so we get back the well-
known vanishing H0,q(PN ,O(�)) = 0 for � ≤ −N . In case q = N , the obstruction
term vanishes when � = −N , and when � ≤ −N − 1 it vanishes if and only if

∫
ψ∧φ = 0 (2.11)

for each holomorphic (N , 0)-form with values in O(−�). That is, ∂̄v = φ is solvable
if and only if (2.11) holds. Of course this is precisely what we get by considering the
transposed operators with the weight α, cf. Remark 3. However, in the non-smooth
case, we have no obvious canonical bundle sowe cannot consider transposed operators
in the same simple way; therefore this weight β will play a role.

For future reference we prove

Proposition 2.4 The forms

γ j = δζ

[ δz̄τ

1 − τ
∧dζ j

]

are projective and
∇ηγ j = βz j − ζ j . (2.12)

Proof Clearly δζ γ j = 0 = δz̄γ j and thus γ j is a projective form. By (2.7) we have
that

∇η

[ δz̄τ

1 − τ
∧dζ j

]
= dζ j − 2π i

δz̄τ

1 − τ
z j .

Since ∇η and δζ anti-commute, the proposition follows. ��
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2298 M. Andersson

3 Some Preliminaries

Let X be any reduced analytic space of pure dimension n. By definition there is, locally,
some embedding i : X → � ⊂ C

N . Let JX ⊂ O� be the ideal sheaf of holomorphic
functions in � that vanish on X . Then the sheaf of holomorphic functions on X , the
structure sheaf OX , is represented as OX = O�/JX . If � is a smooth form in � we
say that � is in Ker i∗ if i∗� vanishes on Xreg . We define the sheaf

E p,∗
X = E p,∗

� /Ker i∗.

of smooth forms on X , and have a natural mapping i∗ : E p,∗
� → E p,∗

X . One can
prove that E p,∗

X so defined is independent of the choice of embedding and is thus
an intrinsic sheaf on X . We define the sheaf C p,∗

X of currents as the dual of En−p,n−∗
X .

More concretely this means that currents τ in C p,∗
X are identified with currents i∗τ in

C p+N−n,∗+N−n
� such that i∗τ vanish on Ker i∗ so that τ.i∗� = i∗τ.� for test forms

�. Clearly ∂̄ is defined on smooth forms and extends to currents by duality. Also the
wedge product φ∧τ is well defined as long as at least one of the factors is smooth.
Thus the currents form a module over the smooth forms.

We say that a current in CM
s of the form

γ

sa11 · · · sarr ∂̄
1

sar+1
r+1

∧ · · · ∂̄ 1

s
ar ′
r ′

,

where γ is a test form, is elementary. A current τ on X is pseudomeromorphic if locally
it is a finite sum of direct images under holomorphic mappings of elementary currents;
see, e.g., [10] for a precise definition and basic properties. The pseudomeromorphic
currents form a sheaf PMX that is closed under multiplication by E p,∗

X and the action
of ∂̄ . Given a pseudomeromorphic current τ in an open set U and a subvariety V ⊂ U ,
the natural restriction of τ to U \V has a canonical extension to a pseudomeromorphic
current 1U\V τ such that

1V τ := τ − 1U\V τ

has support on V . If ξ is a smooth form, then

ξ∧1V τ = 1V ξ∧τ. (3.1)

Let χ be a smooth function on [0,∞) that is 0 in a neighborhood of 0 and 1 in a
neighborhood of ∞ and let h be a tuple of holomorphic functions, or a section of
some holomorphic Hermitian vector bundle such that the zero set of h is precisely V .
Then

1U\V τ = lim
δ→0

χ(|h|/δ)τ. (3.2)

We say that a current a in X is almost semi-meromorphic, a ∈ ASM(X), if there is
a smooth modification π : X ′ → X , a generically non-vanishing holomorphic section
σ of a line bundle L → X ′ and a smooth L-valued form γ such that

123



Global Koppelman Formulas 2299

a = π∗(γ /σ).

Let ZSS(a) be the smallest analytic subset of X such that a is smooth in X \ZSS(a). It
follows that ZSS(a) has positive codimension. Clearly an almost semi-meromorphic
a is pseudomeromorphic.

Proposition 3.1 [10, Theorem 4.8] Given any pseudomeromorphic τ and a ∈
ASM(X) the current a∧τ a priori defined in X \ ZSS(a) has a unique pseudomero-
morphic extension to a pseudomeromorphic current in X, also denoted a∧τ , such that
1ZSS(a)a∧τ = 0.

Pseudomeromorphic currents have some important geometric properties, see, e.g.,
[10]:

Proposition 3.2 Assume that the pseudomeromorphic current τ has support on a germ
of an analytic variety V .

(i) If the holomorphic function h vanishes on V , then h̄τ = 0 and dh̄∧τ = 0.
(ii) If τ has bidegree (∗, p) and V has codimension ≥ p + 1, then τ = 0.

We refer to (ii) as the dimension principle.

4 A Structure Form Associated to X

Let i : X → P
N be a reduced subvariety of pure dimension n, and let (1.4) be

a free graded resolution of the S-module MX = S/JX . In particular, then a1 =
(a111 , . . . , a1r11 ) is a tuple of homogeneous forms that define the homogeneous ideal

JX in the graded ring S = C[z0, . . . , zN ]. Let E j
k be disjoint trivial line bundles over

P
N with basis elements ek, j and let

Ek = (
E1
k ⊗ O(−d1k )

) ⊕ · · · ⊕ (
Erk
k ⊗ O(−drkk )

)
, E0 � C.

Then
0 → EN0

aN0−→ · · · a3−→ E2
a2−→ E1

a1−→ E0 → 0 (4.1)

is a complex of vector bundles over PN that is pointwise exact outside Z , and the
corresponding complex of locally free sheaves

0 → O(EN0)
aN0−→ · · · a3−→ O(E2)

a2−→ O(E1)
a1−→ O(E0) (4.2)

over PN is a resolution of the sheaf O(E0)/JX , where JX ⊂ OPN is the ideal sheaf
associated with X . See, e.g., [7, Sect. 6]. We equip Ek with the natural Hermitian
metric

|ξ(z)|2Ek
=

rk∑
j=1

|ξ j (z)|2|z|2d
j
k
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2300 M. Andersson

if ξ = (ξ1, . . . , ξrk ), so that (4.1) becomes aHermitian complex. In [7]were introduced
pseudomeromorphic currents

U = U1 + · · · +UN0 , R = R1 + · · · + RN0

on P
N associated to (4.1) with the following properties: The currents Uk are

almost semi-meromorphic (0, k − 1)-currents, smooth outside X , that take values
in Hom (E0, Ek) � Ek , and Rk are (0, k)-currents with support on X , taking values
in Hom (E0, Ek) � Ek . Moreover, we have the relations

a1U1 = IE0 , ak+1Uk+1 − ∂̄Uk = −Rk, k ≥ 1, (4.3)

which can be compactly written as

∇aU = IE0 − R (4.4)

if

∇a = a − ∂̄ = a1 + a2 + · · · aN0 − ∂̄ .

If � is a section of O = O(E0), then the current R� vanishes if and only if � is in
JX , see [7, Theorem 1.1].

Let Xk be the analytic subset of PN where ak does not have optimal rank. Then

. . . Xk+1 ⊂ Xk . . . XN−n+1 ⊂ Xsing ⊂ X = XN−n = · · · = X1. (4.5)

Since JX has pure dimension

codim Xk ≥ k + 1, k ≥ N − n + 1, (4.6)

see [11, Corollary 20.14].
By the dimension principle Rk = 0 for k < N−n.Moreover, there are almost semi-

meromorphic Hom (Ek, Ek+1)-valued (0, 1)-currents αk+1, smooth outside Xk+1,
such that

Rk+1 = αk+1Rk

there. By (4.6) and the dimension principle it follows that this equality must hold
across Xk+1 if the right-hand side is interpreted in the sense of Proposition 3.1. By a
simple induction argument, using (4.6) and the dimension principle, it follows that

1Xsing R = 0. (4.7)

Lemma 4.1 If� is a smooth (0, ∗)-form, then i∗� = 0 on Xreg if and only if�R = 0.

It follows that Rφ is well-defined for φ in E0,∗
X .
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Proof Locally at a point x ∈ Xreg we can choose coordinates (z, w) such that X =
{w = 0}. By a Taylor expansion of � in w, using that w j R = w̄ j R = dw̄ j∧R = 0,
cf. Proposition 3.2 (i), we find that that R� = 0 if and only if i∗� = 0. If �R = 0
on Xreg it follows from (3.1) and (4.7) that �R = 0 identically. ��

Let Ω = δz(dz0∧ · · · ∧dzN ) be the unique, up to a multiplicative constant, non-
vanishing global (N , 0)-form with values inO(N + 1). From [6, Proposition 3.3] we
have

Proposition 4.2 There is a unique almost semi-meromorphic currentω = ω0+· · ·+ωn

on X that is smooth on Xreg, ω� have bidegree (n, �) and take values in E� :=
i∗EN−n+�, and

i∗ω = Ω∧R, i∗ω� = Ω∧RN−n+�. (4.8)

We say that ω is a structure form on X .
For any smooth form ξ on P

N there is a unique form ϑ(ξ) such that

ϑ(ξ)∧Ω = ξN , (4.9)

where ξN denotes the components of ξ of bidegree (N , ∗). From (4.8) and (4.9) we
have that

ξN∧R = ϑ(ξ)∧Ω∧R = i∗
(
ϑ(ξ)∧ω

)
, (4.10)

where we in the last term, for simplicity, write ϑ(ξ)∧ω rather then i∗ϑ(ξ)∧ω.

Lemma 4.3 Let χ(t) be a smooth function as in (3.2). If h is a holomorphic section of a
Hermitian vector bundle that does not vanish identically on any irreducible component
of X and χδ = χ(|h|/δ), then

χδω → ω, ∂̄χδ∧ω → 0. (4.11)

Proof Let W be the zero set of h. Notice that i∗1Xsingω = 1Xsing i∗ω = 1XsingΩ∧R =
Ω∧1Xsing R = 0 in view of Lemma 4.1. Thus 1Xsingω = 0, and hence 1W1Xsingω = 0.
Since ω is smooth on Xreg we have that 1W1Xregω = 0. By simple computational
rules, see, e.g., [10], we conclude that 1Wω = 0. In view of (3.2) thus the first part
of (4.11) follows. Notice that (4.4) implies that (a − ∂̄)R = 0, and by (4.8) thus
(a− ∂̄)ω = 0. Applying (a− ∂̄) to the first limit in (4.11) now the second one follows.

��

5 Koppelman Formulas on a Projective Variety

LetUλ = |a1|2λU and Rλ = 1−|a1|2λ + ∂̄|a1|2λ∧U . Then Rλ andUλ are as smooth
as we may wish if Re λ is sufficiently large. In particular, Rλ andUλ are well-defined
currents. Moreover, they admit analytic continuations to Re λ > −ε, and the values
at λ = 0 are precisely R and U , respectively, see [7].
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Let ρ be an integer. Following [3, Definition 1] we say that H = (H �
k ) is a Hefer

morphism for the complex E• ⊗ O(ρ), a, cf. (4.1), if H �
k are smooth sections of

L−k+�(Hom (Eζ,k ⊗ Oζ (ρ), Ez,� ⊗ Oz(ρ))),

H �
k = 0 for k < �, the term (H �

� )0 of bidegree (0, 0) is the identity IE�
on �, and

∇ηH
�
k = H �

k−1ak − a�+1(z)H
�+1
k , (5.1)

where ak stands for ak(ζ ). From [4, Lemma 2.5] we have

Lemma 5.1 Assume that H is a Hefer morphism for the complex E• ⊗ O(ρ), a. For
Re λ � 0, the form

gλ = a1(z)H
1Uλ + H0Rλ (5.2)

is a weight with respect to O(ρ).

Here H1U = ∑
j H

1
j U j and H0R = ∑

j H
0
j R j .

Proposition 5.2 Let F be holomorphic vector bundle over PN and let g be a weight
with respect to F. Moreover, assume that H is a Hefer morphism for E• ⊗ Lρ . For
φ ∈ E0,q(X , F ⊗ Lρ−N ) we have the Koppelman formula

φ(z) = ∂̄z

∫
ζ

(HR∧g∧B)N∧φ +
∫

ζ

(HR∧g∧B)N∧∂̄φ

+
∫

ζ

(HR∧g)N∧φ, z ∈ Xreg. (5.3)

By blowing up P
N × P

N along the diagonal one can verify that B is almost semi-
meromorphic. In view of Proposition 3.1 thus (HR∧g∧B)N∧φ is a well-defined
pseudomeromorphic current on PN × P

N . Formally (5.3) means that

φ = ∂̄π∗((HR∧g∧B)N∧φ) + π∗((HR∧g∧B)N∧∂̄φ) + π∗((HR∧g)N∧φ),

where π is the projection (ζ, z) �→ z.

Proof Since gλ∧g is a weight with respect toO(ρ) ⊗ F , and a1(z) = 0 when z ∈ X ,
from Proposition 2.2 we get (5.3) with Rλ instead of R. In view of (the proof of) [6,
Lemma 5.2], see also [9, Lemma 9.5], we can take λ = 0 and sowe get the proposition,
keeping inmind that the product B∧τ can be defined as the value of |η|2λB∧τ at λ = 0
in view of [6, (2.2) and (2.3)]. ��

Let
Kφ = π∗((HR∧g∧B)N∧φ), Pφ = π∗((HR∧g)N∧φ). (5.4)

Then we can write (5.3) as

φ = ∂̄Kφ + K∂̄φ + Pφ (5.5)
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for z ∈ Xreg .
In view of (4.10) we have that

Kφ(z) =
∫
X
k(ζ, z)∧φ(ζ ), Pφ(z) =

∫
X
p(ζ, z)∧φ(ζ ), (5.6)

where
k = ±ϑ(g∧B∧H)∧ω, p = ±ϑ(g∧H)∧ω. (5.7)

It is apparent from (5.6) that K and P are intrinsic integral operators on X . Locally
they are precisely of the type in [6], so it follows that Kφ is smooth on Xreg if φ is
smooth. Moreover, from [6, Theorem 1.4] we get:

Theorem 5.3 Let F be holomorphic vector bundle over PN and let g be a weight with
respect to F on X. Moreover, assume that H is a Hefer morphism for E• ⊗O(ρ) and
K and P are defined by (5.6). Then

K : Ak+1(X , E ⊗ Lρ−N ) → Ak(X , E ⊗ Lρ−N ),

P : Ak(X , E ⊗ Lρ−N ) → E0,k(PN , E ⊗ O(ρ − N ))

and the global Koppelman formula (5.5) holds on X for φ ∈ Aq(X , F ⊗ Lρ−N ).

6 The Non-reduced Case

Now assume that i : X → P
N has pure dimension n but is non-reduced. Then we still

have an ideal sheaf JX ⊂ OPN that has pure dimension n but JX is no longer radical,
i.e., there are nilpotent elements. Still the structure sheaf of X has the representation
OX = OPN /JX . The underlying reduced space Xred is associated with the radical
ideal

√JX = JXred .
Let Xreg be the subset of X where Xred is smooth and in addition JX is Cohen–

Macaulay. In a neighborhood U of a point x in Xreg , which is an open dense subset
of X , we can choose local coordinates (z, w) such that Xred ∩ U = {w = 0}. It turns
out, see, e.g., [9], that there are monomials 1, wα1 , . . . , wν−1 such that each φ in OX

has a unique representation

φ = φ̂0(z) ⊗ 1 + · · · + φ̂ν−1(z) ⊗ wν−1. (6.1)

Thus OX has the structure of a free OXred -module in U .
We say that � in E0,∗

PN is in Ker i∗ if in a neighborhood of each point in Xreg ,

� is in the subsheaf of E0,∗
PN generated by JX , J̄Xred , and dJ̄Xred . As in the reduced

case we define E0,∗
X = EPN /Ker i∗, and again it is independent of the choice of local

embedding of X . It turns out that at each point in Xreg and coordinates (z, w) as above
we have a unique representation (6.1) of φ in E0,∗

X where φ̂ j are in E0,∗
Xred

.
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We define the sheaf of (n, ∗)-currents on X as the dual of E0,n−∗
X , so that such a

current τ is represented by a (N , N − n + ∗)-current i∗τ in PN that is annihilated by
Ker i∗.

Basically all facts in Sect. 4 now hold verbatim, except for that one has to replace X
by Xred in (4.5) and slightly modify the proof of Lemma 4.1. It follows from Lemma
4.1 that there is a current ω such that (4.8) holds. However, in the non-reduced case
we give no meaning to that ω is almost semi-meromorphic and smooth on Xreg . The
first part of (4.11) just means that 1W R = 0 and this follows from [9, Corollary 6.3].
The second part of (4.11) follows from the first part precisely as before.

Following [9] we can also make the construction of Koppelman formulas in Sect. 5
and define sheaves A∗ on X so that Theorem 5.3 holds.

Remark 4 Recall that a holomorphic differential operator L is Noetherian with respect
to the ideal J if Lφ vanishes on Z if φ ∈ J . As in the local case, cf. [6, Remark 6.6],
there is a tupleL of global Noetherian operators onPN with almost semi-meromorphic
coefficients so that

ω.ξ =
∫
Z
Lξ,

cf. [8, Theorem 4.1 and Proposition 5.1].

7 Global Solutions

To begin with we consider a Hefer morphism, introduced in [3], for the complex
E• ⊗O(ρ), a for large ρ. Let E ′ denote the complex of trivial bundles overCN+1 that
we get from E , and let A denote the corresponding mappings (which then formally
are just the original matrices a). Let δw−z denote interior multiplication by

2π i
N∑
0

(w j − z j )
∂

∂w j
.

in CN+1
w × C

N+1
z .

Proposition 7.1 There exist (k − �, 0)-form-valued mappings

h�
k =

∑
i j

(h�
k)i j e�i ⊗ e∗

k j : CN+1
w × C

N+1
z → Hom (E ′

k, E
′
�),

such that h�
k = 0 for k < �, h�

� = IE ′
�
,

δz−wh
�
k = h�

k−1Ak(w) − A�+1(z)h
�+1
k , (7.1)

and the coefficients in the form (h�
k)i j are homogeneous polynomials of degree

d j
k − di� − (k − �).
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Notice that

γ j = dζ j − ζ̄ · dζ

|ζ |2 ζ j (7.2)

is a projective form and that

∇ηγ j = 2π i(z j − αζ j ). (7.3)

Given h�
k in Proposition 7.1 we let τ

∗h�
k be the projective form we obtain by replacing

w by αζ and dw j by γ j . We then have

∇ητ
∗h = τ ∗(δw−zh), (7.4)

in light of (7.3) and (2.4). It is proved in [3] that if

κ0 = κ0(X) = max dik,

then

H �
k =

∑
i j

(τ ∗h�
k)i j∧ακ0−d j

k e�,i ⊗ e∗
k, j ,

is a Hefer morphism for (4.1) with ρ = κ0. Clearly, H is holomorphic in z.
Recall that g = αν is a holomorphic weight with respect to F = O(ν) for ν ≥ 0.

From Proposition 5.2 we thus obtain explicit solutions to the ∂̄-equation in L� for
� ≥ κ0(X) − N .

Proposition 7.2 Assume that X is a possibly singular projective subvariety of PN of
pure dimension n, and s ≥ κ0 − N. If φ is a ∂̄-closed section in Aq(X , Ls), q ≥ 1,
then

Kφ(z) =
∫

(Hκ0 R∧αs−κ0+N∧B)N∧φ

is a solution in Aq−1(X , Ls) to ∂̄u = φ.

Notice that κ0 − N ≤ max(dik − k) ≤ reg X − 1. Thus the proposition gives a
weaker form of Theorem 1.1.

Remark 5 The associated operator P is precisely the operator in [4, Example 3.4] that
realizes the surjectivity of (1.7). That is, if φ ∈ O(X , Ls), then

φ(z) =
∫

(HR∧αs−κ0+N )N∧φ

is a global section of O(s) → P
N that coincides with φ on X .
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Example 2 Assume that X is a complete intersection, i.e., J is generated by homoge-
neous forms a11, . . . , a

p
1 , of degrees d

1, . . . , d p, where p = N − n. Then the Koszul

complex generated by a j
1 provides a minimal free resolution, and it is then easy to see

that κ0 = d1 + · · · + d p, cf. Sect. 8 below. Moreover, by the adjunction formula

KX = KPN ⊗ O(d1 + · · · + d p) = Lκ0−N−1.

Here KX is the Grothendieck dualizing sheaf, which in this case is a line bundle that
is generated by ω = ω0. When X is smooth KX is just the usual canonical bundle. If
we define (n, q)-forms as (0, q)-forms with values in KX , then Proposition 7.2 gives
an explicit realization of the vanishing

Hn,q(X , L�) = 0, 1 ≤ q ≤ n, � ≥ 1. (7.5)

If X is smooth this follows precisely fromKodaira’s theorem, since L is strictly positive
on X .

For the proof of Theorem 1.1 we must make a more careful analysis of the kernels.
Let us introduce the notation

κq = κq(X) = max
�≤N−q

di�. (7.6)

Notice that

κq − N ≤= max
�≤N−q

(
di� − (N − �) − �

) ≤ reg X − 1 − q. (7.7)

Proof of Theorem 1.1 Notice that the section h(ζ, z) = ζ · z̄/|z|2 of Oζ (1) ⊗ Oz(−1)
is non-vanishing on �. Let χ(t) be a cutoff function as before and let

χδ := χ(|h|2/δ) = χ
(|ζ̄ · z|2/|z|2|ζ |2δ).

Here |h| denote the natural norm of the section h, whereas in the last term | | denotes
norm of points in C

N+1. For small δ, χδ is identically 1 in a neighborhood of � and
thus

gδ := χδ − ∂̄χδ∧B (7.8)

is a smooth weight (with respect to the trivial line bundle). For fixed z, gδ vanishes in
a neighborhood of the hyperplane h = 0, and therefore

α−r∧gδ

is a smooth weight with respect to O(−r) for any r , though not holomorphic in z.
Now fix q ≥ 1 and let t = s − q. In particular, for t ≥ κq − N and φ ∈ Aq(X , Lt ),
q ≥ 1, with ∂̄φ = 0 we have the formula

φ(z) = ∂̄

∫
ζ

(HR∧αt−κ0+N∧gδ∧B)N∧φ
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+
∫

ζ

(HR∧αt−κ0+N∧gδ∧φ)N∧φ = ∂̄Kδφ + Pδφ. (7.9)

We claim that Kδφ tends to a current Kφ in Aq−1(X , Lt ) and that Pδφ → 0. Taking
this for granted, the theorem follows in view of (7.7).

To settle the claim we first consider the expression for Pδφ in (7.9). Since φ has
bidegree (0, q) only components HN−�RN−� with � ≥ q can occur in the integral.
Thus the total power of α is

κ0 − diN−� + t − κ0 + N ≥ κ0 − diN−� + κq − N − κ0 + N = κq − diN−� ≥ 0

in view of (7.6). Thus

Pδφ(z) =
∑
�≥q

∫
X

ωn−�∧φ0,q∧ϑ
(
ξ�∧(χδ − ∂̄χδ∧B)

)
,

where ξ� are smooth and holomorphic in z. Since q ≥ 1 we need some anti-
holomorphic differentials with respect to z and they must come from ∂̄χδ∧B; hence
we can forget about χδ . Since χδ = 1 in a neighborhood of the diagonal, we can
consider B as smooth. Thus we have to verify that

ω∧φ∧∂̄χδ → 0, δ → 0. (7.10)

Since X is irreducible, h = 0 has positive codimension on X , and if φ is smooth thus
(7.10) holds in view of Lemma 4.3. If φ is in Aq , then it is in DomX , cf. [6,9], and
then (7.10) follows from (the proofs of) [6, Lemma 4.1] and [9, Lemma 8.4]. In fact,
(7.10) can be reformulated as 1h=0∂̄(ω∧φ) = 0. We conclude that Pδφ → 0. Notice
now that B∧B = 0 so that

Kδφ =
∫

ζ

χδ(HR∧αt−κ0+N∧B)N∧φ.

It is proved in [6,9] that (HR∧αt−κ0+N∧B)N∧φ is in the space W X×P
N
, and this

implies that

χδ(HR∧αt−κ0+N∧B)N∧φ → (HR∧αt−κ0+N∧B)N∧φ.

It follows that

Kδφ → Kφ =
∫

ζ

(HR∧αt−κ0+N∧B)N∧φ.

��
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7.1 Examples with Negative Curvature

We now turn our attention to the case of negative curvature. We define a Hefer mor-
phism from h�

k in Proposition 7.1 by replacing w by ζ , z by βz, and dw j by the γ j

from Proposition 2.4. The morphism so obtained is a Hefer morphism for (4.1) (i.e.,
for E• ⊗O(ρ), a with ρ = 0). This is verified in the same way as [3, Proposition 4.4].

This time H is not holomorphic in z but in ζ instead. Let δ be the depth of the
ring S/J . This is a number, 0 ≤ δ ≤ n, and choosing (1.4) minimal, (4.1) will end
up at k = N − δ, which means that R = RN−n + · · · + RN−δ . The variety X is
Cohen–Macaulay precisely when δ = n.

From the Koppelman formula we get solutions to ∂̄ (representation of the coho-
mology in the smooth case) for (0, q)-forms φ with values in O(�) for � ≤ −N and
thus solutions as soon as the obstruction term

∫
(HR∧β−N−�)N∧φ (7.11)

vanishes. Notice that HR has degree at most N − δ in d ζ̄ since β and γ j only contain
holomorphic differentialswith respect to ζ . Therefore (7.11)must vanish if N−δ+q <

N , i.e., 0 ≤ q ≤ δ − 1.

Theorem 7.3 Assume that X is a subvariety of PN of pure dimension n and � ≤ −N.
Then for any ∂̄-closed (0, q)-form φ ∈ Aq(X , L�), 0 < q ≤ δ − 1,

ψ(z) =
∫

(HR∧β−N−�∧B)N∧φ

is a solution in Aq−1(X , L�) to ∂̄ψ = φ.

We thus have an explicit proof of the vanishing H0,q(X ,O(�)) = 0 for 0 ≤ q ≤
δ − 1, � ≤ −N .

8 Global Complete Intersections

Let us compute the resulting formulas in case i : X → P
N is a global complete

intersection as in Example 2. Let f1, . . . , f p, f j = a j
1 , be our given homogeneous

forms of degrees d j from Example 2, and recall that p = N − n. Assume that E0 is
the trivial line bundle and let

E = E1 ⊗ O(−d1) ⊕ · · · ⊕ E p ⊗ O(−d p),

where E j are trivial line bundles. Let e j be basis elements for E j and let e∗
j be the

dual basis elements. We take

Ek = �k E =
′∑

|I |=k

O(−(d I1 + · · · + d Ik ))E I1 ⊗ · · · ⊗ E Ik
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and ak : Ek → Ek−1 as interior multiplication by f = ∑
f j e∗

j . Now

σ =
∑
j

f j (z)

|z|2d j e j/‖ f ‖2

is the section of E with minimal norm such that f · σ = 1 outside Z , if ‖ f ‖ = | f |E∗ .
Moreover,

U = ‖ f ‖2λ
m∑

k=1

σ∧(∂̄σ )k−1
∣∣∣
λ=0

and

R = 1 − ‖ f ‖2λ + ∂̄‖ f ‖2λ∧
m∑

k=1

σ∧(∂̄σ )k−1
∣∣∣
λ=0

, (8.1)

cf. Sect. 5 and [2]; here |λ=0 means evaluation at λ = 0 after analytic continuation.
Since codim Z = p the resulting residue current R just consists of the term Rp; it

coincides with the classical Coleff–Herrera product

∂̄
1

f p
∧ · · · ∧∂̄

1

f1
∧e1∧ · · · ∧ep.

We now compute Hefer morphisms for the Koszul complex. Let h̃ j (w, z) be (1, 0)-
forms in Cn+1 × C

n+1 of polynomial degrees d j − 1 such that

δw−z h̃ j = f j (w) − f j (z)

and let h j = τ ∗h̃ j . We only have to care about k ≤ p so κ0 = d1 + · · · + d p. Then

H �
k =

′∑
|I |=�

′∑
|J |=k−�

±hJ1∧ · · · ∧hJk−�
∧eI ⊗ e∗

I J∧ακ0−(d J1+···+d Jk−�+d I1+···+d Ik )

is a Hefer morphism. The components of most interest for us are H0
k and H1

k . Since

H0
k =

′∑
|J |=k

±hJ1∧ · · · ∧hJk∧e∗
J∧ακ0−(d J1+···+d Jk )

it can be more compactly written formally as

H0
k = ακ0∧(δh)k,

where δh denotes formal interior multiplication with

h =
∑

α−d j ∧h j∧e∗
j
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and (δh)k = (δh)
k/k!. In the same way

H1
k = ακ0∧N (δh)k−1,

where

N =
∑
j

α−d j
e j ⊗ e∗

j .

Our description of U , H1
k , etc., is just to illustrate what these currents look like in

the complete intersection case since they play a rule in the proofs above. As we have
seen, however, in the final Koppelman formula only the term

H0
p Rp = h1∧ · · · ∧h p∧∂̄

1

f p
∧ · · · ∧∂̄

1

f1

of HR occurs. It follows that the operator K in Proposition 7.2, with

κ = s + N − (d1 + · · · + d p) (8.2)

has the more explicit form

Kφ(z) =
∫ (

ακ∧B∧h1∧ · · · ∧h p
)
N∧∂̄

1

f p
∧ · · · ∧∂̄

1

f1
∧φ (8.3)

and the operator P in Remark 5 is

Pφ(z) =
∫ (

ακ∧h1∧ · · · ∧h p
)
N∧∂̄

1

f p
∧ · · · ∧∂̄

1

f1
∧φ. (8.4)

Proposition 8.1 Assume that the projective space i : X → P
N of codimension p is

defined by the homogeneous forms f j on C
N+1 of degree d j , j = 1, . . . , p, and

assume that s ≥ d1+· · ·+d p −N. For φ ∈ E0,k(X , Ls), or φ ∈ Ak(X , Ls), we have
the Koppelman formula (5.5) with K and P defined by (8.3) and (8.4), respectively.
Moreover, P vanishes if k ≥ 1.

Remark 6 In [23] similar Koppelman formulas are obtained on a, not neces-
sarily reduced, global complete intersection X for (0, ∗)-forms with values in
Ld1+···+d p−N−1 in the notation from Example 2. The authors construct Koppelman
formulas on homogeneous subvarieties of CN+1, keep track of homogeneities and
so obtain Koppelman formulas on X . They use the same definition of ∂̄ as we do.
However, they only consider solutions to ∂̄u = φ on Xreg when φ is smooth on X and
satisfies a condition (∗) that in general is stronger than ∂̄φ = 0. There is no discussion
whether their solution has some meaning as a current across Xsing . The condition
(∗) on φ means that (locally) there is a smooth extension � to ambient space such
that ∂̄� is in EJ . Clearly this implies that ∂̄φ = 0 on X but in general the converse
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does not hold. In fact, consider a reduced hypersurface X = {a = 0} ⊂ C
n+1 so that

J = (a). Then (∗) means that there is an extension � such that ∂̄� = ξa for some
smooth form ξ . Then 0 = a∂̄ξ and thus ∂̄ξ = 0; hence ξ = ∂̄η for some smooth η.
Now � − aη is ∂̄-closed and therefore there is a smooth solution to ∂̄� = � − aη.
It follows that ψ = i∗� is a smooth solution to ∂̄ψ = φ. However, it is well known
that there are smooth φ with ∂̄φ = 0 such that ∂̄ψ = φ has no smooth solution, see,
e.g., [6, Example 1.1].

8.1 The Reduced Case

Let us consider a more intrinsic-looking representation of K and P as in (5.6) and
(5.7). In order to avoid a Noetherian operator, cf. Remark 4, let us in addition assume
that X is reduced. Let A1, . . . , Ap be holomorphic vector fields on C

N+1 such that

δAp · · · δA1d f1∧ · · · ∧d f p = (2π i)p,

or equivalently,

d f1∧ · · · d f p∧δAp · · · δA1(dζ0∧ · · · ∧dζN ) = (2π i)pdζ0∧ · · · ∧dζN . (8.5)

Notice that since δζ anti-commutes with δA j ,

ω′ := δAp · · · δA1Ω (8.6)

is a projective form. Following the proof of [4, Proposition 6.3] we see that ω′ is a
representative for the structure form on X , that is,

ω = ω0 = i∗ω′. (8.7)

Example 3 Let

δA = δA1 · · · δAp , ∂̄
1

f
= ∂̄

1

f p
∧ · · · ∂̄ 1

f1
.

Then
δAξN = δA(ϑ(ξ)∧Ω) = ±ϑ(ξ)∧ω′. (8.8)

In view of (5.7) we thus have that

Kφ = ±
∫
X

δA(ακ∧B∧h)N∧φ, Pφ = ±
∫
X

δA(ακ∧h)N∧φ

for φ ∈ Aq(X , Ls), s = κ + d1 + · · · + d p − N , κ ≥ 0.
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8.2 Explicit Formulas for a Curve in PN

Following [19] we will now describe how one can find an especially simple expression
for the kernel k when X is a curve. Applying δη to

(ακ∧B∧h)N = ϑ(ακ∧B∧h)∧Ω,

cf. (4.9), we get
δη(α

κ∧B∧h)N = ±ϑ(ακ∧B∧h)∧δηΩ. (8.9)

We claim that
δη(α

κ∧B∧h)N = (ακ∧h)N−1 (8.10)

on X × X . In fact, consider the weight g = ακ∧gλ, cf. (5.2). From (2.2), keeping z
on X and taking λ = 0 we get

∇η(α
κ∧B∧h)∧R = ακ∧h∧R

outside the diagonal. Identifying terms of degree N − 1 in dζ we get

δη(α
κ∧B∧h)N∧R = (ακ∧h)N−1∧R.

By the generalized Poincaré–Lelong formula R∧d f = (2π i)p[X ] we can conclude
that (8.10) holds on X × X . Combining (8.9) and (8.10) we get that

± ϑ(ακ∧B∧h)∧δηΩ = (ακ∧h)N−1 (8.11)

on X × X .
Let us now compute the kernel k where X is parametrized by [ζ0, ζ1]. Let δζ j denote

interior multiplication by ∂/∂ζ j . Notice that

δηδζ2 · · · δζN Ω = 2π i(ζ1z0 − ζ0z1).

If we apply δζ2 · · · δζN to (8.11) we get

± ϑ(ακ∧B∧h) = 1

2π i

δζ2 · · · δζN (ακ∧h)N−1

ζ1z0 − ζ0z1
. (8.12)

Notice that the denominator on the right-hand side is smooth. Recalling that k(ζ, z) =
±ϑ(ακ∧B∧h)∧ω on X × X , cf. (5.7), we get from (8.12) and (8.6), cf. (8.7),

Proposition 8.2 With the notation above we have the explicit formula

k(ζ, z) = 1

2π i

δζ2 · · · δζN (ακ∧h)N−1

ζ1z0 − ζ0z1
δAΩ (8.13)

where X is parametrized by [ζ0, ζ1].
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8.3 Curves in P2

Assume now that N = 2 and X = { f = 0}, where f is a d-homogeneous form. Thus
s = κ + d − 2. Let h̃(w, z) = h0dw0 + h1dw1 + h2dw2 be a Hefer form for f ; i.e.,
h� are d − 1-homogeneous and

2π i
2∑

�=0

h�(w, z)(w� − z�) = f (w) − f (z). (8.14)

Notice that for degree reasons,

(ακ∧h)1 = ακ
0

(
h0(α0ζ, z)γ0 + h1(α0ζ, z)γ1 + h2(α0ζ, z)γ2

)
.

In what follows, for simplicity, let us right α rather than α0. If ∂ f /∂ζ2 is generically
non-vanishing on X and

A = 2π i

∂ f /∂ζ2

∂

∂ζ2
,

then δAd f = 2π i (generically) on X . We get

k(ζ, z) = 1

2π i

ζ0dζ1 − ζ1dζ0

ζ1z0 − ζ0z1

2π iδζ2(α
κ∧h)1

∂ f /∂ζ2
(8.15)

Notice furthermore that

δζ2(α
κ∧h)1 = ακ

(
h2(αζ, z) − ζ̄2

|ζ |2
2∑
j=0

h j (αζ, z)ζ j
)
. (8.16)

Proposition 8.3 With the notation above we have

k(ζ, z) = 1

2π i

ζ0dζ1 − ζ1dζ0

ζ1z0 − ζ0z1

2π iακ

∂ f /∂ζ2

(
h2(αζ, z) − ζ̄2

|ζ |2
2∑
j=0

h j (αζ, z)ζ j
)
. (8.17)

The second term in the brackets actually cancels out the singularity if X is smooth.

Proposition 8.4 If X is smooth and [ζ0, ζ1] are local homogeneous coordinates, then

k(ζ, z) = 1

2π i

ζ0dζ1 − ζ1dζ0

ζ1z0 − ζ0z1

ακ2π ih2(αζ, z)

∂ f /∂ζ2
+ · · · , (8.18)

where · · · is smooth and holomorphic in z.

Notice that 2π ih2(αζ, z) = ∂ f /∂ζ2 on the diagonal.
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Proof Differentiating (8.14) with respect to w j gives

2π ih j (w, z) = ∂ f

∂w j
(w) − 2π i

∑
�

∂h�

∂w j
(w� − z�).

Since f is d-homogeneous,

2∑
j=0

ζ j
∂ f

∂ζ j
= d · f (ζ ).

We conclude that

2∑
0

ζ j h̃ j (αζ j , z) = dαd−1 · f (ζ ) +
2∑
0

b�(ζ, αζ, z)(αζ� − z�),

where b�(ζ, w, z) are holomorphic, d−2-homogeneous in (w, z) and 1-homogeneous
in ζ . Since ζ is on X , f (ζ ) = 0. We thus get (8.18) where

· · · = 1

2π i

ζ0dζ1 − ζ1dζ0

ζ1z0 − ζ0z1
B

and

B = ζ̄2

|ζ |2 ακ
2∑
0

b j (ζ, αζ, z)(αζ j − z j ).

Without loss of generality we may assume that ζ0 = z0 = 1 and that ζ1 is a local
coordinate on X so that ζ ′ = g(ζ1). Since α = 1 on the diagonal we then have that
B = B ′(ζ1 − z1) where B ′ is holomorphic in z. After homogenization we get that
B = B ′′(z0ζ1 − z1ζ0), where B ′′ is holomorphic in z. Thus the proposition follows.

��
Corollary 8.5 If ζ1 is a local coordinate, then taking ζ1 = τ , z1 = t , and ζ0 = z0 = 1,
we get

k(τ, t) = 1

2π i

dτ

τ − t

ακ2π ih2(1, τ, ζ2; 1, t, z2))
∂ f /∂ζ2

+ · · · , (8.19)

where · · · is smooth and holomorphic in t .

Example 4 If f (z) = z30 + z31 + z32, then X is a smooth surface of genus 1. We can
take

h̃(z, w) =
2∑
j=0

(z2j + z jw j + w2
j )dw j/2π i .
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Then, where [z0, z1] are homogeneous coordinates,

k(ζ, z) = ακ 1

2π i

ζ0dζ1 − ζ1dζ0

ζ1z0 − ζ0z1

1

3ζ 2
0

[
z22 + αz2ζ2 + α2ζ 2

2

− ζ̄2

|ζ |2
(
z20ζ0 + z21ζ1 + z22ζ2 + α(z0ζ

2
0 + z1ζ

2
1 + z2ζ

2
2 )

)]
.

Even if X is not smooth, by the same argument, one can identify the principal term
of the kernel k.

Example 5 The curve X = {z31 − z22z0 = 0} has a cusp singularity at [1, 0, 0] and is
smooth elsewhere. It is globally parametrized by

P
1 → X ⊂ P

2, [t0, t1] �→ [t30 , t21 t0, t
3
1 ].

We can choose the Hefer form

2π i h̃(w, z) = z22dw0 − (z21 + z1w1 + w2
1)dw1 + (z2 + w2)w0dw2.

By formula (8.17) we can now express k completely in terms of the parameters [t0, t1]
and [τ0, τ1]. However, we restrict to considering the principal term. Since we are
primarily interested in the singularity, we consider the standard affinization where
z0 = ζ0 = 1. By the recipe above, then

k = 1

2π i

dζ1

ζ1 − z1
ακ z2 + αζ2

2ζ2
+ · · · (8.20)

In this case · · · is not smooth but at least the singularity is smaller than in the leading
term. Since α − 1 = O(ζ1 − z1) +O(ζ2 − z2), we can delete α as well in the leading
term in (8.20). We then have

k = 1

2π i

(ζ 2
2 − z22)dζ1

(ζ1 − z1)(ζ2 − z2)2ζ2
+ · · ·

Letting t = t1/t0 and τ = τ1/τ0 we are then left with

k = 1

2π i

(τ 6 − t6)dτ

(τ 2 − t2)(τ 3 − t3)τ 2
+ · · ·

where the leading term is precisely the kernel in the last example in [6, Sect. 8].
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