High frequency noise characterisation of graphene field-effect transistors at different temperatures

Junjie Li1, Xinxin Yang1, Marlene Bonmann1, Muhammad Asad1, Andrei Vorobiev1, Jan Stake3, Luca Banszerus2, Christoph Stampfer2, Martin Otto3, Daniel Neumaier3

1Terahertz and Millimetre Wave Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden, 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany, 3Advanced Microelectronic Center Aachen, AMO GmbH, 52074, Aachen, Germany

Graphene is a promising material for high frequency electronics applications thanks to its intrinsically high carrier mobility and velocity, and graphene transistors are continuously pushed toward higher operating frequencies [1]. For high frequency low noise amplifiers, it is important to evaluate the noise parameters of the graphene field-effect transistors (GFETs). In this work, we present the noise performance of the GFETs made of chemical vapour deposition (CVD) in the frequency and temperature ranges of 2-18 GHz and -60-25 °C. The noise figure with 50 Ω impedance termination (F_{50}) was measured using the cold-source method and then the minimum noise figure (F_{min}) was estimated using the Pospieszalski’s noise model [2, 3]. In Fig. 1 and Fig. 2, the F_{min} of a GFET with a gate length of 0.5 μm as a function of the frequency (f) and drain voltage (V_d) at different temperatures are shown. This GFET revealed maximum frequency of oscillation (f_{\max}) of 18 and 21 GHz at 25 and -60 °C, respectively. It can be seen from Fig. 1, that the F_{min} at 8 GHz is approx. 2 dB lower than that of the previously published CVD GFETs and comparable with that of the best published SiC GFETs [4, 5]. The F_{min} decreases significantly with temperature down to 0.3 dB at 8 GHz, competing with Si CMOS [6]. It can be seen from Fig. 2, that F_{min} decreases with the V_d and saturates above approx. 1 V, where GFETs operate in the velocity saturation mode [1]. Analysis of the dependences allows for further development of the GFETs for advanced low noise amplifiers.

Fig. 1. F_{min} versus frequency at different temperatures (-60, -45, -25 and 25 °C), gate voltage of 0.5 V and drain voltage of -1.4 V.

Fig. 2. F_{min} versus drain voltage at temperature of -60°C for different frequencies (2, 6, 10, 14 and 18 GHz) at gate voltage of 0.5 V.

References