High frequency noise characterisation of graphene field-effect transistors at different temperatures

Junjie Li¹, Xinxin Yang¹, Marlene Bonmann¹, Muhammad Asad¹, Andrei Vorobiev¹, Jan Stake³, Luca Banszerus², Christoph Stampfer², Martin Otto³, Daniel Neumaier³

¹Terahertz and Millimetre Wave Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden, ²2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany, ³Advanced Microelectronic Center Aachen, AMO GmbH, 52074, Aachen, Germany

Graphene is a promising material for high frequency electronics applications thanks to its intrinsically high carrier mobility and velocity, and graphene transistors are continuously pushed toward higher operating frequencies [1]. For high frequency low noise amplifiers, it is important to evaluate the noise parameters of the graphene field-effect transistors (GFETs). In this work, we present the noise performance of the GFETs made of chemical vapour deposition (CVD) in the frequency and temperature ranges of 2-18 GHz and -60-25 °C. The noise figure with 50 Ω impedance termination (F\text{min}) was measured using the cold-source method and then the minimum noise figure (F\text{min}) was estimated using the Pospieszalski’s noise model [2, 3]. In Fig. 1 and Fig. 2, the F\text{min} of a GFET with a gate length of 0.5 μm as a function of the frequency (f) and drain voltage (V\text{d}) at different temperatures are shown. This GFET revealed maximum frequency of oscillation (f\text{max}) of 18 and 21 GHz at 25 and -60 °C, respectively. It can be seen from Fig. 1, that the F\text{min} at 8 GHz is approx. 2 dB lower than that of the previously published CVD GFETs and comparable with that of the best published SiC GFETs [4, 5]. The F\text{min} decreases significantly with temperature down to 0.3 dB at 8 GHz, competing with Si CMOS [6]. It can be seen from Fig. 2, that F\text{min} decreases with the V\text{d} and saturates at a temperature of approx. 1 V, where GFETs operate in the velocity saturation mode [1]. Analysis of the dependences allows for further development of the GFETs for advanced low noise amplifiers.

Fig. 1. F\text{min} versus frequency at different temperatures (-60, -45, -25 and 25 °C), gate voltage of 0.5 V and drain voltage of -1.4 V.

Fig. 2. F\text{min} versus drain voltage at temperature of -60°C for different frequencies (2, 6, 10, 14 and 18 GHz) at gate voltage of 0.5 V.

References