

Correlation between material quality and high frequency performance of graphene field-effect transistors

<u>Muhammad Asad</u>¹, Marlene Bonmann¹, Xinxin Yang¹, Andrei Vorobiev¹, Jan Stake¹, Luca Banszerus², Christoph Stampfer², Martin Otto³, Daniel Neumaier³

 ¹Terahertz and Millimetre Wave Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden,
²2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany,
³Advanced Microelectronic Center Aachen, AMO GmbH, 52074, Aachen, Germany

In this paper, we present an experimental study of correlation between material quality and high frequency performance of graphene field-effect transistors (GFETs). Analysis of the low- and high-field charge carrier transport in a set of GFETs, including those with record high extrinsic transit frequency (f_t) and maximum frequency of oscillation (f_{max}) [1], indicates presence of spatially distributed imperfections causing both long- and short-range scattering and associated with e.g. charged defects and dislocations [2]. We applied the drain resistance, velocity and saturation velocity models and found the physical and equivalent circuit parameters defining the f_t and f_{max} , i.e. the low-field mobility (μ), residual carrier concentration, metal/graphene contact resistivity (ρ_{cm}), high-field carrier velocity (υ) and differential drain conductivity (g_{ds}) [3, 4]. Based on the μ as a measure of imperfections, we established correlations between all the parameters. As examples, Fig. 1 and Fig. 2 show dependences of the υ , g_{ds} and f_t , f_{max} on μ . The established correlations allow for understanding dominant limitations of the f_t and f_{max} , which clarifies the ways of further development of the GFETs for high frequency applications. For instance, the ρ_{cm} is below 30 Ω ·µm at μ above 2000 cm²/Vs and has only minor effect. The high g_{ds} , is currently main limiting factor, which, however, can be counterbalanced by increasing the carrier velocity via operating GFETs at higher fields, in the velocity saturation mode.

Fig. 1. The high-field velocity of charge carriers, v, (filled circles) and differential drain conductivity, g_{ds} , (open circles) vs low-field mobility, μ , of GFETs. The lines are power-fitting curves.

Fig. 2. The measured (extrinsic) transit frequency, f_t , (filled circles) and maximum frequency of oscillation, f_{max} , (open circles) vs low-field mobility, μ , of GFETs with gate length of 0.5 µm. The lines are power-fitting curves.

References

- [1] M. Bonmann, M. Asad, X. Yang, A. Generalov, A. Vorobiev, L. Banszerus, C. Stampfer, M. Otto, D. Neumaier, and J. Stake, IEEE Electron Device Lett. 40, 131 (2019).
- [2] S. Adam, E. H. Hwang, S. Das Sarma, Physica E, 40, 1022 (2008).
- [3] V. E. Dorgan, M.-H. Bae, and E. Pop, Appl. Phys. Lett. 97, 082112 (2010).
- [4] F. Schwierz, Proceedings of the IEEE, 101 (7), 1567 (2013).