
Comparative Case Studies of Reactive Synthesis and Supervisory Control

Downloaded from: https://research.chalmers.se, 2024-03-13 08:12 UTC

Citation for the original published paper (version of record):
Ramezani, Z., Krook, J., Fei, Z. et al (2019). Comparative Case Studies of Reactive Synthesis and
Supervisory Control. 2019 18th European Control Conference, ECC 2019: 1752-1759.
http://dx.doi.org/10.23919/ECC.2019.8795696

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Comparative Case Studies of Reactive Synthesis and
Supervisory Control

Zahra Ramezani Jonas Krook Zhennan Fei Martin Fabian Knut Åkesson

Abstract— Reactive Synthesis and Supervisory Control Theory
are both systematic approaches for the automatic construction
of controllers from requirements. However, their underlying
technicalities differ significantly. This paper provides an em-
pirical comparison between these two approaches from the
modelling perspective through case studies. Using the synthesis
tools TuLiP and Supremica, two examples are modelled in the
typical modelling formalism supported by each tool, and the
algorithms are applied to synthesize controllers. Based on the
obtained models and experiences, we compare how the models
are derived, and how the characteristics of the examples and the
underlying synthesis algorithms influence the modelling choices.

I. INTRODUCTION

Reactive Synthesis (RS) [1], developed in the field of com-
puter science, is an automated methodology for synthesizing
correct-by-construction controllers, referred to as reactive
modules, from requirements describing the intended behav-
ior. A reactive module evolves in computation cycles and
engages in an ongoing interaction with its environment. The
reactive module alternately reads inputs from the environ-
ment and assigns values to its outputs, possibly affecting the
environment. Recent research on RS includes environments
with assumptions [2] and synthesis with plants [3], [4]. For
a comprehensive introduction to RS, refer to [5].

Supervisory Control Theory (SCT) [6], [7] is a model-
based approach for control of Discrete Event System (DES).
A DES is a dynamic system that can be characterized by a
set of states whose transitions are triggered by occurrences
of events. Given a DES to be controlled, the plant, and
a specification describing the desired behavior, a control
entity, called supervisor, can be automatically synthesized
to dynamically restrict the behavior of the plant, such that
the closed-loop system satisfies the specification.

RS and SCT both employ a systematic approach for
automatically synthesizing controllers that are resilient in
the sense that the closed-loop behavior fulfills given re-
quirements in an open environment; the behavior is af-
fected by an environment that cannot be restricted by the
controllers. However, their underlying technicalities differ
significantly [8], [9]. In [8], the focus is on the basic synthesis
problem and a comprehensive comparison on how properties
such as safety, non-blockingness and maximal permissiveness
are treated algorithmically within RS and SCT. Building

The authors are with the Department of Electrical Engineering, Chalmers
University of Technology, Gothenburg, Sweden. Email: {rzahra, krookj,
zhennan, fabian, knut}@chalmers.se. This work was supported by
Vetenskapsrådet SyTeC, and the Wallenberg AI, Autonomous Systems and
Software Program (WASP), funded by the Knut and Alice Wallenberg
Foundation.

upon these connections, a formal procedure is introduced
to reduce the basic SCT problem to a specific variant
of RS problem with plants and maximal permissiveness
requirements. In [9], the authors take this comparison one
step further and identify the conditions under which the
algorithm of one field can be tailored to address the synthesis
problem considered in the other. To facilitate the analysis, ω-
language is used as the common base, and hence a branch of
SCT that targets the synthesis problem for ω-languages [10]
is considered throughout the comparison by [9].

Besides the synthesis problems and underlying algorithms,
the difference between RS and SCT also lies in the mod-
elling tools and the corresponding modelling techniques.
In RS, Linear Temporal Logic (LTL) [11] is one widely
used formalism to express the specifications. An LTL frag-
ment that is relevant to this work is General Reactivity
of Rank 1 (GR(1)) [12]. In practice, GR(1) synthesis is
particularly useful thanks to the efficient polynomial-time
synthesis algorithm [12]. In SCT, on the other hand, plants
and specifications are typically modelled by Finite Automata
(FA) [7], and/or an extension thereof called Extended Finite
Automata (EFA) [13] in which FA are augmented with
variables.

Inspired by the aforementioned line of research [8], [9],
this paper complements those works by comparing RS and
SCT from a modelling perspective. We use case studies to
reveal some fundamental differences between the synthesis
approaches by modelling the case studies in two synthesis
tools; TuLiP [14] that implements RS synthesis and Suprem-
ica [15] that implements SCT synthesis.

The contributions of this paper are: (i) We present com-
plete modelling solutions for two examples, each of them
modelled in TuLiP and Supremica using the provided mod-
elling formalism of each tool. (ii) We compare these two syn-
thesis approaches empirically based on the obtained models
and experiences. Specifically, we compare how the models
are derived, and how the characteristics of the examples and
the underlying synthesis algorithms influence the modelling
choices. The comparison confirms what has been concluded
from [8], [9] but emphasizes the differences in terms of
modelling. The presented results are intended to provide
practitioners with guidelines on selecting the suitable method
and tool that fit the scope of the considered synthesis
problem.

The rest of the paper is organized as follows. After
recalling the necessary preliminaries in Section II, Section III
and Section IV detail the modelling of two selected examples
in TuLiP and Supremica, respectively. Section V compares

2019 18th European Control Conference (ECC)
Napoli, Italy, June 25-28, 2019

978-3-907144-00-8 ©2019 EUCA 1752

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on June 05,2020 at 09:29:27 UTC from IEEE Xplore. Restrictions apply.

the models obtained from the previous sections and reveals
differences and similarities between RS and SCT. Finally,
Section VI concludes the paper by summarizing the contri-
butions. The complete set of models can be found online1.

II. PRELIMINARIES

A. Reactive Synthesis

Reactive Synthesis aims to automatically synthesize a
controller, referred to as a reactive module, that satisfies
the desired guarantees φs, under the assumptions of the
environment φe. In other words, the synthesized controller
satisfies the formula φe → φs [2]. One way to model the RS
problem is to consider the controller to be synthesized and
the environment as adversaries that play a finite-state game
and take turns to provide input to each other [16]. Then,
an iterative process can be adopted to find a fix-point of a
subset of states and transitions that solves the RS problem.
The states, transitions, inputs and outputs can be modelled
by a Kripke structure.

Definition 1. A Kripke Structure is a tuple

M = 〈S, I,R,AP,L〉,

where S is a set of states, I ⊆ S is a set of initial states,
R ⊆ S × S is a transition relation, AP is a set of atomic
propositions, and L : S → 2AP is a labelling function
that defines the atomic propositions that are true in each
state. AP is divided into two disjoint subsets APe and APs,
representing the propositions of the environment and the
controller, respectively.

The atomic propositions in APe are seen as the inputs
to the controller, while APs are its outputs. The atomic
propositions in AP can be composed of relational operators
on functions of discrete finite domain variables as they can
be considered either true or false, given a certain valuation
in a certain state.

LTL formulae can be evaluated over infinite runs on
a Kripke structure. In addition to standard propositional
logic operators, LTL includes temporal operators [11]. The
temporal operators ′ (next), � (always), and ♦ (eventually)
are used in this paper. A run π of a Kripke structure M is an
infinite sequence of states {π0, π1, . . . }, where π0 ∈ I and
(πi, πi+1) ∈ R. Let π[i] represent the infinite run starting
from state πi. Let τ and θ be LTL formulae, and ψ be an
atomic proposition. The definition of when a run π satisfies
a formula is given inductively:
• π � τ iff π[0] � τ
• π[i] � ψ iff ψ ∈ L(πi)
• π[i] � ¬τ iff π[i] 2 τ
• π[i] � τ ∨ θ iff π[i] � τ or π[i] � θ
• π[i] � τ ′ iff π[i+ 1] � τ
• π[i] � �τ iff π[k] � τ for all k ≥ i
• π[i] � ♦τ iff π[k] � τ for some k ≥ i

The Kripke Structure M satisfies a formula τ if every
possible run π satisfies the formula.

1 https://github.com/krooken/ComparativeCaseStudies

Given an LTL specification ϕ for the environment and the
system, TuLiP synthesizes a controller such that the system
satisfies ϕ, if such a controller exists. The LTL specification
ϕ has to be in GR(1) form [12]:

ϕ ,
(
(ψeinit ∧�ψesafe ∧

∧
0<i≤J

�♦ψelive,i)→

(ψsinit ∧�ψssafe ∧
∧

0<i≤N

�♦ψslive,i)
)
, (1)

where ψeinit and ψsinit contain all the initial conditions of the
environment and the controller, respectively. ψesafe and ψelive,i
(J sub-specifications) are the safety and liveness assumptions
on the environment. ψssafe and ψslive,i (N sub-specifications)
are the safety and liveness properties of the system.

Note that TuLiP interprets the implication in (1) as a strict
realizability implication [17].

B. Supervisory Control Theory

Given a plant G and a specification K of the desired
controlled behavior, the SCT [6] makes it possible to au-
tomatically synthesize a supervisor S that controls the plant
such that the specification is satisfied.

The supervisor and the plant form an asymmetric closed-
loop system where the supervisor restricts the event gen-
eration of the plant. As the plant generates events enabled
by the supervisor, the supervisor observes the generated
sequences of events and determines, at each state, which of
the currently possible events that should be enabled. Some
of the events cannot be disabled by the supervisor. These
events are uncontrollable. The supervisor is required to be
controllable, i.e. it must never try to disable an uncontrollable
event. By disabling controllable events, the supervisor can
confine the plant to a subset of its possible states so that
the closed-loop system only visits states that are considered
“good” by the specification. At the same time, the supervisor
guarantees that from any closed-loop state, the system can
always continue to a desired marked state, it is non-blocking.
Finally, the supervisor disables as few events as possible, it
is maximally permissive.

Basically, supervisor synthesis is an iterative removal of
states and/or transitions of an initially calculated supervisor
“candidate”. Practically, this candidate is calculated from
G||K where || denotes the full synchronous composition
operator [7]. The iterative algorithm removes from G||K the
states that break the controllability and/or the non-blocking
properties. Iteration is necessary since enforcing one property
may break the other. The iteration will eventually reach a fix-
point, and what then is obtained is the maximally permissive
supervisor. In Supremica, one way to model this supervisor
candidate is to use EFA.

EFA are automata extended with bounded discrete vari-
ables, and updates defining logical conditions over, and/or
assignments of, those variables. Let V = 〈v1, v2, . . . , vn〉 be
an ordered set of variables, with each variable vi associated
to a finite discrete domain, dom(vi) = {v̂i1, v̂i2, . . . , v̂ij},
having an initial value v̂i◦ ∈ dom(vi), and a set of marked

1753

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on June 05,2020 at 09:29:27 UTC from IEEE Xplore. Restrictions apply.

values V̂ mi = {v̂im1 , v̂i
m2 , . . . , v̂i

mk} ⊆ dom(vi). Define
the domain of V as dom(V) = dom(v1) × dom(v2) ×
. . . dom(vm).

Definition 2. An extended finite automaton (EFA) is a 7-
tuple:

E = 〈L, V,Σ,→, Li, Lm, V̂ m〉

where L is a finite set of locations; V is as above. Σ denotes
a finite set of events; Li ⊆ L and Lm ⊆ L denote the set of
initial locations and marked locations, respectively; V̂ m =
{V̂ mi : i = 1, . . . , n} is the set of marked values; → ⊆ L×
Σ×Π×L is the extended transition relation where Π denotes
the set of updates, which are formulas consisting of variables,
integer constants, Boolean literals, as well as propositional
logic and discrete arithmetic connectives. A state of an EFA
is a tuple (`, V̂) where ` ∈ L and V̂ ∈ dom(V). Hence, the
initial states are defined as Qi = Li × V̂ ◦ and the marked
states as Qm = Lm × V̂ m.

A transition between locations `, `′ with event σ ∈ Σ and
update p ∈ Π is written as `

σ:p→ `′. The transition can be
fired if E is at location ` and the update p evaluates to true;
consequently, E changes its location to `′ while updating the
variables in p; variables not in p remain unchanged.

For SCT, the alphabet Σ of an EFA is partitioned into the
disjoint sets of the controllable, Σc, and uncontrollable, Σu,
event sets; Σ = Σc∪̇Σu.

III. STICK-PICKING GAME

The stick-picking game is a simple game in which two
players take turns drawing one, two or three sticks from a
pile, which initially contains seven sticks. Players are not
allowed to skip their turns, and the player who draws the
last stick loses the game.

There is a winning strategy for player one who starts the
game by picking 2 sticks. Regardless of the number of sticks
picked by player two, player one can pick a number of sticks
next such that only 1 stick remains, offering player two no
choice but losing the game.

A. TuLiP

The formulae required for the synthesis are structured into
the format of (1) in the following way:

ψeinit , φ
e
init,1 ψsinit , (φsinit,1 ∧ φsinit,2)

ψesafe ,
3∧
i=1

φesafe,i ψssafe ,
7∧
i=1

φssafe,i

ψelive , > ψslive , >,

where the subformulae are given below.
When modelling the stick-picking game in TuLiP, four

different things need to be kept track of (each with a separate
variable): the number of remaining sticks, whose turn it
is, and how many sticks each of the two players pick,
respectively, during their turn. A strategy for player one is
sought, so player two’s behavior is part of the environment
and player one is part of the system. The dynamics for the

number of sticks and the player turn do not involve taking
decisions, so these dynamics can either be assumptions or
assertions.

The integer variable sticks represents the number of sticks,
and the binary variable player_turn models the alternation of
turn between the players. Both of the variables need to be
initialized to their initial values.

φsinit,1 , (sticks = 7 ∧ player_turn = 1) (2)

Player one is the player who starts the game, so player one
may pick 1, 2 or 3 sticks initially, and player two picks 0
sticks waiting for player one’s turn to end. The variables
player_1_picks and player_2_picks denote the number of
sticks the players pick.

φsinit,2 , player_1_picks ∈ {1, 2, 3} (3)

φeinit,1 , player_2_picks = 0 (4)

As the game progresses, player one and player two pick
sticks according to whose turn it is. Additionally, they cannot
pick more sticks than what remains. Below, the formulae for
player one are given; the formulae φesafe,1, φesafe,2, and φesafe,3
for player two are defined analogously.

φssafe,1 ,
(
(sticks > 0 ∧ player_turn = 1)→

(player_1_picks ∈ {1, 2, 3})
) (5)

φssafe,2 ,
(
(sticks = 0 ∨ player_turn 6= 1)→

(player_1_picks = 0)
(6)

φssafe,3 , (player_1_picks ≤ sticks) (7)

φssafe,2 is not strictly necessary, but makes the RS solution
easier to interpret and compare with the SCT solution. If
not used, four possible transitions (one for each value in
the domain of player_2_picks) will be considered in the
synthesis when it is player one’s turn, but all four transitions
would be equivalent with this specification.

The number of remaining sticks decreases as the players
pick them. Note that an unprimed variable name refers to
that variable’s valuation in state πi, while a primed variable
name refers to that variable’s valuation in state πi+1.

φssafe,4 , (player_turn = 1)→
(sticks′ = sticks− player_1_picks)

(8)

φssafe,5 for player two is similar.
While there are still sticks left to pick, the player turn

alternates between player one and player two.

φssafe,6 , (sticks > 0→ player_turn′ 6= player_turn)
(9)

These are the rules of the game.
There are several ways to express the winning condition

for player one. Here are three examples that all produce

1754

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on June 05,2020 at 09:29:27 UTC from IEEE Xplore. Restrictions apply.

Player1Turn

Player2Turn

p1
sticks′ = sticks− 1 ∨
sticks′ = sticks− 2 ∨
sticks′ = sticks− 3

!p2
sticks′ = sticks− 1 ∨
sticks′ = sticks− 2 ∨
sticks′ = sticks− 3

(a) EFA for alternating the turn between
the players.

p1
sticks′ = sticks− 2

!p2
sticks′ = sticks− 2

p1
sticks′ = sticks− 2

!p2
sticks′ = sticks− 1

!p2
sticks′ = sticks− 1

p1
sticks′ = sticks− 3

!p2
sticks′ = sticks− 3

p1
sticks′ = sticks− 1

(b) EFA enforcing the winning strategy for player one.

Fig. 1: EFAs for the plant and supervisor in Supremica.

equivalent synthesized strategies:

φssafe,7a ,
(
(sticks > 0 ∧ player_turn = 1)→

(player_1_picks < sticks)
) (10)

φssafe,7b ,
(
(sticks > 0 ∧ sticks′ = 0)→

(player_turn = 2)
) (11)

φssafe,7c ,
(
(sticks > 0 ∧ sticks′ = 0)→

(player_turn 6= 1)
) (12)

φssafe,7a means that for player one to win, as long as there
are sticks left he or she must not pick all remaining sticks.
φssafe,7b means that when the last stick will be picked, it is
player two’s turn to pick. φssafe,7c means that when the last
stick will be picked, it is not player one’s turn to pick.

B. Supremica

When modelling the stick-picking game in Supremica, the
player turn is encoded as two locations, and the number of
sticks is encoded by a variable sticks defined as follows.

sticks ∈ {0, . . . , 7}, sticks◦ = 7, sticksm = {0}.

The different player moves are encoded as events p1 and
p2, one for each player. Since the strategy for player one is
sought, event p1 is controllable while event p2 is uncontrol-
lable. When an event is triggered, the player has the choice
to remove 1, 2 or 3 sticks, which is encoded as updates on
the corresponding transition. The sticks variable cannot be
negative, so the updates are not fulfilled if the subtraction
would yield a negative number. If no update is fulfilled, the
event on that transition is disabled. Hence, no event can occur
when there are zero sticks left.

Figure 1(a) shows the EFA that keeps track of player
turn. Uncontrollable event such as p2 is prefixed by ! as
a convention. When in the Player1Turn location, only the
event associated to player one is enabled, and analogously
for player two. When the event indicating that player one
picks sticks is triggered, the plant transitions to player two’s
turn (Player2Turn).

When the last stick is picked, the variable sticks becomes
0. If the last stick was picked by player two, then the EFA
in Figure 1(a) is in the location Player1Turn. Combining
these two observations means that marking sticks=0 and
Player1Turn as accepting locations form a necessary and

sufficient requirement for player one to win. The winning
synthesized strategy is shown in Figure 1(b).

The winning strategy synthesized by Supremica is the
same as the strategy synthesized by TuLiP. For this example,
there is exactly one winning strategy and thus both of the
tools have to generate the same strategy. Note that, in general,
an SCT tool generates all winning strategies while RS tools
only generate one winning strategy.

IV. AUTONOMOUS DRIVING

The second example designed specifically in this paper
for the comparison is a simplified autonomous driving (AD)
model involving two vehicles: an AD vehicle, called ego-
vehicle, and a manually driven vehicle, called env-vehicle.

The two vehicles are travelling on a circular road with
two lanes in the same direction. The problem is to design
a controller for ego-vehicle that at all times guarantees safe
distance between the two vehicles when they are in the same
lane. That is to say, ego-vehicle observes the behavior of env-
vehicle, and adjusts its own actions accordingly, such that
collisions are always avoided.

Unsurprisingly, if env-vehicle is capable of doing any
arbitrary action, an non-zero control strategy cannot prevent
collisions and therefore reasonable assumptions must be
made on the behaviors of the vehicles. These assumptions,
which are detailed below, arise from two aspects, (i) odom-
etry constraints that a typical vehicle has, and (ii) the basic
traffic rules vehicles must obey.

Some simplifications have been made. Firstly, vehicle
dimensions are not considered so the vehicles are modelled
as singular points. Secondly, the velocities of the vehicles
are abstracted as integers with a defined range {0, 1, 2} in
increasing order of velocity. Thirdly, the two lanes of the
circular road are simplified to have the same length. Finally,
inertia has no affect on the vehicles, thus accelerating or
decelerating to a specified speed can be done without delay.

Initially both vehicles stand still in the right lane, with
env-vehicle ten units ahead of ego-vehicle, which starts at
the origin. The safety distance between the two vehicles is
set to be two units. All the assumptions put on env-vehicle
are also put as guarantees on ego-vehicle to uphold. Thus,
for brevity, only the assumptions on env-vehicle are given:

1) When in the same lane, the longitudinal distance
between the vehicles is larger than the safety distance.

1755

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on June 05,2020 at 09:29:27 UTC from IEEE Xplore. Restrictions apply.

2) When env-vehicle changes to the left (right) lane, it
activates the left (right) turn indicator before chang-
ing lane, and deactivates it after completing the lane
change.

3) When env-vehicle is in the left (right) lane, the turn
indicator is either not used or indicating right (left).

4) The new position of env-vehicle is updated by the old
position plus the velocity and then modulo the length
of the road.

These assumptions make sure that env-vehicle (and ego-
vehicle) behave ‘well’ while driving. However, they do not
state that ego-vehicle should be able to drive. It is reasonable
to expect an autonomous vehicle to be able to drive, and not
end up in situations where it is not possible to continue.
Therefore, ego-vehicle is, in addition to the above, expected
to drive at some point. (This is not expected of env-vehicle
because ego-vehicle will need to take all possible actions of
env-vehicle into account, including driving all the time or
standing still forever.)

A. TuLiP

The synthesis problem of the AD example fits well in the
RS framework given its inherent characteristics. This section
demonstrates the modelling of the example by expressing the
natural language specifications as a GR(1) LTL formulae ac-
cording to (1). To this end, the input and output variables are
declared, which correspond to the environment and controller
variables, respectively, in TuLiP (with ? ∈ {env, ego}):
• lane_? ∈ {left, right}
• pos_? ∈ {0, . . . , 29}
• vlc_? ∈ {0, 1, 2}
• ind_? ∈ {none, left, right}

The variables lane_?, pos_?, vlc_?, and ind_?, respectively
hold the current lane, the longitudinal position, the velocity,
and the direction of the turn indicators.

With the variables defined, the assumptions of (1) can be
formalized. The initial condition, ψeinit, is defined as

ψeinit , (vlc_env = 0 ∧ pos_env = 10

∧ lane_env = right).
(13)

The formula ψesafe in (1) is defined as the conjunction
of sub-formulae φi where i ∈ {1, . . . , 4}, with the indices
corresponding to the natural language assumptions given
above.

ψesafe ,
4∧
i=1

φei . (14)

Assumption 1, which regards safe distance, is formalized as
φe1:

φe1 , lane_env = lane_ego→
|pos_env − pos_ego| > 2,

(15)

Assumption 2 is split into two sub-formulae, one for chang-
ing lanes from right to left, and one for the other direction.
In essence, the formulae express that if the vehicle is about

to change lanes, then the turn indicator has to be activated
and the vehicle must not be stationary.

φe2,a , (lane_env = right ∧ lane_env′ = left)→
(ind_env = left ∧ ind_env′ = none

∧ vlc_env > 0),

(16)

and vice versa for left to right (φe2,b). Then φe2 , φ
e
2,a∧φe2,b.

Assumption 3 is also split in two, where φe3,a express that
the left indicator cannot be active when driving in the left
lane, and vice versa for φe3,b.

φe3,a ,
(
lane_env = left→

(ind_env = none ∨ ind_env = right)
)
,

(17)

Then φe3 , φ
e
3,a ∧ φe3,b.

Finally, the position update in assumption 4 is expressed
with φe4.

φe4 , pos_env
′ = (pos_env + vlc_env) mod 30. (18)

The implementation of φe4 is more elaborate because TuLiP
lacks a modulo operator, but this can be implemented by us-
ing relational operators and simple arithmetic, see GitHub1.
With 4 formalized, all assumptions of the GR(1) formula (1)
are defined.

Due to lack of space and since the requirements ψsinit
and ψssafe on ego-vehicle are in principle the same as the
assumptions ψeinit and ψesafe made on env-vehicle, they are
not included here, but the complete model is available on
GitHub1. However, the expectation on ego-vehicle to be
able to drive needs to be formalized. The GR(1) fragment
provides one way of ensuring such progress, and that is to
specify the liveness properties ψlive,i of (1). When a liveness
property is included in the specification, it is assumed or
guaranteed that ψlive,i is fulfilled infinitely often, or in other
words, again and again, with any finite number of states in
between. In this example, being able to drive is interpreted
as guaranteeing that ego-vehicle will drive infinitely many
laps, which is formalized as

ψslive,1 , (pos_ego = 0), ψslive,2 , (vlc_ego > 0). (19)

ψsinit, ψ
s
safe, ψ

s
live,1, and ψslive,2 form the formulae for the

guarantees of (1). The full formula (1) is the input to TuLiP.

B. Supremica

The model of the AD example using EFA in Supremica
allows the usage of the same variables as defined and used
in the TuLiP model. Hence, the initial and marked values for
the EFA variables that describe the partial initial and marked
states of both vehicles in the AD examples can be defined:
• lane_env◦ = right.
• pos_env◦ = 10.
• vlc_env◦ = 0.
• ind_env◦ = none, ind_envm = {none}.
• lane_ego◦ = right.
• pos_ego◦ = 0, pos_egom = {0}.
• vlc_ego◦ = 0.

1756

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on June 05,2020 at 09:29:27 UTC from IEEE Xplore. Restrictions apply.

• ind_ego◦ = none, ind_egom = {none}.
Note that if the set of marked values for a variable v is
undefined, then vm = dom(v). With the variables defined,
the plants and specifications can be modelled by EFA.

Plant In the SCT, the plant models all possible behavior.
In this example the plant is defined by the synchronous
composition of four sub-plants: the behavior of ego-vehicle,
Gego, the behavior of env-vehicle, Genv , together with the
assumptions Gasp on env-vehicle, and the configuration
Gconf describing the alternations of actions between the two
vehicles.

The sub-plant Gego is the synchronous composition of the
EFAs shown in Figure 2(a)-(c). As a plant, Gego models all
physically possible behavior of ego-vehicle.

eg
o_

ind
_le

ft
eg

o_
ca

nc
el_

ind

ego_ind_right

ego_cancel_ind

ego_ind_right

ego_ind_left

(a) EFA of ego-vehicle indicator.

ego_keep_lane

(b) EFA of ego-
vehicle driving for-
ward.

ego_mv_left
vlc_ego > 0 ∧ lane_ego′ = left

adv_mv_right
vlc_ego > 0 ∧ lane_ego′ = right

(c) EFA of ego-vehicle changing lanes.

Fig. 2: Plant Gego modelling all physically possible behavior of
ego-vehicle.

Similarly, the sub-plant Genv , which is the synchronous
composition of the EFAs shown in Figure 3(a)-(b), models all
physically possible behavior of env-vehicle in the example.
This sub-plant is different from Gego in two aspects. First,
all events generated by Genv are uncontrollable, so the
supervisor cannot disable them. Secondly, Genv only has
a single location and all transitions are self-loops. This is
because the variables for env-vehicle may change arbitrarily
rather than being logically regulated. Having transitions as
self-loops enables all possible events to occur.

The EFAs in Figure 4(a)-(b) together represent the sub-
plant Gasp, which models the assumptions on env-vehicle
regarding the longitudinal distance from ego-vehicle. In
particular, the EFA of Figure 4(a) states that any event of env-
vehicle can only occur if its current distance to ego-vehicle is
more than the safety distance, or the vehicles are in different
lanes. The EFA of Figure 4(b), on the other hand, states that
when executing an event that can bring env-vehicle into the
same lane as ego-vehicle, the updated distance is more than
the safety distance if such event occurs.

The last sub-plant in the Supremica model is Gconf , shown

!env_keep_lane

!env_ind_left
(ind_env = none ∨
ind_env = right) ∧
ind_env′ = left

!env_ind_right
(ind_env = none ∨
ind_env = left) ∧
ind_env′ = right

!env_cancel_ind
(ind_env = left ∨ ind_env = right) ∧ ind_env′ = none

(a) EFA of env-vehicle staying in the same lane.
!env_mv_left

lane_env = right ∧
ind_env = left ∧
vlc_env > 0 ∧
lane_env′ = left

!env_mv_right
lane_env = left ∧
ind_env = right ∧
vlc_env > 0 ∧
lane_env′ = right

(b) EFA of env-vehicle changing lanes.

Fig. 3: Plant Genv modelling all the physically possible behavior
of env-vehicle.

!env_keep_lane,
!env_ind_left,

!env_ind_right,
!env_cancel_ind,

!env_mv_left,
!env_mv_right

lane_ego 6= lane_env ∨
|pos_env − pos_ego| > 2

(a) EFA of env-vehicle checking the current longitudinal dis-
tance.

!env_mv_left,
!env_mv_right

lane_ego = lane_env ∨
|(pos_env + vlc_env)− pos_ego| > 2

!env_keep_lane,
!env_ind_left,

!env_ind_right,
!env_cancel_ind,

lane_ego 6= lane_env ∨
|(pos_env + vlc_env)− pos_ego| > 2

(b) EFA of env-vehicle checking the next longitudinal distance.

Fig. 4: Plant Gasp modelling the assumptions of env-vehicle.

in Figure 5, which models the configuration of each compu-
tation cycle. Upon the occurrence of the event set_vlc_env,
variable vlc_env is set to an arbitrary value in its domain.
Next, only one of the events of env-vehicle can occur and the
longitudinal position in the circular road increases according
to vlc_env. The two remaining transitions provide the same
functionality, but for ego-vehicle.

Specification The Supremica model of the AD example
includes two specifications Kind and Kdis, where Kind

models the desired behavior of the indicators when changing
lanes, and Kdis models the check of the safety distance.
The EFAs representing Kdis are similar to those of Gasp in
Figure 4 and are thus omitted. The EFA representing Kind is
shown in Figure 6; it states that a lane change of ego-vehicle
should always be preceded by an activation and followed by
a deactivation of the indicator.

1757

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on June 05,2020 at 09:29:27 UTC from IEEE Xplore. Restrictions apply.

!set_vlc_env
vlc_env′ = ∗

set_vlc_ego
vlc_ego′ = ∗

!env_keep_lane,
!env_ind_left,

!env_ind_right,
!env_cancel_ind,

!env_mv_left,
!env_mv_right
pos_env′ =

(pos_env + vlc_env) % 30

ego_keep_lane,
ego_ind_left,

ego_ind_right,
ego_cancel_ind,

ego_mv_left,
ego_mv_right
pos_ego′ =

(pos_ego+ vlc_ego) % 30

Fig. 5: Plant Gconf modelling the alternations of actions between
the vehicles in each computation cycle.

ego_ind_right

ego_cancel_ind

ego_ind_left

ego_cancel_ind

ego_mv_rightego_mv_left

ego_cancel_ind

Fig. 6: Specification Kind modelling the desired behavior of ego-
vehicle indicating and lane changing.

V. COMPARISON

This section provides an empirical comparison between
RS and SCT, based on the two case studies presented in
Section III and Section IV. Admittedly there are many
ways to model the same example and different ways have
their different gains and drawbacks. We only compare the
described models and make no claims that these are the
“best” ways to model the examples.

Specification In RS, two involved components are the
environemnt and the system, while in SCT they are the plant
and the specification. The term specification has different
meanings in the two formalisms. In SCT, the specification is
a formalization of only the requirements; it is a component
of the model that defines the (un-)desired behavior of the
plant. In SCT, a specification can either be expressed by
one or more automata, or simply by marking (or forbidding)
some states of the plant. For example, the Supremica model
of the stick-picking game does not have any automaton to
express that player two should pick the last stick in order to
let player one win. Instead, this desired behavior is expressed
by marking sticks = 0 and the location Player1Turn in the
EFA of Figure 1(a).

In RS however, specification is a synonym for the model,
thus encompassing all dynamics and the entire set of re-
quirements that the controller must fulfill. The LTL formulae
in (16) and (17) directly express the requirements on how
ego-vehicle shall activate the turn indicator in order to change
lanes. In Supremica, these requirements are represented in
two parts: the plant composed by the EFAs in Figure 2(a) and
(c), and a specification EFA shown in Figure 6. In particular,
the plant describes all possible behavior in terms of indicators
and lane changing, which includes undesired sequences such
as changing lane without first using the indicator.

Modelling write access to a shared variable The model
of the stick-picking game in Supremica is quite compact in
the sense that two ‘variables’ are used in the model (sticks

and an automaton). For TuLiP, four variables are used.
This might be caused by how Supremica allows read/write
access to the shared variable sticks. While TuLiP grants
player two read access to sticks, it requires the variable
player_2_picks (or similar) as a mean for player two to
get write access to sticks. In SCT, access to variables
is determined by the controllability of the events of the
transition where a variable appears, while in RS, access
(particularly write access) to variables is determined by
which of APe and APs contains the variable. This means
that in situations similar to the stick-picking game, access to
sticks can be granted directly to either agent by the plant
in SCT, while only one of the agents can have direct write
access to sticks in RS, since APe and APs cannot change
based on state.

Modelling cycles The plant Gconf in Figure 5 is unpar-
alleled in the TuLiP specification. It provides similar func-
tionality as the plant in Figure 1(a); shifting turns between
two agents (where the top two locations indicate that it is
env-vehicle’s turn, and the bottom two indicate ego-vehicle’s
turn). This concurrent behavior is an inherent property of
the algorithm used by TuLiP to solve the synthesis problem,
which can be solved by letting two agents play a turn-based
game. However, in the stick-picking game, it is apparently
difficult to let this inherent property deal with the player turns
directly, likely because the need of shared and restricted write
access (like a mutex) of the variable sticks.

Liveness Since the plant Gconf of Figure 5 is supposed to
mimic TuLiP’s infinite cycles of concurrency of ego-vehicle
and env-vehicle, it needs a liveness property. To overcome
the lack of liveness properties in SCT, Gconf is structured in
a way such that a supervisor cannot prevent further execution
cycles. This is achieved by having one marked location with
an uncontrollable event on the outgoing transition. So, if the
plant fires the uncontrollable event (which the supervisor
cannot prevent), then the supervisor also has to allow the
plant to fire the remaining events to complete the cycle
(because of the marking). Although this technique does not
produce infinite runs or liveness, it makes sure that, if the
plant so chooses, there is always the possibility for another
cycle.

The expectation in the AD example that ego-vehicle is
able to drive is handled differently in TuLiP and Supremica.
Liveness properties are required to make ego-vehicle move at
all in TuLiP. The formulae in (19) are mere one way to make
ego-vehicle move, but without any liveness properties TuLiP
produces a solution where ego-vehicle stays at the initial
position and never moves. When the liveness properties
in (19) is included, however, TuLiP will notify the user if
ego-vehicle would not be able to move.

In the Supremica model the expected movement of ego-
vehicle is handled by marking pos_egom = {0} and relying
on the non-blocking property of the SCT solution. This
approach has the potential to give ego-vehicle a much richer
set of behaviors to chose its actions from, since ego-vehicle
might drive one step and then remain there forever as long
as it is possible to reach ego_pos = 0. The caveat, however,

1758

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on June 05,2020 at 09:29:27 UTC from IEEE Xplore. Restrictions apply.

is that, in general, a supervisor might be created that does
not allow movement at all. In contrast to TuLiP’s behav-
ior, Supremica would not necessarily notify the user since
movement is not required by any specification. However,
movement is possible in this example, which is easy to check
by simulating the model with its supervisor and observe
that it is possible for ego-vehicle to move one step. In this
particular case it might actually be possible to force progress
by letting vlc_egom = {1, 2}.

Contrary to the AD example, the TuLiP specification for
the stick-picking game has no need for liveness properties
although sticks = 0 is desired to be satisfied eventually.
Because of RS’s infinite runs and the formulae that makes
sure that sticks is decreased in every state, a liveness prop-
erty would be superfluous. On the other hand, in Supremica,
(Player1Turn, sticks = 0) has to be the only marked
state, otherwise player one may chose to stop playing if the
next move is a losing move; it has to be possible to reach
sticks = 0, if the plant desires.

Maximally Permissive Another key difference between
Supremica and TuLiP is that in Supremica the solution
is maximally permissive while in TuLiP any strategy that
fulfills the specification is sufficient. In the stick-picking ex-
ample there is exactly one winning strategy, thus TuLiP and
Supremica synthesize the same strategy. For the autonomous
drive example there are multiple strategies, but Supremica
always generates the maximally permissive solution. This
fact is not evident from the examples, but it is at least
possible to ascertain that the strategy synthesized by TuLiP
has one and only one behavior of ego-vehicle for each input
sequence of env-vehicle, while the supervisor synthesized
by Supremica often give several actions to chose from;
Supremica’s supervisor is more permissive than TuLiP’s
controller.

Analyzing solutions: Both TuLiP and Supremica let the
user inspect the synthesized solution graphically and through
simulation. However, in practice, these methods of inspection
rapidly become infeasible as the number of locations or size
of variable domains increase, even only slightly. For instance,
even if the AD-example is scaled down to a single lane road
with five cells, the synthesis result is difficult to manually
interpret fully. This difficulty is a major obstacle for using
SCT and RS by themselves, but also when comparing them.

VI. CONCLUSION

This paper provides a comparison between Reactive Syn-
thesis and Supervisory Control Theory from a modelling
perspective by considering two case studies, a stick-picking
game and an autonomous driving example. Both RS and
SCT allow for control synthesis of dynamic discrete-event
systems, and they both have their individual strengths.

As a complement to previously published comparisons of
SCT and RS that have focused on establishing a formal
connection between SCT and RS, this paper’s focus is on
comparing two specific case studies. The problems have
been modelled both in the RS synthesis tool TuLiP and the
SCT synthesis tool Supremica. While the models are very

different, the solutions generated by the two approaches still
have many similarities.

Since RS and SCT have developed as separate subjects in
different communities it is our aim to show, using concrete
examples, what can be achieved with available tools from
each community. We hope that this might be useful for
researchers from both communities to learn more about the
approach used by the other community and that this might
stimulate new ideas in both research fields.

REFERENCES

[1] O. Kupferman, P. Madhusudan, P. Thiagarajan, and M. Vardi, “Open
systems in reactive environments: Control and synthesis,” in CONCUR
2000 — Concurrency Theory, ser. Lecture Notes in Computer Science,
vol. 1877. Springer, Berlin, Heidelberg, 2000.

[2] R. Bloem, R. Ehlers, S. Jacobs, and R. Könighofer, “How to handle
assumptions in synthesis,” in Proceedings 3rd Workshop on Synthesis,
ser. Electronic Proceedings in Theoretical Computer Science, K. Chat-
terjee, R. Ehlers, and S. Jha, Eds., vol. 157. Vienna, Austria: Open
Publishing Association, July 2014, pp. 34–50.

[3] P. Madhusudan, “Control and synthesis of open reactive systems,”
Ph.D. dissertation, University of Madras, 2001.

[4] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[5] B. Finkbeiner, “Synthesis of reactive systems,” in Dependable Soft-
ware Systems Engineering, vol. 45, 2016, pp. 72–98.

[6] P. J. G. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, Jan
1989.

[7] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. Springer, 2008.

[8] R. Ehlers, S. Lafortune, S. Tripakis, and M. Y. Vardi, “Supervisory
control and reactive synthesis: A comparative introduction,” Discrete
Event Dynamic Systems, vol. 27, no. 2, pp. 209–260, Jun 2017.

[9] A.-K. Schmuck, T. Moor, and R. Majumdar, “On the relation between
reactive synthesis and supervisory control of input/output behaviours,”
in 14th IFAC Workshop on Discrete Event Systems (WODES), vol. 51,
01 2018, pp. 31–38.

[10] P. J. G. Ramadge, “Some tractable supervisory control problems for
discrete-event systems modeled by buchi automata,” IEEE Transac-
tions on Automatic Control, vol. 34, no. 1, pp. 10–19, Jan 1989.

[11] A. Pnueli, “The temporal logic of programs,” in 18th Annual Sympo-
sium on Foundations of Computer Science, Oct 1977, pp. 46–57.

[12] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of Reactive(1)
designs,” in Verification, Model Checking, and Abstract Interpretation,
ser. Lecture Notes in Computer Science, E. Emerson and K. Namjoshi,
Eds., vol. 3855. Springer, Jan 2006, pp. 364 – 380.

[13] M. Sköldstam, K. Åkesson, and M. Fabian, “Supervisory control
applied to automata extended with variables - revised,” Chalmers
University of Technology, Tech. Rep., 2008.

[14] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M.
Murray, “Control design for hybrid systems with TuLiP: The temporal
logic planning toolbox,” in IEEE Conference on Control Applications
(CCA), Sept 2016, pp. 1030–1041.

[15] R. Malik, K. Åkesson, H. Flordal, and M. Fabian, “Supremica
– an efficient tool for large-scale discrete event systems,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 5794 – 5799, 2017, 20th IFAC
World Congress.

[16] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. Murray, “TuLiP:
A software toolbox for receding horizon temporal logic planning,” in
Proceedings of the 14th International Conference on Hybrid Systems:
Computation and Control, 04 2011, pp. 313–314.

[17] U. Klein and A. Pnueli, “Revisiting synthesis of GR(1) specifications,”
in Hardware and Software: Verification and Testing, S. Barner, I. Har-
ris, D. Kroening, and O. Raz, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 161–181.

1759

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on June 05,2020 at 09:29:27 UTC from IEEE Xplore. Restrictions apply.

