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An iterative Newton’s method for output-feedback LQR design
for large-scale systems with guaranteed convergence*

Adrian Ilka1, Nikolce Murgovski1 and Jonas Sjöberg1

Abstract— The paper proposes a novel iterative output-
feedback control design procedure, with necessary and suf-
ficient stability conditions, for linear time-invariant systems
within the linear quadratic regulator (LQR) framework. The
proposed iterative method has a guaranteed convergence from
an initial Lyapunov matrix, obtained for any stabilizing state-
feedback gain, to a stabilizing output-feedback solution. An-
other contribution of the proposed method is that it is compu-
tationally much more tractable then algorithms in the literature,
since it solves only a Lyapunov equation at each iteration step.
Therefore, the proposed algorithm succeed in high dimensional
problems where other, state-of-the-art methods fails. Finally,
numerical examples illustrate the effectiveness of the proposed
method.

I. INTRODUCTION
One of the most fundamental problems in control theory

is the linear quadratic regulator (LQR) design problem [1].
The so-called infinite horizon linear quadratic problem of
finding a control function u∗(t) = Kx(t) for x0 ∈ Rnx that
minimizes the cost functional:

J∗ =

∫ ∞
0

(
x(t)TQx(t) + uT (t)Ru(t)

+ 2xT (t)Nu(t)
)
dt,

(1)

with R > 0, Q−NR−1NT ≥ 0 subject to x(0) = x0, and

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(2)

has been studied by many authors [1], [2], [3], [4]. In the
equations above x(t) ∈ Rnx , y(t) ∈ Rny , and u(t) ∈
Rnu denote the state, measurable output, and the con-
trol input vectors, respectively. Furthermore, matrices A ∈
Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , and D ∈ Rny×nu

are constant known matrices. Given a symmetric matrix
P = PT ∈ Rn×n, the inequality P > 0 (P ≥ 0) denotes
that P is positive (semi) definite. Matrices, if not explicitly
stated, are assumed to have compatible dimensions.

Often it is not possible or economically feasible to measure
all the state variables. In this case, an output-feedback control
law defined as

u(t) = Fy(t), (3)

would be more beneficial. However, finding an optimal
output-feedback control law in the form (3), which mini-
mizes (1), is still one of the most important open questions
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in control engineering, despite the availability of many
approaches and numerical algorithms, as it is pointed out
in survey papers [5], [6]. This is mainly due to the lack
of testable necessary and sufficient conditions for output-
feedback stabilizability, and/or the limitations of the available
approaches.

Non-testable sufficient conditions for output-feedback sta-
bilizability within the LQR framework are mostly formulated
as coupled nonlinear equalities or linear/bilinear matrix in-
equalities (LMIs/BMIs) [7], [8], [9], [10]. The majority of
algorithms for output-feedback LQR design are formulated
in terms of LMIs [11], [12], [13], [14], [15], [16], [17] or
BMIs [18], [10], [19], [20], [21], [22]. These algorithms are
dependent on the used LMI or BMI solvers and could work
well for small-sized problems, but may fail as the problem
size increases (due to solver limitations). In addition, avail-
able iterative numerical algorithms with convergence such
as [23], [24], or algorithms using nonlinear programming
such as [25], [26], unfortunately require a selection of an
initial stabilizing output-feedback gain. However, a direct
procedure for finding such a gain is unknown and could
be hard to get, as discussed in [5]. Finally, authors in
[8] proposed a promising iterative algorithm which iterates
a Riccati equation from an initial state-feedback solution,
however the convergence has not been proven.

Inspired by [8], in this paper we propose an alterna-
tive way for output-feedback LQR design for linear time-
invariant (LTI) systems, using a modified Newton’s method
with guaranteed convergence to an output-feedback solution
from any stabilizing state-feedback gain, more precisely,
from a Lyapunov matrix for any stabilizing state-feedback
gain. Furthermore, the proposed algorithm requires solving
only a Lyapunov equation at each iteration step, which is
computationally much more tractable then algorithms in the
literature, including approaches based on LMIs and/or BMIs.

II. NECESSARY AND SUFFICIENT CONDITIONS
FOR OUTPUT-FEEDBACK STABILIZABILITY

This section formulates the necessary and sufficient stabil-
ity conditions for output-feedback stabilizability in the LQR
framework, adopted and modified from [8]. In the rest of
the paper it is assumed without loss of generality that in the
system (2) the matrix D is zero, see for example [27].

Considering the system (2) and the output-feedback con-
trol low (3), let us recall some related terminology.

Definition 1. A square matrix A ∈ Rnx×nx is said to
be stable if and only if for every eigenvalues λi of A,
<(λi) ≤ 0.
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Definition 2. The pair (A,B) is said to be stabilizable if
and only if there exist a real matrix K ∈ Rnu×nx such that
A−BK is stable.

Definition 3. The pair (A,C) is said to be detectable if
and only if there exist a real matrix L ∈ Rnx×ny such that
A− LC is stable.

Definition 4. The system (2) is said to be static output-
feedback stabilizable if and only if there exist a real matrix
F ∈ Rnu×ny such that A−BFC is stable.

Theorem 1. The following statements are equivalent.

1) The system (2) is static output-feedback stabilizable.
2) The pair (A,B) is stabilizable, the pair (A,C) is

detectable and there exist real matrices F ∈ Rnu×ny

and G ∈ Rnu×nx such that

FC −R−1(BTP +NT ) = G, (4)

where P ∈ Rnx×nx is the real symmetric positive-
definite solution of

R(P ) = ATP + PA+Q+GTRG

− (PB +N)R−1(BTP +NT ) = 0,
(5)

for given Q ∈ Rnx×nx , N ∈ Rnx×nu and R ∈ Rnu×nu

matrices satisfying[
Q, N
NT , R

]
≥ 0, R ≥ 0. (6)

Proof. Assume that the first condition holds that is A−BFC
is stable, for some F . Then the pair (A,B) is stabilizable
since A − BK is stable for K = FC, and consequently
the pair (A,C) is detectable, since A − LC is stable for
L = BF . Furthermore, because A − BFC is stable, there
exists a unique symmetric positive-definite matrix P (see [8],
[28] for details), such that

R(P ) = (A−BFC)TP + P (A−BFC) +Q

+ CTFTRFC − CTFTNT −NFC = 0.
(7)

Rearranging (7), one can obtain

R(P ) = ATP + PA+Q

− (PB +N)R−1(BTP +NT )

+
(
FC −R−1(BTP +NT )

)T
R
(
FC

−R−1(BTP +NT )
)

= 0.

(8)

Hence, setting G = FC − R−1(BTP + NT ) implies that
equation (4) exists.

Now assume that the second condition holds. From equa-
tion (4) follows that (7) is satisfied. From the second con-
dition follows that A − LC is stable for some L. Noting
that

(A− LC) =

(
(A−BFC)− [L, −B]

[
C
FC

])
, (9)

it follows that the pair
(
A−BFC,

[
C
FC

])
is detectable

as well. Since P is symmetric and positive-definite, we
conclude from (7) that A−BFC is stable, [8], [28].

The next corollary is straightforward.

Corollary 1. Suppose that

K = R−1(BTP +NT ),

F = KCT (CCT )−1, and G = FC −K,

then the following statements are equivalent,
1)

R(P ) = ATP + PA+Q+GTRG

− (PB +N)R−1(BTP +NT ),
(10)

2)

R(P ) = Q̃+GTRG+ ÃTP + PÃ− PS̃P, (11)

where

Ã = A−BR−1NT , S̃ = BR−1BT ,

Q̃ = Q−NR−1NT .

Proof. The equivalence can be proved by substituting back
all the denotations.

III. MODIFIED NEWTON’S METHOD FOR INFI-
NITE HORIZON OUTPUT-FEEDBACK LQR DESIGN

The equations (10) and (11) are algebraic Riccati-like
equations. In general, Newton’s method and it’s modifica-
tions are widely used to solve algebraic Riccati equations
[29], [30], [31], [32]. Inspired by [29] and [30] we propose
a modified Newton’s method to solve the infinite horizon
output-feedback LQR problem, i.e. to find a control law in
the form (3) for the system (2), minimizing the cost function
defined as (1).

Consider S as a Banach space for any matrix norm, then
R is mapping from S into itself. The first Fréchet derivative
of (11) at the matrix P is a linear map R′

P̃
: S → S given

by

R′P (X) = HT
1 (P )X +XH1(P ) +HT

2 (P )XZ

+ ZTXH2(P ),
(12)

where Z = CT (CCT )−1C, and

H1(P ) = Ã− S̃PZ −BR−1NTZ +BR−1NT ,

H2(P ) = S̃P − S̃PZ +BR−1NT −BR−1NTZ.

Then the Newton’s method for the solution of (11) for the
j-th iteration is

Pj+1 = Pj + (R′Pj
)−1R(Pj), j = 1, 2, . . . . (13)

Considering (12) and (13), we can write

HT
1 (Pj)Xj +XjH1(Pj) +HT

2 (Pj)XjZ

+ ZTXjH2(Pj) = −R(Pj),
(14)

Pj+1 = Pj +Xj , j = 1, 2, . . . . (15)
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The equation (14) is a coupled Sylvester equation, which can
be solved by gradient-based iterative methods such as [33],
[34] and [35]. However, by freezing the matrix G in (11),
the term GTRG becomes a constant during an iteration step
and the Fréchet derivative reduces to

R̂′P (X) = (Ã− S̃P )TX +X(Ã− S̃P ), (16)

and the Newton’s method for the j-th iteration to

(Ã− S̃Pj)
TXj +Xj(Ã− S̃Pj) = −R(Pj), (17)

Pj+1 = Pj +Xj , j = 1, 2, . . . , (18)

where

R(Pj) = Q̃+GT
j RGj + ÃTPj + PjÃ− PjS̃Pj . (19)

The equation (17) is a Lyapunov equation, which can be
solved efficiently and with much less computational effort
(and computational time) then solving (14) with iterative
methods. By this modification we loose the quadratic conver-
gence, but we can still prove that under certain assumptions
it converges (at least linearly) to a solution.

The next Algorithm summarizes the proposed modified
Newton’s method for infinite-horizon output-feedback LQR
design using (16)–(19).

Algorithm 1: Modified Newton’s method for output-
feedback LQR design

1 Choose some stabilizing initial guess P0 = PT
0 ;

2 for j=1:max iteration do
3 Fj = R−1(BTPj +NT )CT (CCT )−1 ;
4 Gj = FjC −R−1(BTPj +NT );
5 R(Pj) = Q̃+GT

j RGj + ÃTPj + PjÃ− PjS̃Pj ;
6 if trace(R(Pj)

TR(Pj)) > ε then
7 Xj ← (Ã−S̃Pj)

TXj+Xj(Ã−S̃Pj) = −R(Pj);
8 Pj+1 = Pj +Xj ;
9 else

10 break;
11 end
12 end

A. Convergence

In this subsection, we show that under certain assumptions,
Algorithm 1 has a guaranteed convergence from a stabilizing
starting guess P0 (i.e. Ã − S̃P0 is stable for some Q̃ ≥ 0),
to a stabilizing output-feedback solution.

Remark 1. If system (2) is stabilizable and detectable, then
the standard state-feedback LQR solution for (2) for some
Q̃ ≥ 0 always gives a P0 for which Ã− S̃P0 is stable.

Let us recall some results relating to the convergence
proof.

Definition 5. The inertia of a matrix W ∈ Rn×n is the triple
In(W ) = (π(W ), ν(W ), δ(W )) where π(W ), ν(W ), and
δ(W ) are the number of eigenvalues with positive, negative,
and zero real part respectively.

Lemma 1. If H = HT ∈ Rn×n, A ∈ Rn×n, and W > 0 ∈
Rn×n satisfy AH +HAT = −W ≤ 0, and δ(A) = 0, then
In(−H) ≤ In(A).

Proof. For proof see [36, Proposition 1, p. 447].

Lemma 2. Let H = HT ∈ Rn×n, A ∈ Rn×n, W > 0 ∈
Rn×n and C ∈ Rl×n satisfy AH + HAT = −W ≤ CTC,
where (A,C) defines a detectable pair. Then ν(A) = n if
and only if ν(H) = 0, [29, Lemma 8, p. 5] .

Proof. If A is stable, so ν(A) = n, then ν(H) = 0 follows
from Lemma 1. If ν(H) = 0, so H is positive semidefinite,
then ν(A) = n. To prove that we assume the contrapositive,
i.e., A has at least one eigenvalue λ with Re(λ) ≥ 0. Since
the pair (A,C) is detectable, Cw 6= 0, where w denotes the
corresponding right eigenvector. Thus, we obtain:

wH(AH +HAT )w = 2Re(λ)wHHw

≤ −wHCTCw < 0,
(20)

which contradicts the positive semidefiniteness of H .

The next Proposition shows that if the conditions described
in Theorem 1 hold, then with a stabilizing starting guess
(P0) the Algorithm 1 cannot fail due to a singular Lyapunov
operator.

Proposition 1. Suppose that the conditions in Theorem 1
hold, so the pair (Ã, C̃q) is detectable, where Q̃ = C̃T

q C̃q

is a full-rank factorisation of Q̃. If X0 is stabilizing, and
Algorithm 1 is applied to (11), then the Lyapunov operator
Ω̃j in step 7 from Algorithm 1 is nonsingular for all j and
the sequence of approximate solutions Xj is well defined.

Proof. Suppose that the pair (Ã, C̃q) is detectable. From step
7 from Algorithm 1 applied to (11) we can get

(Ã− S̃Pj)
T (Pj +Xj) + (Ã− S̃Pj)(Pj +Xj)

= −Q̃−GT
j RGj − PjS̃Pj ≤ −Q̃,

(21)

since Q̃ and S̃ are positive semidefinite, due to the positive
semidefiniteness of Q−NR−1NT and R. From (21) follows
that if Ã− S̃Pj is stable, then Ã− S̃(Pj +Xj) is also stable.
Furthermore, Lemma 2 implies that Pj + Xj is positive
semidefintie. The Lyapunov operator corresponding to the
Lyapunov equation in step 7 from Algorithm 1 is well
defined, precisely as:

Ω̃j(Xj) = (Ã− S̃Pj)
TXj +Xj(Ã− S̃Pj), (22)

for Xj ∈ Rnx×nx and j = 1, 2, . . ..

Let us recall the following Lemma.

Lemma 3. Suppose that {Pj}∞j=1 is a sequence of symmetric
matrices such that {R(Pj)}∞j=1 is bounded. If the pair
(Ã, B) is stabilizable and Ã− S̃Pj is stable for each j ≥ 0,
then {Pj}∞j=1 is bounded.

Proof. For proof see [30, Lemma 2.3].

Collecting the results so far, we have the following con-
vergence result for the modified Newton’s method.
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Theorem 2. Suppose that the pair (Ã, B) is stabilizable, the
pair (Ã, C̃q) is detectable, and there exist real matrices F
and G such that FC−R−1(BTP+NT ) = G. If Algorithm 1
is applied to (11) with a stabilizing starting guess P0 (i.e. Ã−
BK0 is stable for some Q̃ ≥ 0), then P ∗ = limj→∞ Pj exists
and is the stabilizing solution of the generalized Riccati-like
equation (11).

Proof. The proof follows from Theorem 1, Lemmas 1, 2, 3
and Proposition 1.

Remark 2. From Theorem 2 follows that the convergence
rate of Algorithm 1 is at least sublinear. In the examples we
studied that the convergence rate is in fact linear, although
further investigation is needed to show if the convergence
rate is strictly linear.

Remark 3. Control law (3) is defined in a static output-
feedback (SOF) form. Many controller structures can be
transformed to this SOF form (like proportional-integral PI,
proportional-integral-derivative PID, proportional-derivative
PD, even full/reduced order dynamic output-feedback con-
trollers) by augmenting the system with additional state
variables. For more info, see [17].

IV. NUMERICAL EXAMPLES

In order to show the viability of the previous proposed
method, the COMPleib [37] library has been used. For better
highlighting the benefits of the proposed method, the iterative
LMI (iLMI) method from [17] and the BMI formulation of
the ofLQR problem (Lemma 4) have been evaluated on the
COMPleib library as well.

Lemma 4. The static output-feedback LQR design problem
is equivalent with the following optimization problem

min
F,P

(xT0 Px0) (23)

subject to

(Ã−BFC)TP + P (Ã−BFC)

+ Q̃+ CTFTRFC ≤ 0,
(24)

P > 0, (25)

Proof. Assume that the Lyapunov candidate

V (x(t)) = x(t)TPx(t), (26)

is positive definite. Then from the Bellman-Lyapunov in-
equality follows

V̇ (x(t)) + J(x(t)) ≤ 0→ V̇ (x(t)) ≤ −J(x(t)), (27)

where
J = x(t)T Q̃x(t) ≥ 0, (28)

which indicates that the closed-loop system is stable. Inte-
grating both sides from 0 to ∞ we can obtain the upper
bound of the cost function

J∞ ≤ V (x(0))− V (x(∞)) ≤ x(0)TPx(0), (29)

which completes the proof.

All numerical solutions, have been carried out on HP
EliteBook 820 (Intel CORE i7-5600u 2.60 GHz CPU, 16
GB RAM) laptop computer using Matlab 2017a [38]. Fur-
thermore, BMI and iLMI formulations have been carried out
by Penlab BMI solver [39] and by Mosek LMI solver [40]
using YALMIP R20150918 [41]. Finally, for the proposed
method (Algorithm 1) for the step 7 the built-in Matlab lyap
subrutin has been used.

Numerical results for all static output-feedback stabilizable
plants in COMPleib for Q = CTC, R = I , N = 0, and
x0i = 1, i = 1, . . . , nx, are shown in Table I. The results
indicates that the proposed approach is superior compared to
BMI and iLMI formulations. In addition, even with the built-
in Matlab lyap subrutin, which is not well-suited for large-
scale problems, we where able to solve examples with order
higher then 4000 within minutes. The LAH example well
demonstrates that the proposed approach is computationally
much more tractable then approaches based on LMIs and/or
BMIs. While the Algorithm 1 converged to a solution in 2.84
milliseconds, it took 38 seconds for the iLMI formulation,
and 8.31 hours for the BMI one.

Table I also indicates that most of the examples in the
COMPleib library are ill-posed and therefore the residual
is also ill-conditioned. Due to this, in many cases the
Q = CTC has negative eigenvalues, while Q ≥ 0 is needed
for the convergence. Furthermore, it can be stated that if
the condition number (using Frobenius norm) of the residual
(11) is higher than 1 × 1016 then the proposed algorithm
often fails to converge to a solution. The only one exception
is the plant NN17, however the condition number is still
big (3.71 × 1015) which could cause numerical problems.
From this follows that system scaling or using some pre-
conditioning techniques is recommended for ill-posed and/or
ill-conditioned problems. The same applies for the iLMI and
BMI formulations.

Beside these, the proposed algorithm was still able to
find a solution for plenty of examples without any scaling
and/or preconditioning, even with negative eigenvalues in
Q = CTC in Matlab, and for condition number of the
residual (11) R(P0) higher than 1×1016. Let us note that for
examples where the condition number for R(P0) was less
then 1× 1010 the Algorithm 1 converged within 2-3 steps.

In Table I superscripts indicate that
1 for the given plant Q = CTC has negative eigenvalues in

Matlab,
2 for the given plant the condition number of the residual
R(P0) is higher than 1 × 1016, where P0 is the solution
of the state-feedback LQR design,

3 for the given plant the pair (Ã,B) is not stabilizable.

Remark 4. The first and third condition is prerequisite even
for the standard LQR design (i.e. for state-feedback LQR
design).

Remark 5. The differences in the values of xT0 Px0 between
the iLMI/BMI formulations and the proposed method (Al-
gorithm 1) are due to the differences in the problem formu-
lation. In general the output-feedback LQR problem is not
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TABLE I
OUTPUT-FEEDBACK LQR BENCHMARKS ON COMPle IB PLANTS

Problem description
BMI formulation

(Lemma 4)
iLMI formulation

(oflqr toolbox [17])
Proposed method

(Algorithm 1)
(Penlab BMI solver) (Mosek LMI solver) (Matlab lyap subrutin)

Name nx ny nu cond(R(P0))F Iter. Time(s) xT
0 Px0 Iter. Time(s) xT

0 Px0 Iter. Time(s) xT
0 Px0

AC1 5 3 3 1.41E+15 - - - - - - 103 2.02E-02 1.74E+01
AC2 5 3 3 1.41E+15 - - - - - - 103 1.57E-02 1.74E+01
AC3 5 4 2 7.99E+15 - - - 32 1.92E+01 2.49E+01 19 3.40E-03 1.97E+01
AC42 4 2 1 Inf - - - 4 2.42E+00 4.66E-01 15 2.19E-03 4.71E-01
AC5 4 2 2 3.58E+10 - - - - - - 13 3.22E-03 1.58E+06
AC61 7 4 2 4.82E+15 - - - 62 3.72E+01 1.08E+01 112 2.49E-02 1.23E+01
AC71,2 9 2 1 2.15E+16 - - - 15 9.07E+00 7.76E-01 24 7.25E-03 7.66E-01
AC81,2 9 5 1 4.66E+17 - - - 5 3.06E+00 3.73E+01 9 1.92E-02 1.09E+01
AC91,2 10 5 4 1.02E+19 - - - - - - - - -
AC101,2 55 2 2 9.04E+19 - - - - - - - - -
AC11 5 4 2 9.48E+13 - - - - - - 389 6.11E-02 1.15E+02
AC12 4 4 3 1.37E+06 - - - 2 1.50E+00 1.05E+04 1 1.41E-04 1.05E+04
AC131,2 28 4 3 5.30E+20 - - - - - - - - -
AC141,2 40 4 3 Inf - - - - - - - - -
AC15 4 3 2 9.70E+15 - - - 13 9.68E+00 1.18E+02 6 1.38E-03 1.21E+02
AC16 4 4 2 3.25E+02 - - - 2 1.51E+00 1.04E+02 1 1.42E-04 1.04E+02
AC172 4 2 1 2.40E+17 10 9.26E-01 4.27E+00 7 5.21E+00 4.27E+00 5 8.83E-04 4.57E+00
AC181 10 2 2 3.44E+12 - - - - - - - - -
HE12 4 1 2 5.19E+18 - - - - - - - - -
HE2 4 2 2 1.59E+13 - - - 78 5.86E+01 1.73E+00 82 1.15E-02 1.81E+00
HE3 8 6 4 8.39E+13 - - - 12 9.22E+00 4.73E+02 25 4.91E-03 6.49E+02
HE4 8 6 4 2.39E+12 - - - 180 1.36E+02 4.40E+01 9 1.93E-03 5.90E+01
HE52 8 2 4 1.10E+19 - - - - - - - - -
HE61,2 20 6 4 Inf - - - 325 2.69E+02 1.14E+02 9 5.40E-03 1.24E+02
HE71,2 20 6 4 Inf - - - 325 2.73E+02 1.14E+02 9 6.84E-03 1.24E+02
JE11,2 30 5 3 Inf - - - - - - - - -
JE21,2 21 3 3 2.72E+21 - - - - - - - - -
JE3 24 6 3 NaN - - - - - - - - -
REA11 4 3 2 1.31E+15 - - - 22 1.98E+01 2.01E+00 28 7.24E-03 2.06E+00
REA21 4 2 2 3.19E+14 - - - 22 1.99E+01 2.11E+00 98 2.16E-02 3.18E+00
REA32 12 3 1 4.54E+19 - - - 4 3.66E+00 3.82E+01 704 3.90E-01 1.66E+02
REA43 8 1 1 NaN - - - - - - - - -
DIS1 8 4 4 1.13E+15 13 4.58E+00 2.69E+01 7 6.37E+00 2.69E+01 8 1.55E-03 2.75E+01
DIS2 3 2 2 3.87E+15 - - - 5 4.53E+00 4.06E+00 23 4.12E-03 6.89E+00
DIS3 6 4 4 9.10E+15 - - - 7 6.37E+00 4.00E+00 32 5.58E-03 5.35E+00
DIS4 6 6 4 1.32E+02 - - - 1 9.36E-01 6.14E+00 1 1.94E-04 6.14E+00
DIS5 4 2 2 5.96E+10 - - - - - - 11 1.63E-03 4.24E+05
TG11,2 10 2 2 1.16E+16 - - - - - - - - -
AGS1,2 12 2 2 9.22E+16 24 7.79E+01 9.05E+02 18 1.66E+01 9.05E+02 19 8.27E-03 9.60E+02
WEC12 10 4 3 1.62E+16 - - - - - - - - -
WEC22 10 4 3 2.89E+17 - - - - - - - - -
WEC32 10 4 3 4.70E+16 - - - - - - - - -
HF1 130 2 1 2.54E+12 - - - - - - 9 1.72E-01 6.11E+01
BDT12 11 3 3 2.94E+16 24 1.97E+01 5.61E+02 10 9.34E+00 5.61E+02 58 1.62E-02 6.80E+02
BDT22 82 4 4 1.12E+18 - - - 43 8.15E+02 4.51E+02 10 7.44E-02 5.56E+02
MFP 4 2 3 1.97E+15 9 1.80E+00 9.38E+01 - - - 1132 1.53E-01 8.29E+01
UWV2 8 2 2 4.01E+17 - - - - - - - - -
IH2 21 10 11 1.68E+16 - - - - - - 30 1.97E-02 4.22E+01
CSE1 20 10 2 4.15E+13 15 4.36E+01 5.68E+02 3 2.99E+00 5.68E+02 2 7.78E-04 5.68E+02
CSE2 60 30 2 1.69E+13 - - - 3 9.82E+00 1.03E+04 2 2.21E-03 1.03E+04
EB11 10 1 1 2.17E+15 12 6.71E+00 4.53E+02 6 6.39E+00 4.53E+02 8 2.17E-03 4.73E+02
EB21 10 1 1 2.17E+15 12 6.82E+00 4.53E+02 6 6.36E+00 4.53E+02 8 1.96E-03 4.73E+02
EB31 10 1 1 5.44E+05 12 1.69E+01 9.84E+02 2 2.09E+00 9.84E+02 1 2.45E-04 9.84E+02
EB41 20 1 1 5.37E+07 - - - 7 7.71E+00 2.53E+04 1 2.38E-04 2.53E+04
EB51 40 1 1 1.11E+10 - - - - - - 2 1.83E-03 5.73E+05
EB61 160 1 1 1.04E+13 - - - - - - 4 1.05E-01 6.16E+08
PAS2 5 3 1 1.50E+17 - - - - - - 5 9.72E-04 4.48E+06
TF12 7 4 2 1.95E+17 - - - - - - - - -
TF22 7 3 2 Inf - - - - - - 441 8.11E-02 4.52E+01
TF32 7 3 2 Inf - - - - - - - - -
PSM 7 3 2 1.09E+15 17 1.61E+00 3.08E+00 4 4.38E+00 3.08E+00 6 1.06E-03 3.14E+00
TL1,2 256 2 2 2.71E+17 - - - - - - 18 1.54E+00 9.82E-08
CDP1,2 120 2 2 7.12E+16 - - - - - - - - -
NN12 3 2 1 3.08E+16 - - - 20 2.17E+01 2.89E+03 121 1.62E-04 2.89E+03
NN2 2 1 1 3.45E+00 9 6.28E-01 2.00E+00 1 1.11E+00 2.00E+00 1 1.73E-04 2.00E+00
NN32 4 1 1 1.12E+17 - - - - - - - - -
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NN4 4 3 2 5.32E+14 - - - - - - 79 1.08E-02 3.95E+00
NN52 7 2 1 1.65E+17 - - - - - - - - -
NN61,2 9 4 1 1.37E+18 - - - - - - - - -
NN71,2 9 4 1 1.37E+18 - - - - - - - - -
NN8 3 2 2 1.89E+14 9 7.13E-01 2.31E+00 5 5.44E+00 2.31E+00 10 1.71E-03 2.40E+00
NN91 5 2 3 8.86E+14 - - - - - - - - -
NN102 8 3 3 3.57E+16 - - - - - - - - -
NN111,2 16 5 3 Inf 25 5.65E+01 5.57E+00 3 3.44E+00 5.57E+00 3 1.32E-03 5.57E+00
NN122 6 2 2 6.85E+16 - - - - - - - - -
NN131 6 2 2 8.47E+15 - - - - - - - - -
NN141 6 2 2 8.47E+15 - - - - - - - - -
NN15 3 2 2 7.66E+10 - - - 8 8.77E+00 1.95E+02 6 8.85E-04 2.06E+02
NN161 8 4 4 1.22E+11 17 1.27E+01 2.82E+01 2 2.21E+00 2.82E+01 2 3.50E-04 2.82E+01
NN17 3 1 2 3.71E+15 - - - - - - - - -
NN181,2 1006 1 1 1.50E+16 - - - - - - 10 4.16E+01 5.46E+02
CM1 20 2 1 9.61E+12 15 3.29E+02 1.33E+01 10 1.17E+01 1.33E+01 12 7.87E-03 1.15E+01
CM2 60 2 1 6.07E+12 - - - 197 1.49E+03 1.64E+01 10 1.76E-02 1.37E+01
CM3 120 2 1 1.31E+13 - - - - - - 9 8.72E-02 1.43E+01
CM4 240 2 1 1.24E+12 - - - - - - 8 4.46E-01 1.47E+01
CM5 480 2 1 3.47E+11 - - - - - - 6 1.80E+00 1.51E+01
CM6 960 2 1 2.50E+11 - - - - - - 5 1.11E+01 1.58E+01
TMD1 6 4 2 1.55E+15 - - - 16 1.89E+01 2.08E+01 17 2.72E-03 2.62E+01
FS2 5 3 1 6.36E+16 - - - - - - 809 1.23E-01 2.98E+08
DLR11 10 2 2 2.41E+12 15 7.25E+00 2.69E+02 11 1.30E+01 2.69E+02 4 8.36E-04 2.79E+02
DLR21 40 2 2 1.04E+13 - - - - - - 32 5.39E-02 1.07E+01
DLR31 40 2 2 1.94E+15 - - - - - - 32 5.60E-02 1.67E+04
ISS11 270 3 3 3.49E+07 - - - - - - 1 4.57E-03 2.10E+00
ISS21 270 3 3 6.12E+07 - - - - - - 1 4.97E-03 2.08E+00
CBM 348 1 1 2.64E+15 - - - - - - 2682 3.42E+02 1.73E+03
LAH 48 1 1 3.37E+10 33 2.99E+04 2.60E+02 13 3.77E+01 2.60E+02 2 2.84E-03 2.60E+02
HF2D31 4489 4 2 - - - - - - - 4 1.10E+03 6.26E+00
HF2D41 2025 4 2 - - - - - - - 25 8.25E+02 6.57E+02
HF2D91 3481 2 2 - - - - - - - 9 1.38E+03 6.75E+02

unique, it is initial-state dependent. While within the iLMI
and BMI formulations the xT0 Px0 (which is the upper bound
of the cost function (1)) is minimized (for given initial states),
the proposed approach gives a unique output-feedback gain
for which holds that R−1(BTP +NT ) = FC. However, a
family of solutions can be generated by a parametrization
found in [42].

Convergence rates of the proposed algorithm on different
COMPleib plants (AC3, AC4 and DIS2), for initial Lyapunov
matrices obtained from standard state-feedback LQR design,
are shown in Fig. 1. Convergence rates of the proposed
algorithm on the COMPleib plant AC3 for random initial
Lyapunov matrices are shown in Fig. 2. From figures follow
that the convergence rate is linear if the initial Lyapunov
matrix is calculated by the standard LQR design, and that it
becomes linear in the neighbourhood of the solution.

V. CONCLUSIONS

A novel iterative design is proposed for output-feedback
LQR design for LTI systems with guaranteed convergence to
a solution (for an initial Lyapunov matrix obtained for any
stabilizing state-feedback gain). Numerical results highlight
that the proposed approach is computationally much more
tractable then approaches based on LMIs and/or BMIs.
Along this line, numerical results also indicate that regu-
larization is needed to improve usability of the proposed
approach for ill-conditioned problems. This can be done by
preconditioning the Lyapunov equation within the Newton’s

5 10 15 20
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-10

10
0 AC3
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DIS2

Fig. 1. Convergence rate of the Algorithm 1 on COMPleib plants AC3,
AC4 and DIS2. The initial Lyapunov matrix is obtained by the standard
state-feedback LQR design.

10 20 30 40 50 60 70

Number of iterations

10
-10

10
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Fig. 2. Convergence rate of the Algorithm 1 on COMPleib plant AC3 for
random initial Lyapunov matrices.
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method similarly as in [32]. Furthermore, the proposed
approach can be easily extended with exact line-search,
similarly as it is done in [29] to speed up the convergence.
Finally, using a technique introduced in [43], a robust
output-feedback controller can be designed by the proposed
approach.
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