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Timer-Based Distributed Channel Access in
Networked Control Systems over Known and

Unknown Gilbert-Elliott Channels
Tahmoores Farjam, Themistoklis Charalambous, and Henk Wymeersch

Abstract— In this paper, we consider a system consisting of
multiple (possibly heterogeneous) decoupled control subsystems
which aim at communicating with their corresponding con-
trollers via shared (possibly) time-varying wireless channels.
To address the resource allocation problem in a distributed
fashion, we propose a timer-based channel access mechanism in
which the subsystem with the smallest timer value, in a channel,
claims the slot for transmission in that specific channel. The
value of the timer is inversely proportional to a cost which is
a function of the temporal correlation in the channel variation
and the subsystem state. This cost can be calculated individually
and does not require explicit communication between the
subsystems, since it is based on locally available information
only. The temporal correlation in the channel variation may be
unknown and, in such cases, each subsystem tries to deduce
it via machine learning techniques. The performance of our
proposed mechanism is demonstrated via simulations.

Index Terms— Wireless networked control systems, dis-
tributed channel access, cost of information loss, Gilbert-Elliott
channel, Bayesian inference.

I. INTRODUCTION

The vision of a smart world is to automate whatever is
possible, thus offering new applications and services, revo-
lutionizing all aspects of life from politics and economics to
cities and factories [1]. It is evident that the improvement of
smart devices with advanced sensing, computing and control
capabilities makes it possible for our cities, transportation
systems, factories and living environments to become more
intelligent, energy-efficient, and secure. Typically, such sys-
tems are spatially distributed, and communication between
smart devices (being sensors, actuators or controllers) is
mainly supported by a shared, wireless communication net-
work. These systems are known as Wireless Networked
Control Systems (WNCSs); a thorough literature review can
be found in a recent survey [2]. The use of a wireless net-
work to connect spatially distributed systems enables flexible
architectures with reduced installation and maintenance costs
to existing applications, while supporting the development of
new applications that would otherwise be impossible.
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One of the critical challenges in WNCSs is how dif-
ferent dynamical systems, herein called subsystems, access
the shared wireless network. Apart from the problem of
having limited resources, on one hand there is often no
centralized agency to orchestrate the channel access from
different subsystems, as it is the case in, e.g., [3]–[8]. On
the other hand, wireless channels are unreliable and time-
varying. Many of the works in the literature (see, e.g., [9]–
[12]) assumed independent and identically distributed (i.i.d.)
Bernoulli random variation of the channel state. However,
the Bernoulli process is memoryless and it fails to capture
the temporal correlation of the variation of channels. The
Gilbert-Elliott (GE) channel model [13], [14] is a better
model since it accounts for temporal correlation and it allows
burst mode in communication channels. The GE model has
been considered when studying the stability condition for
remote estimation [15]–[17] and more recently for sensor
data scheduling [18]. Nevertheless, apart from [18] in which
a centralized scheduling mechanism is proposed, no dis-
tributed mechanism for WNCSs has considered the temporal
correlation of the variation of channels.

In this work, we propose a distributed channel access
mechanism for WNCSs, in which each subsystem employs a
timer for accessing the channel. The timer for each subsys-
tem is associated with the cost imposed by that subsystem
on the entire system and the channel quality; a variation
of this mechanism for wired Networked Control Systems
(NCSs), in which the timer is a function of the cost only has
been proposed by the authors in [19]. This idea is extended
to the case of multiple fading, possibly unknown, wireless
channels with temporal correlation, where successful recep-
tion of transmitted data packets is not guaranteed. The main
contributions of this paper are the following:
• First, the distributed channel access mechanism is con-

sidered for wireless channels modeled using the GE
model and for which the model parameters (i.e., transition
probabilities) are known a priori.

• Second, on several occasions, the parameters of the GE
channel model are not known a priori. For this case,
we develop an online learning scheme with which the
subsystems learn the GE parameters online and, thus,
capture the temporal correlation of channel variation and
adjust their timers accordingly.



The remainder of the paper is organized as follows. In
Section II, we provide the system model and preliminaries
necessary for the development of our results. In Section III,
we describe the proposed distributed channel access mech-
anism. The mechanism for known and unknown parameters
of the GE channel model is described in Sections IV and V,
respectively. In Section VI we demonstrate its performance
and discuss its limitations. In Section VII, we draw conclu-
sions and discuss future directions.

II. SYSTEM MODEL AND PRELIMINARIES

We consider WNCSs consisting of N subsystems that
share a wireless channel; see, for instance, Fig. 1 depicting
a simple WNCS consisting of 2 subsystems that share the
same wireless channel.

A. Subsystems

The dynamics of each subsystem i ∈ {1, . . . , N} are mod-
eled by a linear time-invariant stochastic process governed
by the following discrete-time state-space representation:

xi,k+1 = Aixi,k +Biui,k + wi,k, (1a)
yi,k = Cixi,k + νi,k, (1b)

where xi,k ∈ Rni , yi,k ∈ Rpi and ui,k ∈ Rmi are the
local states of the plant Pi, measurements taken by wireless
sensor Si and inputs of the actuators computed by controller
Ci at time step k, respectively. Moreover, the stochastic
disturbances and measurement noises are assumed to be
i.i.d. random sequences described by wi,k ∼ N (0,Wi) and
νi,k ∼ N (0, Vi), respectively.

We consider minimizing the standard quadratic cost func-
tion over the infinite horizon as the objective and design
the controller and estimator units accordingly. This cost is
defined as

J0 = E

{
lim
κ→∞

1

κ

κ−1∑
k=0

N∑
i=1

(
xTi,kQixi,k + uTi,kRiui,k

)}
, (2)

where Qi, Ri � 0 are wighting matrices of appropriate
dimensions. The control actions for minimizing this cost are
computed by ui,k = Lix̂i,k|k, where Li is a stabilizing feed-
back matrix of proper dimensions which can be determined
independent of the scheduling. Moreover, x̂i,k|k denotes the a
posteriori state estimates provided by the Kalman filter. Due
to the Gaussian nature of disturbances and noises, this setup
provides the minimum mean square estimate. Let Pi,k|k−1

and Pi,k|k denote the a priori and a posteriori covariance
matrices at k, respectively. Then, the state estimates can be
calculated recursively by the following set of equations [20]

x̂i,k|k−1 = (Ai +BiLi)x̂i,k−1|k−1, (3a)

Pi,k|k−1 = AiPi,k−1|k−1A
T
i +Wi, (3b)

Ki,k = Pi,k|k−1C
T
i

(
CiPi,k|k−1C

T
i + Vi

)−1
, (3c)

x̂i,k|k = x̂i,k|k−1 + θi,kKi,k(yi,k − Cix̂i,k|k−1), (3d)
Pi,k|k = (I − θi,kKi,kCi)Pi,k|k−1, (3e)

Fig. 1. Example of the WNCS layout where two subsystems compete
to access a single wireless channel. Pi represents the plant of subsystem
i ∈ {1, 2}, Si its sensor, Ei its estimator, and Ci its controller. Note that
the timer is embedded in the sensor which is capable of local computations.

where θi,k ∈ {1, 0} represents the impact of scheduling
on computations and is set to 1 only if measurements are
received at k.

B. Shared wireless network

We focus on the case of wireless networks where a time-
slotted medium access protocol is implemented. Let δi,j,k ∈
{0, 1} describe the transmission status as

δi,j,k =

{
1, yi,k is transmitted on channel j,
0, otherwise.

We assume that at any given time, each subsystem can only
transmit on one channel j ∈ {1, . . . ,M} or, equivalently,

M∑
j=1

δi,j,k ≤ 1, ∀i,∀k. (4)

Furthermore, due to the limited capacity of the commu-
nication resources (M < N ), only a limited number of
subsystems can transmit successfully at each slot. Moreover,
in case two or more subsystems transmit simultaneously
on the same channel, collision occurs and the packets are
dropped.

Even by implementing a collision-free channel access
mechanism, due to the unreliable nature of wireless channels,
possibility of packet dropouts exists. As a result, δi,j,k = 1
does not necessarily lead to successful reception of the
sent packet at its destination. Therefore, we define a binary
variable γi,j,k to denote the confirmation of packet reception
as

γi,j,k =

{
1, yi,k is successfully received on channel j,
0, otherwise.

Using this notation, we define θi,k as

θi,k =

{
1, if

∑M
j=1 γi,j,k = 1,

0, otherwise,

C. The Gilbert-Elliott channel

We model the packet dropout process of the channels as
a two-state time homogeneous Markov chain, as introduced
by Gilbert [13] and Elliott [14]. This model is widely used



for describing error patterns in transmission channels since
it captures the existence of temporal correlations between
channel conditions. Using this two-state model, the channel
can be either in a good (G) or bad (B) state. Successful
communication over a channel is guaranteed when its state
is G, otherwise the transmitted packet is dropped. Denoting
state of the channel by s, the transition probabilities are
defined as

p = P{sk = B|sk−1 = G}, (5a)
q = P{sk = G|sk−1 = B}. (5b)

Therefore, the probabilities of staying in states B and G are
1− q and 1− p, respectively; see Fig. 2.

G B
1 − p 1 − q

p

q

Fig. 2. Two-state Markov chain representing the Gilbert-Elliott model.

The quality of the channel is directly associated with the
values of p and q, since a smaller p and a larger q represent
a more reliable channel.

III. DISTRIBUTED CHANNEL ACCESS MECHANISM

The distributed resource allocation problem over perfect
communication links has been addressed in [19] by intro-
ducing a novel channel access mechanism. The proposed
method is based on the idea that each subsystem has a local
timer, which by appropriate setup, represents the priority
for transmission. Here, we slightly modify the proposed
method and extend its application to the case where multiple
imperfect communication links are available.

Using a similar structure, we assume that every subsystem
possesses a separate timer for each available channel j ∈
{1, . . . ,M}. For each transmission slot k, the initial value
of these local timers, denoted by τi,j,k, is calculated by

τi,j,k =
λ

mi,j,k
, (6)

where mi,j,k corresponds to a local cost and λ is a constant
value. At the beginning of each time slot, the subsystems
are synchronized and their timers start. In this setup, λ is
identical for all timers and thus their values are inversely
proportional to the local cost. Therefore, the timer that
expires first corresponds to the largest mi,j,k or, equivalently,
the highest priority for transmission.

At a specific time step k, the first timer that reaches zero
determines the first claimed channel j∗ by subsystem i∗ as

{i∗, j∗} = arg min
i,j
{τi,j,k}. (7)

This subsystem transmits a short duration flag packet on
channel j∗ immediately, thus informing all other subsystems
in the network to stop their timers for this channel and back
off. Simultaneously, i∗ resets its remaining timers and thus
withdraws from competition for the remaining channels and

SS1

SS2

Time slot 1

Timers 
start

flag 
packet

T2 
stops 

Nominal 
T2 end 

SS2 backs off

SS1 transmits data

Time slot 2

flag 
packet

T1 
stops 

Nominal 
T1 end

SS1 backs off

SS2 transmits data

Timers 
reset

Fig. 3. Example of 2 subsystems competing for one channel in 2 successive
time slots. Subsystem 1 (denoted as SS1) has the largest cost in the first time
slot and gets the access to the channel. Subsequently, subsystem 2 (denoted
as SS2), that did not communicate in the first time slot, in the second time
slot gets to have a larger cost. Here, m2,1,2 > m1,1,2 and thus SS2 gets
access to the channel.

starts to transmit on channel j∗ without collision. Meanwhile,
the rest of the subsystems compete for available resources
until all M channels have been allocated for this time slot.

As the duration of the time slot ends, the subsystems
are re-synchronized and their timers are updated to new
values according to the new mi,j,k and the same procedure
is repeated. Given that enough communication resources
are available, this method provides collision-free channel
access while ensuring stability. Fig. 3 shows a graphical
representation of this procedure for this case where two
subsystems compete for accessing a single communication
channel in two successive time slots.

A. Timer setup

The implementation of this mechanism requires quantifi-
cation of the parameter mi,j,k. In principle, it could be
associated with any metric that we choose as a measure for
prioritizing transmissions. Here, we define this metric such
that it takes into account the control performance as well as
the probability of successful transmission.

We adopt the Cost of Information Loss (CoIL), introduced
in [10], as the measure of control performance. It can be
interpreted as the cost imposed by subsystems in case their
measurement updates are not received. For our setup, with
the assumption of perfect communication links, CoIL is
given by

CoILi,k = tr
(
Γi(Pi,k|k−1 − Pi,k|k)

)
, (8)

where Γi is a weighting matrix, and Pi,k|k−1 and Pi,k|k are
the a priori and a posteriori error covariance matrices as
defined in (3b) and (3e), respectively.

It is proven in [10] that minimizing the quadratic cost
at each time step, is equivalent to granting channel access
to subsystems with the largest CoIL. Furthermore, in case
of unreliable communication channels, the optimal resource
allocation problem (for the current step1) becomes

max
δi,j,k∈{0,1}

CoILi,kq̄i,j,kδi,j,k, (9)

1The optimal scheduling of the channels can be obtained by solving the
infinite horizon optimization problem; see [21] for details.



where q̄i,j,k denotes the probability of subsystem i transmit-
ting successfully on channel j at time slot k.

The solution to this problem can be provided in a dis-
tributed fashion by implementing the timer-based mechanism
with the local cost defined as

mi,j,k = CoILi,kq̄i,j,k. (10)

Since the required information for calculating CoIL accord-
ing to (8) is known locally, by assuming that channel qualities
are known, this cost can be computed locally and used in
(6) to compute the value of the timer, thus facilitating the
distributed implementation of the channel access mechanism.
It should be noted that the possibility of multiple links
having the same channel statistics has Lebesgue measure
zero. However, in the unlikely scenario that the minimum
timer is not unique, the subsystem claims one of the best
channels randomly, similar to the original method.

IV. CHANNEL ACCESS OVER A KNOWN
GILBERT-ELLIOTT CHANNEL

In this section, for the ease exposition, the subscript for
channels have been dropped and we focus on the case of one
available wireless channel. However, the results can simply
be extended to the case of multiple communication channels.

We assume that the failure rate (transition from G to
B) and recovery rate (transition from B to G) of each
wireless link, denoted by pi and qi, respectively, are known
a priori. Knowledge of the exact values of these parameters
can be exploited for determining the probability of successful
transmission over each communication link and thus enable
computation of (10).

Let bi,k denote the belief, i.e., the probability that the
communication link of subsystem i is in the good state at
current time step k. In case this subsystem claims the channel
at current transmission slot (δi,k = 1), according to (5), the
belief for the next step becomes

bi,k+1 =

{
pi, (δi,k = 1) ∧ (γi,k = 1)

qi, (δi,k = 1) ∧ (γi,k = 0).
(11)

However, if no transmission attempt is made (δi,k = 0), the
belief evolves according to

bi,k+1 = bi,k(1− pi) + (1− bi,k)qi. (12)

As a result, the probability of being in state G at the next
step can be determined regardless of the transmission status
at current state. Consequently, although due to the limited
communication resources state of the wireless link is partially
observed, the probability of successful transmission can be
determined according to (11) or (12). Therefore, the current
belief can be regarded as a quantified measure of the channel
quality. Hence, this belief is used to rewrite (10) for the
general case as

mi,j,k = CoILi,kbi,j,k. (13)

Algorithm 1 shoes how this mechanism is implemented for
each subsystem.

Algorithm 1: Timer-based channel access mecha-
nism for subsystem i

Input: number of channels M , GE parameters of
each wireless link pi,j and qi,j , constant value
for timer setup λ

1 Set initial belief bi,j,1 = 0.5,∀j ∈ {1, . . . ,M}
2 for k = 1, 2, . . . do
3 calculate local cost mi,j,k (13) and start timers

τi,j,k = λ
mi,j,k

(6)
4 initiate set of flags

Fi = {fi,j = 0|∀j ∈ {1, . . . ,M}}
5 update bi,j,k+1 according to (12)
6 while

∑M
j=1 fi,j < M do

7 for j ← 1 to M do
8 if τi,j,k 6= 0 and timer is running then
9 listen for signals

10 if signal is received in channel j then
11 freeze τi,j,k and set fi,j = 1
12 end
13 else if τi,j,k = 0 then
14 send flag signal and set fi,j = M
15 freeze all running timers
16 transmit data on channel j
17 re-update bi,j,k+1 according to (11)
18 end
19 end
20 end
21 end

Remark 1: It should be noted that if the state is not
observed for a large number of consecutive steps, the belief
converges to its stationary distribution, given by

bi,∞ =
qi

pi + qi
. (14)

V. CHANNEL ACCESS OVER AN UNKNOWN
GILBERT-ELLIOTT CHANNEL

Implementing the timer-based mechanism according to
(13) assumes complete knowledge of the transition proba-
bilities of the underlying Markov chain. However, this is
a strong assumption and such information is not known
a priori in practice. This assumption can be relaxed by
adopting a Bayesian learning method which maintains a
probability distribution over the possible settings of each
unknown parameter. In this section, we first formulate our
problem as a Bayesian adaptive partially observable Markov
decision process. Then, we propose a novel method to
adopt a heuristic posterior sampling algorithm in our timer-
based mechanism in order to take into account the control
performance during the learning phase.

A. Bayesian framework

In the Bayesian approach, an initial prior distribution
is assumed over the unknown parameters, and posterior
distribution is updated using the Bayes’ rule. In our setup,



the parameters p and q of wireless links are unknown and due
to the limited resources, they are partially observed. These
parameters have independent Bernoulli distributions, thus we
assume the priors to have independent Beta distributions
since it is the conjugate prior for Bernoulli distribution. Let
Φ = [φ1 φ2 φ3 φ4] ∈ Z4

+, then

P(p;φ1, φ2) =
pφ1−1(1− p)φ2−1

B(φ1, φ2)
, (15)

P(q;φ3, φ4) =
qφ3−1(1− q)φ4−1

B(φ3, φ4)
, (16)

where B denotes the Beta function. We assume that the
initial priors have a uniform distribution parametrized by
Φ = [1, 1, 1, 1] and easily update the posterior after each
observation. We denote the observation at time step k by
Ok ∈ {G,B, V } where V corresponds to no transmission
attempt and thus no information about the current state.
Moreover, the observation history up to k is denoted by Ok.

Example 1: Assume that in the beginning Φ = [1, 1, 1, 1]
which can also be interpreted as P(p, q) = 1. We observe
the state transitions for 4 consecutive steps and find O4 =
{G,G,G,B}. Therefore, the channel has stayed in state G
for 3 steps (transition from G to G with probability 1−p) and
then transitioned to the bad state (G to B with probability
p). Hence, the posterior count is easily found to be Φ =
[1 + 1, 1 + 3, 1, 1].

We should emphasize that the state of the Markov chain
evolves independently of the action of each subsystem, since
the evolution of the channel conditions are governed by other
factors, such as fading and shadowing. Since for every Ok =
{V } there are two possibilities for the state at that step, we
can define all possible state histories of Ok as

S(Ok) = {sk|st = Ot,∀t ∈ {τ |Oτ 6= V }}. (17)

Moreover, we define appearance count denoted by
Ψ(Φ, Sk−1, sk) as the number of state histories that lead
to the same posterior count Φ. As a result [22],

P(sk, p, q|Ok−1)P(Ok−1) = (18)∑
Φ

Ψ(Φ, S(Ok−1), sk)pφ1−1(1− p)φ2−1qφ3−1(1− q)φ4−1,

where P(Ok−1) is the normalization term. Upon making a
new observation Ok, the posterior is updated by

P(sk+1, p, q|Ok)P(Ok|Ok−1)

=
∑
sk

P(sk, p, q|Ok−1)P(sk+1, Ok|sk, p, q). (19)

It can be deduced from (18) and (19) that if the subsystem
transmits over the channel (Ok ∈ {G,B}), the total number
of possible posteriors does not change during update. How-
ever, in case of no available state information (Ok ∈ {V }),
this number increases by a factor of less than or equal to
two. The following example illustrates how the learned belief
evolves according to the observations and taken actions.

Example 2: Assuming that no observation has been made
at the current time step (Ok = V ), we try to find the

posterior update for sk+1 = G. This is equivalent to finding
the probability of success in the next time step, when no
transmission attempt has been made at the current step. Using
(19) and then (18) we find

P(G, p, q|Ok)P(Ok|Ok−1)

=
∑

sk∈{G,B}

P(sk, p, q|Ok−1)P(G|sk, p, q)

=

[∑
Φ

Ψ(Φ, S(Ok−1), G)pφ1−1(1− p)φ2qφ3−1(1− q)φ4−1

+
∑
Φ

Ψ(Φ, S(Ok−1), B)pφ1−1(1− p)φ2−1qφ3(1− q)φ4−1

]
/P(Ok−1). (20)

Therefore, the number of possible posterior counts grows in
case of no transmission. The maximum growth is when the
appearance counts remain unchanged and thus the updated
number of possibilities is twice the number of current pos-
sibilities. The transition from time t in Fig. 4 illustrates the
case where the appearance count is updated and the growth
factor is 3/2.

Ot+1 = {G}Ot = {V} Ot+2 = {B}

{B, [3,2,3,2], 2}

{G, [3,2,2,3], 2}

Ot = {V} Ot+1 = {G} Ot+2 = {B}

Fig. 4. Graphical representation of Bayesian update for three successive
steps where the contents of solid rectangular blocks are {sk,Φ,Ψ}.

B. Online learning through the timer-based mechanism

The parameter bi,j,k in (13) is equivalent to the posterior
of subsystem i being in state G over channel j, given the
observation history Ok−1. However, only a limited number
of subsystems transmit at each time step. Furthermore, each
of these subsystems can observe the state of only one channel
at each time step. Consequently, the number of posterior pos-
sibilities grows inevitably and can go to infinity. To reduce
the computational complexities that stem from this growth,
an approach based on approximate belief monitoring [23]
is adopted. More precisely, we adopt a heuristic posterior
sampling where only K number of posterior counts with the
largest appearance counts are kept for the Bayesian update;
see [22] for a more detailed discussion. Hence, the belief can
be computed efficiently regardless of the observation history.

The learning algorithm does not inherently resolve the
optimal resource allocation problem. However, by imple-
menting the resulting belief in Algorithm 1, the learning
outcome improves the overall performance with respect to
reducing (2). In the beginning, since the prior distributions
are uniform, the observations are made purely with respect
to CoIL. As the posteriors are updated, the learned channel
parameters are exploited for increasing the probability of
successful transmission.



VI. NUMERICAL RESULTS

In this section, we first demonstrate the performance of our
algorithm in learning the transition probabilities associated
with GE channel model. Then the effect of known and
unknown parameters on timer setup and consequently on the
performance of the WNCS is studied.

A. Learning The Parameters of Gilbert-Elliott Model

Here, we demonstrate the impact of resource limitations
and properties of the involved subsystems on performance
of the learning algorithm. First, we consider the case of a
WNCS consisting of two subsystems where A1 = 0.9 and
A2 = 1.5. These subsystems share a single wireless channel
where p and q for both communication links are assumed to
be 0.3 and 0.6, respectively. The timer-based channel access
mechanism can be implemented by rewriting (6) as

τi,j,k =
λ

CoILi,kbLi,j,k

, (21)

where bL denotes the belief learned with Algorithm 1.
Fig. 5 shows how the learned parameters of GE channel

model evolve over 2000 time steps. In the beginning, both
subsystems have the initial belief of 0.5. Due to its unstable
nature, Subsystem 2 has a larger CoIL and thus claims the
channel and observes its state more frequently. As a result,
the underlying parameters of the channel are learned more
accurately for this subsystem. On the other hand, due to the
limited number of observations made by Subsystem 1, the
unknown parameters are learned less accurately.
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Fig. 5. Performance of the algorithm in learning the unknown parameters
when one stable (i ∈ {1}) and on unstable (i ∈ {2}) subsystems compete
over one channel. The true values of p and q are 0.3 and 0.6, respectively.

Fig. 6 shows the results for a similar setup where Subsys-
tem 1 is marginally stable with A1 = 1. As expected, since
subsystem 1 claims the channel more frequently compared
to the previous case, the learning algorithm provides a better
estimate of the parameters. However, Subsystem 2 learns the
unknown parameters more accurately again, since it claims
the channel more frequently.

B. Cost Reduction

In this subsection, we analyze the impact of utilizing
different channel models in (10) on the performance of the
timer-based channel access mechanism. The performance is
measured in terms of the reduction in the quadratic cost
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Fig. 6. Performance of the algorithm in learning the unknown parameters
when a marginally stable (i ∈ {1}) and an unstable (i ∈ {2}) subsystem
compete for a single communication channel. The channel quality is
assumed to be similar for all subsystems with p = 0.3 and q = 0.6.

defined in (2) compared to the case where the well-known
round-robin scheme is implemented. This scheme provides
decentralized collision-free channel access; however, it is
not deterministic and subsystems transmit in a random order
decided upon initiation.

Herein, we assume that the WNCSs consist of equal
number of subsystems from two classes of homogeneous
dynamical systems. The unstable subsystems, form the first
class, denoted by I while the second class, denoted by II,
consists of marginally stable subsystems. The state-space
representation of the considered cases is determined by

AI =

[
1.2 0
0 1.1

]
AII =

[
1 0
0 0.9

]
, B = C = I2×2,

where I denotes the identity matrix. Furthermore, state esti-
mates and feedback control law are determined as discussed
and we intend to minimize the quadratic cost defined in
(2) with Q = I2×2 and R = 0.01I2×2. The communi-
cation resources are limited such that at most only 75%
of subsystems can transmit successfully at each time step.
Transition probabilities are assumed to be known and unique
for each subsystem and are chosen randomly while ensuring
p ∈ [0.2, 0.4] and q ∈ [0.3, 0.5]. Furthermore, the number of
the posterior counts kept for Bayesian update is set to 20.

Fig. 7 shows the percentage of reduction in the quadratic
cost achievable by four setups in WNCSs consisting of
N ∈ {8, 12, 16, 20, 24} subsystems. Case I corresponds to
the case when the exact parameters of the GE model are
known and the local cost in timer setup is given by (13).
As expected, this setup leads to the best results reducing the
quadratic cost from 44.98% up to 55.78% depending on the
size of the WNCS. In case II, it is assumed that the stationary
distribution is known and the belief (14) is implemented in
setup. As it can be seen, this setup can even increase the
cost compared to round-robin. This is due to ignoring the
memory in channel for resource allocation by using b∞ as a
measure. In this scenario, a subsystem transmits on one of the
available channels that has the largest stationary distribution
of belief. However, if the transmission is not successful, since
q < 1− q, it is more likely that transmission over the same
channel would be unsuccessful in the next slot.



In the absence of information about the channel statistics,
we study two setups referred to as case III and case IV. The
former corresponds to the scenario where the original timer-
based mechanism is implemented and the subsystem trans-
mits over one of the available channels randomly once its
timer reaches zero. Although this setup outperforms round-
robin, Fig. 7 indicates that adopting the learning algorithm
improves performance. This scenario is denoted by case
IV where the timers are set to (21). As expected, using
the transmission history for learning the channel parameters
results in noticeable cost reduction.
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Fig. 7. The cost reduction achieved with four different channel models
used in the timer setup (eq. (10)) compared to scheduling with round-robin.
Case I and case II represent the setups employing the known temporal
correlation in channel variation and the known steady state distribution of
belief, respectively. Case III corresponds to to assuming constant 50% belief
of successful transmission over all links, while in case IV the introduced
Bayesian learning algorithm is implemented in the timer-based mechanism.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

A. Conclusions

We have presented a novel distributed method for the
resource allocation problem in WNCSs consisting of subsys-
tems capable of local computations. We utilized the concept
of local timers as a measure to prioritize the communication
of subsystems that have a higher probability to reduce the
overall cost of the system. In our setup, CoIL was used as a
measure of control performance and various channel models
were used to gauge the quality of available wireless channels.
The simulation results show that the best performance is
achieved with the GE channel model with known parameters.
Moreover, the introduced learning algorithm can improve the
performance when compared to the case with no memory in
the channel. Furthermore, it results in considerable improve-
ments compared to the case where only the known steady
state distribution is adopted in the timer setup.

B. Future Directions

Interesting future research directions include investigating
the case where the duration of flag packet is not negligible.
Therefore, the possibility of collisions in the flag signals can
lead to collision during data transmission. Furthermore, the
impact of Markov chain mixing times on performance when
the resources are more limited can be incorporated in the
channel access scheme.
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