
Inferring Morphological Rules from Small Examples using 0/1 Linear
Programming

Downloaded from: https://research.chalmers.se, 2024-03-13 09:42 UTC

Citation for the original published paper (version of record):
Lillieström, A., Claessen, K., Smallbone, N. (2019). Inferring Morphological Rules from Small
Examples using 0/1 Linear Programming. 22nd Nordic Conference on Computational Linguistics
(NoDaLiDa): 164-174

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Inferring morphological rules from small examples
using 0/1 linear programming

Ann Lillieström, Koen Claessen, Nicholas Smallbone
Chalmers University of Technology

Gothenburg, Sweden
{annl,koen,nicsma}@chalmers.se

Abstract
We show how to express the problem of
finding an optimal morpheme segmentation
from a set of labelled words as a 0/1 linear
programming problem, and how to build
on this to analyse a language’s morphology.
The approach works even when there is
very little training data available.

1 Introduction

Many recent tools for morphological analysis use
statistical approaches such as neural networks (Cot-
terell et al., 2018). These approaches can profitably
use huge amounts of training data, which makes
them ideal for high-resource languages. But if there
is little training data available, statistical methods
can struggle to learn an accurate model. And when
they learn the wrong model, it is difficult to diag-
nose the error, because the model is a black box.

This paper presents a new approach to
morphological analysis that produces human-
understandable models and works even if only a
few training words are given. The user gives a list
of inflected words together with each word’s mor-
phosyntactic features and standard form (lemma):

standard inflected features
woman women Pl;Nom
baby babies’ Pl;Gen
dog dogs’ Pl;Gen
cat cat’s Sg;Gen
lorry lorries Pl;Nom

Our tool then proposes, for each feature, the affixes
and morphological rules which mark that feature.
For the example above it suggests the following:

feature context morpheme
Gen Sg +’s∗
Gen Pl +’∗
Pl Gen +s∗
Pl Nom +a+→ +e+
Pl +y∗ → +ies∗
Sg +y∗, +a+, ∅

Here, +’s∗ represents the suffix ’s, and +a+ repre-
sents an infix a.1 The table shows that both ’s and
an apostrophe can mark the genitive case; the sec-
ond column means that the genitive was marked
by ’s only in singular nouns, and by an apostrophe
only in plural nouns. An s suffix marks plural, and
because of the tiny input data it was only seen in
genitive nouns. Plural can be marked by an inner
vowel change from a to e (indicated by the arrow),
or by changing a final y to ies, in which case the
singular form is marked by a or y.

The tool also segments the input words into mor-
phemes consistent with the table of rules (the in-
ferred stem is marked in bold):

standard inflected
wom|a

Sg
|n| ∅

Nom
wom|e

Pl
|n| ∅

Nom
bab|y

Sg
| ∅
Nom

bab|ies
Pl
| ’
Gen

dog| ∅
Sg,Nom

dog|s
Pl
| ’
Gen

cat| ∅
Sg,Nom

cat| ’s
Gen
|∅

Sg
lorr|y

Sg
| ∅
Nom

lorr|ies
Pl
| ∅
Nom

Our key idea is a novel morphological segmen-
tation algorithm used to produce the segmentation
above (section 3). Once we have a segmentation,
we use it to compute the rules on the left (section 4).

In this example, the rules inferred by our tool pre-
cisely capture the morphology of the input words,
and the segmentation shows which rules are most
common. We claim that, together, they can be
used to perform high-quality morphological analy-
sis. We validate this claim in section 5 by showing
how to build on our tool to do reinflection.

2 Related Work

Morphological segmentation is a well-studied prob-
lem in NLP, with applications including machine
translation (Green and DeNero, 2012), speech

1The tool also supports prefixes such as ∗un+, and cir-
cumfixes such as ∗ge+t∗ in the German gerannt (run; past
participle). We explain the meaning of ∗ and + in section 3.3.

164
Proceedings of the 22nd Nordic Conference on Computational Linguistics (NoDaLiDa), pages 164–174

Turku, Finland, 30 September – 2 October, c©2019 Linköping University Electronic Press

recognition (Rajagopal Narasimhan et al., 2014)
and information retrieval (Turunen and Kurimo,
2008); for a more detailed overview we refer
the reader to Ruokolainen et al. (2016) or Ham-
marström and Borin (2011). Unsupervised learning
(Harris, 1955; Creutz and Lagus, 2007; Goldsmith,
2001; Johnson, 2008; Poon et al., 2009) relies on
unannotated text, and is perhaps the most popular
approach, because of the large amount of unanno-
tated text available for many languages, but it can
suffer from low accuracy (Hammarström and Borin,
2011). One way to improve accuracy is to exploit
semantic information (Sakakini et al., 2017; Vulić
et al., 2017; Schone and Jurafsky, 2000; Soricut and
Och, 2015). Another is minimally-supervised learn-
ing (Monson et al., 2007; Kohonen et al., 2010;
Ruokolainen et al., 2013; Grönroos et al., 2014;
Sirts and Goldwater, 2013; Ahlberg et al., 2014),
which combines a large amount of unannotated
text with a small amount of annotated text, and
potentially provides high accuracy at a low cost.

Silfverberg and Hulden (2017) observe that in
the Universal Dependencies project (Nivre et al.,
2017), each word is annotated with its lemma and
features, but not segmented. They study the prob-
lem of finding a segmentation for these words. Our
segmentation algorithm solves the same problem,
and can be used in their setting. We improve on
their solution by using a constraint solver to achieve
high accuracy even with limited data, and using a
precise language for expressing affixes and rules,
which allows us to use the resulting model to pre-
cisely analyse new words.

Luo et al. (2017) use Integer Linear Program-
ming for unsupervised modelling of morphological
families. They use ILP as a component of a larger
training algorithm, so unlike our work they do not
attempt to find a globally optimal solution. ILP
has been used in other NLP applications outside
of morphology (Berant et al., 2011; Roth and Yih,
2005; Clarke and Lapata, 2008).

3 Morphological segmentation

The input to our tool is a list of words, each anno-
tated with its lemma and morphosyntactic features.
From now on, we model the lemma as simply an-
other feature; for example, the word “women” has
the features Nom, Pl and woman.

The goal of this section is to divide each word
into segments, and assign each feature of the word
to one of those segments. A segment may consist

of multiple discontinuous pieces, or be empty. In
the segmentation on page 1, for example, the word
women is segmented by assigning Pl the segment
e, Nom the null segment, and woman the discon-
tinuous segment wom*n. In general, the segment
assigned to the lemma feature represents the stem
of the word.

We say a segmentation is valid if for each word:

• Every letter is in exactly one segment.

• Each feature labels exactly one segment.

• Each segment is labelled with exactly one fea-
ture.2

There are many valid segmentations, some good,
some bad. We consider a segmentation good if it is
parsimonious: each morpheme should be marked
by as few features as possible. Note that different
forms of a word may be assigned different stems
(e.g. go and went), but parsimony dictates that we
share stems wherever reasonable. Perhaps surpris-
ingly, finding the most parsimonious segmentation
is an NP-hard problem, by reduction from set cover.

3.1 Segmentation as a constraint problem

We solve the segmentation problem using zero-one
linear programming (0/1 LP). A 0/1 LP problem
consists of a set of variables (e.g. x, y, z, . . .) and
a set of linear inequalities over those variables (e.g.
2x + 3y ≥ z and x ≤ 2y + 3). Given such a
problem, a 0/1 LP solver finds an assignment of
values to the variables that makes all the inequali-
ties hold, and where all variables have the value 0
or 1. A 0/1 LP problem also specifies a linear term
whose value should be minimised (e.g. 4x+y−z),
called the objective function. A 0/1 LP solver is
guaranteed to find the solution that minimises the
objective function, if a solution exists. The solver
that we use is CPLEX (ILOG, 2009).

In this section we assume that we are given, in
addition to the labelled words, a (possibly large)
set of allowable segments for each feature, which
we call candidate morphemes. How candidate mor-
phemes are automatically generated is explained in
section 3.2.

Our encoding uses the following variables. If m
is a candidate morpheme of feature f , the variable

2This is an unrealistic assumption, but also fairly harmless:
when a morpheme marks (e.g.) genitive plural, it will be
assigned one of those features, but the inferred rules will show
that it only occurs together with the other feature.

165

Sf,m should be 1 if m is used to mark f , and 0
otherwise. If f is a feature with a candidate mor-
pheme m that occurs in word w, and P is the set
of positions in w occupied by m, then the vari-
able Mw,P,f,m should be 1 if this occurrence of m
marks feature f , and 0 otherwise.

Example Suppose that we are given the prob-
lem of segmenting the Swedish word hästarna (the
horses). For simplicity, suppose that we know that
the stem of hästarna is häst, and that the possible
affixes are ar and na. (For now, we ignore the fact
that these should be suffixes; we deal with this in
section 3.3.) This results in the following candidate
morphemes:

feature candidate morphemes
Pl ar, na
Def ar, na
häst häst

The string ar appears at positions 5–6
in hästarna, and na appears at positions
7–8. Therefore, the encoding introduces
the following variables: SPl,ar, SPl,na, SDef,ar,
SDef,na, Shäst,häst, Mhäst,5–6,Pl,ar, Mhäst,5–6,Def,ar,
Mhäst,7–8,Pl,na, Mhäst,7–8,Def,na, Mhäst,1–4,häst,häst.

We then generate the following constraints:

• If a morpheme is used to mark a feature in a
given word, it must be a genuine morpheme
of that feature. For each M -variable, if the
M -variable is 1 then the corresponding S-
variable must also be 1:

Sf,m ≥Mw,P,f,m

• Each position of each word must be in ex-
actly one segment. For each position in each
word, there must be exactly one M -variable
that contains that position and whose value is
1. Thus for each position p of each word w
we generate the following constraint:

∑

f∈features of w
m∈candidate morphemes of f

P∈occurrences of m in w where p∈P

Mw,P,f,m = 1.

• In each word, each feature must be mapped to
exactly one morpheme. For each feature f of
each word w and feature f of w, exactly one
M -variable must be 1:

∑

m∈candidate morphemes of f
P∈occurrences of m in w

Mw,P,f,m = 1.

Example For the above example, the first rule
generates the following constraints, which force an
S-variable to 1 when one of its M -variables is 1:

Shäst,häst ≥Mhäst,1–4,häst,häst

SPl,ar ≥Mhäst,5–6,Pl,ar

SPl,na ≥Mhäst,7–8,Pl,na

SDef,ar ≥Mhäst,5–6,Def,ar

SDef,na ≥Mhäst,7–8,Def,na

The second rule generates the following con-
straints, since letters 1 to 4 can only be covered by
häst, letters 5 to 6 by ar (either as Pl or Def), and
letters 7 to 8 by na:

Mhäst,1–4,häst,häst = 1

Mhäst,5–6,Pl,ar +Mhäst,5–6,Def,ar = 1

Mhäst,7–8,Pl,na +Mhäst,7–8,Def,na = 1

The third rule generates the following con-
straints, stating that häst, Pl and Def must be
marked by exactly one morpheme each:

Mhäst,5–6,Pl,ar +Mhäst,7–8,Pl,na = 1

Mhäst,5–6,Def,ar +Mhäst,7–8,Def,na = 1

Mhäst,1–4,häst,häst = 1

This set of constraints has two solutions:

1. One where Pl is assigned to ar and Def to
na. In this solution, the following variables
are 1 and the rest are 0: Shäst,häst, SPl,ar, SDef,na,
Mhäst,1–4,häst,häst, Mhäst,5–6,Pl,ar, Mhäst,7–8,Def,na.

2. One where Def is assigned to ar and Pl to na.

In general, any valid segmentation of the input
words is a solution to the constraint problem. To
make the constraint solver find the best segmen-
tation, we also supply an objective function to be
minimised. In our case, we choose to minimise the
total number of morpheme-feature pairs used. To
achieve this, we supply the objective function

∑

f∈features
m∈candidates of f

Sf,m.

Example Suppose that we add to our earlier ex-
ample the word hundars (dogs’). Its stem is hund
and its other features are Gen and Pl. We also add
s to the candidate morphemes for Pl, Def and Gen.

The constraint solver finds the solution that min-
imises the value of the objective function, which

166

in this case means assigning ar to Pl, s to Gen and
na to Def. The objective function’s value is then 3
(SPl,ar + SGen,s + SDef,na). This is the correct seg-
mentation; the wrong segmentations are rejected
because they have more feature-morpheme pairs
and thus make the objective function larger.

3.2 Choosing the candidate morphemes: the
naive approach

The constraint solver requires as input a set of can-
didate morphemes for each feature. Since the prob-
lem formulation requires that a morpheme or stem
of a word in the dictionary must be a subsequence
of that word, one option is to simply let the candi-
date morphemes of a feature f include all subse-
quences of all words that are annotated with fea-
ture f . This guarantees the optimal solution with
respect to the given constraints. We have found
two main problems with this approach.

1. While it works very well for small inputs
(around 20 words), the constraint problem
quickly becomes infeasible with larger sets of
data, especially if many features are involved.

2. It does not consider the position of the mor-
pheme in the word: the suffix -s is a plural
marker in English, but the infix -s- is not.

We solve Problem 1 with an algorithm that
guesses an approximate stem and then refines the
guess. The algorithm is described in section 3.4.

To solve Problem 2, we now introduce mor-
pheme patterns, which restrict the way in which
morphemes can be applied: in this case, a mor-
pheme that has been observed only as a suffix in
the data should only occur to the right of the stem.

3.3 Morpheme patterns
If we do not distinguish prefixes, suffixes and in-
fixes, we can not know whether the word seashells
should be segmented as seashell|s or s|eashells or
even sea|s|hells. Morpheme patterns allow us to
make this distinction. A typical morpheme pattern
is +s∗, which represents the suffix s.

Morpheme patterns act as jigsaw pieces that
make sure each morpheme is placed in its appropri-
ate position in relation to the stem. By using mor-
pheme patterns, we restrict the way morphemes can
be combined and obtain a more precise segmenta-
tion. The purpose of this section is to formalise
what + and ∗ in patterns mean, and to extend the
segmentation algorithm to respect the meaning of

the patterns. Both stems and affixes are described
using morpheme patterns, but their semantics are
slightly different.

Stem Patterns For stems, a ∗ symbol marks a
position where an affix can (but does not have to
be) inserted. For example, m∗n∗ is the stem of man,
where an a can be inserted in the infix position to
make it singular, or an e to make it plural. In the
suffix position, we can have the null morpheme,
or add an affix such as ’s. To accommodate word
forms with multiple tokens, such as the German
word fängt an (begins), with standard form anfan-
gen, stems are represented by a set of patterns. The
patterns of this set can be combined in any order,
with or without a space. {f∗ng∗, an} is thus a stem
of both word forms.

Affix Patterns Affix patterns include two special
symbols, + and ∗. For an affix pattern to match
a word, you must be able to obtain the word by
replacing each + and ∗ with an appropriate string.
For example, +s∗ matches dogs’ by replacing +
with dog and ∗ by an apostrophe. But there are two
important restrictions:

• Each + must be replaced by a string that con-
tains some part of the stem.

• Each ∗ must be replaced by a string that does
not contain any part of the stem.

In effect, the + symbol determines where the
stem must be placed in relation to the affix, while
the ∗ symbol allows other affixes to be attached in
its place. For example, the plural morpheme +s∗
in English must be placed after (but not necessarily
directly after) a stem. Likewise, the genitive mor-
pheme +’∗ must have the stem entirely on its left
side. The two morphemes can be combined into
+s’∗, and be placed after the stem horse∗, to pro-
duce the word horses’. The morpheme +ea+ must
be placed where it has the stem on both sides, thus
making it an infix. Together with the stem pattern
br∗k∗, it produces the word break. Similarly, the
morpheme +o+en∗ together with br∗k∗ produces
the word broken. An affix pattern can in theory
have any number of +-symbols.

Extra constraints In order to make the con-
straint solver follow the semantics of stem pat-
terns and affix patterns, we must for each word
add extra constraints for the stems and patterns
that are incompatible. An affix and stem can both

167

be chosen for a word only if the affix is in an ap-
propriate position in relation to the stem. Thus,
for all words w, and all pairs of M -variables
Mw,P1,f1,m1 ,Mw,P2,f2,m2 , we check if m1 is a
stem pattern, m2 is an affix pattern and their posi-
tions P1 and P2 are incompatible. If so, we add a
constraint that only one of them can be chosen:

Mw,P1,f1,m1 +Mw,P2,f2,m2 ≤ 1

For example, supposing we have +e+ as a candi-
date morpheme for plural, +s’ as a candidate mor-
pheme of genitive, and bus∗ as a candidate stem of
buses’, the constraint will not accept bus|e|s’ as a
segmentation, since +e+ is required to be an infix
of the stem.

3.4 The Algorithm
Considering all possible subsequences of all words
yields an unmanageable number of variables for
the constraint solver. We therefore need to identify
the relevant subsequences, which is done in several
steps.

1. As a first step, we approximate the stem as the
longest common subsequence of the inflected
word and the standard form:

standard inflected features
woman women Pl;Nom
baby babies’ Pl;Gen
dog dogs’ Pl;Gen
lorry lorry Sg;Nom

2. By removing the approximated stems, we sim-
plify the problem to segmenting the non-stem
part of each word. The resulting problem in-
cludes many duplicates, as well as having
shorter strings to segment, making it feasi-
ble to naively consider every subsequence as
a candidate for each feature listed with the
word. The result is as follows.

women e → e
Pl
|

Nom

woman a → a
Sg
|

Nom

babies’ ies’ → ies
Pl
| ’

Gen

baby y → y
Sg
|

Nom

dogs’ s’ → s
Pl
| ’

Gen

dog →
Sg
|

Nom

lorry →
Sg
|

Nom

We simplify the problem further, by automat-
ically giving the null morpheme to features
that are shared between the inflected form and
the standard form. Since we do not allow any
segment to be explained by multiple features,
we can assume that the word difference is un-
related to the features that are shared between
the two word forms. As an optimisation, when
a word is annotated with a single non-shared
feature, that feature is automatically paired
with the entire non-stem part, and no subse-
quences are generated.

The approximated stem together with the seg-
mentation of the remainder of the word makes
a first approximation of a segmentation of the
entire word. However, choosing the longest
common subsequence as the stem does not
always result in the best segmentation. In our
example above, the -y is dropped in the stem
of baby, but is included in the stem of lorry. A
more consistent choice would be to drop it for
lorry too, which we achieve in the next step.

3. Taking the morphemes chosen by the con-
straint solver in step 2, we generate additional
stem candidates by removing from each word
each possible choice of morpheme for the
word’s features. For example, in the segmenta-
tion to the left, we got +y∗ as a morpheme of
the Sg feature. Therefore, for any word with
the Sg feature that ends in y, we generate a
candidate stem where the -y suffix is dropped.

For lorry, we get the candidate stem lorr∗ in
addition to the approximated stem lorry from
step 1. For baby, in addition to the suffix +y,
we also consider the infix +a+ from wom∗n
in step 2 as a possibility for the singular mor-
pheme. The candidate stems thus become
bab∗ and b∗by.

4. Using the morphemes computed in step 1 and
the stem candidates of step 3, we re-run the
constraint solver and let it find the optimal
choice of stems and morphemes. The cho-
sen stems and morphemes are decoded from
the 1-valued S-variables, while the segmen-
tation can be decoded from the 1-valued M -
variables.

4 Finding morphological rules

We have now discovered which morphemes mark
each features. This section shows how to find in-

168

flections that change one morpheme to another, and
morphemes that mark a combination of features.

4.1 Function features

In order to detect inflection rules that involve re-
placing one morpheme with another, such as the
change of the suffix +y∗ into +ie∗ in English plu-
ral, we introduce the concept of function features.
Without function features, we might find all of +s∗,
+es∗ and +ies∗ as English plural morphemes. By
adding function features, we can specify that +s∗
is generally used as the pluralisation morpheme,
and when +ies∗ and +es∗ are used instead.

Function features are a special synthetic feature
automatically added to some input words. They are
added once we have segmented the input, and only
for words where the standard and inflected form
have the same stem. Let us take as an example the
word babies, its standard form baby, and its stem
bab∗. We first remove the stem from the standard
form to get +y∗. Our idea is that, since +y∗ is a
suffix, we will add the feature From Suffix y to the
set of features of babies. We process the whole
input this way, and then re-run the segmentation.
Assuming there are several words in the input that
share the same paradigm, the constraint solver will
map +s∗ to Plural (because the pair (+s∗, Plural)
is commonly occurring and shared by other words),
and +ie∗ to the From Suffix y feature. This seg-
mentation captures the fact that words ending in y
often change to ie in plural. We can picture this
process as: bab(y→ ie) |s

Pl
.

In the same way, the word-lemma pairs men
- man, wives - wife and mice - mouse result in
the stem changes +a+→ +e+, +f+→ +v+ and
+ous+→ +ic+, after we synthesise the respective
function features From Infix a, From Infix f and
From Infix ous.

An inflection rule may also be specific to a part
of the stem, such as the doubling of the letter g in
big - bigger. To cover cases involving the last or
first letter of the stem, we synthesise the feature
AddTo Suffix x, where x is the last letter of the stem,
and AddTo Prefix x, where x is the first letter of the
stem. As an example, bigger, with the stem big∗,
is given the additional feature AddTo Suffix g. The
morpheme +er∗ is likely to be mapped to the com-
parative feature (due to its commonness in words
in comparative form), while the remaining +g∗ is
mapped to the AddTo Suffix g feature:

bi(g→ gg) | er
Comp

We also capture the phenomenon where extra
letters are inserted when adding an affix, such as
the insertion of an extra g between the past tense
marker ge and a stem beginning with the letter e
in German. To do so, we identify the first and last
letters of the stem and add them as synthesised
features. In this case, this results in the extra fea-
ture AddTo Prefix e, the segmentation of gegessen
(eaten) becomes ge

Past
|(e→ ge)ss|en

Past
.

This algorithm is not language-specific: it works
for any language where the concepts of prefix, infix,
suffix, first and final letter affect inflection.

4.2 Morphemes with multiple features

Sometimes, a morpheme can be linked to more
than one feature. For example, +na∗ in Swedish
is a morpheme of definite form, but it occurs only
in plural. To find such links we post-process the
result returned by the constraint solver. For each
morpheme m of each feature f, we collect all words
whose segmentation uses morpheme m for feature
f. The intersection of all features of all such word
entries reveals what features always occur together
with the combination of m and f .

5 Experimental Results

We evaluated our tool on four different problems:
English nouns, Swedish nouns, Dutch verbs, and
the SIGMORPHON 2018 shared task of morpho-
logical reinflection (Cotterell et al., 2018).

English nouns We tested our tool on 400 ran-
domly selected English nouns from the GF resource
grammar library (Ranta, 2009). The tool took 3.9s
to run. Fig. 1 shows the morphemes chosen before
and after the addition of function features.

From the test results, we randomly select 20
words to demonstrate their segmentations. The first
segmentation, based on approximated stems (step
3 of the algorithm) is presented in Fig. 2.

Step 4 of the algorithm changes just one entry:
the suffix y has been dropped from the stem of sky.
None of the 20 word entries involves a function
feature that was assigned to a non-null morpheme.

Combined morphemes Fig. 3 lists the mor-
phemes with multiple features, as described in sec-
tion 4.2. The list of combined features nicely shows
many of the inflection rules appearing in the data.

Reducing the test data We repeat the experi-
ment after reducing the test data to include only

169

First approximation of morphemes
feature morphemes
Gen ∗ +’s∗ +’∗ +e+’s∗

+v+’∗
Nom ∗
Pl ∗ +s∗ +ies∗ +es∗ +e+

+ren∗ +v+s∗ +ic+
Sg ∗ +y∗ +a+ +f∗ +f+

+oo+ +ous+
Morphemes, including function features
feature morphemes
Gen ∗ +s’ +’s
Nom ∗ +ous+
Pl ∗ +s∗
Sg ∗ +a+ +oo+ +y∗

+f∗ +f+
Infix a ∗ +e+
Infix f ∗ +v+
Infix oo ∗ +ee+ +oo+
Infix ous ∗ +ic+
Suffix f ∗ +ve∗ +f*
Suffix y ∗ +ie∗ +y*
AddToSuffix d ∗ +ren∗
AddToSuffix h ∗ +e∗

Figure 1: Chosen morphemes after each step

the 20 randomly selected words. After step 2, the
segmentation based on 20 words is identical to the
segmentation based on 400 words, with just one
exception; the stem of country includes the suf-
fix y. After step 3 and step 4, the segmentation is
identical to the one based on 400 words.

Swedish nouns and Dutch verbs We also tested
our method on a set of Swedish nouns and Dutch
verbs. For Swedish nouns, our method works very
well. The precision is 100% based on a set of 50
words, and 94% based on a set of 250 words. The
erroneous results on the bigger data were because
the algorithm noticed a vowel change in certain
words and applied it universally, causing for exam-
ple the stem of grad (degree) to wrongly become
gr∗d∗ instead of grad∗, because of other words in
which a becomes ä in the plural. For Dutch verbs,
the precision was 80%, based on 50 words, and
74% based on 250 words. The errors made were
similar to those on the Swedish test data.

Comparison with earlier work We compared
our results on Swedish with those of Silfverberg
and Hulden (2017), although they do not use the

word stem morphemes
1 rivers’ river +s’/Gen,Pl
2 breasts breast +s/Pl /Nom
3 river’s river +’s/Gen /Sg
4 windows’ window +s’/Gen,Pl
5 television’s television +’s/Gen /Sg
6 country countr+ +y/Sg /Nom
7 languages’ language +s’/Gen,Pl
8 fire fire /Sg,Nom
9 number number /Sg,Nom
10 ceiling ceiling /Sg,Nom
11 question’s question +’s/Gen /Sg
12 song song /Sg,Nom
13 airplane’s airplane +’s/Gen /Sg
14 doors’ door +s’/Gen,Pl
15 fires fire +s/Pl /Nom
16 water water /Sg,Nom
17 arts’ art +s’/Gen,Pl
18 flowers’ flower +s’/Gen,Pl
19 sky’s sky +’s/Gen /Sg
20 ear ear /Sg,Nom

Figure 2: The segmentation of the 20 test words,
based on the test data of 400 words

feature morpheme combines with
+a+ → +e+ Pl
(policeman→ policemen and 1 other(s))
+f+ → +v+ Pl
(wife→ wives)
+oo+ → +ee+ Pl,Gen
(foot→ feet’s)
+ous+ → +ic+ Pl,Nom
(louse→ lice)
Pl +s’∗ Gen
(doctor→ doctors’ and 91 other(s))
+d → +d∗ren Pl
(child→ children)
+h → +h∗e Pl
(church→ churches and 1 other(s))
+f → +ve∗ Pl,Gen
(leaf→ leaves’)
+y → +ie∗ Pl
(country→ countries and 7 other(s))

Figure 3: The combined features, where the feature
of column 1 and morpheme of column 2 occur only
in combination with the features of column 3

same dataset (in particular, ours only includes
nouns). Our precision of 94% far exceeds their

170

precision of 62%.3 To find out why, we looked
into what sort of errors both tools made. As men-
tioned above, our tool made one class of errors,
inferring a vowel change where none was needed,
but produced a plausible segmentation.

Their tool found many implausible segmenta-
tions; for example, inkomst (income) was some-
times segmented into i|nkomst, and pension into
p|ension. Furthermore, it segmented words incon-
sistently: some occurrences of inkomst were (cor-
rectly) left as one segment. This means that the tool
has not found the simplest explanation of the in-
put data: its explanation requires more morphemes
than necessary, such as i, p and nkomst. We avoid
this problem since the constraint solver guarantees
to find the globally minimal solution to the input
constraints.

Secondly, their tool does not restrict where in
a word a morpheme can occur. For example, the
letter a can mark common nouns, such as flicka
(girl). It only occurs as a suffix, but their tool uses
it as a prefix to segment arbetsinkomst (income
from work) into a|rbetsinkomst. By distinguishing
different kinds of affixes, we avoid this problem.

Morphological Reinflection We use an adapted
version of our tool to solve the SIGMORPHON
2018 shared task of morphological (type level) re-
inflection (Cotterell et al., 2018). Given a lemma
and set of morphological features, the task is to gen-
erate a target inflected form. For example, given the
source form release and target features PTCP and
PRS, the task is to predict the target form releasing.

Our approach requires a set of labelled training
data, which we segment to obtain a list of affixes
and their associated features. To predict the target
inflected form of a word, we: 1) find the stem of
the word, 2) find a word in the training data whose
features match the target features, and 3) replace
the stem of that word with that of the input word.

In more detail, in step 1, we check if the word
contains any affixes that are associated with a fea-
ture belonging to the lemma. We remove any such
affix from the word. There may be a choice of
affixes for each feature so this results in a set of
candidate stems. When considering a candidate
stem, we also add the appropriate function features
to the target feature list; for example, if the stem
drops a suffix suff from the source form, we add

362% is the figure for unlabelled morphemes. The figures
given in the paper for labelled morphemes are unfortunately
erroneous.

the feature From Suffix suff. In step 2, for each
candidate stem, we collect the entries of the train-
ing data that match the target features (including
the function features collected in step 1). Out of
those, we pick the word whose stem best matches
the source form. In step 3, we take this word, and
replace its stem with the stem of the input word.

Language Our system Mean Best
Arabic 25.6 14.77 45.2

(2.95) (6.63) (1.77)
Galician 49.0 31.93 61.1

(1.42) (2.4) (0.72)
Greek 27.9 15.76 32.3

(3.02) (4.89) (1.83)
Karelian 32.0 47.93 94.0

(1.4) (1.53) (0.1)
Russian 43.8 26.86 53.5

(1.41) (3.64) (1.07)
Sanskrit 43.9 25.76 58.0

(1.55) (2.99) (0.93)
Slovene 35.9 24.80 58.0

(1.15) (2.7) (0.73)
Tatar 64.0 48.89 90.0

(0.44) (2.15) (0.14)
Telugu 66.0 67.41 96.0

(0.98) (1.29) (0.06)
West Frisian 43.0 32.52 56.0

(1.86) (1.85) (1.01)

Figure 4: Results of reinflection. The first line gives
the average accuracy and the second line the aver-
age Levenshtein distance from the right answer.

We evaluate our system on the low training data,
the smallest of the three available sizes, which con-
sists of 100 words for each of the 103 languages.
The data includes a mixture of nouns, adjectives
and verbs. 17 of the languages were excluded from
the evaluation, because they involved a large num-
ber of features, resulting in a too long execution
time. On the remaining 86 languages, our approach
performs, with a few exceptions, in the better half,
and often in the better third of the 27 submitted
systems. For English, Czech, Greek, Livonian and
Romanian, the accuracy is within 5% of the accu-
racy of the system with the highest score. Figure
4 shows the accuracy and Levenshtein distance of
our system on a sample of languages, and the mean
and best values of the systems that took part in
the shared task. Our reinflection algorithm is very
simple, but still competes with state-of-the-art sys-

171

tems, indicating that the underlying morphological
analysis provided by our tool is of good quality.

6 Conclusion and Future Work

We have presented a method for morphological seg-
mentation based on constraint solving. Our eval-
uation shows that it works well even given little
training data, producing almost the same segmen-
tation from 20 English words as it does from 400
words. It produces a morphological analysis pre-
cise enough that a simple reinflection algorithm
built on it can compete with state-of-the-art sys-
tems. The reasons for this good precision are (a)
the pattern semantics, which allows the solver to
make precise distinctions between different kinds
of morphemes, such as infix and suffix; (b) the use
of function features to express replacement rules.

The paper also demonstrates that constraint solv-
ing is a useful alternative to machine learning for
segmentation, particularly for low-resource lan-
guages where one must make the most of a small
set of data. We hope that our paper spurs further
research in this direction.There are many possible
refinements to our technique and some of our ideas
for future work are listed below.

More refined semantics for morphemes With
a more refined semantics of morphemes, we can
guide the constraint solver to pick a segmenta-
tion that follows the observed data in a more pre-
cise way. This can be done by restricting how
a morpheme can be placed in relation to other
morphemes. For example, the definite morpheme
+na∗ in Swedish always follows a plural morpheme
(+er∗, +or∗ or +ar∗), and never occurs directly
after a stem. The morpheme semantics could be
improved to allow these kind of restrictions, and
the algorithm refined to automatically infer them
from the data.

Improved function features Currently, we con-
sider only the first and last letter of the stem for
stem additions, as described in section 4. We are
currently investigating generalising this idea by
using the constraint solver to find the relevant seg-
ment of the stem. This would allow us to detect a
wider range of morphological changes.

As an example, suppose we would like to find
out which kinds of English words form their plural
with +es. We could take all such words that occur
in the input, and give the following segmentation
problem to the constraint solver:

standard features
bus bus; Suffix es
dress dress; Suffix es
box box; Suffix es
suffix suffix; Suffix es

The solution returned indicates which letter pat-
terns are associated with the plural form +es:

bu| s
Suffix es

dres| s
Suffix es

bo| x
Suffix es

suffi| x
Suffix es

We could then introduce new features Ad-
dTo Suffix s and AddTo Suffix x to the original
problem, whereupon the algorithm of Section 4
would find the correct function features. This
method would be able to invent function features
from an arbitrary substring of the given words.

Tweaking the objective function The objective
function can be weighted to give higher or lower
cost to stems or morphemes related to specific
kinds of features. For example, by multiplying
each term Sf,m in the objective function by the
length of m, we would recover the Minimum De-
scription Length principle. It is left as future work
to investigate how the choice of cost function af-
fects the result in different settings.

Distinguishing between rules and exceptions
Once a morpheme is used in a segmentation, the
algorithm is sometimes too eager to use the same
morpheme elsewhere. This means that adding more
data sometimes leads to worse results, and errors
in the input can cause unrelated words to be seg-
mented wrongly. We plan to investigate using sta-
tistical methods to distinguish between morpholog-
ical rules and exceptions; exceptions should not be
applied everywhere, but rules should.

Scalability For most languages our tool works
comfortably up to a thousand words or more, but
for languages with many morphosyntactic features
(such as Basque) it can struggle to deal with a hun-
dred words. We would like to see if, by tackling
features in smaller groups, it is possible to scale
the approach to large inputs.

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2014. Semi-supervised learning of morphological
paradigms and lexicons. In Proceedings of the 14th

172

Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, Gothenburg,
Sweden 26–30 April 2014, pages 569–578.

Jonathan Berant, Ido Dagan, and Jacob Goldberger.
2011. Global learning of typed entailment rules. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 610–619, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

James Clarke and Mirella Lapata. 2008. Global infer-
ence for sentence compression: An integer linear
programming approach. Journal of Artificial Intel-
ligence Research, 31:399–429.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Arya D
McCarthy, Katharina Kann, Sebastian Mielke, Gar-
rett Nicolai, Miikka Silfverberg, et al. 2018.
The conll–sigmorphon 2018 shared task: Univer-
sal morphological reinflection. arXiv preprint
arXiv:1810.07125.

Mathias Creutz and Krista Lagus. 2007. Unsupervised
models for morpheme segmentation and morphol-
ogy learning. ACM Trans. Speech Lang. Process.,
4(1):3:1–3:34.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Comput. Lin-
guist., 27(2):153–198.

Spence Green and John DeNero. 2012. A class-based
agreement model for generating accurately inflected
translations. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Long Papers - Volume 1, ACL ’12, pages
146–155, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Stig-Arne Grönroos, Sami Virpioja, Peter Smit, and
Mikko Kurimo. 2014. Morfessor flatcat: An hmm-
based method for unsupervised and semi-supervised
learning of morphology. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1177–
1185, Dublin, Ireland. Dublin City University and
Association for Computational Linguistics.

Harald Hammarström and Lars Borin. 2011. Unsuper-
vised learning of morphology. Computational Lin-
guistics, 37(2):309–350.

Zellig S. Harris. 1955. From phoneme to morpheme.
Language, 31(2):190–222.

IBM ILOG. 2009. IBM ILOG CPLEX V12.1: User’s
manual for CPLEX.

Mark Johnson. 2008. Using adaptor grammars to iden-
tify synergies in the unsupervised acquisition of lin-
guistic structure. In Proceedings of ACL-08: HLT,
pages 398–406, Columbus, Ohio. Association for
Computational Linguistics.

Oskar Kohonen, Sami Virpioja, and Krista Lagus. 2010.
Semi-supervised learning of concatenative morphol-
ogy. In Proceedings of the 11th Meeting of the ACL
Special Interest Group on Computational Morphol-
ogy and Phonology, SIGMORPHON ’10, pages 78–
86, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Jiaming Luo, Karthik Narasimhan, and Regina Barzi-
lay. 2017. Unsupervised learning of morphological
forests. Transactions of the Association for Compu-
tational Linguistics, 5:353–364.

Christian Monson, Jaime Carbonell, Alon Lavie, and
Lori Levin. 2007. Paramor: Minimally supervised
induction of paradigm structure and morphological
analysis. In Proceedings of Ninth Meeting of the
ACL Special Interest Group in Computational Mor-
phology and Phonology, pages 117–125, Prague,
Czech Republic. Association for Computational Lin-
guistics.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, and Aitziber et al.
Atutxa. 2017. Universal dependencies 2.0. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation
with log-linear models. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics, NAACL ’09,
pages 209–217, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Karthik Rajagopal Narasimhan, Damianos Karakos,
Richard Schwartz, Stavros Tsakalidis, and Regina
Barzilay. 2014. Morphological segmentation for
keyword spotting.

Aarne Ranta. 2009. The gf resource grammar library.

Dan Roth and Wen-tau Yih. 2005. Integer linear pro-
gramming inference for conditional random fields.
In Proceedings of the 22Nd International Confer-
ence on Machine Learning, ICML ’05, pages 736–
743, New York, NY, USA. ACM.

Teemu Ruokolainen, Oskar Kohonen, Kairit Sirts, Stig-
Arne Grönroos, Mikko Kurimo, and Sami Virpioja.
2016. A comparative study of minimally super-
vised morphological segmentation. Comput. Lin-
guist., 42(1):91–120.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and Mikko Kurimo. 2013. Supervised morpholog-
ical segmentation in a low-resource learning setting
using conditional random fields. In Proceedings of
the Seventeenth Conference on Computational Nat-
ural Language Learning, pages 29–37, Sofia, Bul-
garia. Association for Computational Linguistics.

173

Tarek Sakakini, Suma Bhat, and Pramod Viswanath.
2017. Morse: Semantic-ally drive-n morpheme
segment-er. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 552–561, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Patrick Schone and Daniel Jurafsky. 2000. Knowledge-
free induction of morphology using latent semantic
analysis. In Fourth Conference on Computational
Natural Language Learning and the Second Learn-
ing Language in Logic Workshop.

Miikka Silfverberg and Mans Hulden. 2017. Auto-
matic morpheme segmentation and labeling in uni-
versal dependencies resources. In Proceedings of
the NoDaLiDa Workshop on Universal Dependen-
cies, UDW@NoDaLiDa 2017, Gothenburg, Sweden,
May 22, 2017, pages 140–145. Association for Com-
putational Linguistics.

Kairit Sirts and Sharon Goldwater. 2013. Minimally-
supervised morphological segmentation using adap-
tor grammars. Transactions of the Association for
Computational Linguistics, 1:255–266.

Radu Soricut and Franz Och. 2015. Unsupervised mor-
phology induction using word embeddings. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1627–1637, Denver, Colorado. Association for Com-
putational Linguistics.

Ville T. Turunen and Mikko Kurimo. 2008. Speech re-
trieval from unsegmented finnish audio using statis-
tical morpheme-like units for segmentation, recogni-
tion, and retrieval. ACM Trans. Speech Lang. Pro-
cess., 8(1):1:1–1:25.

Ivan Vulić, Nikola Mrkšić, Roi Reichart, Diarmuid
Ó Séaghdha, Steve Young, and Anna Korhonen.
2017. Morph-fitting: Fine-tuning word vector
spaces with simple language-specific rules. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 56–68, Vancouver, Canada. Associa-
tion for Computational Linguistics.

174

