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INVARIANTS OF MODELS OF GENUS ONE CURVES VIA
MODULAR FORMS AND DETERMINANTAL REPRESENTATIONS

MANH HUNG TRAN

Abstract. An invariant of a model of genus one curve is a polynomial in the coeffi-

cients of the model that is stable under certain linear transformations. The classical

example of an invariant is the discriminant, which characterizes the singularity of

models. The ring of invariants of genus one models over a field is generated by two

elements. Fisher normalized these invariants for models of degree n = 2, 3, 4 in such

a way that these invariants are moreover defined over the integers. We will provide

an alternative way to express these normalized invariants using modular forms. This

method relies on a direct computation for the discriminants based on their own geo-

metric properties. In the case of the discriminant of ternary cubics over the complex

numbers, we perform another approach using determinantal representations with a

connection to theta functions. Both of these two approaches link a genus one model

to a Weierstrass form.
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1. Introduction

Consider a curve C given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1)

There are two classical invariants labeled by c4 and c6 defined for instance in [19, p.

42] as

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6, (2)
1
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where b2 = a21 + 4a2, b4 = 2a4 + a1a3 and b6 = a23 + 4a6. They define the discriminant

∆ = (c34−c26)/1728 with the property that ∆ 6= 0 if and only if the curve is non-singular.

In this case, the curve C is of genus one. An invariant of the model associated to (1) is

a polynomial in their coefficients, which remains unchanged under the linear algebraic

transformations mentioned in Section 2.

We want to explore this study to other models of genus one curves with two different

approaches. On the one hand, it is natural to relate invariants to modular forms as

described in Section 4. On the other hand, one can represent a polynomial of certain

types as the determinant of a matrix whose elements have linear forms. The study of a

curve defined by that polynomial is reduced to the study of the corresponding matrix.

1.1. Models of genus one and their invariants. Let C be a smooth curve of genus

one over a field K and suppose that D is a K-rational divisor on C of degree n. In

case n = 1, C has a K-rational point so that it can be given by a Weierstrass equation

(1).

If n ≥ 2, there exists a morphism C → Pn−1 defined by the complete linear system

associated to D. This morphism is an embedding if n ≥ 3. We define models of genus

one of degrees n ≤ 5 as follows

Definition. A genus one model of degree n ≤ 5 is a

a) Weierstrass form if n = 1.

b) pair of a binary quadratic and a binary quartic if n = 2.

c) ternary cubic if n = 3.

d) pair of quadrics in four variables if n = 4.

e) 5× 5 alternating matrix of linear forms in five variables if n = 5.

The equation defined by a genus one model (p, q) of degree n = 2 is y2 + p(x, z)y =

q(x, z). In case n = 5, the equations defining the model are the 4 × 4 Pfaffians of the

matrix. In general, such models define smooth curves of genus one.

The classical invariants where n = 2, 3, 4 were studied in [23] and [1, Section 3].

These invariants were normalized by Fisher [12, Sections 6,7] so that they are usual

formulae when restricted to the Weierstrass family.

The aim of this paper is to give an alternative way to express the normalized invari-

ants c4, c6 and thus ∆ = (c34−c26)/1728 for genus one models of degrees n = 2, 3, 4. To do

this, we establish formulae in all characteristics relating the invariants of smooth genus

one models of degrees n ≤ 4 and the corresponding Jacobians in the classical setting

as in [1]. More precisely, the authors in [1, Section 3] define a map fn from a smooth

curve Cφ, which is defined by a model of genus one φ of degree n (n = 2, 3, 4), to the

corresponding Jacobian Eφ. In addition, they describe explicitly when char(K) 6= 2, 3

the map and the Jacobian Eφ given by a Weierstrass equation of the form (3).
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The map fn will be described explicitly in Section 2. We construct from it in Section

3 the map ϕn : Xn → W from the affine space Xn of genus one models of degree n

(n = 2, 3, 4) to the space W of Weierstrass forms. We first compute the normalized

discriminants.

Theorem 1.1. Let Cφ be a curve defined by a genus one model φ of degree n (n =

2, 3, 4) over a field K and ∆φ,∆ϕn(φ) be the discriminants of φ and its corresponding

Weierstrass form ϕn(φ). We have

∆φ = α12
n ∆ϕn(φ),

where α2 = 1, α3 = 1/2, α4 = 2.

This theorem is established directly using the singularities of genus one models. To

obtain the analogous result for any invariant, we will use geometric modular forms

defined in [18]. To be precise, we will see in Section 4 that it is possible to associate

to a geometric modular form F an invariant IF of the same weight. We will prove the

following result

Theorem 1.2. Let Cφ be a smooth curve of genus one defined by a model φ of degree

n (n = 2, 3, 4) over a field K with the corresponding Jacobian Eφ defined by ϕn(φ). Let

k be an integer and IF be the invariant of weight k associated to a geometric modular

form F of weight k, we have

IF(φ) = αk
nIF(ϕn(φ)),

where α2 = 1, α3 = 1/2, α4 = 2.

Recently, Fisher [13, p. 2126] have obtained a formula for the invariants c4, c6 and

the Jacobian of smooth genus one models of arbitrary degree n in characteristic 0.

More details about models of genus one curves and their invariants will be discussed

in Section 2.

1.2. Invariants over C and determinantal representations. The second perspec-

tive of this paper is to study the invariants of genus one models when K = C with an

emphasis on discriminants of ternary cubics. These invariants have large expressions

in general. For instance, the discriminant of a plane cubic curve is a polynomial of

degree 12 in coefficients of the cubic with 2040 monomials (see [15, p. 4]). But over

C, we have short expressions in terms of theta constants. Consider the classical case

where our smooth projective genus one curve Cφ is defined by the affine Weierstrass

equation:

y2 = 4x3 − g2x− g3. (3)
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Using the Weierstrass parametrization, there exists a unique lattice Λ = ω1Z + ω2Z

with some complex numbers ω1, ω2 such that Im(ω2/ω1) > 0 and Cφ(C) ∼= C/Λ. Let

τ := ω2/ω1 and apply the discriminant formula ∆φ = 212(g32 − 27g23), we have that

∆φ = 216
(

π

ω1

)12

(θ2(0, τ)θ3(0, τ)θ4(0, τ))
8. (4)

Here θ2, θ3 and θ4 are the three even Jacobi theta functions.

Remark 1.3. The normalized discriminant above comes from the formulae in [2, p.

367-368] with the normalized invariants c4 = 263g2, c6 = 2933g3.

More details on the above will be explained in Section 5. Our purpose is to generalize

the formula (4) to other models of genus one. But this is an immediate consequence

of Theorem 1.1. We have the following formulae for the discriminants of genus one

models of degree n = 2, 3, 4. Again, a lattice Λ = ω1Z + ω2Z associated to a Weier-

strass form over C will be understood as the unique one coming from the Weierstrass

parametrization.

Corollary 1.4. Let Cφ be a smooth curve of genus one over C defined by a model φ of

degree n (n = 2, 3, 4) with the Jacobian Eφ defined by ϕn(φ). Then Eφ(C) ∼= C/Λ for

the lattice Λ = ω1Z+ω2Z with some complex numbers ω1, ω2 satisfying Im(ω2/ω1) > 0.

Let ∆φ be the discriminant of φ, we then have

∆φ = 216α12
n

(

π

ω1

)12

(θ2(0, τ)θ3(0, τ)θ4(0, τ))
8,

where α2 = 1, α3 = 1/2 and α4 = 2.

We want to study the above discriminant formula with a new approach using deter-

minantal representations. For a homogeneous polynomial φ, we construct a matrix U

whose elements are linear forms such that we can write φ = λ det(U) for some constant

λ 6= 0. In general, only plane curves, quadratic and cubic surfaces, quadratic three-

folds admit a determinantal representation as confirmed in [10]. The study of φ has

thus been moved to the study of the matrix U . The reader can have a look at [4] for

a general discussion of this topic.

Starting with Weierstrass cubics, we find theta functions in their determinantal rep-

resentations as well as in the discriminants. Let

a = θ2(0, τ), b = θ3(0, τ), c = θ4(0, τ), (5)

we will prove the following

Proposition 1.5. Let Cφ be a smooth curve given by the Weierstrass form

φ(x, y, z) = y2z − 4x3 + g2xz
2 + g3z

3,
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where g2 and g3 belong to a field K. Then φ admits determinantal representations






2x+ tz y + dz (3t2 − g2)z

0 x− tz y − dz

z 0 −2x− tz






,

with t, d ∈ K being arbitrary such that d2 = 4t3 − g2t − g3. When K = C, there is a

natural choice for t, d which produces a determinantal representation for φ in terms of

theta constants as follows








2x− π2

3ω2

1

(a4 + b4)z y −( π
ω1
)4c8z

0 x+ π2

3ω2

1

(a4 + b4)z y

z 0 −2x+ π2

3ω2

1

(a4 + b4)z









,

where the even theta constants a, b, c were defined as in (5).

The first part of this proposition uses the method in [21, Section 2] where the author

established similar representations for other type of Weierstrass equations of the form

y2z = x(x+ ϑ1z)(x+ ϑ2z) with some constants ϑ1, ϑ2 ∈ K. The discriminant formula

(4) is then a consequence of the second part of this theorem using resultant as in Section

5.

Our goal is to study this phenomena for general smooth cubic curves using deter-

minantal representations. One can actually provide determinantal representations for

any non-rational complex plane curve by using a result in [3] as we will see later in

Section 6. This deduces in particular the formula of the discriminant of plane cubics by

using resultant. Since a cubic curve Cφ over C always has a flex point, it can be trans-

formed to a Weierstrass form after a linear coordinate change M (see [8, Section 4.4]).

The resulting Weierstrass form is isomorphic to C/Λ for a unique lattice Λ coming the

Weierstrass parametrization. Writing Λ = ω1Z + ω2Z for some ω1, ω2 ∈ C satisfying

Im(ω2/ω1) > 0. Denote by τ = ω2/ω1, we will prove the following result.

Theorem 1.6. Let Cφ be a smooth plane cubic curve over C defined by a cubic form

φ and ∆φ be the discriminant of φ, we have

∆φ =
216

det(M)12

(

π

ω1

)12

(abc)8,

where a, b, c were defined as in (5).

This result is known but the above approach with determinantal representations is

new. One can compare Theorem 1.6 with Corollary 1.4 for the case when n = 3. Here

we are using a fixed flex point to give a linear transformation from Cφ to a Weierstrass

form instead of the explicit map ϕ3.
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So it is natural to link determinantal representations of a smooth plane cubic to a

Weierstrass form as the approach using modular forms in Section 1.1. The discriminant

formulae will then be predicted. Thus it might be possible to study determinantal

representations in more general case using modular forms.

1.3. Organization of the paper. We recall the definitions of genus one models as

well as their invariants in Section 2. Then we prove Theorem 1.1 and thus Corollary 1.4

in Section 3 by considering the singularity of genus one models. The theory of modular

forms will be discussed in Section 4, which will be used to establish Theorem 1.2.

After that, we study determinantal representations of Weierstrass cubics and provide a

simple proof to Proposition 1.5 in Section 5. Determinantal representations of complex

plane curves is presented in Section 6 and we apply it to establish Theorem 1.6 in

Section 7.

2. Models of genus one curves and their invariants

Let Xn be the set of all genus one models of degree n over a field K (see Definition

1.1), we will see later in this section thatXn is an affine space of dimension 5, 8, 10, 20, 50

for n = 1, 2, 3, 4, 5 respectively. In [12, Section 3], the author defined natural linear

algebraic groups Gn acting on Xn (n ≤ 5), which preserve the solutions of the models.

Let Gn be the commutator subgroups of Gn and K[Xn] be the coordinate ring of Xn.

Definition 2.1. The ring of invariants of Xn (n ≤ 5) over K is

K[Xn]
Gn := {I ∈ K[Xn] : I ◦ g = I for all g ∈ Gn(K)}.

The vector space of invariants of weight k of Xn over K is defined as

K[Xn]
Gn

k := {I ∈ K[Xn] : I ◦ g = (det g)kI for all g ∈ Gn(K)}.

The character det on Gn is chosen so that we get appropriate weights for the invariants

and moreover (see [12, Lemma 4.3])

K[Xn]
Gn =

⊕

k≥0

K[Xn]
Gn

k .

We now describe in detail affine spaces Xn for n ≤ 5, their classical invariants and

the map fn : Cφ → Eφ (n = 2, 3, 4) from a smooth curve defined by a model φ ∈
X0

n := {φ ∈ Xn | Cφ is smooth} to its corresponding Jacobian Eφ. This map is defined

by a divisor D of degree n on the curve Cφ, which is the intersection of Cφ with the

hyperplane at infinity (see [1, p. 305]), as fn(P ) = nP −D. It is given explicitly when

char(K) 6= 2, 3 as below. In addition, we introduce in each degree the natural non-zero

regular 1-form ωφ defined in [12, Section 5.4] for a smooth curve of genus one Cφ. This

1-form is useful for relating invariants and modular forms as we will see in Section 4.
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2.1. Models of degree n = 1. The space X1 is of dimension 5 where each model

corresponding to (1) can be identify with the point (a1, a2, a3, a4, a6) in A5. Their

invariants c4, c6 are defined in the usual way as in (2). The natural regular 1-form on

a smooth curve Cφ defined by model φ is:

ωφ :=
dx

2y + a1x+ a3
.

2.2. Models of degree n = 2. The equation of a genus one model of degree n = 2 is

written as:

y2 + (α0x
2 + α1xz + α2z

2)y = ax4 + bx3z + cx2z2 + dxz3 + ez4. (6)

Each model in X2 corresponds to a point (α0, α1, α2, a, b, c, d, e) ∈ A8 and thus

dim(X2) = 8. Moreover, if char(K) 6= 2 or 3, we can rewrite (6) as:

y2 = ax4 + bx3z + cx2z2 + dxz3 + ez4. (7)

As in [1, Section 3.1], the model φ defined by (7) has two classical invariants:

i = (12ae− 3bd+ c2)/12,

j = (72ace− 27ad2 − 27b2e+ 9bcd− 2c3)/432 (8)

and a corresponding Weierstrass equation is:

y2 = 4x3 − ix− j. (9)

The map f2 from a smooth curve Cφ defined by (7) to the Jacobian Eφ defined by (9)

is given as in [1, (3.3)] by:

f2(x, y, z) =

(

g(x, z)

(yz)2
,
h(x, z)

(yz)3

)

,

where

g(x, z) =
1

144
(q2xz − qxxqzz), h(x, z) =

1

8

∣

∣

∣

∣

∣

qx qz

gx gz

∣

∣

∣

∣

∣

with q being the binary quartic on the right hand side of (7).

The corresponding results to the generalized equation (6) can be found in [7, p. 766]

by completing the square. We define the regular 1-form for a smooth curve Cφ defined

by a model φ corresponding to (6) as:

ωφ :=
z2d(x/z)

2y + p(x, z)
.

Here p(x, z) = α0x
2 + α1xz + α2z

2.

2.3. Models of degree n = 3. In case n = 3, a genus one model φ is a ternary cubic:

ax3 + by3 + cz3 + a2x
2y + a3x

2x+ b1xy
2 + b3y

2z + c1xz
2 + c2yz

2 +mxyz (10)
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with two classical invariants S, T defined in [1, p. 309-310] and we can see that

dim(X3) = 10. A corresponding Weierstrass equation is also given there by:

y2 = 4x3 + 108Sx− 27T. (11)

The map f3 from a smooth curve Cφ defined by the model (10) to the Jacobian Eφ

defined by (11) is given as in [1, (3.9)] by:

f3(x, y, z) =

(

Θ(x, y, z)

H(x, y, z)2
,
J(x, y, z)

H(x, y, z)3

)

,

where

H =
1

216

∣

∣

∣

∣

∣

∣

∣

φxx φxy φxz

φyx φyy φyz

φzx φzy φzz

∣

∣

∣

∣

∣

∣

∣

, J = −1

9

∣

∣

∣

∣

∂(φ,H,Θ)

∂(x, y, z)

∣

∣

∣

∣

and Θ is the covariant defined in [1, p. 308]. The regular 1-form on the smooth curve

Cφ is defined as

ωφ :=
x2d(y/x)

∂φ/∂z
.

2.4. Models of degree n = 4. We relate to the case n = 2 as follows: if the model

φ is given by a pair of quadrics q1, q2 ∈ K[x0, x1, x2, x3] (hence dim(X4) = 20), we

can write q1 = xAxT and q2 = xBxT for two symmetric 4 × 4 matrices A,B with

x = (x0, x1, x2, x3). The invariants of φ are then defined by the invariants of the

quartic:

det(xA + zB) = ax4 + bx3z + cx2z2 + dxz3 + ez4 (12)

as in the case n = 2. A corresponding Weierstrass equation is thus given in the form

(9) with i, j defined by the coefficients of the model (12) as in (8). The explicit map

f4 from a smooth curve defined by (12) to the Jacobian is given in [1, (3.12)] as:

f4(x0, x1, x2, x3) =

(

g

J2
,
h

J3

)

,

where g, h, J are defined as in [1, Section 3.3]. The regular 1-form for the smooth curve

Cφ is defined as:

ωφ :=
x20d(x1/x0)

(∂q1/∂x3)(∂q2/∂x2)− (∂q1/∂x2)(∂q2/∂x3)
.

2.5. Models of degree n = 5. A genus one model of degree n = 5 is a 5×5 alternating

matrix of linear forms in five variables. The equations defined by this model are the

4 × 4 Pfaffians of the matrix. Here a square matrix is called alternating if it is skew-

symmetric and all of its diagonal entries are zero. The reader can have a look at [12,

Section 5.2] and [14] for reference. We can check that dim(X5) = 50. Fisher [12, p.

770] also defines a regular 1-form to the case n = 5 when char(K) 6= 2.
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Observe that if I is an invariant of weight k then so is λI for any constant λ ∈ K∗.

We want to normalize the invariants so that they have appropriate formulae in any

characteristic.

2.6. Normalized invariants. The author in [12, Theorem 10.2] proves that K[Xn]
Gn

is isomorphic to K[X1]
G1 (n ≤ 5) in any characteristic. This extends the invariants

c4, c6,∆ ∈ Z[X1] of K[X1]
G1 defined in (2) to the corresponding ones in K[Xn]

Gn

(n ≤ 5) denoted again by c4, c6,∆. In fact, we have (see [12, Lemma 4.15 and remark

4.16])

Lemma 2.2. The invariants c4, c6 and ∆ are primitive polynomial in Z[Xn] for any

n ≤ 5.

Thus it is possible to normalize these invariants up to sign. Furthermore, the two

invariants c4, c6 ∈ K[Xn]
Gn (n ≤ 5) constructed above define the suitable discriminant

∆ = (c34 − c26)/1728 in the following way:

Definition/Lemma 2.3. Let R be a unital commutative ring and Cφ be a curve over

R defined by some genus one model φ of degree n ≤ 5. There exists the discriminant ∆,

which is a universal polynomial with integer coefficients, is defined such that ∆φ ∈ R∗

if and only if Cφ is non-singular over R. Here R∗ is the group of units of R.

Proof. Fisher [12, Theorem 4.4] shows the properties of the discriminant of genus one

models of degree n ≤ 5 over a field K, but it is indeed equivalent to the Defini-

tion/Lemma 2.3. �

He also proves there that if char(K) 6= 2 or 3, then the invariants c4(φ), c6(φ) provide

for the smooth genus one curve Cφ defined by a model φ of degree n ≤ 5 the Jacobian

y2 = x3 − 27c4(φ)x− 54c6(φ).

The main ingredient of the proof of the above result is that, a pair (Cφ, ωφ) of a model

φ ∈ X0
n is isomorphic to a pair of the form given in Section 2.1. Then the invariants

c4(φ), c6(φ) of φ are determined by the ones of that pair as in (2) (see [12, Definition

2.1 and Proposition 5.23]).

Then, in [12, Section 7], he gives the normalized formulae to the invariants c4, c6

of genus one models of degrees n = 2, 3, 4. More precisely, in the case n = 2, the

normalized invariants of the model corresponding to (7) are

c4 = 24(12ae− 3bd+ c2),

c6 = 25(72ace− 27ad2 − 27b2e+ 9bcd− 2c3). (13)
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In comparison with the classical case (8), we have c4 = 263i and c6 = 2933j. The

normalized invariants of the generalized model corresponding to (6) can be found in

[7, p. 766] by reducing to the form (7) from a completing square.

When n = 3, the normalized invariants of the model (10) are

c4 = −216abcm+ 144abc1c2 + 144acb1b3 + ...− 8a3b3m
2 + 16b21c

2
1 − 8b1c1m

2 +m4,

c6 = 5832a2b2c2−3888a2bcb3c2+864a2bc32+...+64b31c
3
1−48b21c

2
1m

2+12b1c1m
4−m6. (14)

We have c4 = −2434S, c6 = 2336T in comparing with the classical invariants S, T

defined in [1, p. 309-310].

When n = 4, we relate to the quartic as in (12) and then the invariants are

c4 = 12ae− 3bd+ c2,

c6 =
1

2
(72ace− 27ad2 − 27b2e+ 9bcd− 2c3). (15)

Thus in comparing with the classical case, we have c4 = 2103i and c6 = 21533j.

In the case of plane cubics, these invariants were normalized before in [2, p. 367-368]

where the authors explicitly provide the corresponding Weierstrass equations in any

characteristic. Strictly speaking, they associate to a ternary cubic φ a Weierstrass form

φ∗ associated to (1) with the coefficients determined by the coefficients of φ. Then they

observe that (φ∗)∗ = φ∗ and thus naturally define:

c4(φ) := c4(φ
∗), c6(φ) := c6(φ

∗),∆φ := ∆φ∗ .

In Section 4, we will provide a new way for expressing these normalized invariants using

modular forms. Before that, however, we will establish the normalized discriminants of

genus one models directly by using the singularities of the models in the next section.

3. Discriminant of genus one curves and its Jacobians

The goal of this section is to prove Theorem 1.1. Fix n ≤ 5, let Xn be the affine

space of all genus one models φ of degree n, let W be the affine space of Weierstrass

forms y2− 4x3+ g2x+ g3 if char(K) 6= 2, 3 and W = X1 otherwise. We define the map

ϕn : Xn → W based on the discussion about the map fn in Section 2 for n = 2, 3, 4.

More precisely, for any smooth model φ ∈ X0
n, we have a map fn : Cφ → Eφ from the

smooth curve Cφ to its Jacobian Eφ coming from a divisor of degree n. We define the

image ϕn(φ) of φ to be the model in W defining Eφ. This gives us a map X0
n → W

which extends uniquely to a map ϕn : Xn → W .

The map ϕn is given explicitly in case char(K) 6= 2 or 3, which also applies to

singular models as follows. The map ϕ2 sends a model φ of degree 2 corresponding to

(6) to the Weierstrass form defined by (9) of the model corresponding to (7) obtained

from φ after a completing square. The map ϕ3 sends a model φ of degree 3 of the form
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(10) to the Weierstrass form defined by (11). The map ϕ4 is defined by relating to the

case n = 2. More precisely, ϕ4 sends a model φ of degree 4 given by a pair of quadrics

(q1, q2) to the Weierstrass form defined by (9) obtained from the quartic (12) as in the

case n = 2. We denote by Eφ the curve given by the corresponding Weierstrass form

ϕn(φ) ∈ W of a model φ ∈ Xn.

This map sends non-singular curves to non-singular curves and singular curves to

singular curves when char(K) 6= 2, 3. We know that there exist discriminants (see

Definition/Lemma 2.3) ∆Xn
in Xn and ∆W in W parametrizing singular curves and

they are both geometrically irreducible polynomials (see [12, Proposition 4.5]). The

discriminant ∆φ of φ is determined by evaluating ∆Xn
at coefficients of the model φ.

i.e., ∆φ = ∆Xn
(φ).

We denote by V (p) the set of points in Pm
K vanished at p for any homogeneous

polynomial p ∈ K[x0, ..., xm]. Observe that ∆Xn
and the pull back ϕ∗

n(∆W ) of ∆W

have the same vanishing property:

V (∆Xn
) = V (ϕ∗

n(∆W )), (16)

where ϕ∗
n is defined such that ϕ∗

n(∆W )(φ) = ∆W (ϕn(φ)) for any model φ. We have the

following:

Proposition 3.1. For n ≤ 4, there exists a constant c ∈ K∗ such that

∆Xn
= cϕ∗

n(∆W ).

Proof. For an ideal J ⊂ K[x0, ..., xm], we denote by
√
J the radical ideal of J over K.

From (16) and Hilbert’s Nullstellensatz, we obtain that
√

(∆Xn
) =

√

(ϕ∗
n(∆W )). Note

that ∆Xn
is geometrically irreducible as mentioned above. Then

√

(∆Xn
) = (∆Xn

)

(which is an ideal over K) and thus there exist constants k ∈ Z and c ∈ K
∗
such that

∆k
Xn

= cϕ∗
n(∆W ). Since both ∆k

Xn
and ϕ∗

n(∆W ) are defined over K, we conclude that

c ∈ K∗.

We will prove that k = 1 by comparing the degrees of ∆Xn
and ϕ∗

n(∆W ). We first

consider the case n = 3. By [5, Example 1.8], we know that ∆Xn
is a homogeneous

polynomial of degree 12 with respect to the coefficients of the plane cubics. Besides,

ϕ∗
3(∆W ) is also of degree 12 in the coefficients of the cubics so that it has the same

degree with ∆Xn
.

If n = 4, by [5, Example 1.10] we see that ∆Xn
is a homogeneous polynomial of degree

24 in the coefficients of the two quadratic forms defining the models. The degree of

ϕ∗
4(∆W ) is also 24.

The case n = 2 is different since the model y2 + p(x, z)y = q(x, z) is no longer

homogeneous. Here p, q are homogeneous polynomials of degrees 2, 4 respectively. If

char(K) 6= 2, this model can be brought to y2 = h(x, z) by completing square, where
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h = p2

4
+ q. The singular locus of this latter model is {2y = hx = hz = 0}, which is

equal to {hx = hz = 0} if char(K) 6= 2. Consequently, the discriminant of the model

(p, q) above is the discriminant of the quartic h from Definition/Lemma 2.3 (up to some

power of 2). Hence, by [5, Example 1.8] again, we know that ∆Xn
(p, q) is of degree 6

with respect to the coefficients of h. We can check that ϕ∗
2(∆W )(p, q) is of degree 6 in

terms of coefficients of h as well. Thus k = 1 for n = 2, 3, 4. �

We actually have more information about the constant c by looking at models with

integer coefficients.

Proposition 3.2. For n = 2, 3, 4, the constant c in Proposition 3.1 can be expressed

as ±2a for some a ∈ Z. Moreover,










a = 0, If n = 2;

a = −12, If n = 3;

a = 12, If n = 4.

We will see later in Theorem 4.10 that one can exclude the minus sign of the constant

c above and thus obtain Theorem 1.1.

Proof. We consider the curve Cφ defined by a model φ with integer coefficients so

that we can make use of reduction modulo prime numbers. Note that ∆φ ∈ Z by

Lemma 2.2. Since the map ϕn sends non-singular curves to non-singular curves over

characteristics not 2 and 3, the constant c is of the form ±2a3b for some integers a, b.

To compute the powers of 2 and 3, we need to compare ∆φ and ∆ϕn(φ) over Z2 and

Z3 (see Definition/Lemma 2.3). Here ∆ϕn(φ) = ∆W (ϕn(φ)) is the discriminant of the

Weierstrass form ϕn(φ) of φ. Since ∆φ = c∆ϕn(φ), we get the following p-adic valuation

identity for a prime number p:

vp(∆φ) = vp(c) + vp(∆ϕn(φ)). (17)

Suppose that Cφ is non-singular over F2 and F3, then v2(∆φ) = v3(∆φ) = 0 and we get

from (17) that v2(c) = −v2(∆ϕn(φ)), v3(c) = −v3(∆ϕn(φ)). So to find c, we just need to

compute ∆ϕn(φ) in some special case in which Cφ is non-singular over F2 and F3.

In the case n = 2, we consider the genus one model φ with equation

y2 + yz2 = x4 + x3z + x2z2.

The corresponding Weierstrass equation of ϕ2(φ) is:

y2 = 4x3 − 1

3
x− 37

1728

and ∆ϕ2(φ) = 101. The model φ is non-singular over both F2 and F3. Hence v2(c) =

0, v3(c) = 0 and thus a = 0, b = 0.
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If n = 3, we consider the curve Cφ given by y2z+yz2−x3 = 0 with the corresponding

equation of ϕ3(φ) : y
2 = 4x3 + 1 and we have ∆ϕ3(φ) = −21233. The curve Cφ is non-

singular over F2 and thus v2(c) = −12 or a = −12. To compute the power of 3, we

consider the following curve y2z − x3 − xz2 = 0 which is non-singular over F3 with the

corresponding equation of ϕ3(φ) : y2 = 4x3 + 4x and ∆ϕ3(φ) = −218. Therefore, we

have v3(c) = 0 or b = 0.

When n = 4, we consider the curve Cφ given by the following complete intersection

of two quadratic forms
{

x0x1 + x0x2 + x2x3 = 0

x0x3 + x1x2 + x1x3 = 0

and the corresponding Weierstrass equation

y2 = 4x3 − 1

2103
x+

161

21533

computed by ϕ4 with ∆ϕ4(φ) = −3.5/212. It is possible to check that Cφ is non-singular

over F2. This implies that v2(c) = 12 and hence a = 12. Observe that this curve is

singular over F3 since (1, 1, 1, 1) is a singular point modulo 3. So to compute the power

of 3, we need to look at another example. For instance, we consider the following

complete intersection which is non-singular over F3

{

x20 + x21 + x22 + 3x23 = 0

x20 + 2x21 + 3x22 + 5x23 = 0

with the corresponding equation of ϕ4(φ) : y2 = 4x3 − x and we obtain in this case

that ∆ϕ4(φ) = 212. This means that v3(c) = 0 and thus b = 0. This completes the proof

of Proposition 3.2. �

4. Invariants and modular forms

We now in this section study all invariants of genus one models. To do this, we

first give a brief introduction to the theory of modular forms and the connection to

invariants. The goal is to establish Theorem 1.2 by proving Theorem 4.10, which is

the main result of this section.

4.1. Weakly holomorphic and geometric modular forms. A weakly holomorphic

modular form F of weight k ∈ Z is a holomorphic function on the upper half-plane

H = {τ ∈ C | Imτ > 0}, that is meromorphic at ∞ and satisfies the equation

F

(

aτ + b

cτ + d

)

= (cτ + d)kF (τ) for all

(

a b

c d

)

∈ SL(2,Z),
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where

SL(2,Z) :=

{(

a b

c d

)

| a, b, c, d ∈ Z, ad− bc = 1

}

.

Denote by M !
k(C) the space of weakly holomorphic modular forms of weight k and

M !(C) the graded algebra

M !(C) :=
⊕

k∈Z

M !
k(C).

F is called holomorphic if it is holomorphic at ∞, i.e., F has a Fourier expansion

F (τ) =
∞
∑

n=0

ane
2πinτ

which is absolutely convergent for each τ ∈ H. We denote by Mk(C) the space of

holomorphic modular forms of weight k and M(C) the graded algebra

M(C) :=
⊕

k≥0

Mk(C).

One of the most important examples of holomorphic modular forms is the Eisenstein

series G2k, which is of weight 2k, is defined for an integer k ≥ 2 as

G2k =
∑

(m,n)∈Z2\(0,0)

1

(m+ nτ)2k
. (18)

We usually use the following normalized notation of the Eisenstein series

E2k :=
G2k

2ζ(2k)
= 1− 4k

B2k

+∞
∑

n=1

σ2k−1(n)q
n, (19)

where ζ is the Riemann zeta function, B2k are the Bernoulli numbers, σ is the divisor

sum function and q = e2πiτ .

Next step is to follow [18, p. 9,10] to introduce the notion of geometric modular

forms. Here an elliptic curve E over a scheme S is a proper smooth morphism π : E → S

whose generic fibers are connected smooth curves of genus one together with a section

e : S → E.

Definition 4.1. A geometric modular form of weight k ∈ Z over a scheme S is a rule

F which assigns to every pair (E/R, ω) of an elliptic curve π : E → R over S and a

basis ω of π∗Ω
1
E/R an element F(E/R, ω) ∈ R such that

a) F(E/R, ω) depends only on the R-isomorphism class of the pair (E/R, ω).

b) For any λ ∈ R∗ we have F(E, λω) = λ−kF(E, ω).

c) F(E ′/R′, ωR′) = ψ(F(E/R, ω)) for any morphism ψ : R → R′, i.e., F com-

mutes with arbitrary base change. Here (E ′/R′, ω′
R) is the base change of

(E/R, ω) along ψ.
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We adopt the same definition if we only assume that E/R is a smooth genus one

curve over R by the following lemma, which is surely known to the experts but the

author was unable to locate it in the literature.

Lemma 4.2. There is a natural correspondence between:

• Geometric modular forms of weight k for elliptic curves over a scheme S.

• Geometric modular forms of weight k for smooth genus one curves over a

scheme S.

Proof. Suppose first that we are given a geometric modular form for curves of genus

one, F . An elliptic curve E/R is a pair (C, e) where C is a smooth genus one curve

C over R and a section of e : Spec(R) → C. We can simply forget the section and set

F(E/R, ω) := F(C/R, ω). This will satisfy all the properties in the definition because

F(C/R, ω) does.

We have to show the converse, and suppose we are given a geometric modular form

F for elliptic curves. Locally for the étale topology (see [16, 17.16.3 (ii)]), there are

étale ring extensions ψi : R → Ri such that Ci := C ⊗R Ri admits a section, e, over

Ri, giving an elliptic curve Ei/Ri. We argue that F(Ei/Ri, ωi) is independent of the

choice of section. One can compare e with another choice of section Pi : Spec(Ri) → Ci

by the Ri-isomorphism given by translation by Pi, τPi
: (Ci, ei) ≃ (Ci, Pi). This is an

isomorphism of elliptic curves. Since the differential ωi is invariant under τPi
, the

property a) in Definition 4.1 shows that F((Ci, e), ωi) = F((Ci, Pi), ωi).

We then set αi := F(Ei/Ri, ωi) ∈ Ri, independent of any choice of section. Let

Rj be another (local) ring extension such that Cj/Rj admits a section, and denote by

ψij : Ri → Rij = Ri ⊗R Rj the natural map. Then ψji(αj) = αij = ψij(αi) by the

property c) of Definition 4.1. By étale descent we obtain an element α ∈ R such that

for all the maps ψi : R → Ri, ψi(α) = αi. It is a straightforward verification that

F(C/R, ω) = α satisfies the definition of a geometric modular form of a genus one

curve. �

Denote by M!
k(R) the R-module of geometric modular forms of weight k over a ring

R and M!(R) the graded algebra

M!(R) :=
⊕

k∈Z

M!
k(R).

As in [18, p. 10], a geometric modular form F has its q-expansion as an element of

Z((q)) ⊗Z R obtained by evaluating on the pair (Tate(q), ω)R consisting of the Tate

curve and its canonical differential. F is called holomorphic if it is holomorphic at ∞,

i.e., its q-expansion lies in Z[[q]]⊗Z R.
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We denote by Mk(R) the R-module of holomorphic geometric modular forms of

weight k over a ring R and M(R) the graded algebra

M(R) :=
⊕

k≥0

Mk(R).

We have in addition the relation

M!(R) = M(R)[D−1], (20)

where D is the cusp form of weight 12 defined below.

It turns out that we can identify weakly holomorphic and geometric modular forms

over C from the following discussion in [18, p. 91]. Let Cτ := C/(Z + τZ) for any

τ ∈ H. For any geometric modular form F ∈ M!
k(C), we can define the corresponding

weakly holomorphic modular form of the same weight

F (τ) = F(Cτ , 2πi dz) (21)

with dz being the canonical differential on C. Then the map F 7→ F is an isomorphism

M!
k(C)

∼= M !
k(C).

Observe that for k = 2, 3 the quotient 4k/B2k ∈ Z and thus the Eisenstein series

E4, E6 in (19) are defined over Z. By the q-expansion principle as in [18, Corollary

1.9.1], the corresponding geometric modular forms E2k of E2k of weight 2k (k = 2, 3)

are also defined over Z.

It is known that the ring of holomorphic geometric modular forms M(Z) over Z is

generated by E4, E6 and the cusp form D satisfying 1728D = E3
4 − E2

6 . More precisely,

we have (see [9, Proposition 6.1])

M(Z) ∼= Z[E4, E6,D]/(E3
4 − E2

6 − 1728D).

If char(K) 6= 2 or 3, then 1728 is invertible over K and thus M(K) = K[E4, E6]. In

this case, E4 and E6 are algebraically independent since so are E4 and E6.

We have a type of geometric modular forms in any characteristic p called the Hasse

invariants defined for instance in [18] (p. 29). For any prime number p, the Hasse

invariant Ap is a geometric modular form over Fp of weight p − 1, which satisfy a

certain property. The Hasse invariant Ap has q-expansion equal to 1 in Fp[[q]]. For any

prime p > 3, we have Ap = Ep−1 (mod p) since they are both geometric modular forms

of the same weight p− 1 with the same q-expansions (see [18] (p. 30)).

The structure of the graded ring of holomorphic geometric modular forms can be

summarized from Propositions 6.1, 6.2, Remark 6.3 and the formula (8.4) in [9] as

follows:
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Proposition 4.3. The graded ring M(K) of holomorphic geometric modular forms

over a field K is










K[E4, E6], if char(K) 6= 2, 3;

K[A2,D], E4 = A4
2 and E6 = −A6

2, if char(K) = 2;

K[A3,D], E4 = A2
3 and E6 = −A3

3, if char(K) = 3.

4.2. Invariants and modular forms. Similarly, the structure of the graded ring of

invariants of Xn can be summarized from [12, Theorem 4.4, Lemma 10.1, Theorem

10.2] as below. Here c4, c6 are the usual invariants defined in Section 2 and a1, b2 are

the invariants of weight 1,2 respectively defined as in [12, Theorem 10.2].

Proposition 4.4. The ring of invariants K[Xn]
Gn of Xn (n ≤ 5) over a field K is











K[c4, c6], if char(K) 6= 2, 3;

K[a1,∆], if char(K) = 2;

K[b2,∆], if char(K) = 3.

The algebraic independence of the invariants c4 and c6 if char(K) 6= 2 or 3, a1 and

∆ if char(K) = 2, b2 and ∆ if char(K) = 3 is clear in case n = 1. Thus they are

algebraically independent for all n ≤ 5.

We can link modular forms to invariants. To see this, we first recall a result from

[12, Proposition 5.19]. Here the regular 1-form ωφ of a model φ ∈ X0
n is defined as in

Section 2.

Lemma 4.5. Let Cφ, Cφ′ be smooth curves of genus one over a field K corresponding

to the models φ, φ′ ∈ X0
n respectively (n ≤ 4). Suppose φ′ = gφ for some g ∈ Gn,

then the isomorphism ϕ : Cφ′ → Cφ determined by g satisfies ϕ∗ωφ = (det g)ωφ′. This

statement holds to the case n = 5 providing that char(K) 6= 2.

The author in [12] provides an explicit proof for n ≤ 5 corresponding to the explicit

linear algebraic groups Gn acting on Xn. We observe from this lemma that for any

g ∈ Gn and any genus one curves Cφ, Cφ′ defined by models φ, φ′ = gφ in X0
n, we have

for a geometric modular form F of weight k

F(Cφ, ωφ) = F(Cφ′, ϕ∗ωφ) = F(Cφ′, (det g)ωφ′) = (det g)−kF(Cφ′, ωφ′)

or

F(Cφ′, ωφ′) = (det g)kF(Cφ, ωφ).

We have thus proved

Proposition 4.6. For n ≤ 4, a geometric modular form F over a field K defines an

invariant of the same weight IF over K of X0
n such that IF(φ) = F(Cφ, ωφ) for any

φ ∈ X0
n. This statement holds to the case n = 5 providing that char(K) 6= 2.
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This fact over the complex numbers can also be seen directly from holomorphic

modular forms. For a smooth curve C given in the Weierstrass form φ such that

C(C) ∼= C/(Z+ τZ) for some τ ∈ H. Then φ is of the form y2 − 4x3 + g2x+ g3, whose

the two coefficients g2, g3 is written as

g2 = 60G4, g3 = 140G6 (22)

with G4, G6 defined in (18). The normalized invariants of the model φ are (see Remark

1.3)

c4(φ) = 263g2 , c6(φ) = 2933g3. (23)

The following identities are then a consequence of (19), (22), (23) and the special values

of zeta function ζ(4) = π4/90, ζ(6) = π6/945

c4(φ) = (4π)4E4(τ), c6(φ) = (4π)6E6(τ). (24)

It is then possible to compare the invariant IF in case F = E4 and E6 with the normal-

ized ones c4, c6 as follows

Lemma 4.7. We have the following identities for any smooth model φ ∈ X0
n (n ≤ 4)

over a field K

IE4(φ) = c4(φ), IE6(φ) = −c6(φ).
This statement holds to the case n = 5 providing that char(K) 6= 2.

Proof. Since both IE2k(φ) and c2k(φ) (k = 2, 3) depend only on the K-isomorphism

class of the pair (Cφ, ωφ) (see Definition 4.1 and [12, Definition 2.1 and Proposition

5.23]), it is enough to consider the case n = 1. We know that both IE4 and c4 are

defined over Z. Moreover, c4 is a primitive polynomial. There exists thus a constant

α ∈ Z such that IE4(φ) = αc4(φ) for any φ ∈ X0
1 . Consider a model φ with coefficients

in Z ⊂ C, we obtain from (21) and (24) that IE4(φ) = c4(φ) and hence α = 1. Here

we are using the regular 1-form ωφ = dx/2y while the differential dz in (21) is equal to

dx/y. Similarly, we have IE6(φ) = −c6(φ) for any φ ∈ X0
1 . �

One can look closer at the connection between invariants and geometric modular

forms. The author in [9, Propositions 6.1, 6.2 and Remark 6.3] proved that M(K) is

isomorphic to K[X1]
G1 over any field K. We want to get a similar phenomena when

replacing X1 by Xn for any n ≤ 5. Denote by K[X0
n]

Gn the ring of invariants of X0
n

defined in the same way as in Definition 2.1, i.e.,

K[X0
n]

Gn := {I ∈ K[X0
n] : I ◦ g = I for all g ∈ Gn(K)}.

Since K[X0
n] = K[Xn][∆

−1], we conclude that

K[X0
n]

Gn = (K[Xn][∆
−1])Gn = K[Xn]

Gn [∆−1],
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where the latter identity holds since ∆ is an invariant in K[Xn]
Gn . The structure of

K[X0
n]

Gn is deduced from Proposition 4.4 with notations from there as follows.

Proposition 4.8. The ring of invariants K[X0
n]

Gn of X0
n (n ≤ 5) over a field K is











K[c4, c6][∆
−1], if char(K) 6= 2, 3;

K[a1,∆][∆−1], if char(K) = 2;

K[b2,∆][∆−1], if char(K) = 3.

Proposition 4.6 yields a ring homomorphism I : M!(K) → K[X0
n]

Gn defined by

F 7→ IF . There are, however, even more to this.

Theorem 4.9. Let K be a field, the map I : M!(K) → K[X0
n]

Gn (n ≤ 4) is an

isomorphism. The statement also holds to the case n = 5 if char(K) 6= 2.

Proof. When char(K) 6= 2 or 3, we know from Lemma 4.7 that on X0
n: IE4 = c4, IE6 =

−c6 and ID = ∆. Thus the ring homomorphism I is bijective from Propositions 4.3,

4.8, formula (20) and the algebraic independence of E4 and E6, c4 and c6. Hence I is

an isomorphism.

In the case char(K) = 2, I sends A2 to αa1 for some constant α ∈ F∗
2, i.e., α = 1.

This comes from the fact that a1 is (up to constants) the only invariant of weight

one. Moreover, I sends D to ∆ by Lemma 4.7 and is thus an isomorphism from the

algebraic independence of A2 and D, a1 and ∆. The independence of A2 and D is

deduced from the independence of a1 and ∆ since IA2
= αa1 and ID = ∆ on X0

n. The

case char(K) = 3 is treated similarly with the identities IA3
= βb2 and ID = ∆ on X0

n.

Here β is some constant in F∗
3. �

Back to our purpose, the key result in this section (which is Theorem 1.2 in Section

1) is the following:

Theorem 4.10. Let F be a geometric modular form of weight k, there exists a constant

αn ∈ K∗ (n ≤ 4) such that

IF(φ) = αk
nIF(ϕn(φ))

for any smooth genus one model (Cφ, ωφ) of degree n over a field K with the Jacobian

(Eφ, ωϕn(φ)) constructed by the map ϕn. Moreover, α2 = ±1, α3 = ±1/2, α4 = ±2.

From Proposition 4.8 we know that the ring of invariants of X0
n is generated by ele-

ments of even weights except in the case of characteristic 2 in which 1 = −1. Therefore,

we can in any case forget the about the sign of αn and this gives a proof for Theorem

1.2.

Proof. We consider the map ϕn : Xn → W defined in Section 3, there exists αn =

αn(φ) ∈ K∗ depending on ϕn and φ such that ϕ∗
n(ωϕn(φ)) = αnωφ for any φ ∈ X0

n. We
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have for any φ ∈ X0
n

IF(ϕn(φ)) = F(Eφ, ωϕn(φ)) = F(Cφ, ϕ
∗
nωϕn(φ))

= F(Cφ, αnωφ) = α−k
n F(Cφ, ωφ) = α−k

n IF(φ)

and hence

IF(φ) = αk
nIF(ϕn(φ)). (25)

Since αn does not depend on k, we can consider the case in which k = 12 and F =

D to get the identities ∆φ = ID(φ), ∆ϕn(φ) = ID(ϕn(φ)) from Lemma 4.7 for the

corresponding geometric modular form D = (E3
4 − E2

6 )/1728. This deduces

∆φ = α12
n ∆ϕn(φ).

As proved in Proposition 3.2, ∆φ = c∆ϕn(φ) for some constant c when n ≤ 4. More

precisely,










c = ±1, If n = 2;

c = ±2−12, If n = 3;

c = ±212, If n = 4.

We now need to compute αn from α12
n = c. Look again at (25) to the case F = E4 and

E6, we have c4(φ) = α4
nc4(ϕn(φ)) and c6(φ) = α6

nc6(ϕn(φ)) for any φ ∈ X0
n. Consider

a model φ with integer coefficients, we conclude from Lemma 2.2 that α4
n, α

6
n ∈ Q and

thus α2
n ∈ Q. This enables us to exclude the minus sign of the constant c above and

deduce the discussion at the end of Section 3. We have in addition

α2
2 = 1, α2

3 = 1/4 and α2
4 = 4

or

α2 = ±1, α3 = ±1/2 and α4 = ±2.

�

Observe that the formulae of c4, c6 obtained from Theorem 1.2 for k = 4, 6 respec-

tively in cases n = 2, 3, 4 are the same with the normalized ones given by Fisher as in

(13), (14) and (15).

5. Determinantal representations of Weierstrass cubics

We will in this section study discriminants of smooth curves in Weierstrass form and

provide a proof to Theorem 1.5. Consider a smooth curve Cφ given by

φ(x, y, z) = y2z − 4x3 + g2xz
2 + g3z

3, (26)
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where g2 and g3 are elements in a field K. We want to find the 3 × 3 square matrices

L,M,N such that

det(xL+ yM + zN) = φ(x, y, z).

We obtain from [21, Section 2] the following determinantal representations of φ






2x+ tz y + dz (3t2 − g2)z

0 x− tz y − dz

z 0 −2x− tz






, (27)

with t, d ∈ K be such that d2 = 4t3 − g2t− g3. It can be checked that the determinant

of (27) is equal to φ.

Now we move to the theory of theta functions to study the case when K = C. The

following discussion bases on Wang and Guo [22]. In this case, there exists a unique

lattice Λ coming from the Weierstrass parametrization such that Cφ(C) ∼= C/Λ. Here

Λ = ω1Z+ ω2Z for some ω1, ω2 ∈ C with τ = ω2/ω1 ∈ H. The two coefficients g2 and

g3 of the curve given by φ can be determined by (see [22, p. 509])

g2 =
2

3

(

π

ω1

)4

(a8 + b8 + c8),

g3 =
4

27

(

π

ω1

)6

(a4 + b4)(b4 + c4)(c4 − a4),

where a = θ2(0, τ) = e
πiτ
4 θ(1

2
τ, τ), b = θ3(0, τ) = θ(0, τ) and c = θ4(0, τ) = θ(1

2
, τ) with

the even Jacobi theta functions:

θ(z, τ) = θ3(z, τ) :=
∞
∑

n=−∞

exp(πin2τ + 2πinz),

θ2(z, τ) = exp(πiτ/4 + πiz)θ(z + τ/2, τ),

θ4(z, τ) = θ(z + τ/2, τ).

The above a, b, c are called even theta constants.

Since (t, d) is a point on the affine curve associated to Cφ defined by {z 6= 0}, it
is determined by theta constants via Weierstrass P-function and so are all the coeffi-

cients in the linear matrix (27). To be precise, we consider the Weierstrass P-function

associated to the lattice Λ defined for all s /∈ Λ as

P(s) = P(s;ω1, ω2) :=
1

s2
+

∑

(m,n)∈Z2\(0,0)

(

1

(s+mω1 + nω2)2
− 1

(mω1 + nω2)2

)

.

As in [22, p. 469], it satisfies the differential equation

P ′(s)2 = 4P(s)3 − g2P(s)− g3.
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We can parametrize the point (t, d) on the curve as t = P(s) and d = P ′(s) for some

s /∈ Λ. It is known that the discriminant of the cubic (26) is given by the formula (see

Remark 1.3)

∆φ = 212(g32 − 27g23) = 216
(

π

ω1

)12

(abc)8. (28)

We will give another proof for the formula (28) using resultant and the determinantal

representation (27). From [15, p. 434], the discriminant of a homogeneous cubic

polynomial φ(x, y, z) can be computed by resultant defined there as

∆φ = −Res(φx, φy, φz)/27. (29)

The reader can have a look at [15, Chapter 13] for a general discussion about resultants.

We choose the minus sign here so that the sign of the discriminant is compatible to

other sections of the paper. To simplify the computation, we choose a special value for

the Weierstrass function P(s), namely, we choose the 2-torsion point s = ω2/2. In this

case P(ω2/2) = − π2

3ω2

1

(a4 + b4) and P ′(ω2/2) = 0 by [22, p. 470,509]. Then d = 0 and

t = − π2

3ω2

1

(a4 + b4). Besides, using the Jacobi’s identity a4 + c4 = b4 (see [22, p. 504]),

the matrix (27) above can be written in the form








2x− π2

3ω2

1

(a4 + b4)z y −( π
ω1

)4c8z

0 x+ π2

3ω2

1

(a4 + b4)z y

z 0 −2x+ π2

3ω2

1

(a4 + b4)z









. (30)

We have thus proved Theorem 1.5. From the representation φ = det(U), where U is

given by (30), we get that

φx = −12x2 +
2

3

(

π

ω1

)4

(a8 + b8 + c8)z2,

φy = 2yz, and

φz = y2 +
4

3

(

π

ω1

)4

(a8 + b8 + c8)xz +
4

9

(

π

ω1

)6

(a4 + b4)(b4 + c4)(c4 − a4)z2.

The discriminant ∆φ of the cubic φ is then obtained via (29)

∆φ = 216
(

π

ω1

)12

(abc)8.

In fact, we can directly use (29) to the curve (26). But this approach of determinantal

representations might be applied to more general cases. We will explain in more detail

in Section 7.

6. Determinantal representations of complex plane curves

In Section 5, we have already seen that one can compute the discriminant of smooth

curves over C in Weierstrass form by using determinantal representations. Our goal is
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to generalize to plane curves of arbitrary degrees based on Theorem 5.1 in [3]. In other

words, we will in this section prove Theorem 6.3. Let us first introduce some notations.

Let X be a compact Riemann surface, let L is a line bundle of half differentials on

X (a theta characteristic), i.e., L⊗2 is the canonical bundle ωX on X and let χ be a

flat line bundle over X such that h0(χ⊗L) = 0. We associate to χ the Cauchy kernel

K(χ; ·, ·) as defined in Section 2 of [3]. Let λ1, λ2 be two scalar meromorphic functions

on X , which generate the whole field of meromorphic functions. Assume that all poles

of λ1, λ2 are simple and labeled as P1, ..., Pd ∈ X . We write the Laurent expansion of

λk at Pi (1 ≤ i ≤ d, k = 1, 2) with some fixed local coordinate ti = ti(P ) centered at

P = Pi

λk(P ) = −cik
ti

− dik +O(|ti|).

Then we define the d× d matrices L,M,N by

L = diag1≤i≤m(ci2), M = diag1≤i≤m(−ci1), N = (nij)i,j,

where

nij =







di1ci2 − di2ci1, i = j;

(ci1cj2 − cj1ci2)
K(χ;Pi, Pj)

dtj(Pj)
, i 6= j.

The result mentioned in [3] is the following

Proposition 6.1. The map π0 : X → C2 given by π0(P ) = (λ1(P ), λ2(P )) maps

X\{P1, ..., Pd} onto the affine part C0 of an algebraic curve C ⊂ P2 and extends to a

proper birational map π : X → C of X in P2. The defining irreducible homogeneous

polynomial φ(x, y, z) of C is such that (up to multiplying by some constant)

φ(x, y, z) = det(xL+ yM + zN).

Here the affine part C0 of C is defined by {z 6= 0}.

The authors in [3] prove a more general version of the above proposition where they

consider χ to be any flat vector bundle. We restrict here to the case of line bundle

since it is enough for our purpose.

Suppose in this case that χ is defined by a unitary representation of the fundamental

group of X given by

χ(αi) = exp(−2πiai) and χ(βi) = exp(2πibi), i = 1, ..., g,

where ai, bi ∈ R, g is the genus of X and α1, ..., αg, β1, ..., βg form a symplectic basis of

H1(X,Z). Let (η1, ..., ηg) be a basis of holomorphic 1-forms on X , we form the period

matrix with respect to these bases which is the g × 2g-matrix (Ω1 | Ω2) whose entries
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are

(Ω1)ij =

∫

αj

ηi and (Ω2)ij =

∫

βj

ηi, for i, j = 1, ..., g.

We choose the canonical basis (η1, ..., ηg) of holomorphic 1-forms in the sense that
∫

αi
ηj = δij , then the corresponding period matrix will be of the form (Ig | Ω). The

matrix Ω lies in the Siegel upper half space Hg and it is called the Riemann period

matrix of X with respect to the homology basis α1, ..., αg, β1, ..., βg. We fix such a

symplectic homology basis and the resulting period matrix Ω. Let J(X) = Cg/(Zg +

ΩZg) be the Jacobian of X and ϕ : X → J(X) be the Abel-Jacobi map with any fixed

base point. Then we have an explicit formula for the Cauchy kernel (see [3, Theorem

4.1]).

K(χ;P,Q) =
θ[δ](ϕ(Q)− ϕ(P ))

θ[δ](0)E(Q,P )
,

where θ[δ] is the associated theta function with characteristic δ = b + Ωa = ϕ(χ)

(a = (aj)j and b = (bj)j) and E(·, ·) is the prime form on X × X . Recall from [11,

Chapter II] that the prime form E is a bi-half-differential with simple poles along the

diagonal of X ×X .

Here the theta characteristic L is chosen such that ϕ(L) = −K, where K is the vector

of Riemann constants. Note that a consequence of the Riemann singularity theorem

is that θ(b + Ωa) 6= 0 if and only if h0(χ⊗ L) = 0. Hence θ[δ](0) 6= 0 and the formula

above makes sense.

From this proposition, one can provide explicitly determinantal representations for

complex plane curves using theta functions and the Abel-Jacobi map. The reader can

have a look at [17, Section 4], [20, Theorem 6] or [6, Theorem 2.2] for reference. Note

that results in the reference above only apply to the family of hyperbolic curves with

a normalization, but it can be written in the following general form.

Theorem 6.2. Let Cφ ⊂ P2 be a non-rational irreducible complex plane curve defined

by φ = 0, where φ(x, y, z) is an irreducible homogeneous polynomial of degree d. Sup-

pose the d intersection points of Cφ with the line {y = 0} are distinct non-singular

points P1, ..., Pd with coordinates Pi = (1, 0, βi), βi 6= 0. Then

φ(x, y, z) = λ det(xM + yN + zI),

where λ = φ(0, 0, 1), M = diag(−β1, ...,−βd) and N = (nij)i,j with

nii = −βi
φy(1, 0, βi)

φx(1, 0, βi)

and for i 6= j

nij =
βi − βj
θ[δ](0)

.
θ[δ](ϕ(Pj)− ϕ(Pi))

E(Pj, Pi)
.

1
√

d(−y/x)(Pi)
√

d(−y/x)(Pj)
.
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Here δ is an even theta characteristic such that θ[δ](0) 6= 0, ϕ : X → J(X) is the

Abel-Jacobi map from the desingularizing Riemann surface X of Cφ to its Jacobian

and E(., .) is the prime form on X ×X.

We want to generalize Theorem 6.2 such that we replace the line {y = 0} by a general

line passing through distinct points of Cφ. Let l be a line defined by αx+ βy+ γz = 0

so that its affine part l0 defined by αx + βy + γ = 0 intersects the affine part C0
φ of

Cφ at d distinct non-singular points P 0
i , i = 1, ..., d. Since α and β can not be both

zero, we can suppose w.l.o.g that β 6= 0 (the case α 6= 0 can be treated similarly). In

this case, we can suppose further that β = −1. Therefore, the line l can be rewritten

as y = αx + γz. Assume that the intersections points P 0
i of l0 and C0

φ have non-zero

x-coordinates so that we can write P 0
i = (1/βi, α/βi + γ) with βi 6= βj if i 6= j. Thus

the intersection points of l and Cφ are Pi = (1, α+γβi, βi). We now prove the following

Theorem 6.3. Let Cφ ⊂ P2 be a non-rational irreducible complex plane curve de-

fined by φ = 0, where φ(x, y, z) is an irreducible homogeneous polynomial of degree

d. Suppose the d intersection points of Cφ with the line {y = αx + γz} are distinct

non-singular points P1, ..., Pd with coordinates Pi = (1, α+ γβi, βi), βi 6= 0. Then up to

multiplying by some constant

φ(x, y, z) = det((M − αN)x+Ny + (I − γN)z),

where M = diag(−β1, ...,−βd) and N = (nij)i,j with

nii = − βiφy(Pi)

(φx + αφy)(Pi)

and for i 6= j

nij =
θ[δ](ϕ(Pj)− ϕ(Pi))

θ[δ](0)E(Pj, Pi)

βi − βj
√

βi(αdx− dy)(Pi)
√

βj(αdx− dy)(Pj)
.

Here δ is an even theta characteristic such that θ[δ](0) 6= 0, ϕ : X → J(X) is the

Abel-Jacobi map from the desingularizing Riemann surface X of Cφ to its Jacobian

and E(., .) is the prime form on X ×X.

Proof. Apply Proposition 6.1 with the pair of meromorphic functions on the desingu-

larizing Riemann surface X of Cφ:

λ1 =
1

y − αx− γ
, λ2 =

x

y − αx− γ

and t = αx−y+γ
x

be the local coordinates at the poles Pi (zeros of αx−y+γ). The next
step is to write down Laurent expansions of λ1, λ2 at Pi. We have

λ2 = −1/t⇒ ci2 = 1, di2 = 0 ∀i.
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At Pi we have λ1 = −1
t
( 1
x
). Since

1

x
= βi +

d( 1
x
)

d(αx−y+γ
x

)
(Pi)t+O(|t|2) = βi + βi

dx

d(y − αx)
(Pi)t+O(|t|2),

we deduce that

ci1 = βi, di1 = βi
dx

d(y − αx)
(Pi).

We then obtain from Proposition 6.1 that (up to some constant)

φ = det((M − αN)x+Ny + (I − γN)z)

where M = diag(−β1, ...,−βd) and N = (nij) with

nii = βi
dx

d(y − αx)
(Pi)

and for i 6= j

nij =
θ[δ](ϕ(Pj)− ϕ(Pi))

θ[δ](0)E(Pj, Pi)

βi − βj

d(αx−y+γ
x

)(Pj)
.

Here δ is an even theta characteristic with θ[δ](0) 6= 0. Note that the affine part C0
φ of

Cφ is defined by

{(λ1(P ), λ2(P )) | P ∈ X \ {P1, ..., Pd}}.
Furthermore, if we replace N by the matrix N ′ which has the same diagonal elements

with N but different off-diagonal elements

n′
ij =

θ[δ](ϕ(Pj)− ϕ(Pi))

θ[δ](0)E(Pj , Pi)

βi − βj
√

d(αx−y+γ
x

)(Pi)
√

d(αx−y+γ
x

)(Pj)
,

then the determinantal representation does not change. Indeed, let

U = (M − αN)x+Ny + (I − γN)z

and

U ′ = (M − αN ′)x+N ′y + (I − γN ′)z,

if we multiply the ith-column of U and the ith-row of U ′ (for i = 1, ..., d) with the term
√

d(αx−y+γ
x

)(Pi) then both of them will become the same matrix U∗. Consequently,

det(U) = det(U ′) =
det(U∗)

∏d
i=1

√

d(αx−y+γ
x

)(Pi)
.

Observe that d(αx−y+γ
x

)(Pi) = βi(αdx− dy)(Pi) and

dx

d(y − αx)
(Pi) = − φy(Pi)

(φx + αφy)(Pi)
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by implicit function theorem with the fact that (φx + αφy)(Pi) 6= 0. Indeed, since

the polynomial f(x) := φ(x, αx + γ, 1) has distinct roots (1/βi) we conclude that

f ′(1/βi) 6= 0 and hence (φx + αφy)(Pi) 6= 0. We have thus proved Theorem 6.3. �

Theorem 6.2 is then established by reducing to the case α = γ = 0. We will apply

Theorem 6.3 in the next section to get a formula for the discriminant of plane cubic

curves.

Remark 6.4. We can also reformulate the analogous statement to the Theorem 6.3 if

the line y = αx+ γz is replaced by x = αy + γz.

7. Discriminant of plane cubic curves

We now study the main object of interest in which we consider a smooth plane

curve Cφ over C defined by the cubic form φ = 0. The affine part of the curve Cφ is

parametrized as

{(x, y, 1) = (R1(P(s),P ′(s)), R2(P(s),P ′(s)), 1)},

where P(s;ω1, ω2) is the Weierstrass P-function associated to some ω1, ω2 ∈ C satisfy-

ing Im(ω2/ω1) > 0.

In this section, we use the standard notation τ of genus one case instead of Ω for

the period matrix. Moreover, we use the general Jacobian C/(ω1Z + ω2Z) in place of

the normalized one C/(Z + τZ) for τ = ω2/ω1 in order to use the properties of the

function P. By this change, an extra factor 1/ω1 appears in the below elements nij

(i 6= j) in comparing with Theorem 6.3. This idea was mentioned in [6, Theorem 2.4].

In addition, we use the notation θδ (δ = 1, 2, 3, 4) for theta functions as in Section 5

instead of θ[δ].

The prime form E(P,Q) in genus one case is better understood so that we obtain a

consequence of Theorem 6.3 as follows.

Corollary 7.1. Let Cφ ⊂ P2 be a smooth plane cubic curve defined by φ = 0, where

φ(x, y, z) is a non-singular homogeneous cubic polynomial. Suppose the line y = αx+γz

intersects Cφ at 3 distinct points P1, P2, P3 with coordinates Pi = (1, α+γβi, βi), βi 6= 0.

Then up to multiplying by some constant

φ(x, y, z) = det((M − αN)x+Ny + (I − γN)z),

where M = diag(−β1,−β2,−β3) and N = (nij)i,j with

nii = − βiφy(Pi)

(φx + αφy)(Pi)
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and for i 6= j

nij =
θ′1(0)θδ((Qj −Qi)/ω1)

ω1θδ(0)θ1((Qj −Qi)/ω1)

βi − βj
√

βi(αR′
1 − R′

2)(Qi)
√

βj(αR′
1 − R′

2)(Qj)

Here δ is any even theta characteristic, i.e., δ = 2, 3 or 4 and Qi = ϕ(Pi). Note that

we also have an analogous statement of this corollary by Remark 6.4.

The field of meromorphic functions on a general genus one curve is generated by P,P ′

associated to some periods ω1, ω2. Thus R1 and R2 are rational functions on P,P ′. In

general, R1 and R2 have complicated expressions. But we have better interpretations

in the case of plane cubic curves. In this case, Cφ always has a flex point and hence

can be transformed to a Weierstrass equation after a linear coordinate change (see [8,

Section 4.4]). Thus, we are able to present rational functions R1, R2 as:

R1(s) = λ11P(s) + λ12P ′(s) + λ13,

R2(s) = λ21P(s) + λ22P ′(s) + λ23. (31)

The constants λij ∈ C satisfy λ11λ22 6= λ12λ21 and depend on the coefficients of φ. Here

we fix any flex point and the corresponding periods ω1, ω2 coming from the Weierstrass

parametrization of the Weierstrass equation.

To shorten the determinantal representation, we should look at 2-torsion points

to simplify θ and P. More precisely, we consider the line l which intersects Cφ at

the points Pi such that the corresponding points Qi on the torus C/(ω1Z + ω2Z) are

ω1/2, (ω1 + ω2)/2 and ω2/2 respectively. Suppose that the x-coordinates of Pi are all

non-zero. We will treat the case l to have the form y = αx+ γz and then make use of

Corollary 7.1. The other case can be treated similarly using Remark 6.4. The choice of

2-torsion points gives us the convenience to work with some computations below. Let

a = θ2(0, τ), b = θ3(0, τ), c = θ4(0, τ), where τ = ω2/ω1, we will prove the following

Proposition 7.2. Let Cφ ⊂ P2 be a smooth plane curve defined by φ = 0, where

φ(x, y, z) is a non-singular homogeneous cubic polynomial. Suppose the line y = αx+γz

intersects Cφ at 3 distinct points P1, P2, P3 with coordinates Pi = (1, α+γβi, βi), βi 6= 0

so that the corresponding points Qi = ϕ(Pi) of Pi on the torus C/(ω1Z + ω2Z) are

ω1/2, (ω1 + ω2)/2 and ω2/2 respectively. Denote by k = αλ12 − λ22, then we have the

following expressions (up to some constant) for the discriminant ∆φ of φ

(1)

∆φ =
λ611ω

24
1

28k12π24(abc)16
(β1 − β2)

6(β1 − β3)
6(β2 − β3)

6,

(2)

∆φ = 16

(

λ211πβ1β2β3
2kω1

)12

(abc)8.
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Proof. By [22, p. 470, 509], we have P ′(Qi) = 0 for all i and

P(Q1) =
π2

3ω2
1

(b4 + c4), P(Q2) =
π2

3ω2
1

(a4 − c4), P(Q3) = − π2

3ω2
1

(a4 + b4).

Besides, P ′′(s) = 6(P(s))2−g2/2 with g2 =
2
3
( π
ω1
)4(a8+b8+c8) as in [22, p. 469]. Thus

P ′′(Q1) =
2π4b4c4

ω4
1

, P ′′(Q2) = −2π4a4c4

ω4
1

, P ′′(Q3) =
2π4a4b4

ω4
1

.

We also have for each i

− φy(Pi)

(φx + αφy)(Pi)
=

dx

d(y − αx)
(Pi) =

R′
1

(R′
2 − αR′

1)
(Qi) =

λ12
λ22 − αλ12

.

Choosing δ = 3, we now simplify the matrix N in Corollary 7.1. Let k1 = −λ12/k and

note that θ′1(0) = πabc as in [22, p. 507], we have nii = k1βi and n13 = n31 = 0 as

θ((1 + τ)/2) = 0. Moreover,

n2
12 = n2

21 =
π2(abc)2θ2

(

τ
2

)

(β1 − β2)
2

ω2
1k

2b2θ21
(

τ
2

)

β1β2P ′′(Q1)P ′′(Q2)
=

ω6
1(β1 − β2)

2

4k2π6β1β2b4c8
,

n2
23 = n2

32 =
π2(abc)2θ2

(

1
2

)

(β2 − β3)
2

ω2
1k

2b2θ21
(

1
2

)

β2β3P ′′(Q2)P ′′(Q3)
= − ω6

1(β2 − β3)
2

4k2π6β2β3a8b4
.

Here we use the fact that (see [22, p. 502])

θ
(τ

2

)

= q−
1

8a, θ1

(τ

2

)

= iq−
1

8 c, θ

(

1

2

)

= c, θ1

(

1

2

)

= a

with q = e2πiτ . We have 1/βi = λ11P(Qi) + λ13 from (31) and the fact R1(Qi) = 1/βi.

Therefore,
β1 − β2
β1β2

= λ11(P(Q2)− P(Q1)) = −λ11
π2c4

ω2
1

,

β1 − β3
β1β3

= λ11(P(Q3)− P(Q1)) = −λ11
π2b4

ω2
1

, (32)

β2 − β3
β2β3

= λ11(P(Q3)− P(Q2)) = −λ11
π2a4

ω2
1

.

It can be seen from (32) that λ11 6= 0. Similarly we have λ21 = αλ11 from the identities

R2(Qi) = α/βi+ γ. Breaking out the determinant, one get the following expression for

φ (up to some constant λ)

−β1β2β3x3 + 3β1β2β3k1x
2y + (β3n

2
12 + β1n

2
23 − 3β1β2β3k

2
1)xy

2+

k1(β1β2β3k
2
1 −β3n

2
12−β1n

2
23)y

3+(β1β2+β1β3+β2β3)x
2z−2k1(β1β2+β1β3+β2β3)xyz

+(k21(β1β2+β1β3+β2β3)−n2
12−n2

23)y
2z−(β1+β2+β3)xz

2+k1(β1+β2+β3)yz
2+z3. (33)

Consequently, Res(φx/λ, φy/λ, φz/λ) =

(−432)(β2 − β3)
2(β1 − β2)

2n4
23n

4
12(β1 − β3)

6(β2n
2
12 − β3n

2
12 − β1n

2
23 + β2n

2
23)

2.
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The term β2n
2
12 − β3n

2
12 − β1n

2
23 + β2n

2
23 is equal to

(β1 − β2)(β2 − β3)ω
6
1

4k2π6b4

(

β1 − β2
c8β1β2

+
β2 − β3
a8β2β3

)

= −λ11ω
4
1(β1 − β2)(β2 − β3)

4k2π4a4c4
,

where the later equality comes from (32). Furthermore,

(n12n23)
4 =

ω24
1 (β1 − β2)

4(β2 − β3)
4

28k8π24(abc)16(β1β2)2(β2β3)2
=
λ411ω

16
1 (β1 − β2)

2(β2 − β3)
2

28k8π16a8b16c8
.

The later equality again comes from (32). Hence

∆φ = − 1

27
Res(φx, φy, φz) =

λ12λ611ω
24
1

28k12π24(abc)16
(β1 − β2)

6(β1 − β3)
6(β2 − β3)

6.

We also obtain an alternative form of the discriminant by using (32):

∆φ = 16

(

λλ211πβ1β2β3
2kω1

)12

(abc)8. (34)

This completes the proof of Proposition 7.2. �

We now simplify the formula (34) by looking at the relationships between λ, λ11, k

and β1β2β3. It can be seen from (33) that λβ1β2β3 = −φ(1, 0, 0). The transformation

(31) means that if we write

x = λ11X + λ12Y + λ13,

y = λ21X + λ22Y + λ23

then the affine curve φ(x, y, 1) = 0 will be transformed to a Weierstrass form

−Y 2 + 4X3 − g2X − g3 = 0. In addition, the inverse transformation

X = l11x+ l12y + l13,

Y = l21x+ l22y + l23

would transform the Weierstrass equation −Y 2 + 4X3 − g2X − g3 = 0 to:

4l311x
3 + 12l211l12x

2y + 12l11l
2
12xy

2 + 4l312y
3 + (12l211l13 − l221)x

2+

(24l11l12l13 − 2l21l22)xy + (12l212l13 − l222)y
2 + (12l11l

2
13 − 2l21l23 − l11g2)x+

(12l12l
2
13 − 2l22l23 − l12g2)y + 4l313 − l223 − l13g2 − g3. (35)

One can check that l11 = λ22/D, l12 = −λ12/D, l21 = −λ21/D and l22 = λ11/D with

D = λ11λ22 − λ12λ21. Compare the coefficients of x3 and x2y in (33) and (35), we have
{

4l311 = −λβ1β2β3,
12l211l12 = 3λβ1β2β3k1.

⇔
{

4λ322 = −λβ1β2β3D3,

12λ222λ12 = −3λβ1β2β3k1D
3.
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The second identity shows that λ11 = −4λ222/(λβ1β2β3D
2). Hence λλ311β1β2β3 = −4

from the first identity. We have thus proved from (34) the following result

Theorem 7.3. Let Cφ be a smooth plane cubic curve as in Proposition 7.2. Then the

discriminant ∆φ of φ satisfies

∆φ =
216

(λ11λ22 − λ12λ21)12

(

π

ω1

)12

(abc)8.

Let us look at the example when φ is given in the Weierstrass form−y2+4x3−g2x−g3.
In this case, λ11 = λ22 = 1 and λ12 = λ21 = 0. We thus recover the classical formula

∆φ = 216( π
ω1
)12(abc)8. Since the discriminant of plane cubics is an invariant of weight

12, the factor (λ11λ22 − λ12λ21) in Theorem 7.3 naturally appears as the determinant

of the linear transformation (31) which transform a cubic to a Weierstrass form.

From Remark 6.4, we can also treat the other case where the line l passes through

2-torsion points of Cφ. Furthermore, the set of cubics φ in the above theorem forms

an open dense subset of the space of all ternary cubics and we have thus obtained

Theorem 1.6.
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