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Cost-optimal energy management of hybrid electric
vehicles using fuel cell/battery health-aware

predictive control
Xiaosong Hu, Senior Member, IEEE, Changfu Zou, Member, IEEE, Xiaolin Tang,

Teng Liu, Member, IEEE, Lin Hu

Abstract—Energy management is an enabling technology for
increasing the economy of fuel cell/battery hybrid electric vehi-
cles. Existing efforts mostly focus on optimization of a certain
control objective (e.g., hydrogen consumption), without suffi-
ciently considering the implications for on-board power sources
degradation. To address this deficiency, this article proposes
a cost-optimal, predictive energy management strategy, with
an explicit consciousness of degradation of both fuel cell and
battery systems. Specifically, we contribute two main points to the
relevant literature, with the purpose of distinguishing our study
from existing ones. First, a model predictive control framework,
for the first time, is established to minimize the total running cost
of a fuel cell/battery hybrid electric bus, inclusive of hydrogen
cost and costs caused by fuel cell and battery degradation. The
efficacy of this framework is evaluated, accounting for various
sizes of prediction horizon and prediction uncertainties. Second,
the effects of driving and pricing scenarios on the optimized
vehicular economy are explored.

Index Terms—Batteries, energy management, fuel cell, hybrid
electric vehicle, predictive control, sustainable transport

I. INTRODUCTION

A. Motivation and Challenges

Increasingly severe fuel consumption and environmental
pollution have been strongly pushing the academia and auto-
motive sector to actively develop and deploy fuel cell hybrid
electric vehicles (FCHEVs) [1]–[4]. FCHEVs diversify energy
sources of mobility, enabling a good synergy of transportation
and renewables [5]. The fuel cell-battery-motor coupling fea-
tured by FCHEVs is, however, quite complicated and directly
influences overall vehicular performance [6], constituting the
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first challenge for system-level energy management. Unlike
internal combustion engines (ICEs), the lifetime of the two
electrochemical power sources (fuel cell and battery systems)
is highly vulnerable to their operating conditions. This causes
another challenge of how to coordinate the two energy units
such that the vehicular total cost of ownership can be reduced.
To address the two main challenges, we propose a look-ahead
health-conscious energy management strategy to maximize the
economy of an FCHEV.

B. Literature Review

Energy management of FCHEVs and ICE-included hybrid
electric vehicles (HEVs) is certainly a vast field of research
[7]–[9]. A large number of strategies have been proposed in the
literature, which can be roughly divided into two categories,
i.e., rule-based and optimization-based approaches. Each type
has its own advantages and disadvantages.

Rule-based energy management is centered on heuristic
rules governing the vehicle operating modes [10]. These rules
are invariably derived from engineering experiences, as simple
functions of battery and/or engine states. For example, when
the battery State-of-Charge (SOC) exceeds a higher bound,
the pure electric mode is adopted; when the battery SOC is
lower than a lower bound, the ICE mode is operated. Common
rule-based power management strategies include thermostat
control [11], fuzzy logic [12], etc. Salient upsides of this
type of method are simplicity, ease of real-time implemen-
tation, and strong resilience against driving patterns. For these
reasons, rule-based methods are predominantly being used
in HEVs in the current market. Nonetheless, the effects of
these rules are typically far away from the optimality of
vehicle design/control objectives, incenting alternatives to seek
noticeable improvements.

Optimization-based energy management strategies have
been actively developed in order to achieve better vehicular
performance [9]. The overarching goal of this type of method
is to optimize a predefined criterion, like fuel consumption,
subject to a set of operational constraints, given a hybrid
powertrain model [13]. Sometimes, multiple objectives are
considered to investigate tradeoffs of different concerns [14]–
[16]. As a globally optimal benchmark, dynamic programming
(DP) was often exploited to develop a theoretically optimum
energy management strategy and evaluate other algorithms
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[17], [18]. For instance, the operational cost of a fuel cell
hybrid electric vehicle was minimized by DP in [19]. The
computational efficiency of DP is, however, very low, espe-
cially for dynamic models with multiple states. Another global
optimization method, convex programming (CP), was also
leveraged to synthesize HEVs energy management strategies
[14], [20]–[22]. Due to the convexity, CP can guarantee a
globally optimal solution with exceptionally fast calculation.
The model simplification and convexification somewhat de-
grade the optimality, in contrast to DP. Typically, noncausal
DP and CP can only be implemented offline, as driving cycles
must be known beforehand. To explore the possibility of online
optimized energy management, causal optimization methods,
e.g., equivalent consumption minimization strategy (ECMS)
[23], [24], Pontryagin’s Minimum Principle (PMP) [25], [26],
and model predictive control (MPC) [27], [28], were adopted.
These controllers with appropriate design and tuning always
produce a satisfactory performance in energy consumption,
operating cost, or the total cost of vehicle ownership.

A vast majority of existing studies on FCHEVs energy
management merely consider how to minimize hydrogen
consumption, without involving performance degradation of
fuel cell/energy storage systems. The economy potential of
FCHEVs is insufficiently assessed. A few papers attempted
to establish power management strategies cognizant of the
tradeoff between fuel cell health and hydrogen economy. For
example, fuel efficiency, cost, and life-cycle carbon emissions
of an FCHEV were optimized via the genetic algorithm in
[29]. Fuel cell lifetime was governed by imposing constraints
on fuel cell output power in ECMS [30], PMP [31], and
CP [14] energy management controllers. A stochastic DP
controller to minimize the summation of hydrogen and fuel
cell costs was introduced in [32], [33] as well. However, these
studies did not take energy storage degradation into consid-
eration. A battery health-aware power management strategy
of an FCHEV equipped with hybrid energy storage was
constructed via CP in [34], where the impact of fuel cell
health was neglected. Xu et al. [35] incorporated both fuel cell
and battery degradation models into a bi-loop framework for
offline component sizing and DP-based energy management
of an FCHEV. To reduce the computational burden, such a
framework was modified by means of a DP-refined rule-based
controller in the inner loop [36], [37].

C. Main Contributions

To the best knowledge of the authors, no efforts have been
made to develop an FCHEV energy management strategy
perceptive of the lifetime of both fuel cell and battery systems
in a cost-optimal, predictive manner. In order to bridge such
a research gap, this article presents two original contributions
that distinguish our work from existing schemes. First, we
devise an MPC framework, for the first time, to minimize
the expenditure of an FCHEV, inclusive of hydrogen cost
and costs associated with fuel cell and battery degradation.
The performance and computational efficiency of this frame-
work are carefully examined, considering different sizes of
prediction horizon and prediction uncertainties. Second, the

Fig. 1: Configuration of the fuel cell hybrid electric bus.

sensitivity of the health-conscious MPC power management to
driving patterns and the component price is carried out, so that
the effects of driving and pricing scenarios on the optimized
vehicular economy can be revealed.

D. Organization

The rest of the paper proceeds as follows. The FCHEV pow-
ertrain model is detailed in Section II. Section III introduces
the MPC energy management framework. The control results
under various driving cycles are given in Section IV. The
implication of power-source pricing is discussed in Section
V, followed by conclusions summarized in Section VI.

II. FCHEV POWERTRAIN MODEL

Here, we consider a fuel cell hybrid bus powertrain, as
sketched in Fig. 1. The widely-used quasi-static modeling
method is leveraged to model the powertrain for a time-
efficient, accurate simulation [38], [39].

A. Configuration and Power Balance

An electric motor drives the bus with a hybrid power
source composed of a proton-exchange-membrane fuel cell
system (PEMFCS) and a lithium-ion battery system. A DC-DC
converter is adopted at the side of the PEMFCS to regulate
its current flow into the DC bus, while the battery system
is passively connected. The specifications of the principle
powertrain components are listed in Table I. The overall power
balance equation is described by

Tem(k)wem(k)+ Pem,loss(k) + Pau(k)

= Pbat(k) + Pfcs(k)ηdc (1)

where Tem and wem are the motor torque and speed, re-
spectively; Pem,loss is the motor loss as a function of Tem
and wem; Pbat and Pfcs are the battery terminal power and
the PEMFCS output power, respectively; ηdc is the averaged
efficiency of the DC-DC converter; Pau is the power of
auxiliaries that is assumed to be constant; k is the time index.

B. Motor Model

A permanent magnet synchronous motor is used to propel
the bus and do regenerative braking. The efficiency and loss
data of the motor taken from [20] are plotted in Fig. 2. The
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TABLE I. MAIN VEHICLE PARAMETERS.

Component Specifications

PEMFCS A 1000-cell stack
Power rating: 100 kW

Battery system A 2000-cell pack
Energy capacity: 15.18kWh

aMotor Maximum power: 220kW
Maximum speed: 3000rpm

bDC-DC converter Averaged efficiency: 96%
aFinal drive Gear ratio: 4.7
cVehicle Chassis mass: 13476kg

Auxiliary power: 7.0kW
aAdopted from [20]; bAdopted from [14]; cAdapted from [20].

motor torque and speed meet the vehicular power demand as
follows:

wem(k) =
λv(k)

r
(2a)

Tem(k) = max (Tv(k), Tem,min(k)) (2b)

where v, λ, and r are the vehicle speed, final drive gear ratio,
and wheel radius, respectively; Tem,min is the minimum nega-
tive torque during regenerative braking; Tvis the torque request
on the shaft between the motor and the final drive, which
can be readily derived by the vehicular longitudinal dynamics
(the derivation is detailed in Appendix of [22]). In this study,
the motor is sized enough to satisfy the propelling torque
request of the bus. When the braking torque request exceeds
Tem,min, the conventional frictional braking is activated as a
supplement.

C. PEMFCS Model

1) Hydrogen Consumption Model: We herein consider a
1000-cell PEMFCS with a power rating of 100 kW for an
electric bus, same as the fuel cell system used in [40], whose
configuration is sketched in Fig. 3. Its main elements include
a fuel cell stack and four auxiliary subsystems, i.e., hydrogen
circuit, air circuit, water circuit, and coolant circuit [14],
[22]. These auxiliaries consume a portion of the electricity
generated by the stack to ensure a normal operation of the
PEMFCS. A detailed description about how these subsystems
work can be found in [41]. The quasi-static hydrogen con-
sumption model, characterizing the relationship between the
hydrogen power Ph and the PEMFCS output power Pfcs,
is a scaled version of FC ANL50H2 in ADVISOR [42], as
indicated in Fig. 4.

2) Health Model: Performance degradation is an en-
trenched issue in electrochemical power sources. How to
model the PEMFCS health evolution plays an important role
in the economy-targeted power management of the bus. As
recognized in electrochemistry community, a multitude of
tangible and intangible factors impact membrane electrode
assembly (MEA) degradation, resulting in a great challenge
of establishing such a model. As introduced in [33], MEA
performance degradation mainly originates from the following
aspects.

a) Catalyst layer degradation [33]: electrochemical active
surface area (ECASA) reduction occurs, owing to agglomera-
tion, sintering together, and detachment of platinum particles

Fig. 2: (a) Motor efficiency map and (b) motor losses at
exemplary speeds.
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Fig. 3: Schematic of the PEMFCS [22].

[33], [43], oxidation of carbon support caused by fuel star-
vation at high or transient loading [44]–[47], production of
surface oxides at very low loading [48]. It can be seen that
the PEMFCS operating condition has a substantial influence
on ECASA reduction. Extremum loads are very detrimental
to the catalyst layer.

b) Membrane degradation [33]: fuel impurity, mechani-
cal stress, and thermal stress lead to membrane degradation
[44]–[46]. The former two are related to contaminants and
congenital or assembly defects, respectively [44], [45]. They
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Fig. 4: Hydrogen consumption model of the PEMFCS.

are thus typically irrelevant to PEMFCS loading. However,
thermal stress is dependent on the PEMFCS output power.
Extensive heat at extremum loads may reduce the membrane
protonic conductivity and incur membrane-drying-caused gas
permeability [33], [44], [45].

c) Gas diffusion layer (GDL) degradation [33]: it has some
overlapping aging mechanisms with the catalyst support. For
example, fuel starvation at high or transient loading induces
oxidation of carbon that is often exacerbated at high tempera-
tures [33], [44], [45]. In addition, increased humidity at high
loads may cause flooding [44], [49].

According to the foregoing descriptions [33], [44]–[49], the
main MEA degradation mechanisms with respect to PEMFCS
loading are summarized in Fig. 5. Since vehicular applications
are invariably subject to drastically dynamic loading, it is
of particular significance and practicality to carefully govern
the PEMFCS loading (i.e., output power) to alleviate its
performance degradation and increase the overall vehicular
economy. It has been demonstrated in [32], [33], [40] that
on/off loading has a predominately negative impact on the
lifetime of PEMFCS, especially in heavy-duty vehicular ap-
plications. Therefore, as manipulated in [14], [22], [34], the
bus PEMFCS is herein always on. We adopt a similar approach
to [33], [40], so as to account for the effects of other loads.
When the PEMFC output power Pfcs is equal to or larger than
80% of the power rating, the voltage degradation rate per hour
at high load is portrayed by γhigh; when the PEMFC output
power Pfcs is lower than 20% of the power rating, the voltage
degradation rate per hour at low load is denoted by γlow; the
voltage degradation rate per kW during transient load change
is depicted by γchg . The values of these rates used in this
work are listed in Table II. As treated in [33], these sources
of degradation are assumed to be mostly independent, and thus
their effects can be summed up to embody the total voltage
degradation.

D. Battery Model

1) Electrical Model: A 2000-cell lithium iron phosphate
battery pack with the nominal energy capacity of 15.18 kWh is
employed as the energy storage unit of the hybrid powertrain,

Fig. 5: Main MEA degradation mechanisms with respect to
PEMFCS loading.

TABLE II. PEMFCS DEGRADATION RATE (CELL
LEVEL).

Load Degradation rate
aHigh load 10.00 µV/h
aLow load 8.662 µV/h
bLoad change 0.04185 µV/kW

aAdopted from [40]; bAdapted from [33] and [40].

whose configuration is illustrated in Fig. 6. Each battery cell
is emulated by the internal resistance model as follows:

Vcell(k) = u(k)− i(k)R (3)

where Vcell, u, i, and R represent the terminal voltage, open-
circuit voltage, current, and internal resistance of battery cell,
respectively. Note that the open-circuit voltage u is a monoton-
ically increasing function of cell SOC, which is often provided
by the manufacturer (see [50] for A123’s ANR26650m1 used
here). Given the terminal cell power Pcell(k) = Vcell(k)i(k)
and (3), we can obtain the following current equation:

i(k) =
u(k)−

√
u2(k)− 4RPcell(k)

2R
(4)

where Pcell(k) = Pbat(k)
nall

= Pbat(k)
nsnp

= Pbat(k)
2000 . And then the

SOC dynamics can be delineated by

soc(k + 1) = soc(k)− i(k)∆t

Q
(5)

where soc, Q and ∆t are the cell SOC, the nominal cell
capacity, and the sampling interval, respectively. The following
electrical constraints must be fulfilled when operating the
hybrid powertrain:

imin ≤ i(k) ≤ imax (6a)
socmin ≤ soc(k) ≤ socmax (6b)

soc(0) = soc0 (6c)

where imin and imax are the cell current bounds (maximum
charge/discharge current); socmin and socmax are the SOC
bounds, and soc0 is the initial SOC.

2) Health Model: A semi-empirical battery aging model
developed in [51] is adopted in this paper to simulate the
capacity loss of the battery cell. This model was already
widely used for vehicular energy management [52], battery
charging control [53], power-source sizing [34], [54], [55],
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Fig. 6: Battery pack configuration [14].

TABLE III. PRE-EXPONENTIAL FACTOR AS A
FUNCTION OF THE C-RATE [51].

C-rate 0.5 2 6 10
M 31630 21681 12934 15512

etc. To ensure a completeness of model description, next, we
brief this capacity loss model. More details are given in [51].

The cell capacity loss is characterized by the following
equation [51]

∆Q = M(c) exp

(
−Ea(c)

RcTc
A(c)z

)
(7)

where ∆Q is the percentage of capacity loss in [%], c is the
C-rate, and M is the pre-exponential factor as a function of
the C-rate, as indicated in Table III. The ideal gas constant
is Rc (8.31 J/mol·K), Tc is the lumped battery temperature in
[K], and A is the discharged ampere-hour (Ah) throughput.
The activation energy Ea in [J/mol] and the power-law factor
z are determined by [51]

Ea(c) = 31700− 370.3c (8a)
z = 0.55. (8b)

When using (8) and Table III, 1C (c = 1) corresponds to 2A
[51], where a de-rated 2Ah was used to ease experimentation.
20% capacity loss is considered as the end-of-life (EOL) of
an automotive battery, and the total discharged Ah throughput
Atol is, therefore, acquired by

Atol(c, Tc) =

 20

M(c) exp
(

−Ea(c)
RcTc

)
1/z

. (9)

Then, the number of cycles until the battery EOL, N , is
attained by [52]

N(c, Tc) =
3600Atol(c, Tc)

Q
. (10)

As a result, the State-of-Health (SOH) is defined below [52]:

soh(t) = 1−
∫ t

0
|i(τ)|dτ

2N(c, Tc)Q
. (11)

TABLE IV. MAIN ELECTRICAL SPECIFICATIONS OF
THE BATTERY CELL.

Parameter Value
aInternal resistance 0.01 Ohm
aNominal capacity 8280 As
bMaximal charge current -35 A
bMaximal discharge current 70 A
Maximal SOC 75%
Minimal SOC 55%
Initial SOC 65%
Maximal SOH 100%
Minimal SOH 0%
Initial SOH 100%

aAdopted from [50]; bAdopted from [52].

The corresponding dynamic SOH model is thereby established
as [52]

soh(k + 1) = soh(k)− |i(k)|∆t
2N(c, Tc)Q

. (12)

Based on the SOH model, the values of N and SOH decline
rate at various temperatures and C-rates can be easily calcu-
lated (e.g., see Fig. 15 in [55] with a C-rate with respect to the
nominal capacity of 2.3 Ah). The following health constraints
must be fulfilled when operating the hybrid powertrain:

sohmin ≤ soh(k) ≤ sohmax (13a)
soh(0) = soh0 (13b)

where sohmin and sohmax are the SOH bounds, and soh0 is
the initial SOH. The main electrical and SOH specifications
of the battery are listed in Table IV.

III. MPC ENERGY MANAGEMENT FRAMEWORK

In this section, we mathematically formularize the predic-
tive, cost-optimal power management strategy in an MPC
framework.

A. Objective function

To minimize the total running cost of the bus over each
prediction horizon, the objective function J includes four
terms, which is defined by

Jj = Ch,j + Cfcs,j + Cbat,j +Dsoc,j , j = 0, 1, 2 . . . (14)

where
1) Ch,j is the hydrogen cost over the prediction horizon j,
i.e.,

Ch,j =

j+Th−1∑
m=j

βhPh(m)∆t, j = 0, 1, 2 . . . (15)

with Th being the size of prediction/control horizon and βh
the hydrogen price per Joule.
2) The PEMFCS degradation cost Cfcs,j is computed by

Cfcs,j = Clow,j + Chigh,j + Cchg,j , j = 0, 1, 2 . . . (16)

where Clow,j is the degradation cost caused by low load, which
is calculated by

Clow,j =
γlowTlow,jMfcs

Vfcs,eol
, j = 0, 1, 2 . . . (17)
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with Tlow,j being the duration of low load in hour over the pre-
diction horizon j, Vfcs,eol the voltage drop until the PEMFCS
EOL (i.e., 10% voltage decrease of fuel cell at rated current
[40]), and Mfcs the PEMFCS cost, i.e., Mfcs = 100βfcs
where βfcs is the PEMFCS price per kW. Moreover, Chigh,j

is the degradation cost caused by high load, as defined by

Chigh,j =
γhighThigh,jMfcs

Vfcs,eol
, j = 0, 1, 2 . . . (18)

with Thigh,j being the duration of high load in hour over
the prediction horizon j. Then, Cchg,j is the degradation cost
caused by load change, which is derived by

Cchg,j =

γchgMfcs

j+Th−2∑
m=j

|Pfcs(m+ 1)− Pfcs(m)|

1000nfcsVfcs,eol
(19)

j = 0, 1, 2 . . . with nfcs = 1000 being the number of fuel
cells.
3) The battery degradation cost Cbat,j is calculated by

Cbat,j = Mbat (soh(j)− soh(j + Th)) , j = 0, 1, 2 . . . (20)

where Mbat is the cost of the battery system, i.e., Mbat =
15.18βbat with βbat being the battery price per kWh.
4) Dsoc,j is a deliberate penalty term to make the battery
charge-sustaining as much as possible [56], i.e.,

Dsoc,j = Dp

j+Th∑
m=j

(soc(m)− soc0)
2
, j = 0, 1, 2 . . . (21)

with Dp being a large, positive constant.

B. Constraints
Equations (1) and (2) enable us to only choose the PEMFCS

output power Pfcs as the optimization variable to reduce com-
putational burden (the battery power Pbat can be invariably
represented as a function of Pfcs). And then, the constraints
of the optimal control problem consist of (5), (6), (12), (13),
which can be described as functions of Pfcs, as well as the
physical bounds on Pfcs,

Pfcs,min ≤ Pfcs(k) ≤ Pfcs,max (22)

with Pfcs,min and Pfcs,max equal to 0 and 100000, respec-
tively.

C. Framework formulation
Given the objective function and constraints above, the cost

minimization problem over the prediction/control horizon at
the time step j can be mathematically framed as follows:

min
Pfcs(k),k=j,...,j+Th−1

Jj = Ch,j + Cfcs,j

+ Cbat,j +Dsoc,j (23a)
s.t. ∀k∈{j, . . . , j + Th − 1}, q∈{j, . . . , j + Th},

soc(k + 1) = soc(k)− i(k)∆t

Q
(23b)

imin ≤ i(k) ≤ imax (23c)
socmin ≤ soc(q) ≤ socmax (23d)
soc(0) = soc0 (23e)

TABLE V. BASELINE PRICES OF THE HYDROGEN,
PEMFCS, AND BATTERY UNIT.

Price Value
aHydrogen 4.00 $/kg
bPEMFCS 93.00 $/kW
cBattery unit 178.41 $/kWh

aAdopted from [60]; bAdopted from [61] with medium-volume manufactur-
ing of 10000 units/year; cAdopted from [62].

Fig. 7: MBC driving cycle [22]: (a) speed and slope, (b) accel-
eration, (c) speed distribution, and (d) acceleration distribution.

soh(k + 1) = soh(k)− |i(k)|∆t
2N(c, Tc)Q

(23f)

sohmin ≤ soh(q) ≤ sohmax (23g)
soh(0) = soh0 (23h)
Pfcs,min ≤ Pfcs(k) ≤ Pfcs,max. (23i)

Note that the current i in (23) is only an expression of
Pfcs, with the consideration of (1), (2) and (4). We harness
sequential quadratic programming (SQP) algorithm to solve
the optimal control problem (23), as this algorithm has been
corroborated to work well in a spectrum of MPC engineer-
ing applications [57]–[59]. For the solution over the current
horizon [P ∗

fcs(j),· · · ,P ∗
fcs(j + Th− 1)], only the first element

P ∗
fcs(j) is applied to the hybrid powertrain to evolve the

system dynamics, while the remaining elements are discarded.
Such a manipulation is repeated at the next time step k + 1
and is called the receding-horizon principle.

IV. RESULTS AND DISCUSSIONS

In this section, we present optimization results via running
the aforementioned MPC energy management framework. The
baseline prices of the hydrogen, PEMFCS, and battery unit are
given in Table V. As an example, the standard Manhattan bus
cycle (MBC) from [22] is herein considered (see Fig. 7).

A. Optimized cost and power split

Given an exemplary prediction/control horizon Th = 3,
equivalent to three seconds, the optimized cost outcome is
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Fig. 8: Optimal cost result.

Fig. 9: Optimal power split: (a) hydrogen power, (b) PEMFCS
power, and (c) battery power.

shown in Fig. 8. The total running cost in MBC is approxi-
mately $1.5390, to which the hydrogen cost of $1.0331 con-
tributes most. The PEMFCS degradation cost of about $0.3941
constitutes the second large expense, to which three sources,
i.e., high load, low load, and load change, contribute. Clearly,
the contribution of low load to the PEMFCS degradation is
dominant. The battery degradation cost of $0.1118 is smallest,
compared to those of hydrogen and PEMFCS degradation.

The optimized power split between the PEMFCS and the
battery pack is depicted in Fig. 9 and the corresponding motor
electric power is presented in Fig. 10. It is clear that the
PEMFCS largely operates at low load to mitigate its degrada-
tion, with the aid of battery power variances. The associated
trajectories of battery SOC and SOH are illustrated in Fig. 11.
It can be found that the proposed MPC energy management
solution works well to ensure the battery charge sustenance.
The battery SOH decline is slight, less than 0.005%.
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Fig. 10: Trajectory of the motor electric power.

Fig. 11: Optimal battery states: (a) SOC and (b) SOH.

B. Horizon effect

In this subsection, we investigate how the size of the pre-
diction/control horizon affects the optimization accuracy and
computational burden. As shown in Fig. 12, the total running
cost reduces, as the horizon size increases. The computational
burden, however, becomes increasingly heavy, particularly
when the size exceeds 10s. Therefore, the choice of the horizon
size needs a balance between the optimality and computational
efficiency for a specific case study. For example, as for low-
cost energy controllers with limited computational capability,
it is probably sensible to pick a relatively small horizon
size, e.g., less than 5s, to assure real-time implementability.
On the contrary, in the case of a computationally powerful
controller, we most possibly prioritize the optimality over the
computational load, so as to seek a large horizon size, e.g.,
greater than 9s.

C. Effect of prediction uncertainty

In the above discussion, we assume that the bus velocity
trajectory in the prediction horizon is exactly known. This
assumption is highly judicious, as bus routes are typically
fixed, especially in city transit applications. With the develop-
ment of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication, highly credible velocity predictors are
expected even in the context of varying, complex routes.
Vehicular velocity forecasting itself is a vast area of intensive
studies, leading to a diversity of prediction methods. Please,
for example, refer to [63], [64] for more related details. Since
the main contributions and focus of this endeavor do not
lie in velocity prediction, we straightforwardly evaluate how
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Fig. 12: Optimal cost and average calculation time per step as
functions of horizon size (a 3.5GHz CPU with 32GB RAM
was used).

Fig. 13: Optimal cost versus prediction error.

potential prediction uncertainty influences the optimal cost
by adding artificial Gaussian prediction errors of different
standard deviations to the MBC data. To maintain physical
viability, the contaminated negative velocity is set to zero.
Take a prediction/control horizon Th = 5 as an example.
The associated result is illustrated in Fig. 13. It is clear that
the optimized cost increases with augmented prediction error.
When the standard deviation of the error equals to 1, the
total cost virtually doubles, in contrast to the benchmark with
perfect velocity. Hence, it is of great importance to obtain
sufficiently precise velocity evolution, from a perspective of
saving vehicular running cost.

It is worth mentioning that, in the case of imperfect ve-
locity forecasting, as the prediction horizon increases, the
prediction uncertainty most probably increases. Such an error
increase may somewhat offset the optimality gain obtained by
increasing the prediction horizon. As such, the performance
improvement of the predictive controller resulting from the
horizon increase may saturate. As a result, we cannot arbitrar-
ily augment the prediction horizon, which should be decided
by a nontrivial, comprehensive consideration of the prediction
uncertainty, optimality gain, and computational load.

Fig. 14: Comparative result among MBC, CSC, and Gothen-
burg cycle.

V. DRIVING AND PRICING IMPACT

In this section, the influence of driving and pricing scenarios
on the optimization outcome is elucidated.

A. Driving Impact

In addition to MBC, we consider another two bus cycles,
i.e., the standard city suburban cycle (CSC) and a realistic
Gothenburg city cycle with slope knowledge (see Figs. 8
and 9 of [22]). In this way, how the driving pattern affects
the optimal cost can be unveiled. Given Th = 5, the total
costs under the three driving cycles in $/km are compared in
Fig. 14. It is evident that the harshest MBC induces the highest
expense, i.e., about $0.44/km. In MBC, the prime mover,
PEMFCS, experiences the most dynamic loads, giving rise to
higher hydrogen cost and PEMFCS degradation. In the other
extremum, the smoothest CSC leads to the lowest expense,
i.e., about $0.28/km (36.4% reduction versus MBC). In CSC,
the hydrogen cost, PEMFCS cost, and battery cost are all
lowest in the three cycles. The total expense in the Gothenburg
cycle is in between MBC and CSC, i.e., $0.34/km (22.7%
reduction versus MBC). In this cycle, the battery degradation
is, however, largest, because the hilly driving requires more
frequent utilization of the battery system.

B. Pricing Impact

We examine the pricing impact on the optimization result,
through considering price evolutions of hydrogen, PEMFCS,
and battery in the most recent three years (from 2017 to 2019).
Table V is used as the baseline prices in 2017. The annual price
increase of hydrogen is assumed to be 20%, due to increas-
ingly serious energy shortage. The PEMFCS price decrease is
from [61] (about 5% annually), while that of the battery is
from [62] (about 11% annually), due to economies of scale
and growing maturity of design/manufacturing technologies.
The price evolutions are shown in Fig. 15.

The optimization results are plotted in Fig. 16. It is pro-
nounced that the optimal cost gradually increases from 2017
to 2019. For example, in MBC, the increases in 2018 and 2019
reach 11.27% and 26.02%, respectively, with respect to the
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Fig. 15: Price evolutions of hydrogen (a), PEMFCS (b), and
battery (c) in the three years.

Fig. 16: Optimization results in the three years (from 2017 to
2019).

baseline case in 2017. The reason is the noticeably augmented
hydrogen cost, due to its price increase. From the results in
all the three cycles, we can see that the costs of PEMFCS and
battery degradation are only slightly reduced.

In the future, more sophisticated models can be established
to predict price evolutions of hydrogen, PEMFCS, and bat-
tery. The obtained results will then be incorporated into the
proposed energy management framework to investigate their
effects.

VI. CONCLUSIONS

This paper devises a cost-optimal, predictive energy man-
agement strategy for hybrid powertrains, which is cognizant
of the lifetime of both fuel cell and battery systems. In
the strategy, the total running expense of a PEMFCS/battery
hybrid electric bus, inclusive of hydrogen cost and costs of
fuel cell and battery degradation, is minimized in an MPC
setting. The effectiveness and computational efficiency of this
strategy are validated via numerous simulation campaigns, and
the effects of prediction horizon and prediction uncertainties
are assessed. Furthermore, how driving and pricing scenarios
impact the optimization results are investigated.

The key findings include the following five points:

1) The proposed method presents an alternative idea for
developing cost-optimal energy management strategies of
fuel cell/battery hybrid electric vehicles.

2) How to pick an appropriate horizon size entails a trade-
off between the optimality and computational efficiency,
according to controller properties. As the horizon size
becomes larger, the total running cost reduces, whereas
the computational load increases.

3) Velocity prediction uncertainties thwart the reduction
of total running cost. When the standard deviation of
uncertainty equals to 1, the total cost of the bus increases
by nearly 100%.

4) Driving patterns significantly influences the optimized
cost. The highest expense, i.e., about $0.44/km, occurs
in the harshest MBC. As the driving becomes smoother,
we can accomplish 22.7% and 36.4% cost reductions in
the Gothenburg and CSC cycles, respectively.

5) The potential price changes of hydrogen, PEMFCS, and
battery will increase the optimized cost, due to pre-
dominantly augmented hydrogen cost. In MBC, the cost
increases in 2018 and 2019 are 11.27% and 26.02%,
respectively, versus the baseline case in 2017. The cost
decreases of PEMFCS and battery degradation are very
slight.
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