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Abstract
A large share of construction material stock (MS) accumulates in urban built environments. To

attain a more sustainable use of resources, knowledge about the spatial distribution of urbanMS

is needed. In this article, an innovative spatial analysis approach to urbanMS is proposed. Within

this scope,MS indicators are defined at neighborhood level and clusteredwith k-mean algorithms.

The MS is estimated bottom-up with (a) material-intensity coefficients and (b) spatial data for

three built environment components: buildings, road transportation, and pipes, using sevenmate-

rial categories. The city of Gothenburg, Sweden is used as a case study. Moreover, being the first

case study inNorthern Europe, the results are explored through various aspects (material compo-

sition, age distribution, material density), and, finally, contrasted on a per capita basis with other

studies worldwide.

The stock is estimated at circa 84millionmetric tons. Buildings account for 73% of the stock, road

transport 26%, and pipes 1%. Mineral-binding materials take the largest share of the stock, fol-

lowed by aggregates, brick, asphalt, steel, andwood. Per capita, theMS is estimated at 153metric

tons; 62 metric tons are residential, which, in an international context, is a medium estimate.

Denser neighborhoodswith amix of nonresidential and residential buildings have a lower propor-

tion of MS in roads and pipes than low-density single-family residential neighborhoods. Further-

more, single-family residential neighborhoods cluster in mixed-age classes and show the largest

content of wood. Multifamily buildings cluster in three distinct age classes, and each represent

a specific material composition of brick, mineral binding, and steel. Future work should focus on

megacities and contrasting multiple urban areas and, methodologically, should concentrate on

algorithms,MS indicators, and spatial divisions of urban stock.

K EYWORD S

bottom-upmethod, built environment, constructionmaterials, geospatial data, material intensity,

urban form

1 INTRODUCTION

Construction materials comprise the largest material stock (MS) accumulated in modern society. During the last century, MS increased 23-fold

worldwide (Krausmann et al., 2017). Even though specific nations show distinctive accumulation patterns, the speed of material accumulation is

accelerating globally (Fishman, Schandl, & Tanikawa, 2016). The unprecedented growth of stock is directly linked to high resource consumption,

demolitionwaste discharges, and global and local environmental impacts (Fischer-Kowalski et al., 2011;Wiedenhofer, Steinberger, Eisenmenger, &

Haas, 2015).
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Materials accumulated in society can, nevertheless, be viewed as repositories of anthropogenic resources for the economic system. To be sus-

tainable, the economic systemshould function similarly to ecosystems, inwhich resources are transformedalmost indefinitelywithminimumwaste

and no related environmental impacts. Compared to primary resources, anthropogenic resources have received less attention in research and,

accordingly, are very little understood. Therefore, knowledge regarding the accumulated MS (mass and volume, material composition, age, and

density of the stock) and its dynamics (spatial expansion, speed of accumulation, and density increase) is needed.

SeveralMSmethods have been developed in the field of industrial ecology. Tanikawa, Fishman,Okuoka, and Sugimoto (2015) have distinguished

four method types, based on the approach and the interrelated data used: bottom-up accounting, top-down accounting, demand-drivenmodeling,

and remote sensing approaches.AugiseauandBarles (2017) have considereda temporal dynamicdimension (in use, retrospective, andprospective)

and distinguished between stock- and flow-drivenmodeling. In relation to stockmodeling, the authors have differentiated threemethods: bottom-

up stock analysis, top-down prospective, and top-down retrospective stock analysis using a flow-drivenmodel.

Construction materials accumulate in multiple components of the built environment such as buildings, road, and railroad transportation net-

works, drinkingwater andwastewater pipes, and gas pipe networks. In previous research,MShas beenestimated for single ormultiple components

of the built environment. For instance, Guo, Hu, Zhang, Huang, and Xiao (2014), in the case of Beijing, and Nguyen, Fishman, Miatto, and Tanikawa

(2018), in the case of Vietnam, have investigated road networks only, andKleemann, Lederer, Rechberger, and Fellner (2016), in the case of Vienna,

andOrtlepp, Gruhler, and Schiller (2015), in the case ofGermany, have investigated buildings only. The studies that have examinedmultiple compo-

nents of the built environment (Han & Xiang, 2013; Huang, Han, & Chen, 2016; Tanikawa & Hashimoto, 2009; Tanikawa et al., 2015;Wiedenhofer

et al., 2015) have indicated that the largest stock is accumulated in buildings that takes between 43 and 90% of the total MS depending on which

and how many of the built environment components are analyzed. This could explain why most of the studies in the field focus on buildings

(Kleemann et al., 2016;Mesta, Kahhat, & Santa-Cruz, 2018; Reyna &Chester, 2015). The proportion of the stock among other infrastructure types

is not as straightforward. For example, in the case of Japan, the road network makes the second largest contribution to the overall MS (Tanikawa

et al., 2015); for the largest three cities in China, the pipes network is the second highest contributing infrastructure toMS (Huang et al., 2016).

Studies onMShave been carried out on diverse spatial scales, ranging fromanurban neighborhood tomultiple countries. For instance, Tanikawa

and Hashimoto (2009) have estimated the stock for centrally located districts of Manchester in the United Kingdom and Wakayama in Japan. A

few studies have focused on a country’s prefectures (Fishman, Schandl, & Tanikawa, 2015; Han & Xiang, 2013) and others on multiple countries

(Fishman et al., 2016; Fishman, Schandl, Tanikawa, Walker, & Krausmann, 2014; Wiedenhofer et al., 2015). Urban areas have received the most

attention (Guo et al., 2014; Huang et al., 2016; Kleemann et al., 2016; Mesta et al., 2018; Reyna & Chester, 2015), which can be explained by the

rapid urbanization trends at a global level (United Nations, 2014).

Urban MS has been analyzed from multiple spatial perspectives. Kleemann et al. (2016), in the case of Vienna, have estimated the stock in

buildings and emphasized the need for spatial analysis in the field. The authors have used density (mass per built-up area) to indicate the spatial

distribution ofmaterial composition and intensity. Reyna andChester (2015), in the case of Los Angeles, have estimated the historical expansion of

building stock, constructionmaterials accumulated, and their embodied environmental impacts. In this case, the authors have used density inmass

per land area to indicate the spatial variations ofMS. Han et al. (2018), in the case of Shanghai, have uncovered the spatiotemporal dynamics ofMS

in multiple infrastructures. The authors have used a spatial-resolution grid of 500 meters and have delineated three distinct urban areas (center,

periurban, and suburban) to spatially indicate MS dynamics. In spite of this progress, there are matters that are currently less understood such as

the following: howmaterial composition in the accumulated stock varies spatially, how it relates to the characteristics of the in-use stock (e.g., age,

building type, etc.), and whether more refined spacial patterns can be depicted in the urban geography.

Furthermore, with a few exceptions, MS relations to urban form have not been addressed in the research literature. Schiller (2007) has used

urban form typologies to model the long-term material flows needed to maintain and expand the stock of residential buildings in Germany. The

author has demonstrated that (a) low-density residential areas have a higher share of MS in infrastructure networks and (b) long-term inflows

of materials related to maintenance of infrastructure networks are higher than the inflows related to maintenance and expansion of residential

buildings. Han et al. (2018) have underlined an increase in MS utility (on a per capita basis) in more compact urban forms. However, the apparent

material gain comeswith a tradeoff. Contemporary compact urban forms have a larger share of high-embodied environmental-impact construction

materials such as steel and concrete. Even though one of the studies has used a theoretical description of urban form and the other has statistically

analyzed the urban form of an urban case study, further work on MS related to urban form and new approaches to spatially analyzing them are

needed. For instance, questions such as how to identify MS patterns in relation to urban form and to indicate those patterns spatially have not yet

been addressed.

In the present study, in-useMSwas estimatedwith a bottom-upmethod for an urban area. The estimate was createdwith (a) material-intensity

coefficients and (b) spatial data for three built environment components: buildings, road transportation, and pipes. The main contribution of this

article toMS field is twofold:

• An innovative approach for spatial analysis of urbanMS is introduced. The main scope is to identify urban areas that have similar MS character-

istics, which can then be displayed on maps for spatial interpretation. For this purpose, neighborhoods’ administrative boundaries were used to

capture urban areas with different characteristics. At the neighborhood level, two sets of MS indicators were defined and then clustered with
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GothenburgSweden

F IGURE 1 Geographical location of Gothenburg city in Sweden, the administrative boundaries of the 96 neighborhoods, and built
environment spatial distribution

k-mean algorithms. With the defined indicators (a) relations between urban form and MS in-built environment components, and (b) spatial dif-

ferences in MS composition were underlined. Some of the above-mentioned research gaps were addressed through this analytical approach. It

must be noted that the approach proposed in this work is not intended to substitute other spatial and statistical methods previously employed

in the field, but to complement them.

• The present study is the first of its kind in Northern Europe. Therefore, the results were explored from a variety of perspectives (material com-

position, age distribution, andmaterial density) and, finally, contrasted on a per capita basis to the other case studies worldwide.

1.1 The case study

The city of Gothenburg is located on the west coast of Sweden (Figure 1). It is the second largest city in the country with an area of 447 km2 and

approximately 560,000 residents in 2016 (Statistics Gothenburg, 2016a). The city has a diverse economy and accommodates the largest port in

Northern Europe. It is also culturally diverse with a high yearly inflow and outflow of inhabitants (Statistics Gothenburg, 2016a).

The subcity administrative boundaries of Gothenburg have changed over time (Statistics Gothenburg, 2018a) and currently are divided at three

levels: 10 large districts, which are divided into 96 neighborhoods, which are finally segmented into 900 smaller base areas (Statistics Gothenburg,

2018b). For this study, the boundaries of the 96 neighborhoods were chosen, and are shown in Figure 1.

2 METHODS AND MATERIALS

The estimation ofMSwas created with a bottom-upmethod. Two dataset types were used in themodeling process: material-intensity coefficients

and spatial data. To spatially analyze theurbanMS, two sets of indicatorsweredefined at neighborhood level and clusteredwith k-mean algorithms.

2.1 Bottom-upMS

Equation (1) is a simplified mathematical representation of the MS modeling. Material-intensity coefficients specific to each built environment

component weremultipliedwith the corresponding physical size (area or length) measuredwithin the spatial boundaries of the case study.MSwas



4 GONTIA ET AL.

calculated for the following built environment components: buildings, road transportation, and pipes. Classes were defined for each component

(e.g., age, building types, and function, etc.) and are introduced in detail in the text below. Sevenmaterial categories were considered for the results

presentation: wood-based materials, ceramics and brick, mineral-binding materials, stone and aggregates, iron and steel, asphalt, and others (e.g.,

glass, polymers, etc.). Since a standardized nomenclature of constructionmaterials and their classification into categories is not yet available, these

seven material categories were defined to fit the categories used in previous studies as far as possible (Krausmann et al., 2017; Tanikawa et al.,

2015).

MSi,n,m =
∑

Xi,n,m x Bn,m (1)

whereMSi,n,m is the material stock for the material category i, for component n, classm; Xi,n,m is the intensity of material category i, for the compo-

nent n, classm; and Bn,m is the physical size of component n, classm.

2.2 Datasets

2.2.1 Material-intensity coefficients

The material-intensity coefficients for the three components considered are shown in Table 1. For residential buildings, the coefficients were col-

lected from an earlier study (Gontia, Nägeli, Rosado, Kalmykova, & Österbring, 2018). Both single-family (SF) and multifamily (MF) residential

buildings were included and further separated into four age classes (Table 1). Nonresidential buildings are divided by their function in society into

economic, industrial, and public, and further separated into age classes (Table 1). The age classes were defined thorough observations of 50 archi-

tectural drawings of nonresidential buildings dating from 1880 to 2010. The architectural drawings were collected from the archives of the city

planning authority (Stadsbyggnadskontoret, 2018). The main criteria used for the age class segmentation was the type of construction material

used in a building’s structure. The material-intensity coefficients were calculated for 15 of the most representative buildings with the volume of

constructionmaterials and the corresponding densities.

The road transportation network was separated into roads and bike lanes. Based on average annual daily traffic (AADT) criterion, the roads

were further separated into three standard intervals: lower than 3,500, 3,501–6,000, and higher than 6,000 vehicles per day. Bike lanes are built in

a single standard dimension and, therefore, only one coefficient was defined (Table 1). The coefficients for road transportation were derived from

the literature (Mirzanamadi, Hagentoft, Johansson, & Johnsson, 2018b; Mirzanamadi, Johansson, & Grammatikos, 2018a) and supported by the

findings of road-infrastructure experts and researchers.

The pipe networkwas separated into twodifferent systems: drinkingwater andwastewater. Thematerial-intensity coefficientswere calculated

for 275 pipe types, and are shown, aggregated in age classes and two diameter intervals, in Table 1. To derive the coefficients, the volumes were

related to mass with material density. The volume was calculated for one linear meter and from the differential area of the interior and exterior

diameter of the pipe. Secondary data were mainly used for the pipes’ coefficients. The largest share of the data was taken fromMalm et al. (2011)

and was further complemented with reports frommanufacturers, which follow the Swedish national standards. For example, the report published

by Pipelife Sverige AB (2000) was used to extract the diameters of the polyethylene pipes.

2.2.2 Spatial data

Area and length of the three built environment components were derived from spatial data and are shown aggregated for Gothenburg city, in

Table 2. The spatial data were collected for the year 2016.

For buildings, four spatial datasets were used: polygon, height, function, and year of construction. To estimate the in-use gross floor area, the

area of the building footprintwasmultiplied by the number of floors. The footprint areawas determined from the polygon features of each building

object. The number of floors was derived from the building’s height divided by the average height of a single floor. A building’s function and year

of construction were used to match the spatial data with the corresponding material-intensity coefficients. Residential buildings were separated

into SF andMF, and nonresidential buildings were separated into economic, industrial, and public (Table 1). Year of construction of each object was

used to form the age classes as shown in Table 1. Building features were merged in QGIS software (QGIS Development Team, 2018). If the dataset

was georeferenced, theQGIS function “Join attributes by location” was used. If the dataset was not georeferenced, the features were joined to the

spatial data, based on the identification code of each building object.

The spatial datasets for buildingswere collected fromthreedifferent authorities describedbelow.Whenever thedatawere incomplete, assump-

tionsweremade. Polygon geodatawere collected from the SwedishNational LandSurvey (Lantmäteriet, 2018) for 84,600building objects.Heights

of buildings were collected from the city planning authority (Stadsbyggnadskontoret, 2018) and matched 92% of the building objects. For the

remaining 8%, an average height was assumed depending on the building function. Spatial data for the function of buildings were collected from

the SwedishNational Land Survey (Lantmäteriet, 2018) and available for all the objects. Year of construction datawere collected from the Building

Register at the Swedish National Land Survey (Lantmäteriet, 2018) for 80% of the objects. The remaining 20% of the stock was assumed to have

the same age distribution as the 80% for which the year of construction data were available.
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TABLE 1 Material-intensity coefficients for the three built environment components

Component Class
Wood-based
materials

Brick and
ceramics

aMineral-binding
materials

Stone and
aggregates

Iron and
steel Asphalt Others Unit

Buildings MF residential b kg/m2

Before 1920 133 572 78 287 25 c- 44

1921–1950 81 386 362 60 85 – 75

1951–1980 17 28 763 10 122 – 30

After 1981 28 – 636 – 251 – 50

SF residential

Before 1920 149 26 21 675 3 – 21

1921–1950 120 11 276 74 8 – 52

1951–1980 51 39 362 – 78 – 37

After 1981 50 – 252 – 47 – 67

Economic

Before 1920 38 712 263 219 98 – 20

1921–1950 7 396 661 48 139 – 16

After 1951 5 30 855 – 47 – 16

Industrial

Before 1930 13 975 1369 – 39 – 7

1931–1980 16 27 712 – 153 – 13

After 1981 9 45 775 – 96 – 40

Public

Before 1930 81 838 352 278 46 – 5

1931–1980 26 344 622 94 46 – 8

After 1981 1 5 894 23 10 – 35

Road AADT< 3500 – – – 597 – 299 – d kg/m2

transportation AADT 3501–6,000 – – – 684 – 544 –

AADT> 6,000 – – – 771 – 598 –

Bike line – – – 300 – 402 –

ePipes Drinking water kg/m

Before 1950 – – – – 24 (26) – 1 (-)

1951–1990 – – 270 (660) – 22 (190) – 3 (8)

After 1991 – – 257 (570) – 12 (180) – 6 (128)

Wastewater

Before 1950 – – 270 (1300) – 44 (-) – 7 (-)

1951–1990 – – 245 (1445) – 26 (250) – 10 (-)

After 1991 – – 205 (1355) – 20 (215) – 8 (92)

AADT, average annual daily traffic; MF, multifamily residential buildings; SF, single-family residential buildings.
aConcrete cement is part of mineral-binding material category. An extended list of the construction materials and their classification into categories can be
found at Gontia et al. (2018). Note that the six material categories shown in the mentioned article are complemented here with asphalt material category.
That is because road transportation has high composition of asphalt.
bFor buildings, the “m2” in the unit refers to the gross floor area.
cThe sign indicates: not applicable for the described category.
dFor road transportation, the “m2” in the unit refers to the area at the ground level.
eMaterial-intensity coefficients for pipes are shown in two intervals of diameters: <800mm and ≥800mm. The second interval is displayed in parentheses.
When not applicable for the interval, this is markedwith “-.“
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TABLE 2 Area and length of the three built environment components for Gothenburg city

Component Class Area and length Unit

Buildings Multifamily residential 22.7× 109 am2

Single-family residential 13.8 × 109

Economic 8.9 × 109

Industrial 7.5 × 109

Public 9.4 × 109

Road transportation AADT<3500 3.9 × 103 bm2

AADT 3501–6000 9.6 × 103

AADT>6000 4.1 × 103

Bike line 1.4 × 103

Pipes Drinking water 1.7 × 106 m

Wastewater 2.5 × 106

AADT, average annual daily traffic.
aRefers to the entire gross floor area currently accumulated in building stock.
bRefers to the area at the ground level of the road, which was calculatedwith the length andwidth of the road.

The areas for the roads and bike lanes were calculated by multiplying the length with the equivalent width. The width for roads differs depend-

ing on the AADT class and, therefore, this attribute was taken into consideration. Similarly, the length of road was estimated separately for each of

the threeADDT classes. Terrain elevation featureswere taken into consideration for an appropriate estimation of the length. The surfacematerials

(e.g., bedrock, clay, etc.) onwhich the roads are constructed further influence the thickness of the transversal layers (e.g., wearing, base, etc.). There-

fore, this feature was attributed to the road transportation networks and these specifications were consideredwhenmodeling the stock. Planning

data, which indicate the year of land developed, were used to assign the year of construction for the roads. The spatial data used for road trans-

portation were entirely georeferenced, and, therefore, these attributes were joined by location. The length and ADDT data were collected from

the Swedish Transport Administration (Trafikverket, 2018). The surface materials, elevation, and planning data were obtained from the Swedish

National Land Survey (Lantmäteriet, 2018). Planning data and the derived years of construction matched 82% of the road network. For all the

other features, the datamatched entirely.

Circa12,500 segments of pipes of different lengthsweremodeled. The following featureswere attributed to eachpipe segment: length,material

type, diameter, year of installation, and system type (drinking water or wastewater). Apart from the year of installation, whichwas used to indicate

the age distribution ofMS, these featureswere used tomatch thematerial-intensity coefficients of 275 pipe typeswith the spatial data. The spatial

data were collected for 100% of the in-use pipes stock from the municipal water management office in Gothenburg (Kretslopp och Vatten, 2018).

For confidentiality reasons, the data were provided in Excel files based on the authors’ specifications, and no other spatial analysis was performed.

2.3 Spatial analysis: Clustering algorithms and indicators

The spatial analysis approach introduced here is an attachment to the bottom-up MS estimates. The main scope of this approach is to identify

urban areas that have similar MS characteristics, which can then be displayed on maps for spatial interpretation. To capture the characteristics of

different urban areas, neighborhood administrative boundaries were utilized. In the case of Gothenburg, the 96 neighborhood boundaries (Statis-

tics Gothenburg 2018b) were used. To divide the entire urban stock, neighborhood identification codes were attached to the build environment

components with the GIS function “Join attributes by location.” At this spatial level, two sets of MS indicators were defined. Their description is

presented below and the inventory of the data can be found in Supporting Information S1.

The first set of indicators was used to underline relations betweenMS and urban forms. The indicators used are:

• MS density (mass per land area) separated by built environment components: buildings, road transportation, and pipes.

• Building types: residential and nonresidential.

• Residential building types: SF andMF. Note that the indicator is derived from number of buildings.

The second set of indicators was used to underline spatial differences in material composition of the stock. The analysis was carried out for

residential buildings, using the further mentioned indicators. Nonresidential buildings (building types: economic, industrial, and public) were also

tested in a similar way and the results are considered in Section 4.

• MS separated by material category: wood-based materials, ceramics and brick, mineral-binding materials, stone and aggregates, iron and steel,

and other. Note that asphalt was not regarded as a separatematerial category because it has a low share in residential buildings.
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• Residential building type: SF andMF. Note that the indicator is derived from gross floor area.

• Age class: before 1950, 1951–1980, and after 1981.

Next, the indicators were standardized and clustered with k-mean algorithms (Hartigan &Wong, 1979). Clustering analysis is an unsupervised

learning technique, used to partition a set of unclassified observations into homogenous subgroups. The optimal number of clusters was deter-

mined with the elbow method (Tibshirani et al., 2001), which indicates the point at which the improvement in error decreases sharply with any

additional increase in the numbers of clusters. The derived clusters were assigned back to the 96 neighborhoods to form new maps for spatial

interpretation. To test if a different algorithm leads to different results, hierarchical clustering (Murtagh, 1985) and k-median clustering (Cardot,

Cénac, &Monnez, 2012) were employed for the second set of indicators. The results are considered in the Section 4.

3 RESULTS

3.1 UrbanMS in a Northern European case study

The in-useMS forGothenburg city is estimated at 84millionmetric tons (t) and the per capita to 153 t. Of the total stock,mineral-bindingmaterials

(48%) take the largest share, followed by stone and aggregates (20%), ceramics and brick (10%), and asphalt (9%). Steel takes circa 7% of the stock

and wood-based materials equate to 3% (Figure 2). The majority of theMS can be found in buildings (73%), followed by road transportation (26%)

and pipes (1%) (Figure 2). For the building stock, residential buildings accommodate 56% and nonresidential buildings 44% of the MS. Residential

MF buildings take 67% and SF take 33%.Within the nonresidential buildings, each function type contributes with circa one third: economic (36%),

industrial (28%), public (37%). For the transportation stock, roads take 95% and bike lanes 5%. From the pipes’ stock, drinking water takes 7% and

wastewater 93%.

3.1.1 Age andmaterial composition of the stock

In Figure 2a, the age distribution of the in-use MS is shown. It can be seen that the largest part of the stock (circa 40%) dates to 1960s and 1970s.

The high stock dating to this period is explained by the national initiative of 1965, when it was proposed to build one million apartments within

one decade (Boverket 2014). Even though the national program was intended solely for residential buildings, nonresidential buildings and the

network infrastructures also demonstrate the highest stock dating to this period. Only 3% of the stock dates to before 1920. The other decades

show a contribution of an average 8%. Figure 2b shows the material composition of the in-use stock in relation to the construction period. On

average, 50% of the stock prior to 1920s consists of stone and aggregate, followed by brick and ceramics (26%). From the 1920s onwards, mineral-

binding materials show the largest contribution to MS, which is, on average, 50%. Until 1960, brick and ceramics constitute a considerable share

of the stock (average 27%). Wood-based materials show a decreasing contribution from 7% for the older stock to 2% for the more recently

accumulated stock. On the contrary, steel and asphalt show an increased contribution with time, from 4 to 8% and from 5 to 11%, respectively.

Figure 2c shows the in-use stock in different built environment components in relation to the construction period. It can be seen that, regardless of

the decade interval, the largest share of in-use stock is in the buildings. However, the results also demonstrated that the share of road transporta-

tion grew in proportionwith time. Pipes resemble the fluctuations shown by road transportation, but do not show an increasing contribution toMS

with time.

3.1.2 Density of material stock

Figure 3 shows the density of the stock, in-mass per land area, for the three component types, but only for a few selected material categories. The

96 neighborhoods have been used to spatially illustrate the stock density. It can be seen that the largest density is in buildings for mineral-binding

materials (up to 1,550 kg/m2), followed by brick and ceramics (up to 700 kg/m2), and wood-based materials (up to 120 kg/m2). A lower density is

evident for asphalt in road transportation, which shows results of up to 75 kg/m2, and, finally, steel in the pipes network has less than 1 kg/m2. In

regard to the spatial distribution, it can be seen that the highest stock density is in the centrally located areas. Further away from the center, toward

the outskirts of the city, the material density decreases. This is because the land has been built up at different intensities. Aspects, such as heights

of buildings, building types, and age of the stock further influence thematerials density and its spatial distribution. For instance, brick and ceramics

category is highly concentrated in the city center (Figure 3). The centrally located areas are characterized by the largest share of MF buildings

erected before 1950, which have the highest brick and ceramics material intensity (Table 1). Mineral-binding and wood-based material categories

have a relatively high stock density in the intermediary areas of the city (Figure 3). These areas are characterized, in the case of mineral-binding

materials, by the buildings from 1960s and 1970s, which have the highestmineral-bindingsmaterial intensity. In the case of wood-basedmaterials,

the intermediary areas are characterized by SF residential buildings, which have the highest wood-based material intensity. Steel in pipes shows a

less centered spatial distribution, which can be explained by the fact that steel pipes are no longer in use and have mainly been replaced by plastic

pipes from the 1970s onwards. The results only indicate the remaining in-use stock.
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(a)

(b)

(c)

F IGURE 2 Material stock characteristics in the City of Gothenburg. (a) In-use stock by decade from before 1900 until after 2011 shown as
percentages derived frommass; (b) material composition from before 1900 until after 2011 shown as percentages derived frommass; (c) material
stock by built environment component from before 1900 until after 2011 shown as percentages derived frommass. The last bar in graphs (b) and
(c) represent the characteristics of the total in-usematerial stock as of 2016. Additional data provided in Supporting Information S2
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(a) Buildings

(b) Road transporta�on (c) Pipes

F IGURE 3 Density of material stock in kg/m2 land area shownwithin the 96 neighborhoods of Gothenburg city. (a)Wood-basedmaterials,
brick and ceramics, andmineral-bindingmaterials in buildings; (b) asphalt in road transportation; (c) steel in pipes. Note that material density
location is dependent on built intensity in the area and other characteristics of the built environment components. Additional data provided in
Supporting Information S2. A GIS shapefile, including codes for each neighborhood, is available for this figure in Supporting Information S3

3.2 Spatial analysis of urbanMSwith clustering algorithm

3.2.1 MS and urban form

The results shown in Figure 4 are basedon the first set of indicators (see Section2). Themap indicates the spatial distribution of the formed clusters

and the table below indicates the mean value corresponding to each indicator and cluster. Four neighborhood types were identified. Of the total

urban area, neighborhood type I takes 25%, type II takes 37%, type III takes 36%, and type IV takes 2%.

Neighborhood type I is a SF residential area, which is spatially located on the coast (Figures 1 and 4). It has an average density of 140 kg/m2. The

buildings to roads ratio is 51% and buildings to pipes ratio is 2.1%. Neighborhood type II is also a SF residential area, spatially distributed on the

outskirts, but in-land (Figure 4). It has a higher density of 208 kg/m2 and marginally lower ration of 49 and 1.9%, respectively. Neighborhood type

III is located in-between the central and the outskirts area (Figure 4). It is mainly residential (71%) with amix of SF andMF buildings. This typology

has an average density of 435 kg/m2, and a ratio of 27 and 1.2%, respectively. Neighborhood type IV is centrally located (Figure 4). It has the highest

mix of nonresidential and residential buildings. Moreover, this neighborhood type has the highest average stock density of 1,810 kg/m2 and the

lowest ratios of 11 and 0.6%. These results suggest that a lower building density, such as SF residential areas, have proportionally higher MS in

roads and pipes infrastructure networks. On the contrary, centrally located neighborhoods of mixed building types have a considerably higher MS

density, and a lower proportion ofMS in road and pipes infrastructure networks. Finally, it can be seen that the largest part of the city is built in low

tomediumMS density, and that only a small fraction is built in high density.

3.2.2 MS composition in residential buildings

The results shown in Figure 5 are based on the second set of indicators (see Section 2). Four neighborhood types were identified. In Figure 5, the

results are shown spatially and the mean value of each indicator for the formed clusters is tabulated below. If cumulated, the stock for the four
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(a)

(b)

F IGURE 4 Clustering results for the first set of indicators. (a) Spatial representation; (b) tabulated values for each indicator and neighborhood
type. SF, single-family residential buildings; MF, multifamily residential buildings. Additional data provided in Supporting Information S2

neighborhood types distributes as follows: 7.6 million tons for type A, 13.7 million tons for type B, 11.2 million tons for type C, and 1.6 million tons

for type D.

Neighborhood type A is characterized by SF buildings and located at the outskirts of the city (Figure 5).Wood-basedmaterial accounts for 12%

of the stock, which is the highest among the four neighborhood types and 56% is mineral-binding material. The buildings’ ages are a mix of the

three age-class intervals. Neighborhoods type B are characterized by MF buildings and are located in-between the outskirts and the central area

(Figure 5). The stock is mainly composed of mineral-bindingmaterials, which take circa 70% of the total. A total of 90% of the stock dates to 1951–

1980. Neighborhood type C is, on the whole, MF built. In this case, the neighborhood cluster is centrally located (Figure 5) and 74% of the stock

dates back to before 1950. Another particularity of this neighborhood cluster is the high brick and ceramics content (24%), which is the largest of

the four neighborhood types. Neighborhood type D is populated with 89%MF buildings constructed mainly after the year 1981. Geographically,

they are positioned in the center and intermediary areas of the city (Figure 5). Amajority of the stock ismade frommineral-bindingmaterials (58%),

but the percentage of steel, at 17% of the residential MS, is noticeably high.

4 DISCUSSION

4.1 Discussion on the spatial analysis results

With the first set of indicators, it was shown that low-density urban areas with SF residential buildings have a higher percentage of MS in trans-

portation and pipes networks than higher-density mixed areas of nonresidential andMF residential buildings. These findings have implications for
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(a)

(b)

F IGURE 5 Clustering results for the second set of indicators applied to residential buildings. (a) Spatial representation; (b) tabulated values as
percentages for each indicator and neighborhood type.W, wood-basedmaterial; B , brick and ceramics;M, mineral-bindingmaterials; S, stone and
aggregates; I, iron and steel; O, other constructionmaterials. Additional data provided in Supporting Information S2

planning a less resource-intensive urban built environment, and could be especially relevant for the rapidly developing cities of the Global South

(United Nations, 2014).

The topic of compact urban form is very complex and much debated in the literature (Burgess & Jenks, 2002; Burton, Jenks, &Williams, 2003;

Jenks, 2000). Even though more compact cities show multiple benefits, such as efficient land use, effective public transportation, higher accessi-

bility, and reduced car ownership, at the same time, the compact city shows a higher risk of pollution due to congestion, less open space, and less

acceptance by some of the residents. These contradictions lead to conflicting solutions and questions are raised when discussing ways forward.

Nevertheless, beyond tradeoffs, urban form remains one of the relevant factors of the urban-sustainability discourse. For instance, a recent study

underlined the importance of the urban form in relation to climate change mitigation (Creutzig, Baiocchi, Bierkandt, Pichler, & Seto, 2015). In a

similar way, the current study showed variations inMS among diverse urban forms.

With the second set of indicators, neighborhoods that show specific material composition, age class, and building type were identified. Of the

four clusters identified for residential buildings, one is SF residential and the three others are MF residential. Each of the neighborhood types has

a specific material composition of wood, brick, mineral-binding and steel. Besides the material-composition specifics, it should be noted that SF

buildings tend to cluster in a mix of different age classes from 1880 to 2010, whereas MF buildings tend to cluster in more distinctive age classes

(before 1950, 1951–1980, after 1981). Moreover, the age class suggests which constructionmaterials to expect for secondary use when buildings

come to an end of their lifetime. The end of life of buildings is nevertheless a very complex matter, and in most cases the designed lifetime is not an

appropriate indicator. For instance, in the case of China, it was shown that internal factors (e.g., construction quality, building type, etc.) havemuch

less influence over the end of life of buildingswhen compared to external factors such as the economic context (Liu, Xu, Zhang, & Zhang, 2014). The
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end of life of buildings in the context of the present case study was not researched, and to make further use of the present results future analysis

on this topic is needed.

4.2 Discussion on the spatial analysis approach

k-mean clustering algorithm was employed for the present study. To test if a different clustering algorithm leads to different results, hierarchical

clustering (Murtagh, 1985) and k-median clustering (Cardot et al., 2012) were applied to the second set of indicators (see Section 2). Hierarchical

clustering returned similar results to k-mean clustering (Figure S1 in Supporting Information S1). However, five neighborhoods changed to a differ-

ent cluster. The reasons for changing to another cluster were threefold: (a) the values for all the indicators were in-between the formed clusters,

(b) some indicators were strongly related with one cluster whereas the others were strongly related to the other cluster, or (c) the indicators were

not common to any of the formed clusters. It was not possible to clearly locate the five neighborhoods in a particular cluster and they, therefore,

can be considered outliers. k-median clustering returned considerably different results from k-mean clustering. Even though neighborhood types

A, B, and C maintained their characteristics, neighborhood type D did not. Instead, k-median identified a new cluster that had different charac-

teristics (Figure S2 in Supporting Information S1). This optimization was carried out at the expense of increased distortion in cluster D and the

other clusters (Table S3 in Supporting Information S1). Moreover, onmultiple runs of the k-median algorithm, the returned results were less stable

than those returned with the other two algorithms. Nonetheless, these results also point to the fact that neighborhood type D is a weak cluster

formation.

It can be concluded that testing multiple algorithms was useful to identify outliers that do not fit into any of the formed clusters. This outcome

also suggests that the trends underlined with the proposed spatial-analysis approach are representative only for the entire city, and not repre-

sentative for each individual neighborhood. Furthermore, it was possible to identify the weak clusters such as neighborhood type D. Finally, these

analyses indicate that different algorithms can return different results and, therefore, further analysis on algorithms and their impact on spatial

analysis of urbanMS are recommended.

Low variations in the indicators among the neighborhoods showed less categorical patterns. This was showcased with nonresidential

buildings (Figure S3 in Supporting Information S3), which like residential buildings were clustered with the second set of indicators (see

Section 2). The results indicate that nonresidential buildings are more homogenously distributed compared to residential buildings. In this case,

a smaller spatial segmentation could be more appropriate for the analysis. Moreover, nonresidential buildings showed less distinctive material-

intensity coefficients in comparison to the residential buildings (Table 1) and, therefore, less distinctive material-composition patterns could be

depicted.

The spatial analysis method can only be applied to bottom-upMS studies with rich spatial data. Rich spatial data are not available in many parts

of the world, and this can be a limitation for future application of the proposed approach. Nevertheless, spatial data availability worldwide tends

to increase in both quantity and quality. Furthermore, material-intensity databases have not yet been developed in many countries, which could

further limit the application of the proposedmethod.

The neighborhood boundaries were used to capture the characteristics of different urban areas. For replicability purposes, it is important that

subcity boundaries are common in other cities around the world. In the European Union (EU) all the cities above 250,000 inhabitants should have

defined subcity administrative boundaries (Eurostat 2017; Urban Audit, 2004). Urban Audit (2004) has suggested three main criteria for defining

the boundaries, namely the cities should have between 5,000 and 40,000 residents depending on the city size, should be internally homogenous

in terms of social structure and built environment, and should show contrasting differences to the other neighborhoods. A short screening of the

main webpage of several cities worldwide indicates that subcity boundaries are common, but, nonetheless, collective reports on this matter, as in

the case of the EU, were not found. An alternative spatial segmentation method is the use of standardized grid cells, which have been previously

reported on in the literature and are available worldwide.

The reason for selecting the 96 neighborhoods for the present study was partly because they follow the EU criteria; partly because socioe-

conomic and demographic indicators (e.g., car ownership, income, etc.) is openly available within these spatial boundaries and it could determine

further analysis of the urban MS. For instance, SF residential areas that in this study were found to have a higher proportion of road MS, also

have 59% higher car ownership than in MF residential areas (418 cars/1,000 inhabitants for SF and 263 cars/1,000 inhabitants for MF) (Statistics

Gothenburg, 2016b). From a material resource point of view, the car ownership indicator further supports the concept of a more compact urban

form. Further studies could look at correlations between average income, demographical indicators, andMSaccumulation. Such analysis could con-

tribute to the discussion on drivers of MS accumulation (Fishman et al., 2015; Huang et al., 2016), and complement this topic from the household

perspective in relation to urban form.

4.3 MS per capita

MSper capita is a commonly used indicator to compare and partly validate results inMS studies. Even though the stock in residential buildings and

road networks in EU 25 (Wiedenhofer et al., 2015) and pipes in European cities (Pauliuk, Venkatesh, Brattebø, & Müller, 2014) have been looked
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TABLE 3 Material stock per capita from current and previous case studies

Case study Total Buildings Residentials Roads Wastewater Year Source

Beijing, China a– 38 16 1 2.3 2013 Huang et al. (2016)

bBeijing, China – – – 6 – 2013 Guo et al. (2014)

Chiclayo, Peru – – 55 – – 2016 Mesta et al. (2018)

Gothenburg, Sweden c153 112 62 38 1.3 2016 Current study

dManchester, UK – 79 38 24 – 2004 Tanikawa andHashimoto (2009)

Oslo, Norway – – – – 0.9 2008 Pauliuk et al. (2014)

Shanghai, China – 39 24 0.9 2.9 2013 Huang et al. (2016)

Tianjin, China – 54 25 2.3 4.4 2013 Huang et al. (2016)

Trondheim, Norway – – – – 1.0 2008 Pauliuk et al. (2014)

Vienna, Austria – 210 132 – – 2013 Kleemann et al. (2016)

dWakayama, Japan – 221 108 26 – 2004 Tanikawa andHashimoto (2009)

EU 25 countries – – 72 80 – 2009 Wiedenhofer et al. (2015)

Industrialized countries e335 – – – – 2010 Krausmann et al. (2017)

aThe sign indicates: not applicable for the described category.
bThe values were calculated as 80% of the total road stock, without the 20% ancillary facilities.
cThe value refers tomaterial stock accumulated in buildings, road transportation, andwater pipes.
dThe stock was calculated for central areas in the two cities.
eThe value refers to thematerial stock accumulated in buildings, infrastructures, and durable goods.

at previously, the present work is the first bottom-upMS study of a Northern European city. Therefore, the results of the current study are further

contrasted with those from previous case studies (Table 3).

The per capita stock for industrial countries was estimated at 335 t (Krausmann et al., 2017), which is circa twice as high as the 153 t shown

for the present case study. The difference can be partly explained by the fact that the referenced article included all the infrastructure types and

the durable goods, which were not considered in the current assessment. Previous studies have shown that some infrastructures could make a

considerable contribution to the stock. For example, seaports, in the case of Japan, showed a contribution of 19% to the overall stock (Tanikawa

et al., 2015). Furthermore, it was shown that top-downMS estimates tend to be higher when compared to the bottom-upMS estimates (Tanikawa

et al., 2015). This aspect could further explain the different findings.

Residential stock per capita for Gothenburg was estimated at 62 t (Table 3). Similar values (13% lower) were shown for the city of Chiclayo in

Peru, which, as of 2016, had residential stock estimated at 55 t per capita (Mesta et al., 2018). The three largest Chinese cities had two to three

times lower residential stock per capita: 16 t for Beijing and 25 t for Tianjin (Huang et al., 2016). The level of economic development can explain

the lower stock in these case studies. However, this argument is not valid for Manchester city, which shows a residential stock of 38 t per capita

(Tanikawa &Hashimoto, 2009). The study of the EU 25 countries (Wiedenhofer et al., 2015) showed a residential stock per capita of 72 t, which, to

a certain extent, validates the results of the present study. The relatively higher stock can be explained by the high number of SF residential areas

in the EU25, which have a higher stock per capita thanMF building areas.Moreover, the difference can also be explained by the brick and concrete

structure of SF buildings, which are predominant in the EU 25 (Wiedenhofer et al., 2015), contrasted to themainly wooden structure SF in Sweden

(Gontia et al., 2018). In contrast, other studies showed larger residential stock per capita. For instance, for Vienna, Austria, the residential stock

was estimated at 131 t (Kleemann et al., 2016) and for the city center ofWakayama, Japan the residential stockwas estimated at 108 t (Tanikawa&

Hashimoto, 2009). Somepossible explanations for the case of Japan could be the national regulations due to seismic activities, which, consequently,

have led to highermaterial intensity (Tanikawa&Hashimoto, 2009). In the case of Vienna, the considerably higher stock can be partly explained by

the 15% higher material-intensity coefficients when compared to those used in the present study (Gontia et al., 2018).

For the road network, the current study showed, on average, higher stock per capita than other case studies (Table 3). For instance, it is 45%

higher compared to the center of Wakayama, Japan and 58% higher compared to Manchester, UK (Tanikawa & Hashimoto, 2009). A large dif-

ference (up to 40 times higher) can be seen in comparison to the Chinese cities (Huang et al., 2016). However, the difference might be actu-

ally smaller as indicated by another study, which for Beijing estimated the road stock per capita to 6 t (Guo et al., 2014). The study of the EU

25 countries showed a stock in roads of circa 80 t per capita (Wiedenhofer et al., 2015), which is twice as high as the figure estimated in the current

study. Further investigations are necessary for the Chinese cities, but the underlined differences in stock for the road network can be speculatively

explained by the population density. Thus, lower population density indicates a higher road stock per capita. In the current context, the population

density for the EU 25, as of 2003, was 118 inhabitants/km2 (Eurostat 2006), Gothenburg has a population density of 1,260 inhabitants/km2, and

the city center ofWakayama, Japan, as of 2009 had a density of 4,500 inhabitants/km2 (Tanikawa & Hashimoto, 2009). For the wastewater pipes,
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the Chinese cities showed two to three times higher values in comparison to the current study (Huang et al., 2016). Nonetheless, other European

cities (Pauliuk et al., 2014) showed similar results to Gothenburg at circa 1 ton per capita (Table 3).

5 CONCLUSIONS AND FUTURE WORK

In this article, an innovative approach to spatially analyze urbanMS was introduced. The main scope of these analyses was to identify areas in the

urban geography that have similar MS characteristics. For this purpose, MS indicators were defined at neighborhood level and clustered with k-

mean algorithms. Bottom-up estimations of MS for three built environment components were created: buildings, road transportation, and pipes.

Gothenburg, Swedenwith its 96 neighborhoods was used as a case study. Since, this was the first case study for Northern Europe, the results were

explored from a variety of angles and contrasted on a per capita basis to other studies worldwide.

In-use MS was estimated at circa 84 million t. Buildings take 73% of the stock, road transport 26%, and pipes 1%. Mineral-binding materials

account for the largest share of the stock, followed by aggregates, brick, asphalt, steel, and wood. The largest part of the stock comes from the

period interval 1960–1980. The estimatedMS per capita equals to 153 t. The residential stockwas determined at 62 t per capita, which is between

the lowest and the highest values found in previous studies. Spatially, it was demonstrated that dense built neighborhoods ofmixed residential and

nonresidential buildings have a lower proportion of MS in roads and pipes, than low-density SF residential neighborhoods. Furthermore, residen-

tial buildings have distinct spatial patterns inmaterial composition.Whereas SF residential neighborhoods tend to cluster inmixed-age classes and

have a considerably higher wood composition, MF residential neighborhoods tend to cluster in single-age classes with distinct material composi-

tions of brick, mineral binding, and steel.

Further methodological work should be undertaken on developing MS indicators, testing other spatial divisions of urban stock, and contrast-

ing different clustering algorithms. In terms of possible case studies, it would be interesting to apply the proposed spatial-analysis approach to

megacities or multiple cities.
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