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Abstract — This paper investigates an enhanced
direction-of-arrival (DOA) estimation problem of spatio-temporal
correlated sources when a multiple-input multiple-output
(MIMO) sparse radar is deployed. A virtual array with
increased degrees-of-freedom (DOF) is realized within two steps
by combining MIMO radar with the Khatri-Rao (KR) product
approach. Since the final virtual array is a uniform linear array
(ULA), a well-known spatial smoothing algorithm is applied
to reinforce the rank of its covariance matrix. Meanwhile, the
enhanced DOF results in a higher spatial resolution of the radar
in the context of DOA estimation.
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I. INTRODUCTION

Autonomous cars and advanced driver assistant systems
(ADASs) have attracted many research efforts, in both
academia and industry, for the sake of a human safety
and welfare [1]. In order to accomplish this complex
mission, sensing the surrounding of vehicles by radars is
one the principal backbone of the enabling technology.
Direction of arrival (DOA) estimation, to spatially distinguish
multiple sources and to provide an unambiguous picture
of the surrounding environment, necessitates for an antenna
array equipped with a signal processing unit. However, its
performance highly depends on the antenna aperture size,
number of elements in the array and the DOA estimation
algorithm [2].

Multiple-input multiple-output (MIMO) active sensing, by
deploying independent waveforms at the transmitter elements,
have illustrated a superior performance by the means of a
virtual array with enhanced degrees-of-freedom (DOF), in
comparison with phased array radars [3]. Furthermore, an
intelligent non-uniform localization of antenna elements in
the aperture, e.g., minimum-redundancy arrays (MRAs) [4],
co-prime arrays [5], nested arrays [6], sparse ruler arrays [7]
and CRB-optimal array [8] have been developed to maximize
the radar resolution and therefore the DOF by achieving more
unique lags.

The concept of Khatri-Rao (KR) product along with the
assumption of quasi stationary sources [9], has been shown
to be capable of increasing the DOF to 2N − 1 using an
N -element array by vectorizing the covariance matrix of the
received signal. This new vector can be treated as a single
snapshot received signal at an elongated virtual array. However,

the underlying simplifying assumption in their approach is the
availability of sources with zero temporal correlation. In [10]
and [11], it has been proved that there is an upper-bound
on the value of the source cross-correlations, depending on
the minimum source power, the number of sources and the
angular separation among them, which it is still valid to deploy
the KR approach. The feasibility of this approach has been
shown in [12] by differentiating coherent sources employing
the difference co-array of a sum co-array (DCSC).

In this paper, a new antenna configuration, using three
transmitters and four receivers, is proposed to be used in an
active radar with enhanced DOF. The idea of MIMO radar is
combined with the KR product approach to produce a virtual
uniform linear array (ULA) in two steps. By employing the
MIMO concept, a virtual sparse ruler with eight marks is
realized. Then, the DOF of the final virtual array is increased
by the KR product principle. Since the final virtual array is
a ULA, the spatial smoothing [13] is applied to reinforce the
rank of its covariance matrix, with the cost of losing some
DOFs. Afterwards, MUSIC algorithm [14] is deployed for
DOA estimation. While the main concentration of the similar
works is on the number of sources which can be detected,
this study focuses on differentiating spatially and temporally
correlated sources.

Notations: Boldface upper case and lower case denote
matrices and vectors, respectively. (.)∗, (.)T and (.)H are
conjugate, transpose and Hermitian operators while ⊗ and
� represent the Kronecker and KR products, respectively.
The notation vec(.) stands for vectorization; that is if R =
[r1, . . . , rN ] then vec(R) = [r1

T , . . . , rN
T ]T .

II. DOA ESTIMATION WITH ACTIVE SENSING

First the signal model and the assumptions used in this
paper are described.

A. Signal Model

Consider K narrowband equi-distant sources located in the
far-field of a MIMO radar which the inter-element spacing in
both transmitter (TX) and receiver (RX) antennas is an integer
multiple of a half-wavelength (λ/2). A transmitted signal by
the k-th source is denoted by sk(t); then a source vector can be
realized by s(t) = [s1(t), . . . , sK(t)]T . Assuming M and N
antennas at the TX and RX, respectively, an observed signal by



an MN -element receive-only virtual array can be represented
by [15]

x(t) = As(t) + n(t), t = 0, 1, 2, . . . (1)

where A = at(θk) ⊗ ar(θk) ∈ CMN×K is the array
manifold of the virtual array. at(θk) and ar(θk) are the TX
and RX steering vectors, respectively. Also, n(t) ∈ CMN×1

represents the spatial noise satisfying n ∼ CN (0, σ2I) and it is
statistically independent of the source signals. Herein, σ2 = 1
is assumed. The DOA of each source k lies in the field-of-view
(FOV) of the MIMO radar.

B. Proposed MIMO-Sparse Radar

In a conventional MIMO radar design, both TX and RX
antennas are ULAs with uniform spacing. That is, assuming
an N -element ULA with a unit spacing d = λ/2 at the RX
side, the inter-element spacing of an M -element array at the
TX side is Nd [3]. In this case, the Kronecker product delivers
an MN -element virtual ULA with d spacing.

In order to increase the DOF further, the antenna elements
at the TX and RX of a MIMO radar can be placed in such a
way that the Kronecker product of their corresponding steering
vectors generates a sparse ruler virtual array. A sparse ruler
with length L is lacking some distance marks, however, the
co-difference of existing marks generates all marks from 0
to L [7]. This approach of employing a difference co-array,
realizable by KR product, significantly improves the DOF. The
covariance matrix of the sparse ruler can be represented by

Rxx = E{x(t)xH(t)} = ARssA
H +C, (2)

where Rss denotes the source covariance matrix within
which the diagonal and off-diagonal elements represent the
source powers and correlation among them, respectively. C ∈
CMN×MN is the noise covariance matrix.

Following [9], the Rxx of an MN -element virtual sparse
ruler array can be vectorized to form the signal snapshot
steering vector of the difference co-array.

z = vec(Rxx). (3)

Simplifying the model for uncorrelated sources, (3) can be
rewritten as

z = (A∗ �A)p+ vec(C), (4)

where p = [p21, . . . , p
2
K ]T is a vector of the source powers.

Eq. (4) is not exact if the off-diagonal elements of Rxx appear
to be non-zero. However, depending on the cross-correlation
values the error might be tolerable [10], [11]. We investigate
the effect of this error on the accuracy of the DOA estimation
as the number of snapshots decreases. It should be mentioned
that depending on the placement of the sensors in the MIMO
configuration, the resulting sparse ruler is not necessarily
minimal. Therefore, the length of the sparse ruler defines the
DOF in the final difference co-array.

Since the sparse ruler with a length L generates all
marks from 0 to L, the final virtual array is a ULA.
Hereupon, the spatial smoothing [13] can be applied to

restore the rank of its covariance matrix, although some other
works used more sophisticated DOA estimation algorithm,
e.g., [12]. Afterwards, a MUSIC algorithm is applied for DOA
estimation.

III. SIMULATION RESULTS

In this section, the performance of a conventional MIMO
and proposed MIMO-sparse radars with 3 TX, 4 RX antennas
are compared in terms of their ability to distinguish spatially
and temporally correlated sources. In a conventional MIMO
configuration, the RX antennas are separated by unit spacing
(d = λ/2) and therefore the inter-element spacing at the TX
side is d = 4×λ/2 = 2λ. Four RX antennas are positioned at
[0, 1, 2, 3]d while three TX antennas are located at [0, 4, 8]d.
They are sharing the left edge element. By applying A =
at(θk) ⊗ ar(θk), the virtual array is a 12-element ULA with
unit spacing. Therefore, using MUSIC algorithm up to eleven
sources can be detected [14].

In a MIMO-sparse configuration the TX and RX elements
are localized in a way that the Kronecker product of their
steering vectors generates the steering vector of a sparse ruler
antenna with eight marks, in order to increase the spatial
resolution. Four RX antennas are located at [0, 2, 7, 11]d and
three TX antennas are placed at [0, 1, 11]d. Since the aperture
size of both TX and RX antennas is the same, they are
sharing the left and right edge elements together. Computing
A = at(θk)⊗ ar(θk) reveals that the resulting virtual array is
a sparse ruler with elements at [0, 1, 2, 3, 8, 13, 18, 22]d. The
sparse ruler has a length of L = 22. Since the Kronecker
product generates some unnecessary marks, e.g., [7, 11]d, the
virtual sparse ruler is not minimal.

Afterwards, the KR product concept can be applied to
produce the difference co-array. Due to the sparse ruler
features, the difference co-array generates all marks from
−L to +L. That is, the final virtual array is a ULA with
45 elements separated by unit spacing. However, it should
be noted that the final virtual array holds a single snapshot
steering vector with a rank-deficient covariance matrix. As
mentioned in [6], the spatial smoothing can be applied to any
array whose difference co-array is a filled ULA. Hence, this
approach is utilized to restore the rank of the covariance matrix
with the cost of loosing some DOFs. Upon applying the spatial
smoothing at the virtual array the rank of its covariance matrix
is increased up to 23. Therefore, the DOF of the MIMO-sparse
configuration is still almost twice than the conventional MIMO
one. Eventually, MUSIC algorithm is deployed for the DOA
estimation.

As a consequence of increasing the DOF, higher spatial
resolution can be achieved. Fig. 1(top), illustrates the enhanced
spatial resolution of the MIMO-sparse radar in comparison
with the conventional MIMO, when the angular difference
between two sources is 3◦ and sufficiently large number of
snapshots is assumed. Fig. 1(middle) and (bottom) shows the
configuration of the MIMO-sparse and conventional MIMO
radars, respectively. The enhanced DOF is also observed in
Fig. 2, when the DOA estimation of 15 sources is successfully
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Fig. 1. (Top) Normalized spectrum of the DOA estimation using MIMO-sparse
and conventional MIMO radars, (b) MIMO-sparse radar configuration, (c)
Conventional MIMO configuration.
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Fig. 2. DOA estimation of 15 equi-spaced sources employing a MIMO-sparse
radar with 5 physical antennas. Red dashed lines represent the exact location
of the sources and a blue curve shows the normalized spectrum of the DOA
estimation.

accomplished using a MIMO-sparse radar with 5 physical
sensors, assuming two elements are shared among TX
and RX. In Fig. 2, a wide FOV of ±60◦, required in
short-range automotive radars, is considered when the sources
are equi-spaced in the angular domain. Also, the power of all
sources is assumed to be unity. These two figures illustrate
the spatial correlation reduction among sources due to the
enhanced DOF.

A critical challenge in automotive radar applications is
the limited number of snapshots which results in temporally
correlated sources. In a worst case, having only one snapshot
eventuates in coherent sources. In order to evaluate the effect
of the number of snapshots on the performance of the two
radar configurations, a Monte Carlo simulation is performed.
It is assumed that K sources are randomly distributed in the
narrow FOV of ±20◦, while the minimum allowable angular
separation between sources is 3◦.
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Fig. 3. Average temporal correlation among two sources versus the number of
snapshots, when sources are randomly localized inside the FOV in 500 Monte
Carlo simulation runs.
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Fig. 4. RMSE versus the number of snapshots through 500 Monte Carlo
simulations, when five sources are randomly localized inside the narrow FOV
with minimum angular separation of 3◦.

Such a high resolution and a limited FOV are desirable in
long-range automotive radars. DOA estimation is performed,
for 500 times, in a Monte Carlo simulation. Afterwards,
the root mean square error (RMSE) over N0 Monte Carlo
simulation runs is computed by

RMSE =

√√√√ 1

N0K

N0∑
i=1

K∑
k=1

[(
θk − θ̂ik

)2]
. (5)

Fig. 3 illustrates the average correlation among two sources
in the FOV. As depicted in this figure, a limited number of
snapshots results in a higher temporal correlation between
sources. For the single snapshot case the sources become
coherent. This raises a huge error in the DOA estimation, as
it is illustrated in Fig. 4.

RMSE is calculated over 500 Monte Carlo simulations for
different number of snapshots in Fig. 4. In this figure, SNR = 0
dB is considered. As it is shown, increasing the number of



snapshots reduces the RMSE. Although reducing the number
of snapshots degrades the DOA estimation significantly, due
to the increased correlation among sources, the sparse MIMO
radar performance is still better than the conventional MIMO
radar, even for a single snapshot case, in terms of RMSE.

IV. CONCLUSION

A MIMO-sparse radar has been proposed to enhance the
DOA estimation performance by the means of a virtual array
realizable in two steps. The increased DOF has been observed
successful for spatial correlation reduction among sources.
Furthermore, upon applying the spatial smoothing algorithm
at the final virtual array, a superior performance has been
achieved by the MIMO-sparse radar in comparison with the
conventional MIMO radar in a narrow FOV, even for a single
snapshot case in terms of RMSE.
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