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Abstract
Physical Human-Robot Interaction (PHRI) is essential for the future inte-
gration of robots in human-centered environments. In these settings, robots
are expected to share the same workspace, interact physically, and collaborate
with humans to achieve a common task. One of the primary tasks that require
human-robot collaboration is object manipulation. The main challenges that
need to be addressed to achieve a seamless cooperative object manipulation
are related to uncertainties in human trajectory, grasp position, and intention.
The object’s motion trajectory intended by the human is not always defined
for the robot and the human may grasp any part of the object depending on
the desired trajectory. In addition, the state-of-the-art object-manipulation
control schemes suffer from the translation/rotation problem, where the hu-
man cannot move the object in all degrees of freedom, independently, and
thus, needs to exert extra effort to accomplish the task.
To address the challenges, first, we propose an estimation method for iden-

tifying the human grasp position. We extend the conventional contact point
estimation method by formulating a new identification model with the human
applied torque as an unknown parameter and employing empirical conditions
to estimate the human grasp position. The proposed method is compared with
a conventional contact point estimation using the experimental data collected
for various collaboration scenarios. Second, given the human grasp position, a
control strategy is suggested to transport the object in all degrees of freedom,
independently. We employ the concept of “the instantaneous center of zero
velocity” to reduce the human effort by minimizing the exerted human force.
The stability of the interaction is evaluated using a passivity-based analysis of
the closed-loop system, including the object and the robotic manipulator. The
performance of the proposed control scheme is validated through simulation
of scenarios containing rotations and translations of the object.

Our study indicates that the exerted torque of the human has a significant
effect on the human grasp position estimation. Besides, the knowledge of the
human grasp position can be used in the control scheme design to avoid the
translation/rotation problem and reduce the human effort.

Keywords: physical human-robot collaboration, kinesthetic perception,
human-robot interaction control, system identification
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Overview
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CHAPTER 1

Introduction

Robotics has revolutionized various industries over the last decades by of-
fering high speed, precision, and endurance with respect to human workers.
However, robots do not have the level of human intelligence and adaptability
to new environments. To combine the best qualities of humans and robots,
Human-Robot Collaboration (HRC) has received attention from several re-
search groups in industry and academia. Some examples of HRC applications
include assistance in production [1], emergency rescue operation [2], space
exploration [3], and social service [4]. HRC requires communication between
the human and the robot to achieve a common goal. The prominent com-
munication channels in HRC are vision and haptics [5], [6]. In particular,
haptic feedback is tightly connected to Physical Human-Robot Collaboration
(PHRC) that involves Physical Human-Robot Interaction (PHRI).
PHRC applications have been restricted due to the safety issues related

to traditional industrial robots. In this regard, cobots (collaborative robots)
are developed for operating in the vicinity of humans and assisting them in
accomplishing tasks. Unlike traditional industrial robots, cobots are not con-
fined to cages and are safer for physical interaction with humans (Fig. 1.1).
Human safety is improved by introducing new regulations for safety-related
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Chapter 1 Introduction

Figure 1.1: Non-collaborative robots vs collaborative robots [8]

functions and features [7].
The main motivations of employing cobots are better accuracy, improved

efficiency in terms of time and energy, positive economic impact, and persistent
help for humans. Additionally, they are expected to achieve higher levels of
cooperation and communication with humans in the near future [9], including
social interactions [10].
According to the available statistical data [11], the current market for cobots

is worth about 710 million USD and expected to grow to 12303 million USD
by 2025, corresponding to 30% of the total robots’ market. Although the au-
tomotive and electronic industries are the largest consumers of the cobots, the
increase is also attributed to the interest of Small and Medium-sized Enter-
prises (SMEs) to employ cobots for performing tasks traditionally allocated to
human operators [12]. Cobots are appealing solutions for further development
of SMEs, given their simple installation, flexible deployment, and user-friendly
interfaces.
Cobots have the potential to perform many operations autonomously or

collaboratively with humans. Some essential operations are material handling,
assembly, and pick & place [12]. These operations require various tasks, such
as object manipulation, tool pick-and-place, etc. In this thesis, we focus on
human-robot cooperative object manipulation using cobots. An example of
such a task is shown in Fig. 1.2, where a cobot assists a human to transport
an object. The human decides about the target location of the object, and the
cobot provides the human with the support by carrying the load of the object.
The cobot measures the interaction wrench, i.e., force and torque, using either
the torque sensors at its joints or the dedicated force/torque sensor installed
at its end-effector. The interaction wrench can be employed to perceive the

4



environment and also create a control command for the cobot.

Figure 1.2: PHRC scenario of shared object manipulation

This thesis studies control and estimation algorithms to facilitate physical
human-robot interaction through a jointly grasped object. In particular, we
address the following problems:

• Human grasp localization using force/torque measurements: The human
may grasp any part of the object to have control over the motion by
applying forces and torques on the object. In case of pure human force,
the problem will be simplified to a contact point estimation/localization
([13], [14]). However, the estimation becomes a difficult task when the
human is simultaneously exerting force and torque [14].

• Transparency of human haptic commands: In case of physical interac-
tion, the intention is reflected through the haptic commands, i.e., the
interaction forces. If there is no object between the human and the
cobot, the human may apply wrench along the intended direction of the
motion. However, the object between the cobot and the human modifies
the kinesthetic mapping of the human forces and distorts the human in-
tention. Consequently, the resulting motion does not correspond to the
human intention.

5



Chapter 1 Introduction

1.1 Thesis outline and contributions
A shared object manipulation scenario is considered in this thesis, as shown
in Fig. 1.2. First, we examine the effect of the human applied torque on the
grasp position estimation, and we propose a strategy to evaluate the quality
of the estimates. The proposed method employs a least-squares method and
accepts or rejects the result based on the defined conditions. The performance
of the method is compared with conventional contact point estimation using
the experimental data from a robotic setup that includes a UR10 collaborative
robot and force/torque sensors for collecting wrench data. The experimental
data are collected during the collaboration scenarios that the human applies
both force and torque on the object. Second, we propose a control method for
the object manipulation task that correlates the motion of the object with the
human intention by compensating for the distance between the robot and the
human. The proposed control method also reduces the human effort during
the operation.
The thesis consists of two main parts. Part I is a summary of the research

area, concepts, and proposed methods. In this regard, Chapter 2 provides
background information on the object, human arm, and robot models and
introduces a parameter estimation method that is used in the thesis. Chapter
3 introduces the human grasp position estimation problem and the proposed
estimation scheme. Chapter 4 presents the interaction dynamics and common
control strategies for object transportation tasks. Chapter 5 provides a sum-
mary of the appended papers, the concluding remarks, and the future works.
The papers are appended in Part II.
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CHAPTER 2

Preliminaries

This chapter provides an overview of the methods used in the thesis. Section
2.1 describes the 6 Degrees of Freedom (DoF) dynamics of an object. Sec-
tion 2.2 introduces a linear dynamic model considered for a human arm. The
general dynamics of robot manipulators and an overview of interaction con-
trol schemes are presented in Section 2.3. Section 2.4 gives a brief overview
of the general form of an unconstrained least-squares method for parameter
identification accompanied by the derivation of the recursive form.

2.1 Object dynamics

The free-body diagram of an object is shown in Fig. 2.1. The position
and orientation of a rigid object is described using 6 independent parame-
ters denoted by xo = [pT

o ,φ
T
o ]T ∈ R6, where the vector po ∈ R3 represents

the position of the object’s center of mass and the vector φo ∈ R3 denotes
the orientation of the fixed body frame located at the center of mass. The
vector vo = [ṗT

o ,ω
T
o ]T ∈ R6 represents linear and angular velocities, where

ωo = T (φo)φ̇o and T (φo) depends on the sequence of the Euler angles. The

7
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Figure 2.1: Free-body diagram of an object

dynamics of a 6-DoF object with respect to its center of mass is given by [15]:

Mo(xo)v̇o +Co(xo,vo) + go(xo) = ho (2.1)

where:

• Mo(xo) ∈ R6×6 is the object inertia matrix:

Mo(xo) =
[
mI3×3 03×3
03×3 Jo(xo)

]
(2.2)

where Jo(xo) ∈ R3×3 is the moment of inertia relative to the center of
mass of the object, and expressed in the world frame {W},

• Co(xo,vo) ∈ R6 is the Coriolis vector:

Co(xo,vo) =
[

03×1
[ωo]×Joωo

]
(2.3)

where [ωo]× ∈ R3×3 is the skew-symmetric matrix which is employed to
replace a cross product with a matrix product,

• go(xo) ∈ R6 is the gravity vector:

go(xo) = −Mog (2.4)

where g ∈ R6 is the gravity vector defined with respect to the world

8



2.2 Human dynamics

frame,

• ho ∈ R6 is the total external wrench, i.e. force and torque, applied on
the object:

ho =
[
fo

τ o

]
. (2.5)

where fo ∈ R3 and τ o ∈ R3 are the total external force and torque
applied on the object, respectively.

Considering nA contact points of the object with the environment and grasp
positions with agents, the external wrench applied on the object is given by:

ho =
nA∑
i=1

Goihi (2.6)

where Goi ∈ R6×6 is the grasp matrix, defined as:

Goi =
[
I3×3 03×3
[roi]× I3×3

]
(2.7)

where roi ∈ R3 presents the position of contact or grasp point i and [roi]× ∈
R3×3 is the skew-symmetric matrix which is employed to replace a cross prod-
uct with a matrix product.

Finally, hi ∈ R6 is the external wrench applied by the agent i on the object:

hi =
[
f i

τ i

]
(2.8)

where f i ∈ R3 and τ i ∈ R3 are the external force and torque applied by the
agent i, respectively.

2.2 Human dynamics
The human arm dynamics have been extensively studied [16]–[22] by estimat-
ing its impedance. The derivation of a dynamic model for the human arm is
challenging since it is affected by several factors, such as the configuration of
the arm, the state of the muscles, external forces, and the given task. Two
examples of such setups for the estimation of the human arm impedance are
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shown in Fig. 2.2. Despite the complexity of the experimental setup, the
impedance is usually estimated using the collected external disturbance force
and arm displacement.

(a) (b)

Figure 2.2: Experimental setups for estimating human arm impedance [17], [22]:
a) A manipulator applies an external displacement to the arm of the
human, which is restrained, while the configuration of the arm is mea-
sured using two cameras, and the interaction force is measured using
a force sensor installed at the robot end-effector [17].
b) A simple setup includes a free-falling mass and linear potentiometer
for measuring the position and force/torque sensor for measuring the
interaction force [22].

In this thesis, we consider a linear impedance to model the human arm,
shown in Fig. 2.3. Details on such models are given in [23]. The impedance
model corresponds to a spring-damper model where the rest position of the
spring is the target position. By omitting the inertial effect, the linear impedance
is defined as:

Chẋh +Khx̃h = −hh (2.9)

where Ch ∈ R6×6 is the human damping gain matrix for the translational
and rotational degrees of the freedom, Kh ∈ R6×6 is the human stiffness
gain matrix for the translational and rotational degrees of the freedom. ẋh =
[ṗT

h , φ̇
T

h ]T ∈ R6 is the linear velocity and the derivative of Euler angles. x̃h =
[p̃T

h , φ̃
T

h ]T ∈ R6 is the position error and orientation error of the human current
position and their target position. Finally, hh ∈ R6 is the force exerted by

10



2.3 Robot dynamics and control

the human arm on the environment.

Figure 2.3: Human arm dynamics

2.3 Robot dynamics and control
The generic dynamic model of a robot arm with n joints is given by [24]:

Br(ζr)ζ̈r + nr(ζr, ζ̇r) + gr(ζr) = τ r − J(ζr)Thr (2.10)

where ζr, ζ̇r, ζ̈r ∈ Rn are the joint state, joint velocity and joint acceleration of
the robotic system, Br(ζr) ∈ Rn×n denotes the inertia matrix, nr(ζr, ζ̇r) ∈
Rn is a vector containing the centrifugal, Coriolis and friction terms, and
gr(ζr) ∈ Rn is the gravity vector. τ r ∈ Rn is the control input to the system,
J(ζr) ∈ R6×n is the geometric Jacobian matrix and hr ∈ R6 is the external
force and torque that the robot end-effector exerts on the environment.
For PHRC applications, it is crucial to have an appropriate interaction

control scheme on robots. In the following, we briefly overview the common
interaction control schemes, explained in detail in [24], [25].

• Compliance control (Stiffness control): In this control scheme, the
robot is set to follow a desired position and orientation, xd ∈ R6, while
interacting with the environment. To this aim, the input torque τ r in
(2.10) is considered as:

τ r = gr(ζr) + JT
A(ζr)

(
KP ∆xdr −KDJA(ζr)ζ̇r

)
(2.11)

11



Chapter 2 Preliminaries

where KP ∈ R6×6, KD ∈ R6×6 are the the design parameters of con-
troller, ∆xdr = xd − xr is the error between the desired frame and the
robot end-effector frame, and JA(ζr) ∈ R6×n denotes the analytical Ja-
cobian matrix. Assuming a full-rank Jacobian and substituting (2.11)
in (2.10) leads to the following stable dynamics when the system is in
equilibrium, i.e. ζ̈r = ζ̇r = 0:

hr = T−T
A (φe)KP ∆xdr (2.12)

where
TA(φe) =

[
I3×3 03×3
03×3 T (φe)

]
and T (φe) ∈ R3×3 depends on the choice of the Euler angles set.

• Impedance control: This control scheme aims to decouple the dynam-
ics of the robot, and set it to follow the desired trajectory, xd, ẋd and
ẍd, and interact with the environment while keeping a desired dynamic
behavior. The input torque τ r in (2.10) can be chosen as follows:

τ r =Br

(
J−1

A (ζr)M−1
rd

(
M rdẍd +KD∆ẋdr +KP ∆xdr −M rdJ̇A(ζr, ζ̇r)ζ̇r − hrA

))
+ n(ζr, ζ̇r) + gr(ζr) + JT (ζr)hr

(2.13)
where M rd ∈ R6×6, KP ∈ R6×6 and KD ∈ R6×6 are the desired mass,
damping and stiffness gain matrices, respectively, and hrA = T T

A(φe)hr.
The control structure that can accommodate this scheme is shown in Fig.
2.4. Assuming a full-rank Jacobian, it leads to stable dynamics:

M rd∆ẍdr +KD∆ẋdr +KP ∆xdr = hrA (2.14)

• Admittance control: Admittance control is designed to improve the
disturbance rejection behavior of the impedance control scheme by sep-
arating motion control from impedance control. An admittance control
calculates the desired position, orientation, and linear and angular ve-
locities and accelerations of a compliant frame based on a filter that acts
as an outer loop:

M rd∆ẍdc +KD∆ẋdc +KP ∆xdc = hr (2.15)

12



2.3 Robot dynamics and control

(a)

(b)

Figure 2.4: (a) Impedance and (b) Admittance control schemes

where hr is the external wrench w.r.t. frame {d}. The scheme is shown
in Fig. 2.4. The solution of (2.15) is then given as a reference to a
motion controller.

Robot motion controllers do not necessarily rely on torque interfaces but
can also be implemented through velocity-resolved control. Various commer-
cial manipulators are controlled with independent proportional-integral joint
velocity controllers with very high bandwidth [25]. For these robots, the
closed-loop dynamics can be simplified to a first-order differential kinematic
equation:

ζ̇r = ζ̇ref (2.16)

where ζ̇ref is the reference joint velocity. Thus, the input to the robot is the
reference joint velocity ζ̇ref instead of τ r.
To control robots with velocity commands (2.16), a common approach is

to calculate the reference velocity of the robot from the interaction force. A
well-known control scheme is velocity-resolved control and can be computed

13



Chapter 2 Preliminaries

as:
ζ̇ref = J−1

A (ζr)
(
ẋd +K−1

D (KP ∆xdr − hr)
)

(2.17)

where KD is the damping gain matrix and KP is the stiffness gain matrix.
Substituting (2.17) into (2.16) leads to closed-loop dynamics:

KD∆ẋdr +KP ∆xdr = hr (2.18)

For designing an admittance control scheme for this type of robots, the
desired position and velocity can be computed using (2.15) or can be computed
by an outer loop that implements a simpler behavior (damping-compliance):

KD∆ẋdc +KP ∆xdc = hr (2.19)

and sent to the inner motion controller. In case ofKP = 0, the control scheme
(2.19) is called damping control, and in case of KD = 0, the control scheme
(2.19) is known as compliance control.

2.4 Parameter estimation
The most common method to obtain values of unknown parameters involved
in dynamics is to employ the least-squares method described in the following.

Unconstrained least-squares method
Consider the following generic linear input-output (IO) model:

y = φθ (2.20)

where y ∈ Rny is the output and φ ∈ Rny×nθ is the regression vector, and
θ ∈ Rnθ is the unknown constant vector.
A classical approach to estimate the unknown parameters for a linear model

is to minimize the squares of the error between the measured/known output
of the system and the computed output of the model. The general form of
least-squares method is in form of:

θ̂ = argmin
θ

N∑
i=1

1
2γ

N−i
(
‖yi − φiθ‖2Ni

+ ‖θ − θr‖2W
)

(2.21)

14



2.4 Parameter estimation

where N is the number of data, 0 < γ ≤ 1 is the forgetting factor, N i ∈
Rny×ny is normalization gain matrix, θr ∈ Rnθ is the leakage value, and
W ∈ Rnθ×nθ is the leakage gain.

The solution of the least-squares problem (2.21) is the roots of the gradient
of its cost function, i.e.:

∇θ

(
N∑

i=1

1
2γ

N−i
(
‖yi − φiθ‖2Ni

+ ‖θ − θr‖2W
))

= 0 (2.22)

and is given by:

θ̂N = PN

[
N∑

i=1
γN−i

(
φT

i N iyi +Wθr

)]
(2.23)

where PN =
[∑N

i=1 γ
N−i

(
φT

i N iφi +W
)]−1

. To have a faster estimation
that can produce online estimates, the solution can be written in a recursive
form:

θ̂N = θ̂N−1 + PN

(
φT

NNN

(
yN − φN θ̂N−1

)
+W

(
θr − θ̂N−1

))
(2.24)

and

PN = 1
γ

[
PN−1 − PN−1

(
PN−1 + γ

(
φT

NNN
−1φN +W

)−1
)−1

PN−1

]
(2.25)
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CHAPTER 3

Human Grasp Position Estimation

This chapter addresses the problem of human grasp position estimation for
a scenario where the human and the robot jointly grasp an object, shown
in Fig. 3.1. We derive a linear regression model with respect to the human
grasp position in section 3.2. Then, the design of parameter estimators for
localizing the human grasp and the challenges are discussed in section 3.3.
Finally, results are presented in section 3.4.

Figure 3.1: Shared object-handling scenario
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Chapter 3 Human Grasp Position Estimation

3.1 Related works
Contact point estimation is a well-studied topic in robotics [13], [14]. A com-
prehensive review of contact detection is presented in [14]. In contact detec-
tion, it is assumed that no torque is exerted at the contact point. A sample
experimental setup is shown in Fig. 3.2. Karayiannidis et al. [13] have also
proposed an adaptive controller to estimate the contact point of the tool with
the environment, along with the normal of the surface using the measured
wrench at the robot end-effector. The setup is shown in Fig. 3.3

Figure 3.2: An experimental setup for collision detection [14]

Figure 3.3: Contact point estimation of a tool [13]

Similar to the contact point estimation, the human grasp point can be esti-
mated in physical human-robot collaboration scenarios. In [26], a method for
estimating the human grasp position is proposed under the assumption that
the human grasp can be modeled as a passive revolute joint. The experimental
setup is shown in Fig. 3.4.
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3.2 Problem formulation

Figure 3.4: Human grasp position identification assuming that the grasp position
is a passive revolute joint [26]

Human grasp position can also be estimated using motion data. In [27], the
velocity and acceleration of the robot and the human are employed to estimate
the human grasp position. Although the proposed estimation method does not
impose any assumption on the human exerted torque, it requires additional
wearable motion sensors.

In this chapter, we overview our proposed method for the estimation of the
human grasp position using the measured force/torque data. Unlike [28], our
method does not require any data from wearable motion sensors. Moreover,
we consider the case of the “grasp” that involves simultaneous torques and
forces. In the next section, we begin by formulating a linear regression for a
generic object-manipulation scenario.

3.2 Problem formulation

The free-body diagram of an object interacting with a robot and a human is
shown in Fig. 3.5. Using (2.1), the dynamics of the object can be written as:

Mo(xo)v̇o +Co(xo,vo) + go(xo) = Gorhr +Gohhh (3.1)

Since all the measurements are available for the robot end-effector frame {R},
it is more convenient to derive the object dynamics with respect to this frame.
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Figure 3.5: Free-body Diagram of an object

In this regard, the object dynamics can be written as:

Mo/Rv̇o/R +Co/R + go/R = hr +Grhhh (3.2)

where

• xo/R denotes the position and the orientation of the object, measured at
the origin of the frame {R}, and vo/R is the translational and angular
velocities of the object, measured at the origin of the frame {R},

• Mo/R is the object inertia matrix defined with respect to the origin of
the frame {R}:

Mo/R =
[
mI3×3 m[ror]×
−m[ror]× Jo/R

]
(3.3)

where Jo/R = Jo +mI3×3[rro]×[rro]×,

• Co/R is the Coriolis vector defined with respect to the origin of the
frame {R}:

Co/R =
[
−mωo × (ωo × ror)
ωo × (Jo/Rωo)

]
, (3.4)

• go/R is the gravity vector defined with respect to the origin of the frame
{R}:

go/R = −Mo/Rg. (3.5)

The unknown variables in the equation of motion (3.2) are the grasp position
of the human, i.e. rrh from the term Grh, and the exerted wrench by the
human, i.e. hh. The human force fh can be calculated from the translational
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3.3 Parameter estimation algorithm

part of (3.2) and is given by the difference between the inertial forces and the
forces measured by the sensor, fr, i.e.:

fh =
[
mI3×3 m[ror]×

]
(v̇o/R − g)−mωo × (ωo × ror)− fr. (3.6)

Thus, we derive a parameter vector that consists of rrh and τh:

θ
def=
[

Rrrh

τh

]
where Rrrh is the human grasp position defined with respect to frame {R}.
To identify the unknown parameters θ, the rotational part of (3.2) is written
in a linear regression form as follows:

y = Φθ (3.7)

where the known output signal y ∈ R3 is defined as:

y
def= τ r −

[
−m[ror]× Jo/R

]
(v̇o/R − g)− ωo × (Jo/Rωo) (3.8)

and the known input signal Φ ∈ R3×6 is defined as:

Φ def=
[
[fh]×RW

R I3×3
]

(3.9)

where RW
R is the rotation matrix of {R} with respect to the world frame {W}.

The identification model (3.7), combined with (3.8) and (3.9), is different from
typical ones used for contact point estimation in the sense that, here, the
human torque, τh, is considered as an unknown parameter.

3.3 Parameter estimation algorithm
Here, the goal is to estimate the human grasp position rrh, which is a part
of the unknown parameter θ. The unconstrained least-squares method (2.21)
can be employed to identify θ. The challenges for estimation of the unknown
parameter θ are listed below.

(a) The data may not contain enough information to give the possibility to
solve the estimation problem. The main concept related to this problem
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is the Persistence of Excitation [29]. If the input Φ satisfies this condition,
the solution of the estimator would converge to the true parameter when
N → ∞ [29]. However, it is challenging to satisfy this condition in real-
world human-robot interaction since the excitation should be generated
by the human.

(b) It is likely that human changes the grasp position to have better control
over the object motion. Thus, the human grasp position may change
suddenly to a new value.

(c) The human may apply torques on the object, especially if the object is
grasped with two hands. Since no assumption can be made regarding the
exerted torque, τh is time-varying and unpredictable.

To address the mentioned challenges, we propose to modify the least-squares
method with the following conditions:

• Forgetting factor: Since the human grasp position can change over
time, we introduce a gain γ in the least-squares problem (2.21):

θ̂ = argmin
θ

N∑
i=1

1
2γ

N−i‖yi −Φiθ‖2 (3.10)

Choosing γ = 1 means that the old data has the same effect as the
current data. Selecting γ < 1 results in reducing the effect of the old
data.

• Maximum deviation from mean: Since variations in τh and Rrrh

results in variation in the estimates, we propose to check the constancy
of the estimates using the Maximum Deviation (MD) from the mean
value, i.e.:

MD(θ(t−sMD)→t) ≤ EcMD (3.11)

where sMD ∈ [0, t]. EcMD ∈ R6 is an upper bound corresponding to
variables.

• Force magnitude: For low values of the force, the estimation prob-
lem would result in inaccurate estimation of the parameters. Thus, we
disregard the data with low force magnitude.
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These conditions are found by conducting an experimental study using the
setup described in Section 3.4. More details on this study are given in Paper A
appended in Part II. The proposed human grasp position estimation algorithm
is presented in Algorithm 1, and the reader is referred to Paper A for more
details.

Algorithm 1: Grasp Position Estimation Algorithm
Result: Rr̂rh
Initialize P 0 , Rr̂rh , θ̂ , EcMD, f̄ , r̄rh, rrh;
while (The estimator is running) do

if ‖fh‖ > f̄ then
P k = 1

γ
P k−1 − 1

γ
P k−1ΦT

k

(
ΦkP k−1ΦT

k + γ
)−1

ΦkP k−1

θ̂k = θ̂k−1 + P kΦT
k

(
yk − Φkθ̂k−1

)
if MD(θ(t−sMD)→t) ≤ EcMD then

Rr̂rh = min(r̄rh,max(rrh,θ̂k,1:3))
end
k ← k + 1

end
end

3.4 Experimental results
For evaluation of the proposed Algorithm 1, a set of data is collected using the
experimental setup, shown in Fig. 3.6. The setup includes a UR10 collabora-
tive robot, two OptoForce force/torque sensors, and a light-weight aluminum
object. The motion data is collected using the software of UR10 robot, and
the force data is also collected through the force/torque sensors. The robot-
side wrench data, collected using the robot-side force sensor, is given to the
estimation Algorithm 1, and the human-side wrench data, collected using the
human-side force sensor, is used for validation.
To demonstrate the performance of the proposed estimation Algorithm 1,

two scenarios are considered here. The main objective of considering these
scenarios is evaluating the effect of applied torque on the estimation of the
grasp position.

(a) Scenario A demonstrates the situation that human applies constant
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Figure 3.6: Experimental setup for collecting data

torque. The human applied force and torque are shown in Fig. 3.7.
τh has low variances in three different time intervals, [3, 13], [14, 30] and
[31, 43] (s). Rr̂rh along with the true human grasp position are depicted
in Fig. 3.8. In the time interval [0, 5] (s), the estimations of the position
vary about 1 meter, where the final estimation Rr̂rh stays at its initial
values. After that, the maximum deviation condition is satisfied, Rr̂rh

updates to the estimated value θ̂1:3 which is close to the true value of the
grasp point. Then, the human changes the grasp position twice at 14 s
and 29 s. In both cases, the estimator updates the human grasp position,
Rr̂rh, after about 3 s delay to a value close to the true grasp position.

(b) Scenario B demonstrates the robustness of the algorithm with respect
to incorrect estimations. The applied force and torque of the human are
shown in Fig. 3.9. The value of τh is time-varying between 18 s and
44 s. The estimation results are shown in Fig. 3.10. The estimates θ̂
generated by the main estimator vary while the human torque is exerted.
However, since the estimates are not constant, the maximum deviation
from the mean condition (3.11) is not satisfied and consequently, the final
estimation Rr̂rh does not get updated.

More scenarios, as well as the evaluation of the proposed approach based
on the experimental data, can be found in Paper A.
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3.4 Experimental results

Figure 3.7: Applied forces and torque by the human and the reaction forces and
torque measured by the robot for scenario A
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Figure 3.8: Human grasp position estimation for scenario A
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Figure 3.9: Applied forces and torque by the human and the reaction forces and
torque measured by the robot for scenario B
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Figure 3.10: Human grasp position estimation for scenario B
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CHAPTER 4

Shared Object Manipulation, Dynamics and Control

This chapter provides the derivation of the interaction dynamics for a typical
PHRC scenario, shown in Fig. 4.1, and discusses the design of a control
scheme for the robot in order to reduce the effort of the human while rotating
and translating the object. In section 4.1, we present an overview of related
works, particularly those referring to the translation/rotation problem. In
section 4.2, we derive the interaction dynamics in order to formally introduce
the translation/rotation problem in section 4.3 and evaluate control strategies
to deal with this problem. Overview of our proposed control scheme is given
in section 4.4.

4.1 Related works
The study of the interaction dynamics of cooperative robotic systems has been
the subject of many classic and recent studies [30]–[33].
Erhart et al. [33] propose a new approach to model the interaction dynamics

and derive the explicit solution of the interaction wrenches for a cooperative
manipulation task. Moreover, they derive the impedance characteristic of the
cooperative system that appears in response to an external disturbance.
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Figure 4.1: Shared object-handling scenario

The interaction wrenches can be employed to interpret the intention of the
human. In case of direct interaction with the robot, the intention of the
human is clear from the wrench measurements. However, in case of an object
between the human and robot, i.e., measuring human force indirectly, the
intention of the human becomes ambiguous. Dumora et al. [34] investigated
the detection of the human intention of motion by exploiting haptic cues
through an experimental study. Measuring human wrench indirectly using the
force/torque sensor installed at the robot grasp position, they reported that
human intention for lateral translation is indistinguishable from the intention
for pure rotation. Thus, designing control schemes to generate robotic motion
based on the intention of the human becomes challenging.
Adding a virtual non-holonomic constraint to the controller does not con-

tribute to human intention detection, but could facilitate the manipulation of
the object. The proposed method in [35] employs a nonholonomic constraint
at the robot end-effector. Although the control scheme is free of switching
policies and independent of the object geometry, it confines the object trans-
portation to some degrees of freedom.
Karayiannidis et al. [36] propose to employ the measured force at the robot

end-effector to switch between two constrained motions, i.e., object translation
or object rotation. Various switching policies are evaluated, and the force
magnitude is selected as an indicator of the human intention. However, this
method works satisfactorily for slow rotations or fast translations and cannot
support rich motions, including combined translations and rotations.
In another study, [37], a fixture including free joints equipped with en-
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4.2 Interaction dynamics of shared object manipulation

coders, and a dedicated torque sensor at the grasp position, are employed to
accomplish a cooperative assembly task. Displacement information derived
from the free joints, complement the force data to design a controller that
allows independent translational and rotational motions. However, designing
a fixture and installing different sensors limit the application of the proposed
controller.
Here, we propose a control scheme that allows the human to move the object

in all degrees of freedom while it does not require an additional modification
of the object. This is achieved by assuming that the human grasp position is
known. In the next section, we begin by deriving the interaction dynamics.

4.2 Interaction dynamics of shared object
manipulation

The free-body diagram of an object for a planar PHRI scenario is shown in
Fig. 4.2. Deriving the interaction dynamics for this scenario requires studying
the dynamics of the object, the robot, and the human.

O
X

Y

rrh

θ

h

fhx
fhy

τhz

r

frx

fry

τrz

xy

Figure 4.2: Free-body diagram of the object for a planar PHRI scenario

Object dynamics
To focus on the distance between the human grasp position and the robot
grasp position, the object inertia is ignored, i.e.:

Assumption 1. The object is lightweight, i.e. Mo ≈ 0 and Jo ≈ 0.
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Furthermore, it is assumed that the human grasps the object at the position
Rrrh = [l, 0]T . Using the assumptions, the object dynamics (2.1) simplifies
to: Rfrx

Rfry

τrz

 = −

 Rfhx
Rfhy

lRfhy + τhz

 (4.1)

Robot dynamics
The first-order differential kinematic in form of (2.16) along with the damping
control in form of (2.19) is considered for the robot. The closed-loop dynamics
of the robot is given by:crvx 0 0

0 crvy 0
0 0 crωz

Rṗrx
Rṗry

ωrz

 = −

Rfrx
Rfry

τrz

 (4.2)

where crvx, crvy and crωz are the admittance controller gain for the transla-
tional movements along x- and y-axis and rotational movement around z-axis,
respectively. Rṗrx, Rṗry and ωrz are the linear velocities along x- and y-axis
and the angular velocity of the robot around z-axis. Depending on the se-
lection of the translational and rotational gains of the admittance controller,
different modes of control can be achieved. For example, by selecting crvx

and crvy high enough, the robot would be in a rotation mode around its end-
effector, and by selecting crωz high enough, the rotation of the end-effector
can be locked.

Human dynamics
Using (2.9), the impedance model of human arm dynamics for a planar motion
(3-DoF) is given by:chvx 0 0

0 chvy 0
0 0 chωz

Rṗhx
Rṗhy

ωhz

+

khvx 0 0
0 khvy 0
0 0 khωz

Rp̃hx
Rp̃hy

θ̃hz

 = −

Rfhx
Rfhy

τhz


(4.3)
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4.2 Interaction dynamics of shared object manipulation

where chvx, chvy and chωz are the human damping gains and khvx, khvy and
khωz are the human stiffness gains along x- and y-direction and about z-axis,
respectively. Rṗhx, Rṗhy and ωhz are the linear velocities along x- and y-axis
and the angular velocity of the human arm around z-axis. Rp̃hx, Rp̃hy and
θ̃hz are the translational and rotational errors between the current human
position and their desired position.

Constraints

Since the human and the robot are grasping the same object, they cannot
move independently. In this regard, the following assumption is made:

Assumption 2. The object, as well as the connections between the object and
the agents, i.e., human and robot, are assumed to be rigid.

Due to the rigidity of the connections, both translational and rotational
motions are restricted. This limitation of the movement can be formulated
through kinematic constraints. These constraints are defined as follows:

phx = prx + l cos θ
phy = pry + l sin θ
θh = θr

(4.4)

which leads to the following velocity constraints:
Rṗhx =R ṗrx

Rṗhy =R ṗry + lω

ωh = ωr

(4.5)

Interaction dynamics

The dynamics of the object (4.1) and the agents (4.2) and (4.3) are coupled
through the kinematic constraints (4.5). The dynamics of the coupled system
with respect to the human velocity is derived by solving these equations for
unknown variables Rṗhx, Rṗhy, ωhz, Rṗrx, Rṗry, ωrz and Rfhx, Rfhy, τhz,
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Rfrx, Rfry and τrz, and can be written as:

crvx + chvx 0 0
0 crvy + chvy −crvyl

0 −crvyl chωz + crωz + crvyl
2

Rṗhx
Rṗhy

ωhz

 =

−khvx
Rp̃hx

−khvy
Rp̃hy

−khωz θ̃hz


(4.6)

Moreover, the interaction forces and torque, Rfhx, Rfhy and τhz are given by
the following closed form expression:



Rfhx = −crvxkhvx
Rp̃hx

chvx + crvx

Rfhy = −crvy(crωz + chωz)khvy
Rp̃hy + chvycrvylkhωz θ̃hz

(crvy + chvy)(crωz + chωz) + chvycrvyl2

τhz = chωzcrvykhvyl
Rp̃hy − (chvycrωz + crvycrωz + chvycrvyl

2)khwz θ̃hz

(crvy + chvy)(crωz + chωz) + chvycrvyl2

(4.7)
Eq. (4.7) shows how the interaction forces, Rfhx and Rfhy, and the interaction
torque τhz are related to the human error Rp̃hx, Rp̃hy and θ̃hz. It can be seen
that the force along y-direction, Rfhy, is a function of the errors along y-
direction and about z-direction, i.e. Rp̃hy and θ̃hz. Similarly, τhz is a function
of Rp̃hy and θ̃hz. In case of l = 0, i.e. no distance between the robot and the
human, (4.7) simplifies to:

Rfhx = −crvxkhvx
Rp̃hx

chvx + crvx

Rfhy = −crvykhvy
Rp̃hy

crvy + chvy

τhz = −crωzkhwz θ̃hz

crωz + chωz

(4.8)

Eq. (4.8) implies that Rfhx, Rfhy and τhz are directly related to the corre-
sponding translational and rotational errors, given by Rp̃hx, Rp̃hy and θ̃hz,
and are independent of errors in other dimensions. This implies a closed-
loop decoupled behavior where the forces of the operator yield to motion only
along with the corresponding directions. In other words, the intention of the

34



4.3 Translation/Rotation problem

operator for moving the object can be clearly observed from the forces. How-
ever, in case of l 6= 0, the relation between human forces and position errors
becomes coupled and more complicated, leading to the Translation/Rotation
problem.

4.3 Translation/Rotation problem
In case of l 6= 0, (4.7) implies that Rfhy and τhz are affected by both Rp̃hy

and θ̃hz. A cross effect can be seen between two dimensions, i.e., a term
including θ̃hz exists in the force along the y axis and another term including
Rp̃hy exists in the torque about the z axis, which means that the intention
of the human cannot be observed from the applied force. In other words,
the distance between the human and the force sensor, l, obscures the human
intention. This cross effect yields the translation/rotation problem.
Takubu et al. [35] proposed to utilize the simple admittance controller

with a nonholonomic constraint to avoid translation/rotation problem. The
effect of this nonholonomic admitance controller can be seen by substituting
crvy →∞ in the interaction dynamics (4.7):

Rfhx = −crvxkhvx
Rp̃hx

chvx + crvx

Rfhy = −(crωz + chωz)khvy
Rp̃hy + chvylkhωz θ̃hz

crωz + chωz + chvyl2

τhz = chωzkhvyl
Rp̃hy − (crωz + chvyl

2)khwz θ̃hz

crωz + chωz + chvyl2

(4.9)

Although this method resolves the translation/rotation problem, it limits the
motion of the object. Moreover, it can be seen that Rfhy and τhz are still
affected by both Rp̃hy and θ̃hz.

Karayiannidis et al. [36] proposed to employ two different modes for the
controller, namely, translation mode and rotation mode. In the translation
mode, the human can just perform a translation of the object, and in the
rotation mode, the human can rotate the object around the robot end-effector.
The condition for switching between the modes is based on the magnitude of
the force. Moreover, it is assumed that the human could just apply forces on
the object, i.e., khωz = 0 and chωz = 0, which result in τhz = 0.
The interaction forces for the rotation mode can be derived by setting
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crvx →∞ and crvy →∞ in the interaction dynamics (4.7):


Rfhx = −khvx

Rp̃hx

Rfhy = −(crωz + chωz)khvy
Rp̃hy + chvylkhωz θ̃hz

crωz + chωz + chvyl2

τhz = 0

(4.10)

and the equations for the translation mode is computed by setting crωz →∞:

Rfhx = −crvxkhvx
Rp̃hx

chvx + crvx

Rfhy = −crvykhvy
Rp̃hy

chvy + crvy

τhz = 0

(4.11)

In the translation mode, a decoupled behaviour is achieved similar to the
closed-loop dynamics (4.8). However, in the rotation mode Rfhy is affected
by both Rp̃hy and θ̃hz, similar to closed-loop dynamics (4.9). Moreover, the
human force Rfhy is dependent on the length l between the robot and the
human.

4.4 Controller design

To avoid the translation/rotation problem, we propose to translate and rotate
the object relative to the human applied force and torque, respectively. Let
us define a new frame {C}, located at the human grasp position (Fig. 4.3a),
as a reference frame for defining the velocity command. To have a one-to-one
relation between the applied wrench and velocities of the object at the origin
of frame {C}, we define the following dynamics:

crvx 0 0
0 crvy 0
0 0 crωz

RṗCx
RṗCy

ωC

 =

Rfhx
Rfhy

τhz

 (4.12)
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where RṗCx and RṗCy are the translational velocities along axes x and y, and
ωC is the angular velocity around axis z. Note that the wrench applied by the
human, i.e., [Rfhx,

R fhy, τhz]T , is not available through direct measurements
and for its accurate derivation a known human grasp position is assumed. In
the considered scenario, it is equivalent to a known value of l. Using (4.1),
(4.5), and the controller (4.12), the velocity command for the robot is derived
as follows:

Rṗrx
Rṗry

ωr

 =

1 0 0
0 1 l

0 0 1

−1 crvx 0 0
0 crvy 0
0 0 crωz

−1 −1 0 0
0 −1 0
0 l −1

Rfrx
Rfry

τrz


(4.13)

which leads to the following interaction wrenches:

Rfhx = −crvxkhvx
Rp̃hx

chvx + crvx

Rfhy = −crvykhvy
Rp̃hy

crvy + chvy

τhz = −crωzkhwz θ̃hz

crωz + chωz

(4.14)

The interaction wrenches of the human in (4.14) are related only to the cor-
responding position errors, and thus the proposed controller can be used to
avoid the couplings resulting from translation/rotation problem.
Based on the concept of the “instantaneous center of zero velocity” [15], the

object can be considered to be in pure rotation about an axis, normal to the
plane of motion. Thus, the translational and rotational motion generated by
the dynamics (4.12) can also be considered as a pure rotation with the same
angular velocity, ωC , about a different axis. This means that by changing the
position of the frame {C}, the same torque can be used to produce the same
motion without requiring any force applied on the object (Fig. 4.3b). To
dynamically modify the origin point of the frame {C} towards the instanta-
neous center of rotation, we propose an adaptive control scheme. The control
is based on the measured forces and torque at the robot side and is explained
in detail in Paper B appended in Part II.
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Figure 4.3: Rotation of the object around the instantaneous center of zero velocity
d. (a) The frame {C} is located at human grasp position and controller
(4.13) is employed for generating velocity commands. (b) By locating
the frame {C} at the instantaneous center of rotation, the same motion
can be generated using the human applied torque.
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CHAPTER 5

Contributions and Future Works

5.1 Contributions
In the previous chapters, we reviewed the methods and models used for a
cooperative object-manipulation scenario in PHRC. In this chapter, the sum-
mary of the appended papers in part II is presented. Besides, possible future
research directions are briefly discussed.

Paper A
Haptic sensing and analysis of interaction wrenches are crucial for developing
effective collaboration between humans and robots. The focus of this paper
is on estimating the grasp position of the human for human-robot collabora-
tive object manipulation. While many studies consider no external torque for
contact, in this paper, we explicitly take into account the effect of the human
applied torque to localize the human grasp and evaluate the validity of the
estimates. In our approach, conventional estimation methods are utilized, and
appropriate conditions are checked to estimate the human grasp position. The
human grasp position estimation method is also investigated experimentally.
Using the experimental data, we assess different criteria to dismiss unreliable
estimates. The proposed model is then evaluated by comparing it with a
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conventional contact point identification model. The performance of the pro-
posed algorithm is also verified through 4 scenarios considering the presence
of human applied torque. The results show that the conventional contact
point estimation is not accurate for the generic case of human grasp, and the
proposed grasp point estimation is more robust and accurate for estimating
the human grasp position.

Paper B
In this paper, we develop a control scheme to overcome the translation/rotation
problem in a shared object manipulation scenario. The idea is to move the
robot in a way that the grasp position of the human moves proportional to
the applied force and torque by the human. To implement this, we assume a
known location for the human grasp. Furthermore, by employing the concept
of zero velocity center, we propose an update rule to reduce the effort of the
human. The introduced controller reduces the effort by decreasing the ap-
plied force of the human. In addition, the passivity of the closed-loop system,
including the robot manipulator and the object, and the convergence of the
controller reference point to the zero velocity center, are proved theoretically.
Finally, the performance of the new control scheme is demonstrated through
simulation scenarios.

5.2 Future works
The thesis considers the human grasp position estimation and object handling
problems individually. The limitation of the control scheme proposed in Pa-
per B is the assumption that the human grasp position is known, which can
be alleviated using the method proposed in Paper A. In this regard, first, we
will combine both methods as an indirect adaptive control scheme using the
certainty equivalence principle. The human grasp position will be provided
by the estimator and will be used as the true grasp position in the control
scheme. We will then evaluate the robustness of the controller with respect
to the uncertainty of the human grasp position and also address the safety
of the human during the interaction. We will also consider a direct adaptive
control scheme and compare the two approaches. Furthermore, we will design
appropriate interaction scenarios to conduct human studies. Besides perfor-
mance metrics, we will also consider quantitative and qualitative results from
different users interacting with the robot.
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