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We present the design, fabrication and characterization of a highly-nonlinear few-mode fiber (HNL-FMF) 
with an inter-modal nonlinear coefficient of 2 .8 (W · k m)−1, which to the best of our knowledge is the 
highest reported to date. The graded-index circular core fiber supports two mode groups (MGs) with 6 
eigenmodes and is highly doped with germanium. This breaks the mode degeneracy within the higher-
order MG, leading to different group velocities among corresponding eigenmodes. Thus, the HNL-FMF 
can support multiple inter-modal four-wave mixing (FWM) processes between the two MGs, at the same 
time. In a proof of concept experiment, we demonstrate simultaneous inter-modal wavelength conver-
sions among three eigenmodes of the HNL-FMF over the C-band. 

1. INTRODUCTION

Multicore and multimode fibers have gained interest in recent
years, as they can potentially increase the capacity of telecom-
munication systems by transmitting data through individual
cores or spatial modes of the fiber [1–3]. In data transmission,
any nonlinear interaction among the cores of a multicore or the
spatial modes of a multimode fiber should be avoided as it leads
to crosstalk. However, based on the characteristics found in a
multimode fiber [4], intentional nonlinear interactions in such
fibers could be used for ultrafast all-optical signal processing
applications such as multimode parametric amplification [5–7],
mode and wavelength conversion [8–14], optical switching [15],
multimode supercontinuum generation [16] and construction of
high power fiber lasers [17]. Such applications have motivated
researches on both intra- [5, 7] and inter-modal FWM processes
in multimode fibers [18–22].

In an intra-modal FWM process, where all the participating
waves are in the same spatial mode, to achieve phase matching
over a wide bandwidth, the pump should be placed close to the
zero-dispersion wavelength and in the anomalous dispersion
regime [23, 24]. Inter-modal FWM processes have a more flex-
ible phase-matching condition, as they can be phase-matched

away from the zero-dispersion wavelength, thanks to the differ-
ent dispersion properties of individual spatial modes [25]. This
makes inter-modal processes particularly interesting. The main
inter-modal FWM processes, known as phase conjugation (PC)
and Bragg scattering (BS), lead to wavelength and mode conver-
sion. In the PC process, two pump beams amplify a signal and
generate a phase conjugated idler, while in the BS process two
pumps mediate an exchange of energy between the signal and
idler photons [26].

To date, most studies conducted on inter-modal nonlinear
processes have been carried out in commercially available few-
mode fibers (FMFs) which have a relatively low inter-modal
nonlinear coefficient of less than 0.9 (W · km)−1 [8]. To increase
the efficiency of these nonlinear interactions, reduce power con-
sumption, and shorten the fiber length [14], FMF with highly
nonlinear coefficient would be beneficial, which can be real-
ized by raising the germanium doping concentration and de-
creasing the inter-modal effective area. Recently, a dispersion
engineered HNL-FMF with an inter-modal effective area of
50 µm2 has been reported, where inter-modal wavelength con-
version was demonstrated over 40 nm [27]. Here, we report
HNL-FMF with a smaller inter-modal effective area of less than
43 µm2, corresponding to an inter-modal nonlinear coefficient
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of 2.8 (W · km)−1, which is to the best of our knowledge the
highest reported to date. In addition, the non-degenerate eigen-
modes in the higher-order MG of the HNL-FMF have different
group velocities, allowing many inter-modal FWM processes to
occur at the same time, including interactions among the eigen-
modes within one MG. In a proof of concept experiment, we
demonstrate simultaneous inter-modal FWM among three eigen-
modes of the HNL-FMF. Moreover, due to its specific dispersion
properties, our HNL-FMF could potentially be used to achieve
mode exchange, i.e., mode conversion which is not accompa-
nied by wavelength conversion. This is a unique feature of this
fiber, as in all other inter-modal interactions demonstrated so
far, mode conversion and wavelength conversion always occur
side-by-side [9–11].

2. THEORY

Let us assume that pump p at frequency ωp and signal s at
ωs are launched into the HNL-FMF and coupled to the spa-
tial mode a, while pump q at frequency ωq is coupled to
mode b of the HNL-FMF. Intra-modal FWM, referred to as
modulational instability (MI), leads to the generation of an
idler in mode a at ωi,MI = 2ωp − ωs, if the phase-matching
conditions are satisfied. Assuming that both inter-modal PC
and BS processes are also phase-matched, each process gen-
erates an idler in mode b at ωi,PC and ωi,BS, respectively, as
shown in Fig. 1(a). The linear phase mismatch of these pro-
cesses are ∆βPC(ω) = βa(ωs) + βb(ωi,PC) − βa(ωp) − βb(ωq)

and ∆βBS(ω) = βa(ωs) + βb(ωq)− βa(ωp)− βb(ωi,BS), respec-
tively. In both processes, if we expand βa(ωs) and βa(ωp) at
(ωs + ωp)/2, βb(ωi) and βb(ωq) at (ωi + ωq)/2 in Taylor series,
respectively, the phase mismatch can be approximated by [8]:

∆β ≈ (ωs − ωp)
[

βa
1(

ωs + ωp

2
)− βb

1(
ωi + ωq

2
)
]
, (1)

where βm(ω) and βm
1 (ω) represent the propagation constant

and the inverse group velocity of mode m at frequency ω. For
simplicity, the contribution of higher order dispersion terms
has been ignored. Note that we do not neglect group veloc-
ity dispersion β2 here, because all the even order terms of the
propagation constants in the expression of ∆β are zero, which
means the effect of β2 is already included in the calculated or
measured β1 values at the two wavelengths. Equation 1 shows
that the PC and BS processes are phase-matched (∆β = 0), when
β1 of mode a at the average frequency of the signal and pump
in mode a, ωA = (ωp + ωs)/2, is nearly equal to β1 of mode
b at the average frequency of the idler and pump in mode b,
ωB = (ωq + ωi)/2 [8]. In other words, as illustrated in Fig. 1(b),
βa

1 at ωA should lie on the same horizontal line as βb
1 at ωB, for

the PC and BS processes [10]. Meanwhile, as shown in Eq. 1,
the frequency detuning of the signal from the pump plays a role
in the phase mismatch as well. Thus, it is not easy to maintain
phase matching for signals that are far away from the pump
wavelength.

3. FIBER DESIGN AND FABRICATION

We have designed a circularly symmetric HNL-FMF with a
graded index core and a double cladding configuration [7]. The
design is optimized so that the dispersion properties of the
modes in the two lowest-order MGs fulfill the phase-matching
conditions for inter-modal FWM over the C-band. The refractive
index (RI) profile of the designed fiber and that of the fabricated

Fig. 1. (a) Schematic of the intra- and inter-modal FWM pro-
cesses. The colors represent the spatial mode of the waves. (b)
The inverse group velocity (β1) vs. angular frequency relation
required for phase matching in the inter-modal processes. The
dashed lines indicate the β1 values at the average frequency of
the two waves in each mode, which should be equal.

HNL-FMF are shown in Fig. 2(a), where the designed core radius
is R = 4.3 µm and the RI profile exponent is α = 2.16. The fiber
supports two MGs, referred to as MG1 and MG2, respectively.
The transverse mode profiles of the supported modes at 1550 nm
are depicted in the inset of Fig. 2(a). The core is highly doped
with germanium (25 mol.%), thus the RI difference between the
core and cladding is relatively large and consequently the de-
generacy between the linearly polarized LP11 modes in MG2 is
broken. Therefore, the eigenmodes have been considered in this
work, where two HE11 eigenmodes belong to MG1, while TE01,
TM01 and two HE21 eigenmodes belong to MG2. The effective
RIs of HE11, TE01, TM01 and HE21 modes are 1.4697, 1.4572,
1.4572 and 1.4571, respectively. In MG2, the TE01 and TM01
modes have slightly different propagation constants, which is
also different from that of the degenerate even and odd HE21
eigenmodes. Even such small differences in propagation con-
stants lead to different group velocities for the modes within
MG2. This can be seen in Fig. 2(b), which shows the simulated
relative inverse group velocity (∆β1) between the supported
modes. Taking the β1 of HE21 mode at 1530 nm for a reference,
the ∆β1 between HE21 mode and an arbitrary eigenmode at an
arbitrary wavelength can be obtained. Even though the RI pro-
file of the fabricated fiber is close to the design, the measured ∆β1
values do not match the simulations, which can be attributed
to the inevitable variations along the fiber length during the
fiber drawing. Simulations reveal that even small variations of
±1% in the R and α parameters lead to changes of as much as
∼200 ps/km in ∆β1 between HE11 mode in MG1 and any of the
eigenmodes in MG2, as shown in Fig. 2(c). Meanwhile, ∆β1 be-
tween the eigenmodes within MG2 remains rather constant. The
reason is that even though the variations in the fiber parameters
affect the propagation constant β of the modes (mainly those in
MG2 since they are higher order modes), β values within one
MG change with a similar rate. Therefore, ∆β1 between any
two of the eigenmodes in MG2 almost remains fixed, whereas
it changes considerably between MG1 and MG2. Such high
sensitivity to the deviation from the optimal parameters should
be carefully considered during the fabrication process of the
HNL-FMF, given that inter-modal FWM interactions rely on the
∆β1 profile of the HNL-FMF. Considering the inevitable fabri-
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Fig. 2. (a) Designed and measured refractive index profile of the fabricated HNL-FMF at 1550 nm. The effective refractive index of
the supported modes and their transverse mode profiles are also shown. Relative inverse group velocity curves of the modes of the
(b) designed fiber and (c) those of the modes when the core radius or α parameters are changed ±1% from their optimal values.

cation imperfections and inhomogeneous stress caused micro
deformation of the fiber, characterization of ∆β1 values for all
guided modes is necessary for the practical HNL-FMF based
applications. If we set wavelengths of pumps and signal follow-
ing the designed ∆β1, the inter-modal FWM processes will very
likely to be phase-mismatched.

The fiber core has a small radius and a high doping concen-
tration, leading to a relatively high nonlinearity. The nonlinear
coefficients can be calculated using γ = ωn2/(cAeff), where c
is the speed of light in vacuum, n2 is the equivalent nonlinear
refractive index over the core area according to the expression
provided in Ref. [28], and Aeff is the effective mode area. The
effective areas of MG1 and MG2, calculated using the overlap in-
tegral of the spatial distribution of each MG, are approximately
21.3 and 42.9 µm2, respectively. The inter-modal Aeff between
the two MGs is around 42.5 µm2. Accordingly, the calculated
nonlinear coefficient γ of MG1 is 6 (W · km)−1 and that of MG2
is 3 (W · km)−1, while the inter-modal nonlinear coefficient be-
tween MG1 and MG2 is 3 (W · km)−1.

As seen in Fig. 2(b), the β1 curve of the mode in MG1 inter-
sects with each curve of the modes in MG2 at a specific wave-
length. Going back to Fig. 1(b), we have ωA = ωB at the inter-
secting wavelengths. In such conditions, if the pumps in both
modes are placed at the same frequency such that ωp = ωq,
a signal at ωs in mode a can be converted to an idler at ωi in
mode b or vice versa through the BS process, such that ωs = ωi.
Thus, our HNL-FMF can potentially be used for achieving mode
exchange between the two MGs without requiring wavelength
conversion. This is similar to the parametric wavelength ex-

change observed in single mode fibers [29]. To experimentally
observe this, however, a high conversion efficiency is required.
The reason is that when dealing with multiple modes, a crosstalk
from one mode to another is observed at the output, which is
introduced by the mode division multiplexer (MMUX), demul-
tiplexer (MDMUX) and linear mode coupling in the HNL-FMF.
Thus, when both the signal and idler are at the same frequency
and the conversion efficiency is low, it would be difficult to differ-
entiate between the generated idler in mode b and the crosstalk
of the original signal in mode a to mode b. Unfortunately, due
to the large insertion losses (ILs) of the MMUX/MDMUX used
in this work, the conversion efficiency of our system is not high
enough to observe mode exchange. Nevertheless, we believe by
using other suitable MMUX/MDMUX systems such as photonic
lanterns which have much smaller ILs, this would be possible.

4. FIBER CHARACTERIZATION

Even though the simulations in the previous section provide
an estimate of the dispersion and nonlinear properties of the
fabricated HNL-FMF, exact characterization of the HNL-FMF
is required in order to perform the FWM experiments. Thus,
we have characterized the fabricated fiber to find the linear and
nonlinear properties of the supported eigenmodes, namely their
attenuation coefficient αdB, relative inverse group velocity ∆β1,
group velocity dispersion β2, and nonlinear coefficient γ.

We use two liquid crystal on silicon (LCoS) based spatial
light modulators (SLMs) as the MMUX and MDMUX [30, 31].
As shown in Fig. 3, by using a set of polarization diversity optics,
the incoming beam from a single-mode fiber (SMF) is split to two
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Fig. 3. SLM apparatus when used as MMUX for mode excita-
tion of the fabricated HNL-FMF. PBS: polarizing beam splitter,
λ/2: half-wave plate.

orthogonal polarizations. Each polarization is directed to a dif-
ferent area on the LCoS surface, making it possible to modulate
the light in each polarization separately by displaying individual
phase patterns on the area corresponding to each polarization.
Another set of polarization diversity optics is used to recom-
bine the two polarizations and focus the mode-multiplexed light
into the HNL-FMF. The same configuration but in the reverse
direction, is used as the MDMUX at the output of the HNL-FMF,
where an arbitrary spatial state with any polarization can be
converted back into a Gaussian beam. For exciting the eigen-
modes within each MG, phase patterns of linearly polarized
(LP) modes are displayed on the SLM. Each eigenmode in MG2
can be generated by combining different LP modes in orthog-
onal polarizations. For example, the phase pattern of LP11b in
x-polarization and that of LP11a in y-polarization is used to gen-
erate TE01 mode (see Fig. 2 of Refs. [32, 33] for more details).
Note that the polarization state of the input beam should be
45° linearly polarized before the MMUX, in order to have equal
power in each polarization for the excitation of the eigenmodes
in MG2. After properly aligning the system, the mode extinction
ratio (power ratio at the MDMUX between the excited mode and
all other modes) is more than 8 dB for both MG1 and MG2.

For inter-modal FWM, since several input beams (pumps and
signal) with different modes and wavelengths are interacting,
an SMF array is used to combine these beams at the input of
the MMUX. The fundamental mode in each input SMF can be
individually converted to a desired mode of the HNL-FMF. The
IL of the MMUX/MDMUX depends on the phase pattern dis-
played on the SLM and the number of ports used in the input
SMF arrays.

A. Attenuation Coefficient
The attenuation coefficient of each MG is measured by using
an optical time-domain reflectometer (OTDR). By changing the
phase patterns displayed on the MMUX, we can selectively ex-
cite an MG and measure its attenuation. Since the modes within
one MG couple linearly, we measure the losses of each MG in-
stead of the individual modes. An optical pulse at 1550 nm, with
a width of 100 ns, is generated by an OTDR. After propagating
through a 300 m SMF, it travels through the MMUX, where it is
converted to a specific MG. The pulse in the desired MG then
propagates through the 2-km HNL-FMF and is converted back
to the fundamental mode after the MDMUX. The back-scattered
power in each MG is measured by the OTDR and shown in
Fig. 4, as a function of the propagation distance. The first 300 m
relatively flat stage corresponds to the SMF before the MMUX,
while the subsequent stage from 300 m to 2300 m corresponds
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Fig. 4. Measured OTDR curves of both MGs.

to the 2-km HNL-FMF under test. The two peaks in each curve
correspond to the Fresnel reflection of the fiber ends in the SLMs
of the MMUX and MDMUX. The Fresnel reflection creates blind-
zones right after the peak locations, due to the high reflected
power. Thus, for better accuracy, the data measured far away
from the Fresnel reflections should be considered for the loss
calculations; i.e. the data located in the linear regime around
1.3 km to 2.3 km. By fitting a linear curve to these measurements,
we obtain attenuation coefficients of 0.59 and 0.65 dB/km for the
MG1 and MG2, respectively. Since our HNL-FMF is the sample
fabricated with traditional standard single mode fiber (SSMF)
process, low loss characteristic is possible if both doping and
drawing scheme are further optimized.

The SMF before the MMUX, helps us measure the IL of the
MMUX for each MG. By fitting a linear curve to the SMF stage
and comparing its power level to that of the HNL-FMF stage
at 300 m (where the MMUX is located), one can find the IL of
the MMUX, which is 8.3 dB when exciting MG1 and 10 dB for
MG2. However, due to the relatively large insertion loss of the
used MMUX, the dead zone after the reflection point of MMUX
is relatively large. The selected data for the purpose of the linear
fitting can cause an error on the injected power of around 0.3
dB. The MMUX loss is required for calculating the input power
to the FMF, which is particularly useful for characterizing the
nonlinear coefficient of the HNL-FMF, as will be explained in
Section 4-C.

B. Group delay
As mentioned in Section 2, the phase matching in inter-modal
FWM processes strongly depends on the β1 of the interact-
ing modes. In this section, we characterize ∆β1 by measuring
the differential mode group delay (DMGD) of the HNL-FMF.
We perform this measurement based on the time-of-flight tech-
nique [34], using the setup shown in Fig. 5. Light coming from
a tunable continuous-wave (CW) laser is modulated into pulse
signals by a Mach-Zehnder intensity modulator (IM) with a
pulsewidth of 100 ps and a repetition rate of 100 MHz generated
by an arbitrary waveform generator (AWG). The modulated
signal is adjusted by a polarization controller, then amplified
by an erbium-doped fiber amplifier (EDFA) and launched into
the HNL-FMF. The pulse signals propagating in different modes
of the HNL-FMF will experience different time delays, there-
fore, after the MDMUX, they arrive at the photodiode (PD) at
different times. By tuning the laser and measuring the relative
time delay between the different modes, we can calculate ∆β1 at
different wavelengths. Moreover, the wavelength dependence
of the DMGD can be used to find the group velocity dispersion
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Fig. 5. The setup of time domain pulse response measurement.

Fig. 6. Spectrogram of fiber pulse response over the C-band;
inset: β2 of each eigenmode over the C-band.

β2 of each mode by

β2 = − λ2

2πc
dβ1
dλ

. (2)

The signal wavelength is swept over the C-band, and the
pulse response and DMGD is measured for different wave-
lengths. The measurements are normalized and plotted in the
spectrogram, as shown in Fig. 6. Four approximately linear
curves are clearly seen in this figure, of which the three par-
allel curves from top to bottom correspond to the three eigen-
modes HE21, TE01 and TM01 in MG2, respectively, and the other
curve corresponds to the HE11 mode. It can be observed that
as predicted by simulations, the eigenmodes in MG2 are not
degenerate and thus propagate through the HNL-FMF with dif-
ferent velocities. For any given wavelength, the vertical color
distribution can be treated as the pulse response. Among the
three parallel curves, there are some inhomogeneous areas col-
ored in light blue, corresponding to the mode coupling between
the eigenmodes in MG2. We can extract ∆β1 between any two
modes and β2 of each mode, at any wavelength over the C-band,
from this figure. The extracted β2 of each mode is shown in the
inset of Fig. 6. Like other FMFs for inter-modal FWM [13, 27],
the fabricated HNL-FMF is in the anomalous dispersion regime
over the C-band.

It can be observed that the slopes of the ∆β1 curves for all
guided modes in Fig. 6 are close to the simulations in Fig. 2(b),
and the ∆β1 between any two eigenmodes in MG2 also generally
agrees with simulations. However, the ∆β1 between HE11 mode
in MG1 and any of the eigenmodes in MG2 has a positive shift
of ∼200 ps/km in comparison with the simulations. As shown
in Fig. 2(c), even 1% variations in the fiber core radius R or
α parameter during the fabrication process leads to a shift of

more than 200 ps/km in the ∆β1 between the MG1 and MG2,
while it has a much less effect on ∆β1 within MG2. In addition
to fabrication imperfections, some inhomogeneous stress was
imposed on the HNL-FMF during the fiber spooling, which
could have caused micro deformation of the fiber. The stress
slightly reduces the core radius, and introduces a positive shift
on the ∆β1 between MGs according to Fig. 2(c), which agrees
with our measured result. There is also a relative shift of ∆β1
between arbitrary two of the eigenmodes in MG2, compared
to Fig. 2(b). We infer that it is due to the circular asymmetry
of the core induced by the random longitudinal fluctuations
such as core non-circularity and the azimuthally inhomogeneous
doping, as well as the macro bending during the fiber spooling
[35].

The HNL-FMF presented here has some specific dispersion
properties, making it suitable for various applications. First, the
non-degenerate modes in MG2 give rise to three ∆β1 curves.
Thus, a signal at any given wavelength in MG1 can be phase-
matched with three different modes in MG2 at three different
wavelengths. The number of simultaneous phase-matched pro-
cesses could be three times that of a commercial 2-MG FMF
that has degenerate modes in MG2 [8]. Such property may be
potential for the wavelength multicasting in mode division mul-
tiplexed (MDM) transmission, because compared to the schemes
of using FMFs with more guided MGs [13], our HNL-FMF not
only has smaller Aeff leading to larger γ, but also has more bal-
anced parametric gain properties of all mode channels in MG2
to mitigate the mode dependent gain/loss. Second, even though
there is linear mode coupling within MG2, the different disper-
sion properties of the eigenmodes allow selective eigenmode
amplification in MG2 through inter-modal FWM. This is possi-
ble since only the power in the phase-matched eigenmode will
be amplified. Third, the three ∆β1 curves in MG2 are almost
parallel over the C-band, indicating that the inter-modal BS pro-
cesses between the eigenmodes in MG2 can be achieved with a
relatively large bandwidth [10], which is from 7.7 nm to 18.7 nm
in numerical simulations (considering a 10-dB bandwidth) de-
pending on the selection of two interacting eigenmodes, leading
to the potential application of broad-band mode and wavelength
conversion. Finally, the HE11 curve has intersections with the
HE21 and TE01 curves in the C-band. Hence, mode exchange
becomes possible if the pumps and signal are placed near any of
the crossing areas [29].

C. Nonlinear Coefficient
In order to measure the nonlinear coefficient γ and nonlinear
refractive index n2 for both MGs, we send two pumps with a
small wavelength difference to the designated MG and mea-
sure the power of the idlers generated by cascaded FWM pro-
cesses [36]. The measurement setup is presented in Fig. 7. Opti-
cal signals coming from two continuous wave (CW) lasers, oper-
ating around 1550 nm with a wavelength difference of 0.2 nm,
are aligned in polarization and combined by a 50:50 polarization
maintaining (PM) coupler. After optical amplification, the sig-

CW Laser

CW Laser

EDFA

MMUX

HNL-FMF
1549.9 nm

1550.1 nm

50:50

MDMUX

PC

PC OSA

Fig. 7. Setup of CW-SPM nonlinear coefficient measurement.
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cording to Ref. [36]. The two markers in the inset corresponds
to the power ratios of each MG labelled out in the main figure.

nals are launched into a specific MG of the HNL-FMF. Optical
interference occurs between the two optical waves, so the optical
signal oscillates at the beat frequency of 25 GHz. If we treat
the two pumps as a beat signal, the interaction process can be
approximated as a self-phase modulation (SPM)-like process,
because the wavelength difference of the pumps is small enough
to neglect chromatic dispersion. As the beat signal propagates
through the fiber, it experiences a nonlinear phase shift, which
can be treated as a result of SPM determined by ϕSPM = 2γLeffP̄,
where Leff is the effective length of the fiber under test, and P̄ is
the average input power of both two wavelengths. The signal is
then demultiplexed and observed by an optical spectrum ana-
lyzer (OSA) with a wavelength resolution of 0.01 nm. The optical
spectrum displays peaks at multiplies of the beat frequency if
the nonlinear phase shift is large enough [24]. By measuring the
power ratio between the peaks, it is possible to find ϕSPM and
deduce the values of γ and n2 [36]. The zero- and first-order
harmonics of each MG are displayed in Fig. 8, from which we
can obtain the nonlinear phase shift of the two MGs, as shown
in the inset of Fig. 8.

According to the IL measured in Section 4-A, P̄ is calcu-
lated and consequently γ for each individual MG is deter-
mined. The nonlinear coefficient of MG1 and MG2 is 5.7 and 2.8
(W · km)−1, respectively, indicating a nonlinear refractive index
n2 of 2.98 ×10−16 cm2/W. The measured results are close to the
n2 = 3.17 × 10−16 cm2/W, obtained from the analytical expres-
sion given in [28]. The eigenmodes in MG2 have very similar
spatial distributions, so it is reasonable to consider a single γ
value for all modes of MG2. The inter-modal γ is estimated to
be 2.8 (W · km)−1, based on the measured n2 and the estimated
inter-modal Aeff.

5. INTER-MODAL FOUR-WAVE MIXING

Based on the characterized parameters in the previous sections,
we conducted an experiment to achieve simultaneous inter-
modal FWM among multiple eigenmodes of the HNL-FMF. The

experimental setup is shown in Fig 9. Pump 1 and Signal are in
the HE11 mode, at 1550 nm and 1549.6 nm, respectively. Pump
2 is launched into the HE21 mode at 1542.3 nm, and Pump 3
in the TE01 mode is at 1565 nm. The wavelengths of the inter-
acting waves are chosen based on the group delay properties
of the modes, as shown in Fig. 6, so that the inter-modal FWM
processes are phase-matched. The polarization controllers right
after the Pump 1 and Signal lasers are used to align the po-
larization of the two beam. A polarization-maintaining 90:10
coupler is used to couple Pump 1 and Signal into a high-gain
EDFA, whose output power is set to be 28.5 dBm. A thin-film
tunable optical bandpass filter (TBPF) with a bandwidth of 1-nm
is used after the EDFA to filter out the amplified spontaneous
emission (ASE) noise. For Pump 2 and Pump 3, the bandwidths
of the TBPFs are chosen to be 0.6-nm to ensure a good opti-
cal signal-to-noise ratio (OSNR) around each idler wavelength.
Note that the polarization states of Pump 2 and Pump 3 before
the MMUX should be linearly polarized with an azimuth of 45°,
as described in Section 4. However, Pump 1 does not need to be
co-polarized with Pump 2 and Pump 3, because HE21 and TM01
modes are vector eigenmodes with variable polarization state at
arbitrary spacial location, as shown in the inset of Fig. 2(a). For
an arbitrary azimuth of the linearly polarized HE11 mode, the
co-polarized component and cross-polarized component of the
inter-modal FWM exist side by side, and the total efficiency is
always the same due to the symmetric spatial evolution of the
polarization states. After aligning the polarization states of all
the input beams by three polarization controllers, they are com-
bined together using a SMF array and launched into the MMUX,
where each beam is converted to the desired eigenmode. After
few-mode transmission over the 2-km HNL-FMF, mode divi-
sion demultiplexing is accomplished and the output spectrum is
observed by an OSA.

It is noteworthy that there is a large loss in each mode channel,
between the EDFA output power and the power coupled into
the corresponding mode in the HNL-FMF. The loss consists
of ILs of all the connectors, the TBPF and mainly the MMUX.
By implementing the OTDR measurements, we obtained total
losses of 10.7 dB, 12.8 dB and 12.6 dB for the HE11, HE21 and TE01
modes, respectively. Thus, the actual power of Pump 1 injected
into the HE11 mode at the HNL-FMF input is only 17.3 dBm,
while the pump powers of HE21 mode and TE01 mode are 6.2
dBm and 15.9 dBm, respectively, since the EDFA output power
for the HE21 mode is only 19 dBm. Under such power level
of less than 100 mW, no geometric parametric instability (GPI)
effect can be stimulated over the 2-km HNL-FMF. Furthermore,
the higher-order dispersion can be neglected in the analysis for

MMUX

HNL-FMF

Pump 2
HE21

TE01

90:10
TBPFPump 1

TBPF

EDFA

EDFA PC

PC

PC

PC

Signal

Pump 3

TBPFEDFA PC

HE11

MDMUX OSA

Fig. 9. Experimental setup for inter-modal FWM. Signal and
Pump 1 are connected with the HE11 port of the MMUX, while
Pump 2 and Pump 3 are connected with the HE21 port and
TE01 port, respectively.
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Fig. 10. Output spectra after mode demultiplexing. Two differ-
ent MGs are received separately by changing the correspond-
ing phase pattern in the MDMUX. For easier observation, a
red-shift of 0.1 nm is intentionally added on the spectrum
when receiving HE11 mode. Dashed lines mean the crosstalk
from one MG to the other.

the inter-modal FWM experiment [22]. The Raman noise can
also be neglected by considering the pump power and the small
wavelength detuning between Signal and Pump 1 [37].

Figure 10 shows the output spectra in each MG. The spectrum
of the output HE11 mode is intentionally red-shifted by 0.1 nm
for ease of observation, so that the spectra related to the two
MGs do not overlap. For wavelengths near 1550 nm, we can
clearly see intra-modal MI idlers at 1550.4 nm and 1549.2 nm in
the HE11 mode. The crosstalk to MG2 (shown in red) shows a
mode extinction ratio of at least 8 dB. For TE01 mode at 1565 nm,
the wavelength conversion efficiency (CE), which is defined as
the power ratio between the output idler and the output Signal,
is -31.5 dB and -34.8 dB for the BS and PC processes, respectively.
For HE21 mode with a lower input power, CE is -38.4 dB and
-39.8 dB for BS and PC, respectively. The generated idler power
is proportional to the input pump power and therefore the CE in
the TE01 mode is higher than that of the HE21 mode. Due to the
existence of random birefringence fluctuations, the output idler
power in each eigenmode in MG2 is reduced [38]. Moreover,
there is also crosstalk among the eigenmodes in MG2 due to
the mode coupling. However, the crosstalk of pump from one
specific eigenmode to another eigenmode is not phase-matched
with respect to the Pump 1 and Signal. Therefore, no idlers
due to the crosstalk will be generated, and consequently the
idler power coupled into other eigenmodes will not be ampli-
fied. Moreover, the mode coupling within MG2 only causes
the reduction of the idler power in the designated eigenmode
and the deterioration of CE. Furthermore, we observe that all
the idlers have power fluctuations within 5 dB, which is also
due to the random mode coupling among the involved modes.
Such random reduction of the idler power in the designated
eigenmode is the main limitation of using the non-degenerate
eigenmodes. In addition, small mechanical vibration or thermal
variation can affect the value of ∆β1 and consequently lead to
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Fig. 11. Spectra of conversion efficiency when the Signal wave-
length varies from 1549.6 nm to 1546 nm. The blue curves cor-
respond to the BS idlers, while the orange curves correspond
to the PC idlers. The dashed-dotted curves correspond to the
CE curves found through simulations, and the black dashed
line shows where the Pump 2 is located.

the power fluctuations of the idlers [39]. Nevertheless, higher
CE can be achieved if MMUX/MDMUX devices with smaller
ILs (such as photonic lanterns) is used, or using higher power
EDFAs together with stimulated Brillouin scattering (SBS) sup-
pression scheme. Using a longer HNL-FMF is also helpful for the
CE improvement. Furthermore, if the Signal carries data, both
BS and PC idlers of each eigenmode will carry the data (or phase
conjugated data). The TM01 mode could also be used as another
mode channel to perform inter-modal FWM over the L-band,
as can be deduced from Fig. 6. Thus, this HNL-FMF has the
potential to achieve 1 to 6 inter-modal wavelength multicasting
within only two MGs.

By changing the Signal wavelength, the bandwidths of BS
and PC between HE11 and HE21 modes are invesgated in Fig. 11.
The Signal to Pump 1 wavelength detuning is varied from 0.4
nm to 4 nm, with a 0.2 nm interval. As shown in Fig. 11, the blue
peaks left to the Pump 2 wavelength correspond to the idlers of
BS, while the red peaks, right to Pump 2, are the idlers of PC.
Taking a 10-dB bandwidth into consideration, the bandwidths
of BS and PC processes are 2.2 nm and 1.2 nm, respectively. The
bandwidth of BS is larger than PC, in agreement with theoretical
predictions [10]. We also simulated these nonlinear processes
by numerically solving the coupled nonlinear Schrödinger equa-
tions that describe the propagation of the eigenmodes in the
HNL-FMF [7]. The simulated bandwidths for the BS and PC
process are 1.7 nm and 0.8 nm, respectively, as shown in Fig. 11.
The bandwidth difference between simulation and experiment
may be due to the fluctuations of ∆β1 along the HNL-FMF in-
duced by the random local perturbations, especially for our
HNL-FMF with a small core radius [38]. There is a trade-off
between the fiber length and the bandwidth of the inter-modal
processes. Given the SLM losses, we needed a long fiber length
to observe the inter-modal nonlinearities. However, by using
other MMUX/MDMUX methods, it is possible to shorten the
fiber and increase the bandwidth of the BS and PC interactions.
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6. CONCLUSIONS

Design, fabrication and characterization of an HNL-FMF is pre-
sented, with a record-high inter-modal nonlinear coefficient
of 2.8 (W · km)−1. High germanium concentration in the core
breaks the mode degeneracy in the second MG, and results in dif-
ferent dispersion properties for the eigenmodes within that MG.
This allows multiple inter-modal interactions among the eigen-
modes. The number of possible inter-modal FWM processes
between the two MGs is 3 times that of a commercial two-MG
FMF and in addition inter-modal FWM within MG2 can also
be realized in the HNL-FMF presented here. Accordingly, si-
multaneous wavelength conversion among three eigenmodes
is experimentally verified over the C-band, which shows the
great potential of this HNL-FMF in all-optical signal processing
applications, such as wavelength multicasting and eigenmode
conversion. According to simulations, ∆β1 and consequently
the phase matching of the inter-modal FWM processes between
the MGs is sensitive to fabrication imperfections, which should
be taken into account while fabricating such fibers.
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