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1 INTRODUCTION 
1.1 Definition of Vehicle Dynamics 
Vehicle Dynamics is an engineering subject about motion of vehicles in relevant user operations. The 
subject is applied, and applied on a certain group of products, i.e. vehicles. Vehicle Dynamics always 
uses terms, theories and methods from Mechanical/Machine engineering, but often also from Con-
trol/Signal engineering and Human behavioural science.   

1.2 About this compendium 
This compendium is initially written for the course “MMF062 Vehicle Dynamics” at Chalmers Univer-
sity of Technology. The compendium covers more than included in that course; both in terms of sub-
system designs and in terms of some teasers for more advanced studies of vehicle dynamics. There-
fore, the compendium can also be useful in general vehicle engineering courses, e.g. in the Chalmers 
course “TME121 Engineering of Automotive Systems”; and as an introduction to more advance 
courses, which at Chalmers is the course “TME102 Vehicle Dynamics Advanced”.  

The overall objective of the compendium is to educate automotive engineers for development of vehi-
cles. The compendium focuses on road vehicles, primarily passenger cars and commercial vehicles. 
Smaller road vehicles, such as bicycles and single-person cars, are only very briefly addressed. It 
should be mentioned that there exist a lot of ground-vehicle types not covered at all, such as: off-
road/construction vehicles, tracked vehicles, horse wagons, hovercrafts or railway vehicles. 

Functions are needed for requirement setting, design and verification. The overall order within the 
compendium is that models/methods/tools needed to understand each function are placed before the 
functions. Chapters 3-5 describes (complete vehicle) “functions”, organised after vehicle motion direc-
tions: 

• Chapter 3: Longitudinal dynamics 
• Chapter 4: Lateral dynamics 
• Chapter 5: Vertical dynamics  

Chapter 1 introduces automotive industry and defines/repeats required pre-knowledge from different 
traditional academic disciplines. It is important to qualitatively understand the characteristics of the 
vehicle’s subsystems and, from this, learn how to quantitatively predict and analyse the complete vehi-
cle’s behaviour. The reader of this compendium is assumed to have knowledge of mathematics and 
mechanics, to the level of a Bachelor of Engineering degree. Previous knowledge in dynamic systems, 
e.g. from Control Engineering courses, is often useful. 

The vehicle is a component or subsystem in a superior transport system consisting of other road users, 
roads, and transport missions. A vehicle is also, itself, a system within which many components or sub-
systems interact. Chapter 2 describes what interacts with the vehicles from outside, like aerodynamics 
and driver. Chapter 2 also describes the other subsystems relevant for vehicle dynamics:  

• Wheels and Tyre in 2.2 
• Suspension System in 2.3 (and 3.4.5.2 and 4.3.9)  
• Propulsion System in 2.4  
• (Wheel) Braking System in 2.5  
• (Wheel) Steering System in 2.6 
• Environment Sensing System in 2.7 

1.3 Automotive engineering 
This section is about the context where Vehicle Dynamics is mainly applied, i.e. the automotive indus-
try. OEM means Original Equipment Manufacturer and is, within the automotive industry, used for a 
vehicle manufacturer. OEM is a legal status in some countries. In the automotive industry, the word 
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Supplier means supplier to an OEM. A Tier1 supplies directly to an OEM. A Tier2 supplies to a Tier1 
and so on. Primarily, suppliers supply parts and systems to the OEMs, but suppliers can also supply 
competence, i.e. consultant services. 

From an engineering view, an OEM does Product Development and Manufacturing. But it is good to 
remember that there is also Purchasing, Marketing & Sales, After Sales, etc. However, Product Develop-
ment is the main area where the vehicles are designed. It is typically divided into Powertrain, Chassis, 
Body, Electrical and (Complete) Vehicle Engineering. Vehicle Dynamics competence is mainly needed 
in Chassis, Powertrain and Vehicle Engineering. 

On supplier side, Vehicle Dynamics competence is mainly needed for system suppliers that supplies 
propulsion, brake, steering and suspension systems. Additional to OEMs and suppliers, Vehicle Dy-
namics competence is also needed in authorities for legislation and testing as well as research insti-
tutes. 

There are engineering associations for automotive engineering. FISITA (Fédération Internationale des 
Sociétés d'Ingénieurs des Techniques de l’ Automobile, www.fisita.com) is the umbrella organisation 
for the national automotive societies around the world. Examples of national societies are IMechE 
(United Kingdom), JSAE (Japan), SAE (USA), SAE-C (Kina), SATL (Finland), SIA (France), SVEA (Swe-
den, www.sveafordon.com) and VDI FVT (Germany). There is a European level association also, EAEC. 

1.3.1 Vehicle Dynamics Engineers’ Industry Roles 
The activity type that sets the pace in automotive industry are vehicle programme or projects. It de-
fines the technology to be developed, the time and cost aspects. The work is organised around such 
programmes, both at vehicle manufacturers and their sourced subsystem supplier. One way to exem-
plify such is Figure 1-1. Engineers with vehicle dynamics profile are typically active at departments 
called Chassis, Complete Powertrain, Electrical or Vehicle Engineering. They are responsible for deliv-
erables to vehicle programme in the form of:  

• Hardware: Geometry, Strength and function per subsystem, ECUs 
• Software: SW per subsystem, Functions such as ABS, ESC, ACC 
• Requirement setting and verification: Handling, Driveability, Brake performance, Ground 

clearance, Ride comfort, Energy consumption. Verification in real and virtual tests. 

year1 year2

Changing bushings,
Tuning SW,

…
within subsystems
(hi&lo-mu tuning)

Changing geometry,
Function content,

…
within subsystems
(hi-&lo  mu tests)

Geometry package,
Strength of parts,
Signal interface,

…
between subsystems

Start
Of

Production

Pre-
Series3
(final 

chassis)

Pre-Series1
(mule=old 

chassis)

Pre-Series2
(new chassis)

Research 
projects 

 
Figure 1-1: An example of vehicle programme and Vehicle Dynamics related activities. 

1.4 Requirement Setting 
Development of a vehicle is driven by Requirements, coming from: 

• Manoeuvres/Vehicle operations/Use cases, representative for the need of the customers/users 
• Legislation from the authorities and Rating from consumer organisation, and  
• Engineering constraints from the manufacturer’s platform/architecture on which the vehicle 

should be built. 

One way of organising requirements is to define Attributes and Functions. The terms are not strictly 
defined and may vary between vehicle manufacturers and over time. With this said, it is assumed that 
the reader understand that the following is an approximate/exemplifying and simplified description. 

http://www.fisita.com/
http://www.sveafordon.com/
http://www.sveafordon.com/
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In this compendium, both attributes and functions concern the complete vehicle; not the subsystems 
within the vehicles and not the superior level of the transportation system with several vehicles in a 
road infrastructure. 

Attributes and Functions are used to establish processes and structures for requirement setting and 
verification within a vehicle engineering organisation. Such processes and structures are important to 
enable a good overall design of such a complex product as a vehicle intended for mass production at 
affordable cost. Figure 1-2 gives an overview, with reference to the well-known V-process, of how a 
vehicle is developed. Note that these kinds of figures are very idealized, and one should neither trust 
the process too much nor neglect them. A vehicle is a very complex product. First, one has several lev-
els of functions and subsystems. Secondly, it is difficult to keep a clean hierarchical order between 
functions and subsystems. Thirdly and most conceptually difficult, is the fact that each subsystem gets 
requirements from many functions as showed by the dashed lines; this makes the complexity explode. 

1.4.1 Attributes 
An attribute is a high-level aspect of how the users perceive the vehicle. Attributes which are espe-
cially relevant for Vehicle Dynamics are listed in Table 1.1. The table is much generalised and the at-
tributes in it would typically need to be decomposed into more attributes when used in the engineer-
ing organisation of an OEM. Also, not mentioned in the table, are attributes which are less specific for 
vehicle dynamics, such as Affordability (low cost for user), Quality (functions sustained over vehicle 
lifetime), Styling (appearance, mainly visual), etc. 

A set of Attributes is a way to categorise or group functions, especially useful for an OEM organisation 
and vehicle development programs. A set of Functions is a way to group requirements. Legal require-
ments are often, but not always, possible to trace back to primarily one specific attribute. Require-
ments arising from OEM-internal platform and architecture constraints are often more difficult to 
trace in that way. Hence, “platform/architecture” is a “requirement container”, beside the attributes.  

 

Describe Complete 
Vehicle Attributes

Set Requirements on
Complete Vehicle Functions

Decompose in subsystem.
Break down to Requirements on Subsystems

Traditional V-process
for product development

Design

Verify Requirements 
on Subsystems

Verify Requirements 
on Complete Vehicle

Validate
Complete Vehicle

Design loops 
per Subsystem

Design loops on 
Complete Vehicle level

(pre-series, virtual and real)

V-process for a vehicle programme
Customer/User 
perception

Product 
planning

Drawn as a “W-process” to stress
the multiplicity of subsystems

 
Figure 1-2: V-process for a vehicle program. The more design loops are utilized, the more ”agile”. 

1.4.2 Functions 
In this compendium, a function is more specific than an attribute. A function should define measures of 
something the (complete) vehicle does, so that one can set (quantitative) requirements on each meas-
ure, see 1.4.3. The function does not primarily stipulate any specific subsystem. However, the realisa-
tion of a function in a certain vehicle programme, normally only engages a limited subset of all subsys-
tems. So, the function will there pose requirements on those subsystems. Hence, it is easy to mix up 



INTRODUCTION 

 12  

whether a function origin from an attribute or a subsystem. One way to categorise functions is to let 
each function belong to the subsystem which it mainly implies requirements on rather than the source 
attribute. Categorizing functions by subsystems tends to lead to “carry-over” function realisations 
from previous vehicle program, which can be good enough in many cases. Categorizing functions by 
source attribute facilitates more novel function realisations, which can be motivated in other cases. 

The word “function” has appeared very frequently lately along with development of electrically con-
trolled systems. The function “Accelerator pedal driving” in 3.5.2.1 has always been there, but when 
the design of it changed from mechanical cable and cam to electronic communication and algorithms 
(during 1990’s) it became much more visible as a function, sometimes referred to as “electronic throt-
tle”. The point is that the main function was there all the time, but the design was changed. The change 
of design enabled, or was motivated by, improvement of some sub-functions, e.g. idle speed control 
which works better in a wider range of engine and ambient temperature. 

At some places, the compendium emphasizes the functions by adding an asterisk “*” in section head-
ing and a “Function definition” in the following typographic form: 

Function definition: {The Function} is the {Measure} … for {Fixed Conditions} and certain {Parameter-
ized Conditions}. 

The word “conditions” should be understood as a manoeuvre, operation or use case. It is often possible 
and efficient to define multiple measures from one “condition”. 

The {Measure} should be one unambiguously defined measure (such as time, velocity or force) of 
something the vehicle does. The {Measure} is ideally a continuous, objective and scalar physical quan-
tity, subjected for setting a requirement on the vehicle. The {Fixed Conditions} should be unambigu-
ously defined and quantified conditions for the vehicle and its surroundings. The keyword “certain” 
identifies the {Parameterized Conditions}, which need to be fixed to certain numerical values or proba-
bilistic distributions, before using the Function definition for requirement setting, see 1.4.3. 

Since the term “Function” is defined very broadly in the compendium, these definitions become very 
different. One type of Function definition can be seen in “3.2.3.1 Top Speed *”, which includes a well-
defined measure. Another type of Function definition is found in “3.5.2.3 Anti-Lock Braking System, 
ABS *” and “4.3.3 Under-, Neutral- and Over-steering *”. Here, the definitions are more on free-text for-
mat, and an exact measure is not so well defined. 

Table 1.1: Attributes relevant for Vehicle Dynamics / Vehicle Motion 

Attribute      Description 

T
ra

n
sp

o
rt

 E
ff

ic
ie

n
cy

 

This attribute means to maximize output from and minimize costs for transportation. 
Transport output can be measured in 𝑝𝑒𝑟𝑠𝑜𝑛  𝑘  𝑡𝑜𝑛  𝑘  or    𝑘 . The costs are 
mainly energy costs and time, but also wear of vehicle parts influence. The attribute is most 
important for commercial vehicles but becomes increasingly important also for passenger 
vehicles. The attribute is mainly addressing long-term vehicle usage pattern, typically 10 
min to 10 hours. There are diverse ways to define such usages, e.g. (Urban / Highway / 
Mixed) driving cycles. So far, the attribute is mainly required and assessed by the vehicle 
customers/users. 

The attribute can also be seen to include “Environmental Efficiency”, which means low us-
age of natural resources (mainly energy) and low pollution, per performed transport task. 
This is to a substantial extent required and assessed by society/legislation. 

S
a

fe
ty

 Minimizing risk of property damages, personal injuries and fatalities both in vehicle and 
outside, while performing the transportation. This attribute is to a considerable extent re-
quired and assessed by society/legislation. In some markets, mainly developed countries, it 
is also important for vehicle customers/users. 
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Attribute      Description 
U

se
r 

E
x

p
e

ri
e

n
ce

 (
D

ri
ve

r 
E

xp
er

ie
n

ce
) 

How the occupants (often the driver) experiences the vehicle during transport; from relaxed 
transport (comfort) to active driving (sensation). This attribute contains sub-attributes as:  

• Ride comfort. Ride comfort often refers to vibrations and harshness of the occu-
pants’ motion, primarily vertical but secondly longitudinal and lateral. So, V and H in 
NVH (=Noise, Vibration and Harshness) is included. If expanding to “comfort” it 
would include also N (noise) and compartment air conditioning, but these sub-attrib-
utes are less related to vehicle dynamics. 

• Performance describes how the vehicle can perform at the limits of its capabilities; 
acceleration, deceleration or cornering. Most often, it refers to longitudinal limita-
tions due to propulsion and brake systems limitations. 

• Driveability, Handling and Road-holding describes how the vehicle responds to in-
puts from driver and disturbances, and how driver gets feedback from vehicle motion 
e.g. through steering feel. It is also the corresponding response aspects for a “virtual 
driver”, i.e. a control algorithm for automated driving. Driveability often refers to lon-
gitudinal (acceleration, braking gear shifting). Handling and Road-holding often refer 
to lateral manoeuvres.  

• Trust in automated driving becomes increasingly important and needs to be bal-
anced; high trust but not over-trust. 

This attribute is to a considerable extent required and assessed by the vehicle custom-
ers/users, both through own experience but also indirectly via assessments by experts, e.g. 
in motor journals. 

1.4.3 Requirements 
A requirement shall be such that it is possible to verify how well a product fulfils it. A requirement on 
the complete vehicle is typically formulated as:  

“The vehicle shall … do something or have measure …  < 𝑜𝑟 > 𝑜𝑟 ≈ … number [unit] …  
… under certain conditions.” 

Examples: The vehicle shall… 
• … accelerate from 50 to 100 km/h in <5 s when full acceleration pedal. On level road. 
• … decelerate from 100 to 0 km/h in <35 m when brake pedal is fully applied, without locking 

any rear wheel. On level road. 
• … turn with outermost edge on a diameter <11m when turning with full steering at low speed. 
• … have a characteristic speed of 70 km/h (10 km/h). On level ground and high-friction road 

conditions and any recommended tyres. 
• … give a weighted RMS-value of vertical seat accelerations < 1.5  𝑠2⁄  when driving on road 

with class B according to ISO 8608 in 100 km/h. 
• … keep its body above a 0.1 m high peaky two-sided bump when passing the bump in 50 km/h. 

To limit the amount of text and diagrams in the requirements it is useful to refer to ISO and OEM spe-
cific standards. Also, it is good to document the purpose and/or use cases with the requirement. 

The above listed requirements stipulate the function of the vehicle, which is the main approach in this 
compendium. Alternatively, a requirement can stipulate the design of the vehicle, such as “The vehicle 
shall weigh <1600 kg” or “The vehicle shall have a wheel base of 2.5 m“. The first type (above listed) 
can be called Performance based requirement. The latter type can be called Design based requirement or 
Prescriptive requirement and such are rather “means” than “functions”, when seen in a function vs 
mean hierarchy. It is typically desired that requirements are Performance based, else they would limit 
the technology development in society. 
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1.4.4 Models, Methods and Tools  
The attributes, functions and requirements are top level entities in vehicle development process. But 
to design and verify, the engineers need knowledge in form of models, methods and tools. 

As mentioned above, some sections in the compendium have an asterisk “*” in the section heading, to 
mark that they explain a function, which can be subject for complete vehicle requirement setting. The 
remaining section, without an asterisk “*”, are there to give the necessary knowledge (models, meth-
ods and tools) to verify (including understand) the function and the requirements on it. It is the inten-
tion that the necessary knowledge for a certain function appears before the description of that func-
tion. One example is that the “2.4 Propulsion System”, “3.2.1 Traction Diagram” and “3.2.2 Power and 
Energy Losses” are placed before “3.2.3.1 Top Speed *”. Functions only appear in Chapters 3, 4 and 5. 

 

1.5 Engineering 
Engineering (or Design Engineering, in Swedish often “Ingenjörsvetenskap”, in German “Ingenieurwis-
senschaft”), as a science has an important portion of Synthesis. As support for synthesis, it also relies 
on Analysis, Inverse analysis or (Nature) Science, see Figure 1-3. Figure 1-4 distinguishes between Anal-
ysis and Synthesis, which shows that Analysis is a step in the whole design loop. The actual Design step 
requires Synthesis. The overall purpose is to propose a design, e.g. numerical values of Design parame-
ters of a product. The distinction between Analysis and Inverse Analysis can be made when there is a 
natural causality (“cause-effect-direction”). 

In 1.5 some useful general methods and tools are described. Parts of these are probably repetition for 
some of the reader’s previous education, in mechanical and control engineering. In the end of 1.5, 
there is a stronger connection to the vehicle engineering. 

1.5.1 Model Based Engineering  
An analysis step as in Figure 1-4, can use either real or virtual verification. For real verification one 
need to build prototypes. For Virtual Verification, models are needed. A (dynamic) model is a repre-
sentation of something from real-world varying over a time interval, such as a car during longitudinal 
acceleration from 0..100 km/h. Models are always based on assumptions, approximations and/or sim-
plifications. However, when using models as a tool for solving a particular problem, the models at least 
have to be able to reproduce the engineering problem one is trying to solve. Also, models for engineer-
ing have to reflect design changes in a representative way, so that new designs can be evaluated. Too 
detailed models tend to be a less useful, since they require and produce a lot of data. 

The models typically used in vehicle dynamics can be called physical dynamic models (many alterna-
tive names: functional models, lumped models, discretized models, system models, DAE-model, ODE-
models, etc.). The models are typically multi-domain type, involving mechanics, hydraulics, pneumat-
ics, electric, control algorithms, driver’s actions, etc. Examples of modelling methods which more sel-
dom are used directly in vehicle dynamics are: Finite Elements, Computational Fluid Dynamics, CAD 
geometry models, etc. 

One can identify modelling in 3 stages in the overall process: 1.5.1.1.2 Physical Modelling, 1.5.1.1.3 
Mathematical Modelling, and 1.5.1.1.4 Explicit Form Modelling. See Figure 1-5. The compendium 
spends most effort on the first 2 of those 3. 

Physical models are assumed. As opposite to this, one can think of formulating a mathematical model 
without motivation from established physics. (Without a physical model, the parameters are generally 
not interpretable to real design parameters; an indication of this is when the modeller does not know 
the units of parameters and variables in the model, and the parameters needs real tests to be found. 
Methods for such modelling can be regression, machine learning, etc and such models can only be used 
for interpolation, not extrapolation.) However, for vehicle engineering, the vehicle model should be 
physical, so that its real-world design parameters can be identified. However, a driver model can be 
useful also without strict physical model, since the driver is not to be designed during vehicle 
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engineering. But it is important to consider that the driver do change its behaviour when vehicle de-
sign parameters are changed. 

Input, Laws of Nature, System Output Analysis

Output, Laws of Nature, System Input Inverse Analysis

Input, Output, System Laws of Nature (Nature) Science (induction)

Input, Output, Laws of Nature System Engineering Design (Synthesis)

Dixon, J.R., (1966) Design Engineering, Inventiveness, analysis and Decision Making

System
OutputInput

Given Find Process

Laws of Nature

 
Figure 1-3: Engineering Design and related activities. Picture from Stefan Edlund, Volvo Trucks. 
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fulfilled?

 
Figure 1-4: How Analysis/Synthesis and Design/Operation parameters appears in Vehicle Design. 

1.5.1.1 Stages in (Dynamic) Model Based Engineering 
1.5.1.1.1 Formulate the Engineering Design Task 

Based on a problem description, one formulates the engineering design task, which describes the re-
quired design decisions (if possible, appoint design parameters) for an existing vehicle or a concept. 
Also, requirements on how the output of the system should react in certain vehicle operations (or ma-
noeuvres or situations) have to be identified. Requirements can be either constraints (some-
thing<number) and/or optimization (some scalar to be minimized).  

The conceptual idea with requirements in vehicle industry is that they are set independently of the de-
sign solution. However, the general requirements are seldom neither enough for a certain engineering 
design task; one often have to reformulate or add requirements. The operation parameters often have 
a range/spread/stochasticity to design for, see Figure 1-4. Examples of such parameters describe traf-
fic situation, driver, tyre/road characteristics, weather, see 1.5.1.3.1. The range can be searched for in 
feedback or logged data from customers and accident statistics. But it is also very important with expe-
rienced engineering judgment, to forecast how the problem will appear in a future context, with a fu-
ture fleet of vehicles and a future road infrastructure. Design methodology can be used to reason about 
and categorize parameters (e.g. Taguchi’s: “signal, response, noise and control factors”). 

One design task is typically influenced by several requirements and can therefore need multiple mod-
els of the same system. This stresses the importance of parameterization, which help to secure that the 
same design is assessed in the different models. 
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Figure 1-5: (Dynamic) Modelling stages. Real versus Theoretical world. The dashed boxes in the background 

indicate that same design has to fulfil multiple requirements, which might require multiple models. 

1.5.1.1.2 Physical Modelling 

In this stage, one should generate a physical model, which in this compendium means sketches and 
text. Free-body diagrams (see 1.5.2.1) and operating conditions (see 1.5.6) are always important in-
gredients in the physical model of a vehicle, but also other domains than mechanical are often repre-
sented, such as hydraulics, electrics, driver and control algorithms. The physical model shall clarify as-
sumptions/approximations/simplifications, e.g. rigid/elastic, inertial/massless, small angles, etc. Dis-
crete dynamics, see 1.5.1.4, such as ideal dry friction, backlash or end stop does not exist in real world, 
so such assumptions are typical examples of clear differences between real system and physical model. 
How to model here should be based on what phenomena is needed to be captured and what variations 
(e.g. which design parameters) are intended for simulations with the model. A list of parameters and 
variables are suitably introduced and defined, for reuse in the mathematical model. A physical model 
is often not executable, but it can be. One example of executable format is a model build in an MBS tool, 
see 1.5.4.9 and Figure 1-18.  

1.5.1.1.3 Mathematical Modelling 

In this stage, one should generate a mathematical model, which means equations. Basically, it is 
about finding the right equations; equally many as unknowns. For dynamic systems, the unknowns are 
unknown variables of time. In the mathematical model, the assumptions are transformed into equa-
tions. For dynamic systems, the equations form a “DAE” (Differential-Algebraic system of Equations). It 
is seldom necessary to introduce derivatives with respect to other independent variables, such as posi-
tions, i.e. one does seldom need PDE (Partial Differential Equations). The general form of a DAE:  

• 𝒇𝑫𝑨𝑬(𝒛  𝒛 𝑡) = 𝟎; 

The 𝒛 are the (dependent) variables and 𝑡 is time (independent variable). The mathematical model is 
complete only if there are equally many (independent) equations in 𝒇𝑫𝑨𝑬 as there are variables in 𝒛. 
(Since DAE, we don’t counte 𝒛  and 𝒛 as different variables.) 
Note that it is not only a question of finding suitable equations, but also to decide parameterisation, 
which is how parameters are defined and related to each other. Parameterisation should reflect a “fair” 
comparison between different design parameters, which often requires a lot of experience of the prod-
uct and the full set of requirements on the vehicle. To underline the parameters, 𝒑, they can be in-
cluded in the DAE form as 𝒇𝑫𝑨𝑬(𝒛 (𝑡) 𝒛(𝒕) 𝑡 𝒑) = 𝟎;. 

Selection of output variables is important so that output variables are enough to evaluate the require-
ments on the system. Selecting more might drive unnecessary complex models. 

The Mathematical model is acausal, i.e. describes relations between the variables, not how and in 
which order they are computed. 

There is a strong tradition to in mechanical engineering to model with 2nd order differential equations, 
where accelerations of inertial bodies appear as 2nd derivative of position. However, numerical 
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methods for solving first order differential equations are much more mature and Vehicle Dynamics 
mainly aims at such. Hence, the compendium aims at first order differential equations. It is easy to go 
from few higher order to many first order differential equations; variables appearing in 2nd order de-
rivative  ̈𝑖  are replaced with   𝑛𝑒  𝑗 and one equation   𝑖 =  𝑛𝑒  𝑗; is added. The opposite is not gener-

ally as easy, but often possible. An example is a linear model 𝒛 = 𝑨  𝒛;, which can be converted from 
many 1st order to fewer 2nd order becomes as follows: 

[
𝒛 𝟏
𝒛 𝟐
]

⏟
𝒛 

= [
𝑨𝟏𝟏 𝑨𝟏𝟐
𝑨𝟏𝟐 𝑨𝟐𝟐 

]
⏟        

𝑨

 [
𝒛𝟏
𝒛𝟐
]

⏟
𝒛

;   ⇒ {
differentiate
equation for 𝒛 𝟏

} ⇒ {
eliminate
𝒛𝟐 (and 𝒛 𝟐)

} ⇒

⇒  𝒛̈𝟏 − (𝑨𝟏𝟏 + 𝑨𝟏𝟐  𝑨𝟐𝟐  𝑨𝟏𝟐
−𝟏)  𝒛 𝟏 − 𝑨𝟏𝟐  (𝑨𝟐𝟏 − 𝑨𝟐𝟐  𝑨𝟏𝟐

−𝟏  𝑨𝟏𝟏)  𝒛𝟏 = 𝟎; 

A mathematical model can have a format which is executable, e.g., a Modelica model, see 1.5.4.10. 

1.5.1.1.4 Explicit Form Modelling 

In this stage, one should generate an explicit form model, which means equations rearranged to as-
signment statements, i.e. to an explicit form (algorithm) which outputs the state derivatives. The ex-
plicit form model is generally causal. You probably recognize this formulation as “ODE” (Ordinary Dif-
ferential Equation) or “IVP” (Initial Value Problem). The general form is: 

• 𝒙 ← 𝒇𝑶𝑫𝑬(𝒙 𝒖(𝑡) 𝑡);     𝒚 ← 𝒈(𝒙 𝒖(𝑡) 𝑡); 

The 𝒙 is the state variables, 𝒖 is the input variables, and 𝒚 the output variables. In the mathematical 
model, there was no distinction between different dependent variables in 𝒛. However, to reach the ex-
plicit model, each variable in z has to be identified as belonging to either of 𝒙 𝒚 or 𝒖. Simply speaking, 
states 𝒙 are the variables which appears both as  𝑖  and   𝑖 , inputs 𝒖 are variables that cannot be solved 
for within the system of equations and outputs 𝒚 are the remaining variables. In some cases, a Linear 
State Space Form can be identified (or found to be a good approximation): 

• 𝒙 ← 𝑨(𝑡)  𝒙 + 𝑩(𝑡)  𝒖(𝑡);     𝒚 ← 𝑪(𝑡)  𝒙 + 𝑫(𝑡)  𝒖(𝑡); where 𝑨 𝑩 𝑪 𝑫 are matrices. 

Sometimes one need to get rid of constant terms by linear variable transformations, starting from the 
“affine” form: 

• 𝒙 ← 𝑨(𝑡)  (𝒙 − 𝒙𝟎) + 𝑩(𝑡)  (𝒖0 − 𝒖(𝑡));     𝒚 ← 𝑪(𝑡)  (𝒙 − 𝒙𝟎) + 𝑫(𝑡)  (𝒖0 − 𝒖(𝑡)); 

If the system is neither linear and nor affine it can at least be approximated with a linearization 
around [𝒙𝟎 𝒖𝟎]:  

• 𝒙 ← 𝑨(𝒙𝟎 𝒖𝟎 𝑡)  (𝒙 − 𝒙𝟎) + 𝑩(𝒙𝟎 𝒖𝟎 𝑡)  (𝒖0 − 𝒖(𝑡));     

𝒚 ← 𝑪(𝒙𝟎 𝒖𝟎 𝑡)  (𝒙 − 𝒙𝟎) + 𝑫(𝒙𝟎 𝒖𝟎 𝑡)  (𝒖0 − 𝒖(𝑡));   

In many cases, the matrices are not dependent of time 𝑡 which makes the analysis easier. However, 
many methods for linear systems can handle the time dependencies. 

A dataflow diagram (see Figure 1-9 and Figure 1-15) is a graphical representation of the explicit form. 
It is drawn using blocks with input and output ports and arrows representing signals between; inte-
gration is represented by integration blocks with 𝒙  as input and 𝒙 as output. 

If the explicit form cannot be found, there are computation methods also for solving the semi-explicit 
form: 𝒙 ← 𝒇𝒔𝒆𝒎𝒊(𝒙 𝒚 𝒖(𝑡) 𝑡);  𝟎 = 𝒈𝒔𝒆𝒎𝒊(𝒙 𝒚 𝒖(𝑡) 𝑡);.  

A generalisation of the semi-explicit form is when we cannot even find explicit expression for all state 
derivatives 𝒙 . We can still formulate an Explicit form model, but then using “implicit form expres-
sions”. As extreme example, when no variabels can be solved for: 

• [𝒙  𝒚] ← 𝑠𝑜𝑙 𝑒(𝒇𝑶𝑫𝑬 𝒊𝒎𝒑𝒍(𝒙  𝒙 𝒚 𝑡) = 𝟎); 

The operator “𝑠𝑜𝑙 𝑒” is here meant to be implemented as a (numerical) iteration during the Computa-
tion (compare 1.5.1.5). The only difference to the original 𝒇𝑫𝑨𝑬 is that the states 𝒙 are identified among 
the variables 𝒛. But, it should also be noted that this is no general cure to avoid doing Mathematical 
manipulations, because far from all iterations succeed; so, explicit form expressions should be strived 
for as far as possible! Often, some parts of the Explicit form can be explicit form and only a few varia-
bles appear in a 𝑠𝑜𝑙 𝑒 epression. When implicit form expressions appear in the Explicit form model, 
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we have a situation where causality is not defined for the involved variables, although the model is on 
an overall Explicit form. 

1.5.1.1.4.1 Time Sampling and Time Events 

In vehicle dynamics, the dynamics occurring in the digital control is essential. A control algorithm can 
of course be modelled with continuous equations, but the effect of time sampling and signal communi-
cation delays are often essential to include. A mathematical method to model this phenomenon is 
“time events”. 

Time events are similar to, but not same as, discrete dynamics in 1.5.1.4. The similarity is that both 
time events and state events (used for discrete dynamics) uses transition conditions, 𝒉 > 𝟎. But for 
time events, the transition conditions are only a function of time 𝒉(𝑡). Time events appear since algo-
rithms are executed on digital processors or are delayed sin signal communication. Time events are 
generally more established and easier to get physically consistent than the more general state events, 
𝒉 = 𝒉(𝒙𝒄 𝒙𝒅 𝒖 𝑡). 

In Modelica, a continuous model with its time sampled controller can be modelled as in Figure 1-6. The 
example is speed control of a vehicle in uphill. The longer sample time gives an unstable solution. 
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model SampledAlgorithm

parameter Real m=1500, RollGradeResist=(0.01+0.05)*m*9.80665;

Real vx, axReq, Fx;

parameter Real SampleTime, PGain=1/0.5; //0.5 is seconds

initial equation

vx = 10;

equation

//vehicle (continuous DAE)

m*der(vx) = min(Fx, 0.8*m*9.80665) - RollGradeResist;

//control and actuation (time sampled discrete DAE)

when sample(0, SampleTime) then

axReq = Pgain*(20 - pre(vx));

Fx = m*axReq; //Model, without resitances

end when;

end SampledAlgorithm;

  

solid: SampleTime=100 ms
dashed: SampleTime=1100 ms

 
Figure 1-6: Dynamic model with time sampled part. 

1.5.1.1.4.2 Discretization of Continuous Models 

When a simulation tool solves a dynamic model it typically does time discretization, but as engineers 
we still see the model as continuous. However, continuous dynamic models often have to be intention-
ally (time) discretized; as they shall become parts of the product, the vehicle. The integral part of a PID 
controller is one example. Another example is when an algorithm is derived as continuous, which is 
often the case with filters and estimators, 1.5.4.6. Yet another example is when the algorithms shall 
perform simulations of dynamic models which are derived as continuous. An example of converting a 
continuous dynamic model to a time discrete is shown in Figure 1-7. 

1.5.1.1.5 Computation 

Computation, is to find a numerical solution. Several ways can be of interest, e.g.: 
• (Time domain) Simulation (e.g. Initial value problem, IVP or End value problem, EVP). There 

are many advanced pre-programmed integration methods which one can rely on without 
knowing the details. It is often enough to the concept of the simplest “Euler forward with con-
stant time step”, in which the state variables are updated in each time step,  𝑡, as follows:  
       𝒙 𝒏𝒐𝒘 ← 𝒇𝑶𝑫𝑬(𝒙(𝑡𝑛  ) 𝒖(𝑡𝑛  ) 𝑡𝑛  ); (Explicit form model) 
       𝒙(𝑡𝑛  +  𝑡) ← 𝒙(𝑡𝑛  ) +  𝑡 ∙ 𝒙 𝒏𝒐𝒘; (Derivative approximation) 
Typically, the time step  𝑡 is varied by the integration methods itself to minimize computation 
time, but maintaining a certain accuracy. The  𝑡 should not be mixed up with the sample time 
in time discrete systems, see 1.5.1.4.  

• For linear models and simple excitation one can find the solution without time integration, by 
using the “exponential matrix”, 𝑒𝑴𝒂𝒕𝒓𝒊𝒙. E.g., the solution to a linear system without input,   =
𝐴   ;, starting from a given initial state 𝒙(0) = 𝒙𝒊𝒗 is found as 𝒙(𝑡) = 𝑒𝑨 𝑡  𝒙𝒊𝒗;. 
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• Frequency domain analyses. The model can sometimes be linearized around an operating con-
dition by differentiating and 𝐴𝑖𝑗 =  𝑓𝑖  𝑥𝑗⁄  and 𝐵𝑖𝑘 =  𝑓𝑖  𝑢𝑘⁄ . (Compare with 1.5.1.1.4, where 

the 𝐴𝑖𝑗  and 𝐵𝑖𝑘  was identified in the algebraic expressions and linearity was not limited to 

around a certain operating condition.) The matrices are very useful for eigen-modes, eigen-
frequencies, step response, stability, or use as model base in model-based control design meth-
ods.  

• Stability analysis is to study when small disturbances lead to large response and how. (In linear 
models, when limited disturbances lead to unlimited solutions, typically oscillating or expo-
nentially increasing.) Stability analysis is normally done for one operating point [𝒙𝟎 𝒖𝟎], 
around which one linearizes. Instability is detected as when any eigenvalue to 𝑨 has positive 
real parts. If there are inputs (dim(𝒖) > 0), the stability is “for the open loop system”, e.g. for 
the vehicle without driver. If the equations for 𝒖 is included in the model, there will be no 𝑩 
matrix, and the stability is then “for the closed loop system”, e.g. for the vehicle with driver. 
Adding a driver can make the vehicle with driver more or less stable. 

• Optimization. Either optimizing a finite number of defined design parameters or time trajecto-
ries, e.g. 𝑢(𝑡). There are many optimization methods, ranging from trial-and-error to mathe-
matically/numerically advanced gradient based or evolutionary inspired methods. If optimiz-
ing time trajectories, one often discretize the model in time, which converts the differential 
equations into difference equations, using a certain derivative approximation, such as 𝒙𝒌+𝟏 ←
𝒙𝒌 +  𝑡 ∙ 𝒙 𝒌 = 𝒙𝒌 +  𝑡 ∙ 𝒇(𝒙𝒌 𝒖(𝑡𝑘) 𝑡𝑘) = 𝒙𝒌 +  𝑡 ∙ 𝒇(𝒙𝒌 𝒖𝒌 𝑘   𝑡);. Typically, very simple de-
rivative approximations, compared to today’s integration methods for simulation, should be 
used. 

model DiscreteIntegrator

parameter Real SampleTime=0.5;

Real u, yc, udF, ydF, prederydF, udB, ydB, derydB;

initial equation

yc=0.2; pre(ydF)=yc; pre(ydB)=yc;

equation

//input:

u=0.1*sin(2*time);

//model (continuous):

der(yc)=-yc+u;

//discrete, EulerFwd: pre(deryd)=(yd-pre(yd))/SampleTime

when sample(0, SampleTime) then

udF=u;

prederydF = -pre(ydF)+pre(udF); //model

ydF=pre(ydF)+prederydF*SampleTime;

end when;

//discrete, EulerBwd: deryd = (yd-pre(yd))/SampleTime

when sample(0, SampleTime) then

udB=u;

derydB = -ydB+udB; //model

ydB=pre(ydB)+derydB*SampleTime;

end when;

end DiscreteIntegrator; 0.0 2.5 5.0 7.5 
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Figure 1-7: A continuous dynamic model,    = −  + 0.1  𝑠 𝑛(2  𝑡) ; and two discretizations:     and    .  

1.5.1.1.6 Evaluate Requirement Fulfilment 

This is often called Requirement Verification and means to find out how well the vehicle fulfils the re-
quirements. Also, Model Validity should be evaluated. (One can also do “Requirement Validation” which 
is to judge whether a suitable selection of requirements was selected in 1.5.1.1. This requires much 
experience.)  

Often, there is an old design which was the cause for the whole engineering task and then there might 
be test data to validate model with. Such validity check will be for one certain design. If directly com-
paring one simulation with one test it is an absolute model validity. If comparing the change between 
two tests where something has been changed, it is a relative model validity, e.g. telling if the model 
reflects design parameter changes well. The relative model validity is often more important than the 
absolute. Since one often don’t know exactly how the model is going to be used, it can be a good habit 
to include a boolean auxiliary variable for validity. One clear reason to set the validity “false” is when 
the physical model assumptions are not met, such as if a wheel lifts from ground (assuming equations 
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to handle wheel lift is not included). In other cases, it can be more of an engineering judgement on 
what threshold to set the validity false. Then, if validity is false during only a tiny fraction of the whole 
studied time, it is again a judgement whether to disqualify the simulation result or not. 

Evaluation of requirement fulfilment (or Analysis, as opposed to Synthesis) involves understanding 
and interpretation of the computation results to real world. New requirements can appear, typically 
when new constraints become active with the new design.  

1.5.1.1.7 Redesign 

Redesign (or Synthesis, as opposed to Analysis) is a creative part where experience and intuition is 
important. In some rare cases, one can inversely calculate the new design or use numerical methods 
optimize to a new better design.  

1.5.1.1.8 Final Design 

Final design, meaning a concrete proposal of design, such as a numerical design parameter value or a 
drawing or control algorithm. 

1.5.1.1.9 Modelling for Design Guidance 

The activity ”Modelling for Design Guidance” in Figure 1-5 marks another “branch” than the straight-
forward computation/simulation for virtual verification described in 1.5.1.1 to 1.5.1.1.8. It refers to 
activities that adjust the mathematical model with purpose to generate knowledge that can support 
the design. Examples of such adjustments are:  

• Linearization of the models, helps control or estimator designs, 
• Simplified models which can be simulated in the vehicle for on-line predictions, 
• Simplified models which can be optimized in the vehicle for optimal predictive control, and 
• General understanding of how parameters (both physical such as suspension hardpoints, 

spring stiffnesses, actuator capabilities and SW parameters such as control gains) influence the 
vehicle in the studied manoeuvres. 

To do these model adjustments, one often aims at a Closed form expression or Analytical expression, 𝒙 =
𝒇𝑪𝒍𝒐𝒔𝒆𝒅𝑭𝒐𝒓𝒎(𝒙 𝒖). In some cases, one can even find Closed form solution or Analytical solution, 𝒛 =
𝒇𝑪𝒍𝒐𝒔𝒆𝒅𝑭𝒐𝒓𝒎(𝑡);.  Examples where closed form solutions are possible are linear models with inputs 𝒖(𝑡) 
expressed as a simple time functions, such as step, harmonic and/or exponential functions, see 4.4.3 
and 5.4. 

To reach closed form expressions/solutions, one often has to, after the mathematical model, reduce 
the number of equations by eliminating variables. This can help to understand the behaviour of the 
whole system. The Mathematical model is still important since it documents better which physical 
phenomena has been modelled. The differentiation order can often increase when eliminating varia-
bles, so that 𝒛̈ 𝒛⃛ ⋯ appears in the equations.  

1.5.1.2 Approximations 
As mentioned above, assumptions (or simplifications or approximations) are made during Physical 
modelling. These can be directly motivated by vehicle design, such as assuming that some part is rigid 
or massless. They can also be directly motivated by the manoeuvre to be studied with the model. Ex-
amples of approximations during Physical modelling are massless bodies, steady state conditions and 
small angles. These have implications on the Mathematical modelling stage: some fictive forces do not 
appear in the equations, and  𝑛 𝑙𝑒 replaces sin( 𝑛 𝑙𝑒) in the equations.  

We can also assume that some variables or parameters are small. If a term in the final Explicit form 
model gets a high order, one can approximate mathematically by removing it. For example, a term 
𝑠  𝑙𝑙𝑁 where 𝑁 ≥ 2 can be removed if the other terms have 𝑁 < 2. Note that such approximations 
can not be done in an equation (during Physical or Mathematical modelling), but in the final expression 
(in Explicit form model). For example, a term with order 𝑠  𝑙𝑙𝑁 in Mathematical model, it can end up 
in denominator in final Explicit form model, which correspond to order 𝑠  𝑙𝑙−𝑁. Removing terms can 
also be done by keeping only the first terms in a Taylor expansion of 𝒇𝑶𝑫𝑬 in the Explicit form: 𝒇 ≈
𝒇𝟎 + (𝒅𝒇 𝒅𝒙⁄ )|𝒙𝟎 𝒖𝟎  (𝒙 − 𝒙𝟎) + (𝒅𝒇 𝒅𝒖⁄ )|𝒙𝟎 𝒖𝟎  (𝒖 − 𝒖𝟎);. 
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1.5.1.3 Constants, Parameters, Variables and Signals 
Variables and Signals vary with time during an experiment with the model. Constants and parame-
ters do not. In the following, it is understood that all have physical interpretation, e.g. a corresponding 
(physical) quantity with a known unit. Units are central for engineering. A {𝑞𝑢 𝑛𝑡 𝑡 } =  𝑒 𝑠𝑢𝑟𝑒  
[𝑢𝑛 𝑡]; such as { 𝑒𝑛 𝑡 } =   [ ] = 2  [ ];. If using a consistent set of units, such as SI-units, each 
equation can be seen as either a relation between quantities or relation between measures. The com-
pendium assumes SI-units, (ISO 80000-3, 2013),where else is not stated. Angle units are not stipulated 
by SI, but the recommendation is to use radians. It is recommended to not use numerical constants di-
rectly in the equations unless they are dimensionless=unitless, such as 𝜋 𝑜𝑟 2. 

1.5.1.3.1 Constants and Parameters 

A parameter can be changed between experiments. A constant does not even change between experi-
ments. Typical constant is 𝜋 or gravity constant  . Typical parameters are vehicle wheelbase and road 
friction coefficient.  

From vehicle engineering point of view there is a significant difference also between Design parame-
ters and Operation/Manoeuvre parameters. The first ones are varied to fulfil the requirements as good 
as possible. The latter ones should also be varied, but as disturbances for which the vehicle need to be 
robust. 

It is often natural to have different parameter sets to describe the design and operation/manoeuvre 
and another for use in the equations. For example, the kerb weight (design) and load (operation) are 
good for description while the total weight (sum of kerb and load) is the parameter that appears in the 
equations. Therefore, the parameters that appears in the equations cannot always be categorized as 
either design or operation/manoeuvre parameters. It is easy to forget that the selection of parameters 
and the relations between parameters are often an equally important part of the engineering problem, 
as the relations between variables (the equations) is for the dynamic system. A good question to ask 
oneself is often: Is the comparison “fair” if I vary parameters as I do? 

1.5.1.3.2 Variables 

Variables vary during the studied time interval. Consequently, their time derivatives are not identical 
zero, which is important when going from DAE to ODE formulation since some DAE equations might 
need to be differentiated. In Mathematical model (DAE), a variable and its time derivatives are counted 
as one variable. In Explicit model (ODE), one can count each time derivative of a variable as an addi-
tional variable, but then one also should count each integration ( 𝑖 = ∫  𝑖   𝑡 ;) as one equation. 

It can be noted that, during parameter optimization, some model parameters are varied and could 
therefore potentially be called variables, causing terminology confusion. To avoid such confusion, a 
prefix could be used: model parameters or optimization variables, depending of context. 

A very important type of variable is a state variable. The variables used as (continuous) state varia-
bles are given initial values and then updated through integration along the time interval studied. 
Which variables to use as state variables is not uniquely defined by the physical (or mathematical) 
model. See 1.5.2.2. 

1.5.1.3.3 Signals 

Since vehicle dynamics so often requires models of the control algorithms, one often use the words 
variable and signal interchangeable. It is suggested to, at least, reflect over the difference: 

• A signal can represent an ODE variable with prescribed causality. So, a variable cannot be 
represented by a signal before the modelling stage “Explicit Form Model”. 

• Signals can appear already in mathematical model (DAE), typically as interface on models of 
mechatronic subsystems or subsystems consisting purely of algorithms (software). For such 
signals, the causality is normally prescribed already in the mathematical model and one have 
to differ between differentiation orders, so that  𝑖  and   𝑖  are counted as two variables. A 
strict way to implement this is given in the Modelica modelling format, see 1.5.4.10. 
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1.5.1.4 Discrete Dynamics 
Only continuous dynamics, as opposed to discrete dynamics, were considered in 1.5.1.1.3 to 0. Dis-
crete dynamics modelling can be used for computational efficient models of, e.g., ideal dry friction or 
ideal backlash but also to model time sampled (digital) systems. See Figure 1-8. The way the states 
evolve over time differs between continuous and discrete dynamics: During the modelling, the contin-
uous states, 𝒙𝒄, should be thought of as changing continuously. In the computation there has to be a 
discretization in time steps since computers are digital (not analogue). Hence the 𝒙𝒄 are updated only 
between each time step but thought of as continuously changing in between. The update is based on a 
derivative approximation, e.g. 𝒙 𝒄 = (𝒙𝒄(𝑡 +  𝑡) − 𝒙𝒄)  𝑡⁄ ;. Discrete states, 𝒙𝒅, should be thought of as 
constant except that they step-wise change value at the time instants when one of the transition condi-
tions becomes true (not between these time instants!). These time instants are called (state) events, 
and can be implemented as when event indicators, 𝒉(𝒙𝒄 𝒙𝒅 𝒖(𝑡) 𝑡) > 0, becomes true. 

At a first glance, the 𝑥  should not change in the events, but are two reasons why one sometimes model 
them to change (stepwise) at an event: one is to reinitialize to physically obvious values (e.g. a bounc-
ing ball need to start from the surface it bounces at when the bounce happens) and the other is if one 
change physical model at an event, e.g. introduce an inertia or elasticity. The latter can be powerful to 
solve an engineering task, but the engineer has to be especially observant on how credible the numeri-
cal solution is, because the simulation tools can typically not estimate errors in such model. The latter 
way is here described as one model, but in another context it can be seen as “splicing” of several mod-
els. 

A system which includes both types (hybrid dynamics) evolves as follows:  
       𝒙𝒄(𝑡 +  𝑡) ← 𝒙𝒄 +  𝑡 ∙ 𝒙 𝒄 = 𝒙𝒄 +  𝑡 ∙  𝒇𝒄(𝒙𝒄 𝒙𝒅 𝒖(𝑡) 𝑡); and  
         𝑒𝑛 𝒉(𝒙𝒄 𝒙𝒅 𝒖(𝑡) 𝑡) > 𝟎 𝑡 𝑒𝑛 𝒙𝒅(𝑡

+) ← 𝒇𝒅(𝒙𝒄 𝒙𝒅 𝒖(𝑡) 𝑡);. 

Note that a “knee” (discontinuous derivative but continuous value) in an equation does generate an 
event, but no discrete state, since no “memory” is needed. But a step (mathematical discontinuity in 
value) or a hysteresis (mathematical function with multiple values depending on which branch is ac-
tive) generate state event with discrete state.  

One can see discrete dynamics as if the physics get stuck on the steep part of a step or in a branch in a 
hysteresis, until when an exit condition becomes true. Examples where this occur is dry friction, one-
way clutches, and back-lash. Another example appears if one changes physical models, e.g. remove a 
mass or compliance, during some parts of the simulation, governed by certain events. See more in 
2.4.3. Examples which typically appears in control algorithms or driver models are state machines. 

It can be needed to reinitialize continuous state variables (𝒙𝒄(𝑡
+) = ⋯) in events, e.g. motivated by im-

pact dynamics. There is a risk that the numerical solution gets stuck in undesired high frequency 
switching of discrete states which is called chattering. Chattering can be caused by coding errors of the 
event handling or inconsistent physical modelling. Discrete dynamics is not as well established in most 
basic engineering education as continuous dynamics.  

1.5.1.5 Algebraic Loops or Simultaneous Equations  
One problem that can appear when generating the Explicit form model is Algebraic loops. The name is 
most intuitively understood when Data flow diagram is used for the Explicit form model, see 1.5.4.7. 
Then, an Algebraic loop is a signal loop which does not include and integrator blocks; meaning that 
each branch of the loop needs input from the other to calculate its output. Algebraic loops can also be 
called Simultaneous equations. The smallest possible can actually be one single equation, e.g. a trans-
cendent equation, such as “𝑥 = sin(𝑥) ;”, which has no closed form solution.  

A simple mechanical example where two equations need to be solved before each other is given in Fig-
ure 1-9. The example is a vehicle decelerating with locked wheels; Vertical forces are needed to calcu-
late friction forces, which are needed to calculate acceleration, which is needed to calculate vertical 
forces. 

Loops appear often between bigger chunks of equations than in Figure 1-9, namely between modules 
in the model. The decomposition in certain modules is often desired for model modularity. A typical 
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other example where a loop occurs is when doing quasi-steady state assumptions about roll moment 
distribution between axles (4.3.9.3). 

Loops can always be solved by setting up an iteration in each evaluation of time derivatives. This can 
sometimes be accepted, but it gives poor computational speed. Other ways are to handle the loops by 
sacrificing simplicity in model is to model an additional elasticity or inertia between the modules, or 
simply a (non-physical) filter. “Memory blocks” can work but are not recommended, since the simula-
tions will be dependent on solver. Best is if the loop can be symbolically solved, as in Figure 1-9. 

𝑡

𝑥 

𝑥 

Shows that 𝑥 can be 
reset during the event.

EventInitial 
states

All these time steps are 
constant or adopted to error 

estimate in 𝑥 …

…but this time step is adjusted to find the exact 
time when the event’s transition condition 
becomes true, i.e. when  becomes > 0.

Solid show 
mathematically 
correct solution.

Dashed show 
computed solution, 
here linear 
interpolation over 
time steps.

 

 
Figure 1-8: A visualization of a model and computed solution with both continuous and discrete states. 

1.5.1.6 High Index 
A possible problem for a mathematical model is High index. A simple mechanical example of High in-
dex system of equations is when two inertias are rigidly connected, see Figure 1-10, where a working 
causality cannot be found with retained modularity. Similarly to algebraic loops, it can be solved with 
equation manipulations, but for high index problems, the manipulations include differentiation of 
some equations. It is tempting to try a “differentiating” block (  2 = (  𝑡⁄ ) 2; instead of  2 = ∫  2   𝑡 ; 
in Figure 1-10) but that will not work. Other examples where high index occurs is when modelling 
purely rolling wheels (3.3.2). 

    

 
  

      

          

  2

 

  2

3 equations, 3 unknowns (         ):

   =    +    ;

    +      +      = 0;

      +      2⁄ −      2⁄ = 0;

(with  as state,  = ∫    𝑡 ;)

   =    +    ;

    +      +      = 0;

      +      2⁄ −      2⁄ = 0;
  

      

Simultaneous equations (Algebraic loop)

Solved by symbolic manipulation of equations:
  = −   ;
   =     1 2⁄ −         ;

   =    −    ;

( = ∫    𝑡 ;)

If we guess    we can 
calculate all unknowns, 
including    itself. 

If the guess is adjusted 
until it gives same 
calculated    we have 
an iterative solution.

The loop could, in this case, be 
symbolically solved, so that we 
get this explicit solution.

 = ∫    𝑡 ;  

 
Figure 1-9: An example of Algebraic loop, also called Simultaneous equations. 

1.5.1.7 Modularity in Models 
Another aspect of modelling is the modularity. For complex products as vehicles, it is often important 
to keep a modularity in the models, which reflects the subsystems in the product. This is for reuse of 
subsystem models and co-operation between engineering teams at vehicle manufacturer and suppli-
ers. Reuse cuts modelling time, but also improves the models over time since bugs are found when 
models are used. Modularity is also important for replacing one subsystem model with a real ECU with 
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software or splitting model between several processors for increasing the computational capability. 
Methods for above motivated “co-simulation” are typically based on that each module are on explicit 
form but also include its own time integrator. This can create big challenges in numerical stability and 
accuracy of the whole system.  

3 equations, 3 unknowns (       2  ):
     =    −  ;
    2 =  ;
  =  2;
(with  𝑖 as states,  𝑖 = ∫  𝑖   𝑡 ;   𝑓𝑜𝑟  = 1 2)

High index

Solved by symbolic manipulations:
1. Differentiate ”  =  2;” to ”   =   2;”
2. Algebra gives:

   =      + 2⁄ ;
 =      ;
  = ∫     𝑡; 

 2 =   ; and   2 =    ;”

No working causality: 
2 in-ports for  

and 2 out/ports 
for  2 .

  

     

   

    2

  = ∫  2   𝑡 ;

 2 = ∫  2   𝑡 ;

  
 2

     =    −  ;

    2 =  ;

  =  2;

  2

   

 

 2

  

 
Figure 1-10: An example of a High index model; an accelerating rigidly connected car and trailer. 

An alternative way where models of sub-systems are connected on Mathematical form, as opposed to 
Explicit form. It could be called “co-modelling” and make it easier to organize libraries of models since 
one would not need to keep different versions of part models for different causality on interface varia-
bles. However, co-modelling would require a globally accepted and used standard of Mathematical 
modelling format, which does not exist yet; Modelica is the closest to reach such status. 

1.5.1.8 Causality 
Systems can be modelled with Natural causality. For mechanical systems, this is when forces on the 
masses (or motion of the compliance’s ends) are prescribed as functions of time. Then the velocities of 
the masses (or forces of the compliances) become state variables and have to be solved through time 
integration. The opposite is called Inverse dynamics and means that velocities of masses (or forces of 
compliances) are prescribed. For instance, the velocity of a mass can be prescribed and then the re-
quired forces on the mass can be calculated through time differentiation of the prescribed velocity. Cf. 
Analysis and Inverse Analysis in Figure 1-3.  

1.5.1.9 Drawing 
Drawing is a very important tool for engineers to understand and explain. Very often, the drawing con-
tains free body diagrams, FBD, see 1.5.2.1, but also other diagrams are useful. Beyond normal drawing 
rules for engineering drawings, it is also important to draw motion and forces. The notation for this is 
proposed in Figure 1-11.  

It is often necessary to include more than just speeds and forces in the drawings. In vehicle dynamics, 
these could be: power flow and signal or data flows. These can preferably be drawn as arrows, but of 
another kind than the motion and force arrows.  

When connecting components with signal flow, the resulting diagram is a data flow diagram. Physical 
components and physical connections can be included in such diagram, and if arrows between them it 
would represent data flow or causality. Physical components can also be connected by “Physical con-
nections”, which does not have a direction, see 1.5.1.9.1. It should be noted that a (computation) flow 
charts and (discrete) state diagram represent something quite different from data flow diagrams, even 
if they may look similar; in state diagrams, an arrow between two blocks represents a transition from 
one (discrete) state or operation mode, to another. 
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Rotation (e.g. rotational motion or moment)

Around axis perpendicular to paper:

Around axis in plane of paper:

Vector (e.g. motion (position, velocity or 
acceleration) or force (or moment or torque)):

Perpendicular to paper, pointing out of paper:

Along axis in plane of paper:

Perpendicular to paper, pointing in to paper:

Quantity flow (e.g. Energy flow =  Power):

Variables, Signals 
with prescribed causality:

Physical Connection 
(no prescribed causality):

Parametrization 
(sometimes relevant to show):

motion

force

In data flow diagrams:

 
Figure 1-11: Arrow-like drawing. 

1.5.1.9.1 Physical Connections and Power-Factorized Interface 

It is recommended to use interface variables which factorize power  , e.g. use force   and velocity  , 
because  =    . Similar factorization is found in all other domains, on a general form  = effort  
flow. Connection via such “power-factorized interfaces” is sometimes referred to as “power bonds”. 
Effort and flow often get opposite variable flow causality or signal flow causality in the explicit form 
model. 

If modelling with only   as interface variable, it is easier to miss validity limits of the models, such as 
supplying a certain non-zero power to a stand-still vehicle requires infinite forces ( =   ⁄ →  0⁄ ). 

When connecting physical components in a data flow diagram with “Physical connections”, there can 
be two main concepts: 

• Connecting in “nodes”, see Figure 2-61. Here, each node has typically potential and flow varia-
bles (velocities and forces in Mechanical systems). And there are only two components con-
nected to each node. The node variables appear in both components’ equations. The connec-
tion itself generates these equations: “Potential variable in node and both connected compo-
nents are equal” and “Flow variable in node and both connected components are equal”. 

• Connecting with “connections between connectors”, see Figure 2-74. Here, the same variables 
are defined in connectors at the components. A connection can be made with lines between the 
connectors at the components, possibly connecting more than two components. The equations 
in each component is formulated in the connector’s variables. The connection itself generates 
these equations: “Effort variables are equal” and “Sum of flow variables are zero”. 

The first is often the easiest (least number of equations and variables) for small models with a fixed 
topology. The latter is a more systematic which easier handles larger models and models with varying 
topology. The latter is supported in the standard modelling language Modelica, see 1.5.4.10 and the 
open book on internet in Reference (Tiller, 2019). 

1.5.1.10 Mathematical Notation Conventions 
Generally, a variable is denoted 𝑥 or 𝑥(𝑡), where 𝑡 is the independent variable time. In contexts where 
one means that variable’s value at a certain time instant, 𝑡0, it can be denoted 𝑥(𝑡0). In contexts where 
one wants to mark that the variable’s time history over a time interval (infinitely many values over an 
infinite or finite time interval) is referred to, it can be denoted 𝑥( ). 

Differentiation (of x) with respect to time (t): 
  

 𝑡
= 𝑥 =  𝑒𝑟(𝑥). 

Matrices (two-dimensional arrays) are denoted with bold letters, often uppercase 𝑨. Column and row 
vectors (one-dimensional arrays) are denoted with bold, often lowercase 𝒃. When elements in arrays 
are written, brackets are used: [𝑥  

  ]. 

Geometric vector (or physical vector, or spatial vector), denoted by  ⃗. In order to use geometric vec-
tors in calculations, they are often expressed as one-dimensional arrays with components. It has to be 
clear for each component, which direction it is expressed in, e.g. by a subscript, e.g. 𝒗𝒙𝒚𝒛.  
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Multiplication symbol (* or ∙ or × or •) shall be used to avoid ambiguity, e.g.    ∙  𝑥, not   𝑥 (assum-
ing  𝑥 is one variable, not two). Stringent use of multiplication symbol enables use of variables with 
more than one token, cf. programming. Stringent use of multiplication symbol reduces the risk of am-
biguity when using operators, e.g. it shows the difference between 𝑓(𝑥) and 𝑓  (𝑥). Compendium de-
notes multiplication between scalars and matrices equally, using “ ”. Multiplication between geometric 

vectors are denoted: Cross multiplication, denoted  ⃗ ×  ⃗⃗ and scalar multiplication, denoted   ⃗•  ⃗⃗. 

Parentheses shall be used to avoid ambiguity, e.g. (  ⁄ ) ∙     or    ( ∙  )⁄ ,   and not     ⁄ ∙  . 

An interval has a notation with double dots. Example: Interval between   and   is denoted  . .  . 

An explanation, between two consecutively following steps in a derivation of equations is written 
within {} brackets. Example: 𝑥 +  = { +  =  +  } =  + 𝑥;. 

An inverse function is denoted with superscript  𝑛 ,  = 𝑓(𝑥);⇔ 𝑥 = 𝑓𝑖𝑛𝑣( ). The use of superscript 
−1 can cause an ambiguity whether 𝑓−  means inverse function or inverted function value (1 𝑓⁄ ). 
When a name of the inverse function is available, it can be used, e.g. arctan(⋯ ) instead of taninv(⋯ ).  

Fourier and Laplace transform of function 𝑓(𝑡) are denoted ℱ(𝑓(𝑡)) and ℒ(𝑓(𝑡)), respectively: 

ℱ(𝑓(𝑡)) = ∫ 𝑓(𝑡)  𝑒−𝑗 𝜔 𝑡   𝑡
+∞

−∞

;      𝑒𝑟𝑒  ∈  𝑒 

ℒ(𝑓(𝑡)) = ∫ 𝑓(𝑡)  𝑒−  𝑡   𝑡
∞

0

;      𝑒𝑟𝑒 𝑠 = 𝜎 + 𝑗        𝑒𝑟𝑒 𝜎  𝑛    ∈  𝑒 

There are many practical rules for manipulation transformed differential equations, such as 

ℱ (𝑓 (𝑡)) = 𝑗    ℱ(𝑓(𝑡));. 

1.5.2 Mechanical/Machine Engineering 
Vehicle dynamics originates from Mechanical engineering (in Swedish “Maskinteknik”, in German “Ma-
chinenbau”). Therefore, it is important to be fluent with the following mechanical basic relations: 

• [Torque or Moment] = Force ∙ Lever:   𝑇 or 𝑀 =   𝑙𝑒𝑛 𝑡 ; 
• Power = Force ∙ Translational velocity:    =    ;  

or Power = Torque ∙ Rotational velocity:    = 𝑇   ;  
• Energy = time integral of Power:    = ∫   𝑡 ;   or:    = ∫   𝑥 ;   or:    = ∫𝑇    ;. 

• (Torque) Ratio = Output torque/Input torque:   𝑟 𝑡 𝑜𝑇 = 𝑇  𝑡 𝑇𝑖𝑛⁄ ; 
• (Rotational velocity) Ratio = Input velocity /Output velocity:   𝑟 𝑡 𝑜𝜔 =  𝑖𝑛    𝑡⁄ ; 
• (Power) Efficiency = Output power/Input power:   𝜂 =    𝑡  𝑖𝑛⁄ ;  

or, in a wider meaning, Efficiency = Useful/Used; 

Interfaces in mechanical systems are recommended to use [   ] or [𝑇  ], which is a “power-factor-
ized interface”, see 1.5.1.9.1. 

1.5.2.1 Free-Body Diagrams 
In the physical model, see 1.5.1.1.2, a free-body diagram, FBD is often central. See example in Figure 
1-12 and Figure 1-13. Also, division into subsystems is often practical, e.g. to implement moment-free 
connection points or other vehicle internal behaviour. The subsystem split typically goes through: 

• Connection point between towing unit and towed unit (typical interface quantities: 2 positions 
(with their derivative, velocities) and 2 forces). 

• Driveshaft close to each wheel (typical interface quantities: 1 shaft torque, 3 forces, and 2 an-
gles (steering and shaft rotation), sometimes 1 wheel camber angle). 

• Surface between driver’s hand and steering wheel (typical interface quantities: 1 angle and 1 
torque). 

• Sensed signals and request signals, which cuts out control algorithms as subsystem. 

One can draw free-body diagrams with two purposes: Understand the real-world problem/manoeuvre 
or as a help to set up (equilibrium) equations. A FBD with the 1st purpose, typically has force arrows 
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with the actual force directions and named | | or an explicit numerical value. A FBD with the 2nd pur-
pose has force arrows as the corresponding force variables are defined positive and named   (or − , if 
drawn as drawn negative). The reasoning about naming with | |   −  also applies to other signed or 
vector quantities: velocities, displacements and distances; in translation and rotation. 

It is recommended to not draw two forces acting at the same point of part and having same direction, 
   and  2. With such unsuitable drawing, it is very easy to set up wrong equations, e.g. friction limita-
tion as   <    𝑁, while it often is more physically correct with   +  2 <    𝑁. 

A short-cut, which avoids one equation, is to use same notation on two forces in the FBD, e.g. denote 
   0 as     in Figure 1-12. If using this, one should keep in mind that the naming itself includes a physi-

cal assumption between 2 forces. Compare this to action/reaction force in a cut, which actually is the 
same force and should have the same name. 

When using FBD as a help to set up equilibrium equations, a short-cut that can be to express a force in 
other, in a way that equilibrium is already fulfilled in the FBD. This eliminates one equilibrium equa-
tion. An example of this could be to use     instead of    0 in Figure 1-12, which would make the verti-

cal force equilibrium for the front axle (   −    = 0) unnecessary and not useful. 

1.5.2.2 Choice of State Variables 
From 1.5.1.3.2, we know state variables has to be selected and that selection is not unique. For me-
chanical systems, one often selects positions and velocities of (inertial) bodies as state variables, but it 
is quite possible and sometimes preferable, to use forces in compliances (springs) and velocities of 
bodies as state variables. With mass-spring system as example, the two alternatives become: 

•   𝑥 states: [  =   ⁄ ;     =  ∙ 𝑥;   𝑥 =  ;] (or [𝑥̈ =   ⁄ ;     =  ∙ 𝑥;]) and  
•     states: [  =   ;     =  ∙⁄  ;    𝑥 =   ⁄ ;], respectively. 

The latter alternative is especially relevant when position is not of interest, typically in propulsion sys-
tems. If     states, one equation (𝑥 =   ⁄ ) can then be omitted which can simplify. It is also often eas-
ier to express steady state initial conditions for a pre-tensioned system, e.g. wheel suspension where 
spring forces can be states. A drawback might be that, if overdetermined pre-tensioned systems (e.g. 
mass suspended in two springs: [  = (  +  2)  ; ⁄     =   ∙  ;   2 =  2 ∙  ;  𝑥 =     ⁄ ;  𝑥 =  2  2⁄ ;]), 
more states than necessary will be used, which means that positions (𝑥) can be calculated in two ways 
(𝑥 =     ⁄ ;  𝑥 =  2  2⁄ ;). These two ways can drift apart. The drift can be eliminated by completely 
disregard the original spring constitutions (𝑥 =     ⁄ ;  𝑥 =  2  2⁄ ;) and instead use position as a state 
(𝑥 =  ;).  

The mathematical system is then effectively:  

•     𝑥 states: [  =   ⁄ ;     =  ∙  ;   𝑥 =  ;].  

One can see the latter alternative as if the states are the variables which represents the two energy 
forms kinetic and potential energy, respectively, see Lagrange mechanics in 1.5.2.3.5. 

1.5.2.3 Equation Types 
The step from physical model (see 1.5.1.1.2) to mathematical model (1.5.1.1.3) means basically to 
identify variables and parameter and find the relationship between them, i.e. the equations. Models for 
Vehicle Dynamics always includes mechanics, and for these parts we can identify 3 main types of equa-
tions: Equilibrium, Compatibility and Constitution. 

1.5.2.3.1 Equilibrium 

Equilibrium gives relations between forces (including moments). For a static system, we can use the 
(static) equilibria: Sum of forces in any direction is zero:   ∑𝑭 = 𝟎; and Sum of moments around any 
axis is zero:   ∑𝑴 = 𝟎; 

In a dynamic system, there is typically inertia effects. Inertia effects can be seen as “fictive forces” and 
“fictive moments” (or “d’Alembert forces or moments”). Typically, the fictive forces are   𝑖 𝑡 =     

(where  =translational acceleration) and the fictive moments are 𝑀 𝑖 𝑡 = 𝐽      . These are counter-

directed to   and   , respectively. We can find the equations either as “Dynamic equilibria”:  
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• Sum of forces, including   𝑖 𝑡 , in any direction is zero:    ∑ 𝑭𝒊𝒏𝒄𝒍.𝒇𝒊𝒄𝒕 = 𝟎; 

• Sum of moments around any axis, including both 𝑀 𝑖 𝑡 and “  𝑖 𝑡  𝑙𝑒 𝑒𝑟”, is zero:    

∑ 𝑴𝒊𝒏𝒄𝒍.𝒇𝒊𝒄𝒕 = 𝟎; 

or as “Equations of motion” or “Newton’s 2nd law”:  

• Sum without fictive in   direction have to be equal to    :    ∑ 𝑭𝒆𝒙𝒄𝒍.𝒇𝒊𝒄𝒕 = 𝒎  𝒂; 

• Sum without fictive around axis through CoG in direction of    have to be equal to 𝐽      : 
   ∑ 𝑴𝑪𝒐𝑮 𝒆𝒙𝒄𝒍.𝒇𝒊𝒄𝒕 = 𝑱𝑪𝒐𝑮  𝝎 + 𝝎 × (𝑱𝑪𝒐𝑮  𝝎);  

The 𝐽    is the mass moment of inertia matrix in CoG along the same coordinate axes as   is expressed 
in. In this compendium, the alternative with Dynamic equilibria is mainly used. The fictive forces are 
introduced in the free-body diagrams with dashed arrows, see Figure 1-12 and Figure 1-13. The gen-
eral form for the fictive forces is: 

 ⃗ 𝑖 𝑡 =
 

 𝑡
(𝑡𝑟 𝑛𝑠𝑙 𝑡 𝑜𝑛 𝑙  𝑜 𝑒𝑛𝑡𝑢 ) =

 

 𝑡
(   ⃗) =   

 

 𝑡
 ⃗ =   

 

 𝑡
(
 

 𝑡
𝑟) =

=   𝒗 −   2  𝝎 × 𝒗⏟        
   𝑖 𝑙𝑖      𝑒

−  𝝎 × (𝝎 × 𝒓)⏟          
 𝑒𝑛𝑡 𝑖  𝑔𝑎𝑙     𝑒

−   𝝎 × 𝒓⏟      
𝐸 𝑙𝑒      𝑒

; 

The 𝑟 is the position vector. The Coriolis and Euler forces can often be assumed as zero in examples in 
this compendium due to no motion within the vehicle and rigidity of rotating bodies. The general form 
for the fictive moments is: 

𝑀⃗⃗⃗ 𝑖 𝑡 =
 

 𝑡
(𝑟𝑜𝑡 𝑡 𝑜𝑛 𝑙  𝑜 𝑒𝑛𝑡𝑢 ) =

 

 𝑡
(𝑱𝑪𝒐𝑮   ⃗⃗⃗) = 𝑱𝑪𝒐𝑮  𝝎 + 𝝎 × (𝑱𝑪𝒐𝑮  𝝎); 

The term 𝑱𝑪𝒐𝑮 × (𝑱𝑪𝒐𝑮  𝝎) can often be assumed as zero in examples in this compendium due to sym-
metries and rotation in one plane at the time. 

Figure 1-12 and Figure 1-13 show examples of free-body diagrams (FBDs) with all forces, including 
fictive forces. With such FBDs, the equilibrium equations are implicitly defined. In Figure 1-12 we can 
note that the axles’ rotational inertia and mass are assumed to be zero, else there would have been fic-
tive moments (𝐽𝑎 𝑙𝑒    ) on the axles and fictive force ( 𝑎 𝑙𝑒    ) on the free axle. 
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Figure 1-12: Free body diagram. The dashed arrow is a “fictive force”. The star is a way to mark around 

which point(s) moment equilibrium is taken in the later stage “Mathematical model”. 

1.5.2.3.1.1 Centrifugal Forces in General 3D Motion 

Centrifugal force terms appear as    𝑖   𝑗 where  ≠ 𝑗, i.e. for rotation perpendicular to translational 

velocity: 

[

  
 𝑦
  
] = [

   
  𝑦
   

] + [

0 +  − 𝑦
−  0 +  
+ 𝑦 −  0

]  [

  
 𝑦
  
] = [

   
  𝑦
   

] + [

0 −  + 𝑦
+  0 −  
− 𝑦 +  0

]  [

  
 𝑦
  
] = 

          = [

   +     𝑦–  𝑦    
  𝑦 −      +      
   +  𝑦    −     𝑦

] ≈ {

 𝑛  𝑜𝑠𝑡 𝑟𝑒𝑙𝑒  𝑛𝑡
 𝑒   𝑙𝑒 𝑜𝑝𝑒𝑟 𝑡 𝑜𝑛𝑠:
  ≫  𝑦  𝑛    ≫   

} ≈ [

   
  𝑦
   

] + [

0
+  
− 𝑦

]    ; 

In most vehicle operations, the most important centripetal acceleration terms are:   ∙    (see Eq 
[4.45]) and  𝑦 ∙    (see Eq [3.25]). 
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1.5.2.3.2 Constitution 

Constitution are relations between forces (including moments) and motions, e.g.  

• For a (linear) spring:  𝑜𝑟 𝑒 =  0 +   𝐷𝑒𝑓𝑜𝑟  𝑡 𝑜𝑛; or 
 

 𝑡
 𝑜𝑟 𝑒 =   𝐷𝑒𝑓𝑜𝑟  𝑡 𝑜𝑛𝑆𝑝𝑒𝑒 ;. 

Metallic materials typically follow such linear behaviour, cf. Hooks law, if not deformed too 
much or too fast. 

• For a (linear) damper:  𝑜𝑟 𝑒 =   𝐷𝑒𝑓𝑜𝑟  𝑡 𝑜𝑛𝑆𝑝𝑒𝑒 ;. Shearing of thin liquid films typically 
follows such linear behaviour, e.g. in lubricated bearing where shear force is proportional to 
sliding speed.  

• For a dry friction contact:  𝑜𝑟 𝑒 = 𝐶𝑜𝑛𝑠𝑡 𝑛𝑡  𝑠  𝑛(𝑆𝑙   𝑛 𝑆𝑝𝑒𝑒 );. This is the most common 
friction model in mechanical engineering, explained by adhesion between molecules and hys-
teresis when material is deforming over micro level asperities. So, the proportionality constant 
depends on both cooperating bodies material and surface roughness. Note: When a friction 
contact sticks, the equation switches to a compatibility equation (𝑆𝑙   𝑛 𝑆𝑝𝑒𝑒 = 0;). 

• For a more general model component:  𝑜𝑟 𝑒 = 𝑓𝑢𝑛 𝑡 𝑜𝑛( 𝑜𝑠 𝑡 𝑜𝑛 𝑆𝑝𝑒𝑒 );. Even more gen-
eral would include models of actuators:  𝑜𝑟 𝑒 = 𝑓𝑢𝑛 𝑡 𝑜𝑛( 𝑜𝑠 𝑡 𝑜𝑛 𝑆𝑝𝑒𝑒  𝑆  𝑛 𝑙);, where 
𝑆  𝑛 𝑙 often is a request signal, e.g.  𝑜𝑟 𝑒 𝑒𝑞𝑢𝑒𝑠𝑡. 
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Equilibrium for “sprung body”. Method with fictive
forces, which allows any 3 equilibria in the plane. E.g.:
• Lateral: +     𝑦 −  𝑦 = 0;

• Vertical: −   −      +   = 0;
• Roll around any point, e.g. the star (     ): 

+𝑀 − 𝐽     +         +     𝑦    = 0;

Alternative equilibrium for “sprung body”. Method without fictive
forces, which only works with sum of forces in direction of   𝑦 and   
and sum of moments around CoG:
• Lateral forces in   𝑦 direction: + 𝑦 = +     𝑦;

• Vertical forces in   direction : +  −   =      ;
• Roll moments around CoG: 

+𝑀 +  𝑦    +         = 𝐽     ;

Compatibility:
•   = 0; and      =   𝑦 −   𝑦; and    =   ;

Constitution for suspension spring:
• 𝑀  = −    ;
Actuation (assuming steering and good road grip):
•   𝑦 =   𝑦 𝑡 ; (=known function of time)

8 equations, 8 unknowns 
(     𝑦    𝑦        𝑦    𝑀 ).

Free body diagram 
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Figure 1-13: Free body diagrams for combined translation and rotation. The figure also shows the two ways 

of setting up equilibria, with and without fictive forces. Angle    is assumed small. 

1.5.2.3.3 Compatibility 

Compatibility gives relations between motions (positions, velocities, accelerations, …). One example is 

𝑆𝑝𝑒𝑒 =     𝑢𝑠   𝑜𝑡 𝑡 𝑜𝑛 𝑙 𝑠𝑝𝑒𝑒 ; for a purely rolling wheel or 𝛽 ≈ ( 𝑦 + 𝑙    )   ⁄ ; for body 

side slip angle over front axle for a vehicle body moving in road plane.  

(A special case of compatibility is a coordinate transformation for motion quantities.) 

1.5.2.3.4 Algorithms and Other Equation Types 

The listing of equation types in 1.5.2.3.1..1.5.2.3.3 is a help to model but it is not claimed to be com-
plete. There are many other equation types that can appear, e.g. from electrical and chemical science. 
Among these others there are two sub-types (algorithms and driver) that are especially important for 
vehicle dynamics, so they will be discussed here in 1.5.2.3.4. 

Via sensors and actuators, control algorithms can operate with the mechanics, mechatronics. The con-
trol algorithms with their interface to sensors and actuators is here included in the equation type 



INTRODUCTION 

 30  

“algorithms”. We also include models of how the human driver controls and experience the mechanical 
quantities. This equation type cannot be sorted into the traditional 1.5.2.3.1..1.5.2.3.1.2. Conceptually, 
any quantities that can be sensed or actuated in, and outside of, the subject vehicle can occur in these 
equations. (Finite) State machines are often useful when modelling (and designing) algorithm-based 
functions but also the driver, see discrete state machine in 1.5.1.4.  

A model of control algorithm can often be the same artefact as the design of it, especially if using a 
modelling tool that allows automatic generation of real-time code, like Simulink. However, note that 
the algorithms in real system is implemented in a time discrete digital computation platform and digi-
tal communication, so using a time continuous version as model is an approximation in itself. For best 
fidelity, the models need to be formulated as time discrete dynamics. Then one can properly represent 
the influence from the design parameter sample time on the vehicle functions. 

1.5.3 Control Engineering 
Vehicle dynamics is more and more influenced by electronics, where algorithms are the main artefact 
to engineer. For this reason, this section introduces some relevant theory and methods and their con-
nection to vehicle models as they are described in vehicle dynamics. From Figure 1-14, we realize that 
there are many other types of Vehicle Level Algorithms needed than just the Vehicle Motion Controller. 
It should be underlined that the control structure in today’s vehicles are not as clean and structured as 
in Figure 1-14, very much depending on that vehicle level control is distributed in several ECUs, each 
belonging to its own subsystem. 

Control algorithms can be designed without utilizing knowledge about the controlled system, such as 
neural networks, tuned only on observations on how the system responds. However, in this section we 
only consider Model based controllers. For those, the input and output signals, as well as parameters 
inside, has a clear interpretation in vehicle motion quantities and units. For instance, the requests on 

vehicle, 𝒚𝒓𝒆𝒒, is typically forces on vehicle [  ;  𝑦;𝑀 ] or accelerations of the vehicle [   ;   𝑦;    ]. The 

model base is helpful when tuning the controller parameters. Moreover, the model base helps to find a 
consistency between derivatives order in the controller and the controlled system, such as if P, I or D 
gains should be used in a PID-controller. 

Four conceptual categorizations of vehicle control will be presented in 1.5.4.2 to 1.5.4.5. 

The control, or algortihms, can be cathegorized in different types, such as: 

• Decision Making or Execution 
• Momentaneous or Predictive Control 
• Open or Closed Loop Control 
• Degree of Over-Actuation 
• Filtering, Estimation and Differentiation 

1.5.4 Tools & Methods 
This section presents some tools and methods for modelling and computation. 

1.5.4.1 General Mathematics Tools 
Examples of tool: Matlab, Matrixx, Python 

We will take Matlab as example. Matlab is a commercial computer program for general mathematics. It 
is developed by Mathworks Inc. Compendium will use some simple Matlab code to describe models in 
this compendium. The following are useful for dynamic models: 

Solve linear systems of equations,  𝑨  𝒙 = 𝒃:  >> x=inv(A)*b; 

Solve non-linear systems of equations, 𝒇(𝒙) = 𝟎:  >> x=fsolve('f',...); 

Solve ODE as initial value problems, 𝒙 = 𝒇(𝑡 𝒙): >> x=ode23('f',x0,...); 

Find Eigen vectors (V) and Eigen values (D) to linear systems: 𝑫  𝑽 = 𝑨  𝑽:  >> 
[V,D]=eig(A); 
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Find the 𝒙 which minimizes 𝑓(𝒙) under constraints that 𝑨  𝒙 ≤ 𝒃:  >> x=fmin-
con(f,x0,A,b); 

Find the 𝒙 which minimizes 0.5  𝒙𝑇  𝑯  𝒙 + 𝒇𝑇  𝒙:  >> x=quadprog(H,f); 
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Figure 1-14: Context for Vehicle Level Algorithms and Vehicle (Motion) Controller. “Virtual Driver” takes 

vehicle driver into account and closes the loop in vehicle speed and lateral position. 

Matlab is mainly numerical, but also has a symbolic toolbox: 
>> syms x a; Eq=a/x+x==0; solve(Eq,x)  %symbolically solve equation 

ans =   (-a)^(1/2) 

   -(-a)^(1/2) 

>> diff(a/x+x,x)  %symbolically differentiate expression 

ans = 1 - a/x^2 

>> int(x^3+log(x),x)  %symbolically integrate expression 

ans = (x*(4*log(x) + x^3 - 4))/4 

Of special interest for dynamic systems is that Matlab has a built-in function for ”exponential 
matrix”, mentioned in 1.5.1.1.5. E.g., if 𝒙 = 𝑨  𝒙; with 𝒙(0) = 𝒙𝒊𝒗 the solution is 𝒙(𝑡) = 𝑒𝑨 𝑡  𝒙𝒊𝒗 
which can simply be computed as: 

>> x=expm(A*t)*x_iv;  %with A as (square) matrix 

1.5.4.7 Dataflow Diagram Based Tools 
Examples of tools: Simulink, Systembuild, Altair Activate, Xcos, Modelica with Blocks library 

In these tools, the Explicit form model (or an ODE) is built with a graphical representation, around “in-
tegrator blocks”, often marked “1/s” or “∫ ”. An example using Simulink is shown in Figure 1-15. Sim-
ulink is designed for designing/modelling signal processing and control design. It can also be used for 
modelling the physics of the controlled systems. There are no dedicated vehicle dynamics tools/librar-
ies from Mathworks (but there are in-house developed specific libraries in automotive companies). 

From this type of tools, it is often possible to automatically generate real time code, which is more and 
more used instead of typing algorithms. It can be used for rapid prototyping of control functions, or 
even for generation of executable code for production ECUs. 
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Figure 1-15: Graphical modelling using Simulink for Explicit form model. 

1.5.4.8 Vehicle Dynamics Specialized Simulation Tools 
Examples of tools: CarMaker, TruckMaker, veDYNA, CarSim, TruckSim. 

These tools are specialized for vehicle dynamics. They contain purpose-built and relatively advanced 
models of vehicles, drivers and scripts for test manoeuvres. They are well prepared for parameter 
changes. However, they are generally less prepared for modelling conceptually new vehicle designs, 
which can make these tools less useful for vehicle manufacturers. For this reason, many of these tools 
offer also an interface to Simulink or FMU, so that the user can add in their own vehicle models. 

1.5.4.9 MBS Tools 
Examples of tools: Adams, Simpack, LMS Virtual Lab, Simscape Multibody, Modelica with Mechanics li-
brary. 

These are general 3D mechanics modelling and simulation tools, so called MBS (Multi-Body Simula-
tion) tools. As one example, Adams contains libraries of general bodies, joints and force elements. But 
there are toolboxes in Adams for vehicle dynamics, where template models and special components 
(such as tyre models and driver models) are available for vehicles dynamics. The models are very ad-
vanced and accurate for 3D mechanics, and there are import/export interfaces to Simulink. 

1.5.4.10 Modelica Based Modelling Tools 
Examples of tools: Dymola, Maplesim, System-Modeler, AMESim, Optimica Studio, Jmodelica, OpenModel-
ica 

Modelica is not a tool but a globally standardized format for lumped dynamic models on DAE form (or 
Mathematical form, see 1.5.1.1.3). There are several tools which supports the format. Specification of 
Modelica is found at https://www.modelica.org/. When learning Modelica, http://www.xogeny.com/ 
is helpful. The model format is acausal and all variables and parameters are declared. An example of 
model is given in Figure 1-16. Declaration of which are parameters and variables is a necessary part 
for a DAE model, see “parameter Real” and “Real”, respectively. 

The model format is also object oriented, which means that libraries of model components are facili-
tated. These are often handled with graphical representation, on top of the model code. There are 
some open-source libraries for various physical domains, such as hydraulic, mechanics, thermodynam-
ics and control. There are also commercial libraries, where we find vehicle dynamics relevant compo-
nents: Vehicle Dynamics Library and Powertrain Library. Some simple Modelica code will be used to 
describe models in this compendium. 

https://www.modelica.org/
http://www.xogeny.com/
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parameter Real m=2;

parameter Real c=3;

Real v;

Real F(start=3);

equation

m*der(v) = -F;

der(F) = c*v;

Simulation in Dymola:

 

 

 
  

𝑥

 
 

Physical model:

(Mathematical) Model 
in Modelica:

The tool manipulates the 3 equations to 
this explicit form:

𝑆𝑡 𝑡𝑒𝐷𝑒𝑟   𝑡  𝑒𝑠 =
 𝑒𝑟( )
 𝑒𝑟(𝑥)

=
−   
 

;

 𝑢𝑡𝑝𝑢𝑡𝑠 =  =   𝑥 ;

    

model ExampleModel

parameter Real m=2;

parameter Real c=3;

parameter Real F0=4;

Real v;

Real F;

Real x(start=-1/3);

equation

m*der(v) = -F;

v = der(x);

F = F0+c*x;

end ExampleModel;

Corresponding explicit form:
 𝑒𝑟( )
 𝑒𝑟( )

=
−   
   

;
 

Figure 1-16: Example of model in Modelica format (using the tool Dymola). Two alternative models are 
given, leading to either [x,v] or [v,F] as states. 

  

  

  

 2  

 

 

Physical model:

 2

 2

 2

 2  

(Mathematical) Model 
in Modelica:
model ExampleModel_HigherIndex

parameter Real m1=0.5;

parameter Real m2=1.5;

parameter Real c=3;

Real v1;

Real v2;

Real F1;

Real F2(start=3);

equation

m1*der(v1) = -F1;

m2*der(v2) = F1-F2;

v1=v2;

der(F2) = c*v2;

end ExampleModel_HigherIndex;

Simulation in Dymola:

The tool first realizes need for differentiating, to get 
another algebraic equation:

  =  2;    ⇒     𝑒𝑟(  ) =  𝑒𝑟( 2);
The tool then selects state variables and manipulates the 
equations to this explicit form:

𝑆𝑡 𝑡𝑒𝐷𝑒𝑟   𝑡  𝑒𝑠 =
 𝑒𝑟(  )
 𝑒𝑟( 2)

=
− 2 (  +  2)

    
;

 𝑢𝑡𝑝𝑢𝑡𝑠 =
 2
  

=
  

 2     (  + 2)
;

       2    2

F1 + m1*der(v1) = 0;

F2-F1 + m2*der(v2) = 0;

 
Figure 1-17: Example of “higher index problem” model in Modelica format. 

Mathematical modelling is more efficient than Explicit form modelling, since the engineer does not 
need to spend time on symbolic/algebraic manipulation of the equations. This is especially true when 
a model is reused in another context which changes the causality or for so called “higher index prob-
lems”, see Figure 1-17. In this compendium, many models are only driven to Mathematical model, 
since it is enough if assuming there are modern tools as Modelica tools available. One the other hand, 
an explicit form model has the value of capturing the causality, i.e. the cause-to-effect chain. The cau-
sality can sometimes facilitate the understanding and in that way help the engineer, which is why at 
least one and rather complete model is shown as explicit form model, see 4.5.3.1. 

One can also declare variables with prescribed causality, i.e. signals, in Modelica. Declaration of input 
signal: “input Real z;”. Modelica can also handle sampled signals and discrete states. 
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Physical Model in Modelica, in graphical editor:

model ExampleModel_ModelicaLibraries

Modelica.Mechanics.Translational.Components.Fixed fixed;

Modelica.Mechanics.Translational.Components.Spring spring(s_rel0=1, c=3);

Modelica.Mechanics.Translational.Components.Mass mass1(m=0.5);

Modelica.Mechanics.Translational.Components.Mass mass2(m=1.5);

equation

connect(mass1.flange_b, mass2.flange_a);

connect(mass2.flange_b, spring.flange_a);

connect(spring.flange_b, fixed.flange);

end ExampleModel_ModelicaLibraries;

Simulation in Dymola:

0 2 4 6 8 10 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

mass1.v [m/s] mass2.v [m/s] mass2.flange_a.f [N] spring.flange_a.f [N] 

model Mass "Sliding mass with inertia"

parameter SI.Mass m(min=0, start=1);

parameter StateSelect stateSelect=StateSelect.default;

extends Translational.Interfaces.PartialRigid;

SI.Velocity v(start=0, stateSelect=stateSelect);

SI.Acceleration a(start=0);

equation

v = der(s);

a = der(v);

m*a = flange_a.f + flange_b.f;

end Mass;

automatic, 
by the tool

same, in text editor:

 
Figure 1-18: Example of model in Modelica format, using Modelica libraries of component. 

1.5.4.11 FMI Supporting Simulation Tools 
Examples of tools: Most of the tool examples in 1.5.4.10, but also Simulink, CarMaker 

FMI (Functional Mock-up Interface) is not a tool but a globally standardized format for dynamic mod-
els on explicit form (see https://fmi-standard.org/). There are several tools which supports this for-
mat. FMI enables model export/import between tools. It also allows to hide Intellectual Property (IP) 
by using “black-box format”, i.e. models compiled (non-human readable) for certain processors, which 
is important in relation between OEMs and suppliers. 

1.5.5 Vehicle Motions and Coordinate Systems 
A vehicle’s (motion) degrees of freedom are named as in marine and aerospace engineering, such as 
heave, roll, pitch and yaw, see Figure 1-19. Figure 1-19 also defines the 3 main geometrical planes, 
such as transversal plane and symmetry plane. For ground vehicles, the motion in-road-plane (irp) is 
the primary motion, and has the dofs longitudinal, lateral and yaw. The remaining degrees of freedom 
(dof) describes the out-of-road-plane (oorp) motion. Also, the forces and moments on the vehicle body 
can be categorized in irp forces (longitudinal forces, lateral forces and yaw moments) and oorp (verti-
cal forces, roll moments and pitch moments). Along each dof one defines velocity, such as longitudinal 
velocity    in [ 𝑠⁄ ] and yaw velocity (or yaw velocity)    in [𝑟  𝑠⁄ ]. 

The consistent use of parameters that describe the relevant positions, velocities, accelerations, forces, 
and moments (torques) for the vehicle are critical. Unfortunately, there are sometimes disparities be-
tween the nomenclature used in different text books, scientific articles, and technical reports. It is im-
portant to apply ISO coordinate system, Reference (ISO 8855). It is the predominant coordinate system 
used nowadays. Historically, a coordinate system with other positive directions, Reference (SAEJ670), 
has been applied. 

The distinction of vehicle fixed and inertial (= earth fixed = world fixed) coordinate systems is im-
portant. Figure 1-20 depicts the four most relevant reference frames in vehicle dynamics: the inertial, 
vehicle, wheel corner and wheel reference frames. All these different coordinate systems allow for the 
development of equations of motion in a convenient manner.  

https://fmi-standard.org/
https://fmi-standard.org/
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Figure 1-19: Left: Vehicle (motion) degrees of freedom and important planes. Right: ISO coordinate system 
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NOTE: The ISO8855 tyre lateral side slip is positive for tyre sliding with 
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Figure 1-20: Coordinate systems and motion quantities in ground plane. 

The orientation of the axes of an inertial coordinate system is typically either along the vehicle direc-
tion at the beginning of a manoeuvre or directed along the road or lane. Road or lane can also be 
curved, which calls for curved longitudinal coordinate.  

Origin for a vehicle coordinate system is often centre of gravity of the vehicle, but other points can be 
used, such as mid front axle (ground contact or wheel centre height), mid of front bumper, outer edge 
of body with respect to certain obstacle, etc. Figure 1-20 defines velocities  ⃗. Note that they are rela-
tive to inertial system, “velocities over ground”, not relative to the other coordinate systems. However, 
the velocity components     𝑦 are depent of which coordinate system  ⃗ is decomposed in. Positions 

are often not included in the models. When positions are needed, e.g. for lane markings, road edges, 
other moving vehicles and varying friction, they are typically defined in inertial coordinate systems 
but algorithms on-board the vehicle use positions expressed in vehicle coordinate system. 

In ISO and Figure 1-20, wheel side slip is defined so that it is positive for positive lateral speed. This 
means that lateral tyre forces on the wheel will be negative for positive side slip. Some would rather 
want to have positive force for positive side slip. Therefore, one can sometimes see the opposite defini-
tion of wheel side slip, as e.g. in (Pacejka, 2005). It is called the “modified ISO” sign convention.  

Often there is a need to number each unit/axle/wheel. The numbering in Figure 1-21 is proposed. It 
should be noted that non-numeric notations are sometimes used, especially for two axle vehicles with-
out secondary units. Then front=f, rear=r. Also, to differentiate between sides, l=left and r=right. 

Using these motion dofs and coordinates for modelling is further described in 1.5.6. 

1.5.5.1 Wheel Orientation 
For steered wheels, there are often reason to translate forces and velocities between vehicle coordi-
nate system and wheel coordinate system, see Figure 1-22 and Eq [1.1]. 



INTRODUCTION 

 36  

 2  𝑜𝑟      2  

 2𝑦 𝑜𝑟      2 𝑦

1 or 1,1,1
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3 or 1,2,1
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5 or 1,3,1

6 or 1,3,2

axle 1
or 1,1

axle 2
or 1,2

axle 3
or 1,3

unit 1unit 2

   =   =  = Dpz= 
=articulation angle of coupling 

    𝑜𝑟         

  𝑦 𝑜𝑟        𝑦

    

    

If number of units, 𝑛 > 2, 
there are >1 couplings. Then 
use, e.g.,     2   for   =
1 ⋯  𝑛 − 1  or  𝑖 𝑗 for   =
1 ⋯  𝑛  and 𝑗 = 𝑓 𝑟.

 
Figure 1-21: Proposed numbering of units, axles, wheels and articulation angle. Example shows a rigid truck 

with trailer. If multiple units: 𝛥 𝑛  =  𝑛−   −  𝑛  ; 
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𝑭𝒙𝒚 𝑭𝒙𝒗
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𝑭𝒙𝒘
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𝒗𝒙𝒚 𝒗𝒙𝒚

𝑭𝒙𝒚 𝑭𝒙𝒚

 

 

 
Figure 1-22: Transformation between forces and velocities in vehicle coordinate  

system and wheel coordinate system. 

Transformation from wheel coordinates to vehicle coordinates: 

[
  𝑣
 𝑦𝑣

] = [
cos( ) − sin( )

sin( ) cos( )
] ∙ [

   
 𝑦 

] ;    𝑛    [
  𝑣
 𝑦𝑣

] = [
cos( ) − sin( )

sin( ) cos( )
] ∙ [

   
 𝑦 

] ; 

Transformation from vehicle coordinates to wheel coordinates: 

[
   
 𝑦 

] = [
cos( ) sin( )

− sin( ) cos( )
] ∙ [

  𝑣
 𝑦𝑣

] ;    𝑛    [
   
 𝑦 

] = [
cos( ) sin( )

− sin( ) cos( )
] ∙ [

  𝑣
 𝑦𝑣

] ; 

[1.1] 

1.5.5.2 Slip of Tyres and Wheels 
Slip (longitudinal 𝑠  and lateral 𝑠𝑦) for a tyre or wheel will be defined in Chapter 2, see Eq [2.1], Eq 

[2.32] and 2.2.4.1.1.1. Slip is central for relating tyre forces in ground plane     𝑦 to vehicle and wheel 

motion and wheel vertical force   . Note that rotational speed of each wheel  𝑖 comes in as additional 
variables to Figure 1-20. Slip is a dimensionless speed, “sliding speed divided by a reference speed”. It 
appears as an intermediate variable to compute forces: [    𝑦] = 𝒇𝒔(   𝑠  𝑠𝑦) =

𝒇_𝒔 (   𝑠 (    ) 𝑠𝑦( 𝑦  )) = 𝒇𝒗(         𝑦);. One can sometimes define slip also for an axle or even 

for an axle group, but it becomes less strict, since       𝑦 can generally differ between the wheels 

within the axle or axle group. 
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1.5.5.3 Compatibility between Tyre and Vehicle 
When implementing lateral tyre models in a vehicle model for lateral dynamics, there are two major 
ways of formulating the compatibility that relates vehicle motion (body slip angle 𝛽) to wheel side slip 
(𝑠𝑖𝑦 ≈ tan(𝛼)) via wheel steering angle ( ). One way is to express longitudinal and lateral velocity 

components with sine and cosine, as done in Eqs [4.3], [4.6] and [4.46]. The other way is to use the an-
gle sum 𝛽𝑖 =  𝑖 + 𝛼𝑖;.  

[
  𝑣
 𝑦𝑣

] = [
cos( ) − sin( )

sin( ) cos( )
] ∙ [

   
 𝑦 

] ;    or   

{
 
 

 
 √  𝑣

2 +  𝑦𝑣
2 = √   

2 +  𝑦 
2 ;

arctan( 𝑦𝑣   𝑣⁄ ) =  + arctan( 𝑦    ⁄ ) ; 

                 𝑜𝑟 𝑓𝑜𝑟 𝑠  𝑙𝑙  𝑛 𝑙𝑒𝑠: 𝛽 ≈  + 𝛼;

 [1.2]  

If approximating with small angles, it is easier to approximate to a linear vehicle model, see 4.3.2.4 and 
4.4.2.2. For reversing, the angles 𝛽 𝛼 are close to ±𝜋 instead of close to 0. 

For  𝑖 ≈ 0 𝛽𝑖 ≈ 𝛼𝑖 ≈ 0 ⇒  𝑖 𝑣 > 0  𝑖  > 0 For  𝑖 ≈ 0 𝛽𝑖 ≈ 𝛼𝑖 ≈ ±𝜋 ⇒  𝑖 𝑣 < 0  𝑖  < 0

 ⃗𝑖

 𝑖

𝛽𝑖

  

 𝑦
  

 ⃗𝑖
 𝑖

𝛽𝑖

 𝑦
  

  = −  

𝛽𝑖 = arctan2  𝑖𝑦𝑣   𝑖 𝑣 ≈
 𝑖𝑦𝑣

 𝑖 𝑣
=

 𝑖𝑦𝑣

 𝑖 𝑣
=

 𝑦 + 𝑥𝑖    

  −  𝑖    
;

𝛼𝑖 = arctan 𝑠𝑖𝑦 ≈ 𝑠𝑖𝑦 ;

𝛽𝑖 = arctan2  𝑖𝑦𝑣   𝑖 𝑣 ≈ 𝜋 −
 𝑖𝑦𝑣

 𝑖 𝑣
= 𝜋 +

 𝑦 + 𝑥𝑖    

  −  𝑖    
;

𝛼𝑖 = 𝜋 − arctan 𝑠𝑖𝑦 ≈ 𝜋 − 𝑠𝑖𝑦 ;

𝛼𝑖
𝑥𝑖

 𝑖

vehicle body

𝑠𝑖𝑦 =
 𝑖𝑦 

 𝑖  
; 𝑠𝑖𝑦 =

 𝑖𝑦 

 𝑖  
;

𝛽𝑖 =  𝑖 + 𝛼𝑖 ⇒
 𝑜𝑡 

 𝑝𝑝𝑟𝑜𝑥.
⇒

 𝑦 + 𝑥𝑖    

  −  𝑖    
≈  𝑖 + 𝑠𝑖𝑦 ;

 
Figure 1-23: Approximate compatibility relation for small side slip  𝑦 . Left: For forward driving. Right: For 

reversing. Both lead to same final equation. 

1.5.6 Complete Vehicle Modelling Concepts 
The (Dynamic) Equilibria (or Equation of Motion) can be seen as the main equations in a mathematical 
model of a complete vehicle. A summarizing view of this is given in Eq [1.3]. 

In the left approximations, only the most important centrifugal effects,       𝑖, are included see also 
Eqs [3.29] and [4.45]. The sums refer to forces and moments acting on the vehicle body; from 
tyre/ground caused by actuation and rolling resistance, from gravity and from aerodynamics. Equa-
tions for forces and moments in the summations are not given here, but are needed for the model to be 
complete, i.e. “simulate-able”. 

𝐈n-road-plane 
(irp) equilibria:

{
 
 

 
      ≈   (   −  𝑦    ) =∑𝑓𝑜𝑟 𝑒𝑠 ;

  (  𝑦 +      ) ≈   (  𝑦 +      ) =∑𝑓𝑜𝑟 𝑒𝑠𝑦 ;

𝐽     =∑ 𝑜 𝑒𝑛𝑡𝑠 ;

Out-of-road-plane
(oorp) equilibria:

{
 
 

 
   (   −     𝑦) ≈   (   −     𝑦 +  𝑦    ) =∑𝑓𝑜𝑟 𝑒𝑠 ;

𝐽     =∑ 𝑜 𝑒𝑛𝑡𝑠 ;

𝐽𝑦    𝑦 =∑ 𝑜 𝑒𝑛𝑡𝑠𝑦 ;

 

 

[1.3] 
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Chapter 3 and 4 requires complete vehicle models that can measure complete vehicle functions ex-
pressed in irp motion. A major categorization, see 1.5.6.2 and 1.5.6.3, of those are whether the models 
considers only irp motion or also oorp motion. Another important categorization is to differ between 
1-track and 2-track models, see 1.5.6.2.2. A third important categorization is which “dynamic operat-
ing conditions” that is assumed, among those listed in the following: 

• Low speed condition means that vehicle moves with low speed, forward or reverse. Also, accel-
erations are low. No fictive forces (  𝑠𝑠     𝑒𝑙𝑒𝑟 𝑡 𝑜𝑛) is modelled. All terms on left side in Eq 
[1.3] are neglected.  

• Steady State condition means that time history is irrelevant for the quantities studied. Seen as a 
manoeuvre over time, the studied quantities are constant. Explained for a certain model, it 
means that the influence of the derivatives of the corresponding variables, that else would gen-
erate state variables, is neglected. In physical model of a mechanical system this often means 
that “mass  acceleration [𝑁]” or “ elocity stiffness  [ 𝑠⁄ ]⁄ ” is neglected (in mathematical model: 
equation “  𝑖 = 0;” is added, in explicit form model: “  𝑖“ is replaced with “0” ). If only some quan-
tities are treated in this way, one might call the conditions steady state with respect to these 
quantities. Only the    𝑖   𝑗 terms (centrifugal forces) on left side in in Eq [1.3] are kept.  

• Transient (or Transient State, as opposed to Steady State) condition means that time history is 
relevant; i.e. there are delays, represented by “state variables” when simulated. All terms on the 
left side in in Eq [1.3]are kept. 

• Stationary Oscillating condition is a special case of transient, where cyclic variations continue 
over long time with a repeated pattern. Long time means to that all none-cyclic components of 
the variation is damped out. The pattern is often modelled as harmonic (sinus and cosine varia-
tions in time) with constant amplitudes and phases. Example is sinusoidal steering with small 
enough steering amplitude, see 4.4, but also driving with over an undulated road surface, see 
Chapter 5. All terms on left side in in Eq [1.3] are kept, as for transient operation. 

• Quasi-Steady State condition have a more diffuse meaning. It can refer to steady state with re-
spect to some quantities, i.e. some terms on left side in in Eq [1.3] are neglected but not all. Alter-
natively, it can refer to that the quantities are prescribed to an explicit function of time, e.g.   =
𝑓(𝑡);, which means that also     is known. 

Let us also briefly list some other possible categorizations for Chapter 3 and 4: 
• Categorization referring to small angles (sin( 𝑛 𝑙𝑒) = 1; cos( 𝑛 𝑙𝑒) = 0;) or not, applied to 

steering/articulation angles and/or tyre/body side-slip angles. 
• Categorization referring to tyre models are further explained in 2.2.6. 
• One can also categorize referring to subsystem models.  

o The suspension can add states per wheel or axle  , at least the vertical spring force   𝑖 . 
o The propulsion and brake system can be actively controlled. They give wheel torques 𝑻(𝑡) =

[    2 ⋯ ]. Such models often add one state per wheel or axle  , the rotational speed  𝑖. 
o Chapter 3 uses different models of propulsion, brake and suspension. E.g., the propulsion sys-

tem can add more states: engine delay, gear shifting, torsional shaft, control algorithms. 
o Chapter 4 adds the steering subsystem, with its control algorithms. Also, more about model 

categorisation is found in 4.1.1. 

Chapter 5 is very different since it treats vehicle functions expressed in out-of-road-plane motion. So, 
most models in Chapter 5 uses only the oorp equations, i.e. not the irp equations, above. 

To make the overall model simulate-able one needs some form of driver model and environment 
model. A rather complete example model is described in 4.5.3.1. 

1.5.6.1 1D Models 
In some cases, it can be enough to model motion in 1 dimension. Some examples are: 

• Longitudinal 1D in 3.2 and 3.3, it can be enough to model   :         = ∑𝑓𝑜𝑟 𝑒𝑠 ;. A 1D lon-
gitudinal model can lump all wheel, axles and units to one wheel, or treat them separately. 

• Roll 1D in 4.3.11, it can be enough to model   :    𝐽     = ∑ 𝑜 𝑒𝑛𝑡𝑠 ; 
• Heave 1D in 5.4, it can be enough to model   :         = ∑𝑓𝑜𝑟 𝑒𝑠 ; 
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1.5.6.2 In-road-plane Models, 2D 
When modelling longitudinal dynamics, one has to involve at least   . When modelling lateral dynam-
ics, one has to involve at least  𝑦 and   . So, models in 𝑥 -plane (irp) are often useful. (Other 2D mod-

els, in 𝑥 - or   -planes, can also be relevant, e.g. for load transfer.) 

1.5.6.2.1 Particle and Body Models 

In some cases, e.g. threat estimation in 3.5.2.7 and 4.6.2.4, a particle model can be of use. The alterna-
tive is a body model, see Figure 1-24. A particle model cannot resolve    per wheel or axle, which 
means that tyre slip, neither 𝑠  nor 𝑠𝑦, can be properly captured which is a problem for both longitudi-

nal and lateral dynamics. The force  ⃗ can be decomposed in global directions [ 𝑋  𝑌] or [  𝑔  𝑦𝑔]. 

Other decompositions are road [     𝑦 ], path [  𝑝  𝑦𝑝] or vehicle [  𝑣  𝑦𝑣]. Road can be tracked using 

a map. Path can be tracked by remembering position from previous time history. Vehicle heading is 
most difficult, since a particle model do not capture yaw dynamics well.  

1.5.6.2.2 1-Track and 2-Track Models 

The models can assume that each wheel on the axles have their own ground contact (2-track models) 
or if there is only one “virtual tyre” modelled per axle (1-track model or single-track model or bicycle 
model). See Figure 1-24 and Figure 1-25. For multi-axle vehicles, one can even simplify one step fur-
ther and model only one “virtual tyre” per axle group, see Figure 1-24. It should be noted that the sim-
plifications have limitations, they are not suitable when the forces of the different tyres are signifi-
cantly different, e.g. differences in actuated wheel torques or different wheel side slips. 

Lateral dynamics phenomena which 1-track models do not capture well are, e.g.: 
• Deviations from Ackerman geometry within an axle, see 0. 
• Roll motion 
• Lateral load shift (4.3.6.2) and combined tyre slip (4.3.6.6). 
• Added yaw moment due to left/right-asymmetric wheel torque, such as ESC interventions. 

The in-road-plane (irp) models does not capture the out-of-road-plane motion,        𝑦. However, 

they can still capture the transfer of loads (vertical forces on wheels). 

For longitudinal dynamics, 1-track models are often enough. For longitudinal functions in “3.2 Steady 
State Functions” and “3.3 Functions Over (Long) Cycles”, even particle models are often enough. But, it 
is important to understand the validity limit of the model! 

1.5.6.3 Adding Out-of-road-plane Motion, >2D 
The expression “>2D” as opposed to “3D” reflects that sometimes it can be enough and preferable to 
combine equations from several 2D views (𝑥 -, 𝑥 - and   -plane) without adding all cross-coupling 
effects. This is as opposed to a full 3D model, following rigid body dynamics theory in all details. 

An example of a 2-track model including both irp and oorp motion is given in 4.5.3.  
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orientation while following the 
curved path.

 
Figure 1-24: Different in-road-plane vehicle model concepts. The forces are from tyre contacts acting on 

vehicle body. Fictive forces (     𝑒𝑙𝑒𝑟 𝑡 𝑜𝑛) and body forces (gravity and aerodynamic) are not drawn. 
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Figure 1-25: Collapsing a 2-track vehicle to a 1-track model. 

1.5.7 Vehicle Dynamics Terms 
1.5.7.1 Load Levels 
The weight of the vehicle varies through usage. For many vehicle dynamic functions, it is important to 
specify this load level.  

Kerb weight is the total weight of a vehicle with standard equipment, all necessary operating consum-
ables (e.g., motor oil and coolant), a full tank of fuel, while not loaded with either passengers or cargo. 
Kerb weight definition differs between different governmental regulatory agencies and similar organi-
zations. For example, many European Union manufacturers include a 75 kg driver to follow European 
Directive 95/48/EC. 

Payload is the weight of carrying capacity of vehicle. Depending on the nature of the mission, the pay-
load of a vehicle may include cargo, passengers or other equipment. In a commercial context, payload 
may refer only to revenue-generating cargo or paying passengers. 
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Gross Vehicle Weight/Mass (GVW/GVM) is the maximum operating weight/mass of a vehicle as spec-
ified by the manufacturer including the vehicle's chassis, body, engine, engine fluids, fuel, accessories, 
driver, passengers and cargo but excluding that of any trailers. 

Other load definitions exist, such as:  
• “Design Weight” (for passenger vehicles, this is typically Kerb weight plus 1 driver and 1 pas-

senger, 75 kg each, in front seats) 
• “Instrumented Vehicle Weight” (includes equipment for testing, e.g. out-riggers) 
• “Road-allowed GVW/GVM” is the maximum GVW/GVM for a certain road, limited by the 

strength of the road and bridges. It is applicable for heavy trucks.  

For vehicle dynamics it is often also relevant to specify where in the vehicle the load is placed because 
it influences how vertical forces under the wheels/axles distribute as well as moments of inertia.  

1.5.7.3 Open-Loop and Closed-Loop Test Manoeuvres  
Two expressions used in vehicle dynamics are "Open-loop" and "Closed-loop" test manoeuvres.  

An open-loop manoeuvre refers to the case where the driver controls (steering wheel, brake pedal 
and accelerator pedal) are operated in a specific sequence, i.e. as functions of time. A typical case is a 
sine wave excitation of the steering wheel. The time history of the steering wheel angle is defined as a 
function that is independent of the road environment or driver input. This type of manoeuvre can be 
relevant to design for, and it tells some but not all about the real-world driving cases. Theoretical sim-
ulation and real testing with a steering robot are examples of how such studies can be made. 

A closed-loop manoeuvre refers to the case when (human) driver feedback via driver controls is in-
cluded. This represents real-world driving better. In real vehicle or driving simulator testing, a real 
driver is used. This enables collection of the drivers’ subjective experience. In cases of simulation, a 
"driver-model" is needed. A driver-model can have varying levels of complexity but in all cases simu-
lates the response of a human driver to different effects, such as lateral acceleration, steering wheel 
torque, various objects appearing outside the vehicle, etc. 

A test with real vehicle, carried out with a steering-robot (and/or pedal robot) can also be called 
closed-loop if the robot is controlled with a control algorithm which acts differently depending on the 
vehicle states, i.e. if the algorithm is a driver model. 

With increasing level of automation, there is sometimes a need for distinguishing between 
closed/open loop with respect to human driver or automated driver. 

1.5.7.4 Objective and Subjective Measures 
Two main categories of finding measures are: 

• An Objective measure is a physical measure calculated in a defined and unique way from data 
which can be logged in a simulation or from sensors in a real test. 

• A Subjective assessment is a rating measure set by a test driver (e.g. on a scale 1-10) in a real-
vehicle test or driving simulator test. 

One generally strives for objective measures. However, many relevant functions are so difficult to cap-
ture objectively, such as Steering feel and Comfort in transient jerks, so subjective assessments are 
needed and important. 

1.5.7.5 Path, Path with Orientation and Trajectory 
A path can be 𝑥( ) or  (𝑥) for centre of gravity where 𝑥 and   are coordinates in the road plane. To 
cope with all paths, it is often necessary to use a curved path coordinate instead, 𝑠, i.e. 𝑥(𝑠) and  (𝑠). A 
path do have an orientation of itself    , defined through arctan(   ) =    𝑥⁄ = (   𝑠⁄ )  
(1 ( 𝑥  𝑠⁄ )⁄ ) =  ′ 𝑥′⁄ ;. However, a vehicle following the path does not need to point along the path. 

The vehicle also has a varying orientation,   (𝑥) or    (𝑠), which often is often relevant, but the term 
“path” does necessarily include this. In those cases, it might be good to use an expression “path with 
orientation” instead. 
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A (time) trajectory is a more general term than a path and it brings in the dependence of time, 𝑡. One 
typical understanding is that trajectories can be [𝑥(𝑡);   (𝑡);    (𝑡)]. But also, other quantities, such as 
steer angle or vehicle propulsion force can be called trajectory:  (𝑡) and   (𝑡), respectively. The word 
“trace” is sometimes used interchangeably with trajectory. 

1.5.7.5.1 Path with Orientation 

The path and path with orientation was intro-
duced in 1.5. The path, in global coordinate 
system, is related to vehicle speeds, in vehicle 
fix coordinates, as given in Figure 1-26 and 
Equation [1.4]. 

Knowing (  (𝑡)  𝑦(𝑡)   (𝑡)), we can deter-

mine “path with orientation” 
(𝑥(𝑡)  (𝑡)   (𝑡)), by time integration of the 
right-hand side of the equation. Hence, the po-
sitions are typically “state variables” in lateral 
dynamics models. 

 
 

x

y

   𝑦
  

 
Figure 1-26: Model connecting “path with orientation” 

to velocities in vehicle coordinate system. 

[
𝑥 
  
] = [

cos(  ) − sin(  )

sin(  ) cos(  )
] ∙ [

  
 𝑦
] ; 

   =   ; 

[1.4] 

It should be noted that in some problems, typically manoeuvring at low speed, the real time scale is of 
less interest. Then, the problem can be treated as time independent, e.g. by introducing a coordinate, s, 
along the path, as in Equation [1.5].  

𝑥′ =
  
𝑠 
∙ cos(  ) −

 𝑦

𝑠 
∙ sin(  ) ; 

 ′ =
 𝑦

𝑠 
∙ cos(  ) +

  
𝑠 
∙ sin(  ) ; 

  
′ =

  
𝑠 
; 

where prime notes differentation with respect to s 

[1.5] 

Here, 𝑠  can be thought of like an arbitrary time scale, with which all speeds are scaled. One can typi-
cally choose 𝑠 = 1 [ 𝑠⁄ ]. However, in this compendium we will keep notation t and the dot notation 
for derivative. 

1.5.7.6 Stable and Unstable 
Often, in the automotive industry and vehicle dynamics, the words “stable” and “unstable” have a 
broad meaning, describing whether high lateral slip on any axle is present or not. Sometimes it is used 
for roll-over instability. Also, the articulation angle can be unstable when reversing in low speed with a 
trailer. Stability analysis in a stricter physics/mathematical meaning is touch upon in 0. 

It is useful to know about this confusion of words. An alternative expression for the wider meaning is 
“loss of control” or “loss of tracking” or “directional unstable”, which can include that vehicle goes 
straight ahead, but road bends. 

1.5.7.7 Subject and Object Vehicle 
The subject vehicle is the vehicle that is studied. Often this is a relevant to have a name for it, since one 
often studies one specific vehicle, but it may interact with other in a traffic situation. Alternative names 
are host vehicle, ego vehicle or simply studied vehicle.  

Other vehicles are called object vehicles or opponent vehicles. A special case of object vehicle is lead 
vehicle which is ahead of, and travels in same direction as, subject vehicle. Another special case is on-
coming vehicle which is ahead of, and travels in opposite direction as, subject vehicle. 
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1.5.7.8 Active Safety, ADAS and AD 
The expression Active Safety is used in Automotive Engineering with at least two different meanings: 

• Active Safety can refer to the vehicle’s ability to avoid accidents, including both functions 
where the driver is in control (such as ABS and ESC, but also steering response) and functions 
with automatic interventions based on sensing of the vehicle surroundings (such as AEB and 
LKA). See http://en.wikipedia.org/wiki/Active_safety. Active Safety can even include static de-
sign aspects, such as designing the wind shield and head light for good vision/visibility. 

• Alternatively, Active Safety can refer to only the functions with automatic interventions based 
on sensing of the vehicle surroundings. In those cases it is probably more specific to use Ad-
vanced Driver Assistance Systems (ADAS) instead, see http://en.wikipedia.org/wiki/Ad-
vanced_Driver_Assistance_Systems. ADAS does not only contain safety functions, but also com-
fort functions like CC and ACC. 

Functions that off-load the driver the direct tasks during driving can be sorted under Automated Driv-
ing, AD. Fully automated driving, e.g. transportation without human driver on-board, is probably a far 
future vision. On the other hand, it is already a reality that some portion of the driving tasks are auto-
mated in the latest vehicle on the market, such as Adaptive cruise control, see 3.5.2.2, and Lane Keep-
ing Aid, see 4.6.2.1. If both those are active at the same time, we have already automated driving. Defi-
nitions of automation levels 0-5 is found in Reference (SAE_J3016, 2016). Today’s version of these sys-
tems normally has a way to hand-back responsibility to driver rather immediately in hazardous situa-
tions. Future automated driving functions will need to always have a safe-stop function. The way to 
compete between vehicle manufacturers will probably be to avoid hand-backs (maximize up-time) 
and to allow as long “hand-back times” as possible. So, vehicle dynamics will be important in the devel-
opment, especially for safety reasons for automated driving in higher speeds; hazardous situations 
where human driver selects to take back the driving. 

1.5.8 Architectures 
Vehicles are often designed in platforms, i.e. parts of the design solutions are reused in several vari-
ants. Typical variants may be different model years or different propulsion system. To be able to reuse 
solutions, the vehicles have to be built using the same architecture. 

A mechanical (or geometric) architecture may include design decisions about certain type of wheel 
suspension on front and rear axle. An electrical and electronic architecture may include design deci-
sions about electric energy supply system (battery voltage etc.) and electronic hardware for comput-
ers (Electronic Control Units, ECUs) and how they are connected in networks, such as Controller Area 
Network, CAN. 

The mechanical architecture influences vehicle dynamics functions. However, it is noteworthy that 
also the electronic architecture also is very important for the vehicle dynamics, through all electronic 
sensors, actuators and control algorithms. One example of this importance is the ABS control of the 
friction brake actuators. Architectures for functions are therefore motivated, see 1.5.8.2.  

1.5.8.1 Subsystems 
The architectures are dependent on the business model for how to purchase and integrate subsystems 
to a vehicle. Hence, it is relevant to define the subsystems. For vehicle motion functionality, the rele-
vant subsystems (or “motion support devices”) are typically: 

• Propulsion system 
• Brake system 
• Wheel suspension 
• Wheels and tyres 
• Steering system 
• Environment sensing system 

http://en.wikipedia.org/wiki/Active_safety
http://en.wikipedia.org/wiki/Active_safety
http://en.wikipedia.org/wiki/Advanced_Driver_Assistance_Systems
http://en.wikipedia.org/wiki/Advanced_Driver_Assistance_Systems
http://en.wikipedia.org/wiki/Advanced_Driver_Assistance_Systems
http://en.wikipedia.org/wiki/Advanced_Driver_Assistance_Systems
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Each of these can typically be purchased as one subsystem. Each typically have mechanical and signal 
interface to the remaining vehicle. Different vehicle manufacturers can have different strategies for 
signal interface and how much the subsystems are allowed to be dependent of each other. 

1.5.8.2 Vehicle Function Architecture 
As the number of electronically controlled functions increase, an architecture for vehicle functionality, 
or “Function Architecture”, becomes necessary to meet fast introduction of new functionality and to 
manage different variety of vehicle configurations. A function architecture is a set of design rules for 
how functions interact with each other (e.g. signalling between control functions). Also, the decompo-
sition in subsystems should be reflected in this architecture, see 1.5.8.1. An older expression which is 
related to function architecture is cybernetics. Examples (from Vehicle Dynamics/Vehicle motion func-
tion domain) of modern expressions which are related are Integrated Chassis Control (GM), Integrated 
Vehicle Dynamics Control (Ford), Complete Vehicle Control (Volvo) and Vehicle Dynamics Integrated 
Management (Toyota). There is no exact and generally well accepted definition of such architecture. 
However, it becomes more and more essential, driven by increasing content of electronic control in 
vehicles. One way to visualize a reference architecture is given in Figure 1-27 and Figure 1-28. 
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Figure 1-27: Concepts of a vehicle motion function architecture. Arbitrators, Coordinators and Actuators are 

the most important architectural objects for vehicle dynamics (vehicle motion). 

In order to be able to formulate design rules in reference architecture of functionality the following are 
relevant questions: 

• Which physical quantities should be represented on the interface between Devices (Sensors and 
Actuators) and Vehicle Level Functionality? 

• Partitioning within a reference architecture of vehicle motion functionality could be realised as 
shown in Figure 1-28. Different Layers/Domains are defined:  

• Human Machine Interface Domain: This includes the sensors/buttons which the driver 
uses to request services from the vehicle’s embedded motion functionality.  

• Vehicle Environment Domain: Includes surrounding sensors mounted on vehicle but also 
communication with other vehicles (V2V) and infrastructure (V2I) and map information. 

• Route Layer: Planning the whole transport mission, horizon 10..1000 km. These functions 
exist mainly for commercial traffic and might be done outside the subject vehicle. 

• Traffic Situation Layer: Interpret the immediate surrounding traffic which the vehicle is 
in, road/lanes and other road users, horizon ≈100..300 m. Example of functions: adaptive 
cruise control, collision avoidance, and lane steer support.  

• Vehicle Motion Layer: This includes the Energy management, powertrain coordination, 
brake distribution, and vehicle stability such as ESC, ABS. Horizon ≈10..30 m This layer 
also estimates the vehicle states e.g.     𝑦   . In addition, this layer would be able to give 

vehicle level capability of max/min acceleration and their derivative. 
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• Motion Support Device Layer: This includes the devices/actuators that can generate ve-
hicle motion. This layer is also consisting sensors which could include the capability and 
status of each device e.g. max/min wheel torque. 

• Formalisation of different types of: 

• Blocks, e.g. Controller, Information Fusion, Arbitrator and Coordinator.  

• Both arbitrators and coordinators have inputs and outputs as requests, typically ex-
pressed in same physical quantity. An arbitrator has more requests in that out and a 
coordinator has more requests out than in.  

• Signals, e.g. Request, Actual (or Status) and Capability. 

• Parameters used in Functional blocks. One can differ between Physical parameters (or 
Model parameters) and Tuning parameters. Some parameters can be common across the 
whole vehicle, which enables a kind of communication between blocks without normal 
signals, but instead exchanging values during start-up of the system. 

Each signal should have a definition of which physical quantity and unit it refers to. For signals of Ac-
tual type, there also needs a concept to handle how accurate they are; e.g. as a tolerance or sending an 
upper and lower value between the physical quantity shall be. The definition of physical quantity is 
very important, not the least for Request signals. An example is, if using tyre longitudinal slip as quan-
tity, sender and receiver of signal have to agree on slip definition. Since there are many slip definitions 
around, it might suggest using wheel rotational speed instead, which is less ambiguous. 

The functionality is then allocated to ECUs, and signals allocated to network communication. The ref-
erence architecture can be used for reasoning where the allocation should be done. Which functional-
ity is sensitive for e.g. time delay and thus should be allocated in the same ECU? Detailed control algo-
rithm design is not stipulated by a reference architecture. Instead the reference architecture assists 
how detailed control algorithms be managed in the complete problem of controlling the vehicle mo-
tion. Whether representation of solutions of Functional Safety (ISO 26262, etc.) is represented in a ref-
erence architecture of functionality can vary. 

Vehicles consisting of several units add special challenges, especially if the units are actuated. A heavy 
truck trailer is always actuated with at least brakes. 

1.5.8.3 Virtual Vehicle Architecture 
Virtual vehicle architecture, VVA, here refers to how to organize complete vehicle models, which can 
replace some real vehicle pre-series. VVA is a set of rules how a vehicle model should be modularized, 
such as variable/signal interfaces, parameterization, format- and tool-chains. The vision is that a 
whole project organisation, within an OEM and its suppliers, could deliver modules to virtual pre-se-
ries and that these modules would fit together. The FMI format, see 1.5.4.11, is one example of what 
could facilitate this. 

1.5.9 Verification Methods with Real Vehicle 
1.5.9.1 In Traffic 
Driving on public roads in real traffic is the most realistic way to verify how well a vehicle fulfils the 
requirements during real use. It can be used for completely new vehicle models; or new systems, 
mounted on old models. The drivers can be either ordinary drivers (FOT=Field Operational Test) or 
test drivers (expeditions). A general existing vehicle population can also be studied by collecting data, 
e.g. as Accident Statistics Databases. 

1.5.9.2 On Test Track 
For vehicles and systems which are not yet allowed on public roads, or tests which are very severe or 
need a high degree of repeatability, test are carried out at test tracks. There are specialized test tracks 
for certain conditions, such as hot climate or slippery surfaces. 
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Figure 1-28: One example of reference architecture of vehicle motion functionality. Red arrows: Requests, 

Blue arrow: Information, Black lines with dot-ends: physical connection.  

1.5.9.3 Augmented Reality, AR or Manipulated Environment 
This is a new method. A typical example is: A real driver drives a real vehicle on a real road/test track. 
Some additional (virtual/simulated) traffic objects are presented to driver, e.g. on a head-up display. 
The same objects can be fed into the control functions, as if they were detected by the vehicle’s cam-
era/radar, which enables functions such as automatic braking to be triggered. 

1.5.9.4 Objective Measures and Subjective Assessment 
The vehicle can be instrumented so 
that measurements can be logged and 
later compared with requirements. 
Also, the tests can be performed with 
driving robot, so that the manoeuvres 
are well repeated. 

However, driving also with human 
driver has its own value; the subjective 
assessments can be registered via in-
terviews and debriefing after per-
formed tests. A typical scale used for 
subjective rating or assessment is 
shown in Figure 1-29. 

 
Figure 1-29: Subjective rating scale from (SAE J1441, 2016.) 
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1.5.10 Verification Methods with Virtual Vehicle   
1.5.10.1 Testing with Real Driver 
1.5.10.1.1 DIL =Driver in the Loop Simulation 

Verification with a driving simulator (or DIL) is when a real human, not a driver model, uses real 
driver devices (pedals, steering wheel) to influence a simulation model of the remaining system (vehi-
cle and environment). The loop is closed by giving the human feedback through display of what would 
be visible from driver seat, including views outside wind-screen. 

Feedback can be further im-
proved by adding a motion 
platform to the driver’s seat, 
sound, vibrations in seat, 
steering wheel torque, etc. 
The vehicle model run in 
the simulator can utilize 
HIL, SIL and MIL, from 
1.5.10.1, for some part of 
the vehicle model. Driving 
simulator can be compared 
to other verification meth-
ods, see Table 1.2. 

Subjective scale from Figure 
1-29 can be used. 

Table 1.2: Comparison of verification methods for complete vehicle functions. 

Alternative verification methods

Office
simulation

Driving
simulator

Real vehicle 
test

R
e
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e

m
e

n
ts

Test new technology before it is built 
(save time and money) + - - -

Design parameter 
sweep/optimization +! - - -

Repeatable and Parallelized testing + + -
Safe testing + + -
Representative integration in vehicle - +! ++

Represen-
tative
behaviour

w.r.t. to vehicle - - +!
w.r.t. driver - +! +
w.r.t. to surroundings 
(road & traffic)

- -
(env. sens)

-
(env. sens) +!

 

1.5.10.2 Testing using Driver Model 
Generally, this means that driver, vehicle and environment are modelled and simulated. To perform a 
serious test there is also need to put effort on test scripts so that the model is run in the intended test 
manoeuvre and result is pre-processed. For verification of functions involving with algorithms, the 
HIL, SIL and MIL below are different ways to represent the algorithm in the vehicle model. 

1.5.10.2.1 HIL = Hardware in the Loop Simulation 

The hardware is often one or several ECUs (Electronic Control Units). If several ECUs are tested, the 
hardware can also contain the communication channel between them, e.g. a CAN bus. The hardware is 
run with real-time I/O to simulation model of the remaining system (vehicle, driver and environment). 

In some cases, there is also mechanical hardware involved, such as if the ECU is the brake system ECU, 
the actual hydraulic part of the brake system can also be included in the HIL set-up, a so called “wet 
brake ECU HIL”. 

1.5.10.2.2 SIL = Software in the Loop Simulation 

The software is often one or several computer programs (intended for download in electronic control 
units). The software is run with synchronized time-discrete I/O to a simulation model of the remaining 
system (vehicle, driver and environment).  

The software is often used in compiled format (black box format) so that the supplier of the software 
can retain his intellectual property.  

1.5.10.2.3 MIL = Model in the Loop Simulation 

The model, or more correctly, a control algorithm, is a conceptual form of the computer programs (in-
tended for download in electronic control units). The control algorithm is run with I/O to a simulation 
model of the remaining system (vehicle, driver and environment). 

The control algorithms can appear in compiled format so that the supplier of the control algorithms 
can retain his intellectual property. Then it is hard to tell the difference between MIL and SIL. 
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1.6 Heavy Trucks 
The following section describes heavy trucks, mainly as compared to passenger vehicles. 

1.6.1 General Differences 
Trucks are normally bought and owned by companies, not private persons. Each truck is bought for a 
specialized transport task. Life, counted in covered distance, for trucks is typically 10 times passenger 
cars. The life time cost of fuel is normally 5 times the vehicle cost, compared to passenger car where 
these costs are about equal. The cost for driver salary is a part of mileage cost, typically same magni-
tude as fuel cost. If investment cost for vehicle and repairs are distributed over travelled distance, 
these are typically also of same magnitude. So, the cost for a transport typically comes from one third 
fuel, one third driver salary and one third vehicle investment and repairs. 

1.6.2 Vehicle Dynamics Differences 
A truck has 5..10 times less power installed per vehicle weight. Trucks have their centre of gravity 
much higher, meaning that roll-over occurs at typically 4 m/s2 lateral acceleration, as compared to 
around 10 m/s2 for passenger cars. Trucks have centre of gravity far behind mid-point between axles, 
where passenger cars have it approximately symmetrical between the axles. Trucks are often driven 
with more units after, see Figure 1-30. The weight of the load in a truck can be up to 2..4 times the 
weight of the empty vehicle, while the maximum payload in passenger cars normally are significantly 
lower than the empty car weight. Trucks often have many steered axles, while passenger cars normally 
are only steered at front axle. The view for the driver (and environment sensors) is from higher up and 
without inner rear mirror. The lateral margins in lane are much smaller. 

1.6.3 Definitions 
In Figure 1-30, we can find the following units: 

• Towing units: Tractor or Rigid (Truck) 
• Towed units: Full trailer (FT), Semi-trailer (ST), Centre-axle trailer (CAT), (Converter) Dolly 
• The couplings between the units can of 2 types: 

o Fifth-wheel coupling (e.g. between Tractor and Semi-trailer). Designed to take signifi-
cant force in all 3 directions. Furthermore, it is designed to be roll-rigid, but free in 
pitch and yaw.  

o A Turn-table is similar to a fifth wheel but has a rolling bearing instead of a pitch-
hinged greased surface, which leads to less yaw friction and no pitch degree of free-
dom. In converter dollies, one often sees both, fifth wheel on top of turntable. 

o Hitch coupling or Drawbar coupling (e.g. between Rigid and Full trailer). Designed to 
take significant forces in longitudinal and lateral directions, but only minor in vertical 
direction. Furthermore, it is rotationally free in all 3 directions. A full-trailer has pitch-
moment-free rear end of drawbar. A converter dolly or centre-axle-trailers have pitch-
rigid rear end of drawbar. 

• There is often a need for several axles close to each other, to manage a high vertical force. Such 
group of axles is called “axle group”, “axle arrangement” or “running gear”. 

1.7 Smaller Vehicles 
This section is about smaller vehicles, meaning bicycles, electric bicycles, motorcycles and car-like ve-
hicles for 1..2 persons. The last vehicle type refers to vehicles which are rare today, but there are rea-
sons why they could become more common: Increasing focus on energy consumption and congestion 
in cities can be partly solved with such small car-like vehicles, of which the Twizy in Figure 1-31 is one 
example. All vehicles in Figure 1-31 can be referred to as Urban Personal Vehicle (UPVs), because they 
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enable personalised transport in urban environments. The transport can be done with low energy con-
sumption per travelled person and distance, compared to today’s passenger cars. The transport will 
also give higher levels of flexibility and privacy for the travelling persons, compared to today’s public 
transportation. If such vehicles also could be shared between users, this concept will even more help 
congestion in cities but might require automation of booking and maybe even automation of driving. 

Beside UPVs there could be considered smaller Urban Freight Vehicles (UFVs), but driver salary costs 
would then be very high per transported mass (or volume) of goods. So, UFVs might need to wait for 
automation of driving. 

roll-rigid, pitch-free, yaw-free coupling
roll-free, pitch-free, yaw-free coupling

 
Figure 1-30: An overview over conventional and longer combinations. From (Kharrazi , 2012). 

The two-unit sequence “Dolly-Semitrailer” can be replaced by one “Full Trailer”.  

Figure 1-31 show some UPVs. UPVs/UFVs may require some categorizations:  
• Climate and user type: Sheltered or open. 
• Transport and user type: Short travels (typically urban, 5-10 km, 50 km/h) or long travels (typi-

cally inter-urban, 10-30 km, 100 km/h). 
• Chassis concept: 

o Narrow (e.g. normal bicycles and motorcycles) or wide (at least one axle with 2 wheels, re-
sulting in 3-4 wheels on the vehicle). Note that UPVs in both categories are typically still less 
wide than passenger cars. 

o Roll moment during cornering carried by suspension roll stiffness or roll moment during cor-
nering avoided by vehicle cambering. The first concept can be called “Roll-stiff vehicle”. The 
second concept can be called “Cambering vehicle” or “Leaning vehicle”. 1-tracked are always 
Cambering vehicles. 2-tracked are normally Roll-stiff, but there are examples of Cambering 
such (see upper right in Figure 1-31). See Figure 1-32. 

o (This compendium does only consider vehicles which are “Pitch-stiff”, i.e. such that can take 
the pitch moment during acceleration and braking. Examples of vehicles not considered, 
“Pitching vehicles”, are: one-wheeled vehicles as used at circuses and two-wheeled vehicles 
with one axle, such as Segways.) 

• Note that also Roll-stiff Vehicles camber while cornering, but outwards in curve and only 
slightly, while Cambering Vehicles cambers inwards in curve and with a significant angle. 
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Cambering Vehicles is more intricate to understand when it comes to how wheel steering is 
used. In a Roll-stiff Vehicle, the wheel suspension takes the roll-moment (maintains the roll 
equilibrium), which means that driver can use wheel steering solely for making the vehicle 
steer (follow an intended path). In Cambering Vehicles, the driver has to use the wheel steering 
for both maintaining the roll equilibrium and following the intended path. A model is given in 
4.5.2.3. Figure 1-32 shows some possible conceptual design of a cambering vehicle. It is not 
possible to do a partly roll-stiff and partly cambering vehicle, unless one uses suspension 
springs with negative stiffness, i.e. the suspension would need to consume energy to tilt the 
vehicle inward in curve. 

Toyota
iRoad

Twizy from Renault

ZeeBee from Clean Motion Eco Electric Bicycle, Monark

Piaggio MP33 wheeled cambering 
concept vehicle from BMW

 
Figure 1-31: Examples of Urban Personal Vehicles. Left: “Roll-stiff”. Right: “Cambering“.   

From www.motorstown.com, www.cleanmotion.se, www.monarkexercise.se, www.nycscootering.com. 

Translate Lean sprung body Lean whole vehicle, 
2 wheel axle

Lean whole vehicle, 
single wheel axle

“Roll-stiff concept” … …as opposed to “Cambering concept”

 
Figure 1-32: How Cambering vehicles avoid taking the roll moment while cornering. The vehicles are viewed 
from rear and turns to the left. The dash-dotted arrows mark the resulting forces which are equal between 

the 5 concepts. 

1.8 Notation and Notation List 
Table 1.3 shows notation of parameters, variables and subscripts used in this compendium. The inten-
tion of this compendium is to follow International Standards (ISO 8855), but deviations from this is 
sometimes used, especially motivated by conflicts with areas not covered by (ISO 8855). Some alterna-
tive notations are also shown, to prepare the reader for other frequently used notation in other litera-
ture.  

http://www.motorstown.com/
http://www.cleanmotion.se/
http://www.monarkexercise.se/
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The list does not show the order of subscripting. For example, it does not show whether longitudinal 
(𝑥) force ( ) on rear axle (𝑟) should be denoted     or    . The intention in this compendium is to or-
der subscript with the physical vehicle part (here rear axle) as 1st subscript and the specification (lon-
gitudinal, x) as 2nd, leading to    . If there are further detailed specifications, such as coordinate sys-
tem, e.g. wheel coordinate ( ), it will be the 3rd subscript, leading to      . Further additional specifica-
tions, such as case, e.g. without (0) or with (1) a certain technical solution, will be the 4th subscript, 
leading to      0 and      . If subscripts have >1 token, it can sometimes be good to use comma, e.g. 
  𝑒𝑎     ℎ𝑒𝑒𝑙  𝑖𝑡ℎ. 

Naming of variables (signals), parameters and function components (blocks) is often important in 
large products as vehicles. Some naming needs to be readable for many engineers, such as CAN signals. 
Hence, companies developing their own naming standards. But also, the standardization organisation 
AUTOSAR has released a naming standard, with intention to be accepted by both vehicle manufactur-
ers and system suppliers.  
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Table 1.3: Notation 

 

Alternatives

Subject for notation in code by hand Unit Description / Note

Basic (Shaft) Torque T T M Nm

Basic Coefficient of friction mu μ mue, muh 1=N/N

Basic Damping coefficient d d c,k,D
N/(m/s) or 

Nm/(rad/s)

Basic Density roh ρ

Basic Efficiency eta h η 1=W/W

Ratio between 

useful/output power 

and used/input power

Basic Energy E E W Nm=J

Basic Force F F f N

Basic Gravity g g m/s
2 9.80665 average on 

Earth

Basic Height h h H

Basic Imaginary unit j j i - j*j=-1

Basic Mass m m M kg

Basic Mass moment of inertia J J I kg*m2

Subscript can be given 

to denote around 

which axis

Basic Moment (of forces) M M T Nm Not for shaft torque

Basic Power P P W=Nm/s=J/s

Basic Ratio r r
u,

i (ISO8855)

Nm/(Nm) or 

(rad/s)/(rad/s

)

Ratio between input 

and output rotational 

speed, or output and 

input torque, in a 

transmission

Basic Rotational speed w ω w rad/s

Basic Shear stress tau τ N/m2

Basic Stiffness coefficient c c C, k, K
N/m or 

Nm/rad

Basic Strain eps ε m/m

Basic Translational speed v v V m/s

Basic Wave length lambda λ m

Basic Width W W w m

Can be track width, 

vehicle width, tyre 

width, …

Dynamics (Time) Frequency f f 1/s=periods/s

Dynamics Angular (time) frequency w ω w rad/s

Dynamics Angular spatial frequency W Ω rad/m

Dynamics
Dependent variables in a dynamic 

system
z z <various>

Both state variables 

and output variables

Dynamics
Input variables in a dynamic 

system
u u <various>

Dynamics Mean Square value MS MS

Dynamics
Output variables in a dynamic 

system
y y <various>

Dynamics Power spectral density G Φ PSD

Dynamics Root Mean Square value RMS RMS

Dynamics
Spacial frequency as radians per 

travelled distance
W Ω rad/m

Dynamics Spatial frequency fs f s
1/m=periods/

m

Dynamics
States variables in a dynamic 

system
x x <various>

Dynamics Time t t t, T s

The independent 

variable in a dynamic 

system

Operators Transfer function H H

1. General Air resistance coefficient cd c d Cd 1

1. General
Cornering stiffness or lateral tyre 

stiffness
Cy C y Ca N/rad or N/1

dF y /da = dF y /ds y   at  

a=s y =0

1. General Longitudinal tyre stiffness Cx C x N/1 df yw /ds x   at  s x =02
. V

eh
ic

le

Notation

RecommendedCategorization

1
. G

en
er

al
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Alternatives

Subject for notation in code by hand Unit Description / Note

1. General Mass m m M kg

1. General Rolling resistance coefficient f f 1=N/N

1. General Track width W W m

1. General Tyre stiffness C C c N/1 dF/ds   at  s=0

1. General Understeer gradient Ku K u

Kus, kus,

U (ISO8855)

N/(N/rad) = 

rad/(m/s
2
)

1. General Vehicle side slip angle b β b rad
If no subscript, undefined 

or CoG

1. General Wheel base L L l, lf+lr, WB m

1. General Wheel radius R R r, Rw m

2. Road Curvature kappa κ roh, r rad/m=1/m road or path

2. Road Curve radius R R r, roh, r m road or path

2. Road Road bank angle pxr φ xr

Positive when right side 

of ground is lower than 

left side ground

2. Road Road inclination angle pyr φ yr rad Positive downhill

2. Road Vertical position of road zr z r z, Z m

3. Motion
Vehicle acceleration, in interial 

system

ax, ay, 

az
a x , a y , a z m/(s

2
)

decomposed in vehicle 

coordinates direction

3. Motion
Time derivatives of each 

component v x , v y , v z

dervx, 

dervy, 

dervz

der(vx), 

der(vy), 

der(vz)

m/(s
2
)

decomposed in vehicle 

coordinates direction

3. Motion Vehicle position x,y,z x, y, z
r=[rx,ry,rz]

or [X,Y,Z]
m

often position of Center 

of Gravity, CoG

3. Motion Vehicle velocity, in interial system vx,vy,vz v x , v y , v z u,v,w m/s
decomposed in vehicle 

coordinates direction

4. Forces Forces and moments on vehicle

Fx, Fy, 

Fz, Mx, 

My, Mz

F x , F y , F z , 

M x , M y , M z

[N, N, N, Nm, 

Nm, Nm]

From ground, air, towed 

units, colliding objects, 

etc. May appear also for 

in road plane: F=[Fx, Fy, 

Mz]

4. Forces
Forces on one wheel, axle or side 

from ground

Fix,Fiy,F

iz
F ix , F iy , F iz lowercase f N

Subscript "i" is 

placeholder for particular 

wheel, axle or side. May 

appear also extended 

with moments: [Fx, Fy, Fz, 

Mx, My, Mz]

4. Forces
Forces on one wheel, axle or side 

from ground

Fixv, 

Fiyv,Fizv

F ixv , F iyv , 

F izv

lowercase f N
in vehicle coordinate 

system

4. Forces
Forces on one wheel, axle or side 

from ground

Fixw,Fiyw

,Fizw

F ixw , F iyw , 

F izw

lowercase f N
in wheel coordinate 

system

5. Angles Camber angle g γ g rad

Sign convention positive 

when either of "rotated 

as wheel roll angle" or 

"top leaning outward vs 

vehicle body".

5. Angles
Low speed or Ackermann speed 

steering wheel angle
dswA δswA rad

The angle required for a 

certain vehicle path 

curvature at low speeds

5. Angles Euler rotations ψ, θ, φ rad Order: yaw, pitch, roll

5. Angles Roll, pitch, yaw angle
px, py, 

pz
φx, φy, φz j, q, y rad

Angles, not rotations. Roll 

and Pitch normally small

5. Angles
Vehicle angular velocity, in interial 

system

wx, wy, 

wz
ωx , ω y , ω z rad/s

decomposed in vehicle 

coordinates direction 

(roll, pitch, yaw)

5. Angles Steering angle d δ delta rad
May refer to steering 

wheel, road wheel or axle

5. Angles Steering angle of road wheels drw δrw RWA rad
Normally an average of 

angles on front axle

2
. V

eh
ic

le
Categorization Recommended

Notation

                

      𝑦     
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1.9 Typical Numerical Data 
The purpose of the tables in this section is to give approximate numerical values of parameters. Vehi-
cle parameters are often dependent on each other; changing one leads to that it is suitable to change 
others. The parameters are given with the intention to be consistent with each other, for each vehicle 
example. The tables balance between being generic and specific, which is difficult. Therefore, please 
consider the table as very approximate. 

1.9.1 For Passenger Vehicle 
Table 1.3 gives typical numerical data for a medium sized passenger car.  

Table 1.4: Typical values of parameters, common for typical passenger cars and heavy trucks 

Alternatives

Subject for notation in code by hand Unit Description / Note

5. Angles Steering angle of steering wheel dsw δsw SWA rad

6. Slip Tyre (lateral) slip angle a α alpha rad a=arctan(sy)

6. Slip Tyre lateral slip sy s y sy=tan(a)

6. Slip Tyre longitudinal slip sx s x k, -k

6. Slip Tyre slip s s

7. Subscript axle a a
used e.g. as Ca=cornering 

stiffness for any axle

7. Subscript centre of gravity CoG CoG
COG, cog, 

CG, cg

7. Subscript front f f F, 1

Often used as double 

subscript, e.g. fr=front 

right

7. Subscript inner i i
Often means with respect 

to curve

7. Subscript left l l L
Often used as double 

subscript, e.g. fl=front left

7. Subscript outer o o
Often means with respect 

to curve

7. Subscript rear r r R, 2

Often used as double 

subscript, e.g. fr=rear 

right

7. Subscript road r r

7. Subscript road wheel rw rw RW
E.g. drw=road wheel 

steering angle

7. Subscript sprung mass s s

7. Subscript steering wheel sw sw
SW,

H (ISO8855)

E.g. dsw=steering wheel 

angle

7. Subscript unsprung mass u u us

7. Subscript vehicle v v

used e.g. as F1v to denote 

wheel force on wheel 1 in 

vehicle coordinates

7. Subscript wheel w w

used e.g. as F1w to 

denote wheel force on 

wheel 1 in wheel 

coordinates

1. Propulsion Engine torque Te T e Nm

1. Propulsion Propulsion torque Tprop T prop Nm often expressed at wheel

2. Brake Brake torque Tbrk T brk Nm

3. Steering Steering wheel torque Tsw T sw SWT Nm

4. Suspension Caster angle CA rad

4. Suspension Caster offset c m

4. Suspension Kingpin inclination angle KPI rad

4. Suspension Pneumatic trail t m

4. Suspension (Wheel) Camber angle φCamber rad

Categorization Recommended

1=

(m/s)/(m/s)
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Parameter Notation Unit

Passenger car Heavy truck

Air density roh kg/(m^3)

Earth gravity g m/(s*s)

Road friction, at dry asphalt

Road friction, at wet asphalt

Road friction, at snow

Road friction, at wet ice

Tyre Cornering Coefficient (lateral slip 

coefficient), i.e. slip stiffness 

normalized with vertical load

CCy 10..15 5..10
(N/rad)/N 

= (N/1)/N

Ratio of tyre longitudinal and lateral 

slip coeffcient stiffness
CCx/CCy 11.5..2

mu N/N

Typical Value

1

9.80665

1.0

0.6

0.3

0.1

 
Table 1.5: Typical data for a passenger vehicle 

Group/Type Parameter Notation Typical 

Value

Unit Note / Typical / Range / 

Relation to other

Vehicle Length, bumper to bumper 5.00 m

Vehicle
Longitudinal distance from 

CoG to front axle
lf 1.3 m

40-50% of wheel base: 

lf=0.55*L;

Vehicle Mass m 1700 kg

Vehicle
Moment of inertia for yaw 

rotation
Jzz 2900 kg*m*m

Radius of gyration is sligthly 

less (0.9) than half wheel base: 

=m*(0.9*L/2)^2

Vehicle Unsprung mass mus 200 kg
Sum of 4 wheels with 

suspensions

Vehicle Track width W 1.70 m

Vehicle Wheel base L 2.90 m

Vehicle
Projected area in a 

transversal view
Afront 2 m^2

For calculation of air 

resistance. Examples: Volvo 

XC90 has 2.78 m^2, Volvo S60 

has 2.27 m^2

Vehicle Aerodynamic coefficients 
cd,  clf,  

clr

0.31, 

0.10, 0.07
1

For calculation of longitudinal 

resistance and lift force over front 

and rear axle

Wheel and Tyre Rolling resistance 0.01 N/N

Wheel and Tyre Wheel radius 0.30 m

Wheel and Tyre Wheel rotational inertia 0.5 kg*m*m For one wheel

Wheel and Tyre Tyre vertical stiffness ct 250 000 N/m For one wheel

Propulsion Engine inertia 0.5 kg*m*m

Propulsion
Transmission ratio, highest 

gear
5.00

rad/rad=

Nm/Nm

Engine to wheel. In magnitude 

of 5.

Propulsion
Transmission ratio, lowest 

gear
10.00

rad/rad=

Nm/Nm

Engine to wheel. In magnitude 

of 10.

Brake
Brake proportioning, 

front/rear
70/30

N/N or 

Nm/Nm

Often tuned so that braking 

both axles when braking 0.8*g

Steering Steering ratio 16 rad/rad Steering wheel to Road wheel

Suspension
Suspension heave stiffness 

(without roll)
cs 100 000 N/m

Vertical stiffness at wheel. Sum of 

4 wheels. So that bounce frequency 

f is between 1 and 2 Hz: 

sqrt(c/m)=f*2*pi;

Bump stop at (3..4)*g when fully 

loaded.

Suspension
Suspension roll stiffness, 

only from anti-roll-bars
carb 14 000 N/m

Vertical stiffness at wheel. Sum of 

both axles.

Suspension Suspension damping ds 13 000 N/(m/s)

Wheel rate. Sum of 4 wheels. Some 

40..60% of critical damping: 

d = (0.4..0.6)*2*sqrt(c*m); 

2..3 times softer in compression 

than rebound.
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1.9.2 For Heavy Vehicle 
Compared to passenger cars, trucks differ much more in size and configuration, see Figure 1-30. Also, a 
certain individual vehicle also differs much more between empty and fully loaded. Globally, “Tractor 
with Semitrailer” is the most common heavy vehicle, which is why it is used as example. 

vehicle overall length=16.5 m

rear 
overhang 
=1.5

axle spread 
=2.6

rear 
overhang 
=1

load length=13.6

front overhang 
=1.5

front 
overhang 

=1.5

forward 
offset =4

wheel base=5

wheel base=8

o
ve

ra
ll 

h
ei

gh
t 

 
=4

 m
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ll 

h
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gh
t 

 =
3

.7
 m

 
Figure 1-33: Typical data for a heavy vehicle, exemplified with “Tractor with Semi-trailer” 

Table 1.6: Typical data for a heavy vehicle, exemplified with “Tractor with Semi-trailer” 

Group/Type Parameter Empty With 

max 

payload

Unit

Vehicle
Trackwidth, centre-to-centre for 

single tyres 
m Outer tyre edge 2.55

Vehicle
Projected area in a transversal 

view
m^2

For calculation of air 

resistance

Vehicle Aerodynamic coefficient 1
c_d coefficient in aero dynamic 

resistance formula (normal truck 

0.4, long combination truck 0.6)

Tractor CoG heigth m

Tractor Mass (total), tractor kg

Tractor Moment of yaw inertia kg*m*m Around unit CoG

Tractor Unsprung mass kg Sum of all axles at unit

Semitrailer CoG heigth 1.00 2.00 m

Semitrailer Mass (total), semi-trailer 10000 32500 kg

Semitrailer Moment of yaw inertia 150000 500000 kg*m*m Around unit CoG

Semitrailer Unsprung mass kg Sum of all axles at unit

Wheel and Tyre Wheel radius m 0.4-0.5

Wheel and Tyre Wheel rotational inertia kg*m*m For one wheel, single tyre

Wheel and Tyre Rolling resistance N/N Or less, 0.003

Propulsion Engine max power
kNm/s=k

W

Propulsion Engine inertia kg*m*m

Propulsion Transmission ratio, highest gear Engine to wheel

Propulsion Transmission ratio, lowest gear Engine to wheel

Steering Steering ratio rad/rad
Steering wheel to Road 

wheel

Steering Steering wheel rotational inertia kg*m^2
Steering wheel to Road 

wheel

10.0

Note / Typical / Range / 

Relation to other

0.005

20

0.50

10.0

1700

2400

370

3

30

22500

2.25

Typical Value

7500

1.00

5

0.04

1=rad/rad

=Nm/Nm

0.4..0.6
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2 VEHICLE INTERACTIONS 
AND SUBSYSTEMS 

2.1 Introduction 
The study of vehicle dynamics starts with the interfaces between the vehicle and its environment, see 
Figure 2-1. The vehicle tyres are the primary force interface for all motion (in road plane, i.e. accelera-
tion, steering, braking) but also undesired disturbances (out-of- road plane, i.e. road unevenness, road 
bumps, etc.). Additionally, the aerodynamic loads on the vehicle will create forces that are often unde-
sirable (wind resistance, side gusts, etc.) but can sometimes be exploited for better contact with the 
road (down-force). An example of extreme interactions to the vehicle is the impact forces from a crash. 
An interaction of another kind is the driver. One often divides the whole system into 3 parts: vehicle, 
driver and environment, see Figure 2-1. Driver and environment can often be clustered as 2.9 Driving 
and Transport Application, which includes all outside subject vehicle. Some aerodynamic models are 
given in 2.8. Driver models are discussed with some selected example models, see 2.9.2. 

Traffic, Infrastructure

Air, Weather

Freight

Ground, Road

Driver

(Subject)

Vehicle

(Object) vehicles, Other road users, 
Traffic signs, Road markings, 

Infrastructure, …

Tyre Forces

Aerodynamic 
Forces, Vision, …

Steering Wheel,
Pedals, Buttons, 
Seat Accelerations,
Visual Instruments,
Sounds, …

Relative Motion,
Collision Forces,

Information, …
Air density, Weather, 
Light/dark, …

Road surface construction, Covered 
with water/snow, Topography, 
Curvature, Unevenness, …Payload, 

Occupants, …

Weight 
and Location

kg

(via Driver)
Driver/Rider, 
User or 
Customer

Environment  
Figure 2-1: How the vehicle interacts with driver and environment. 

The chapter also contains descriptions of the subsystems which are most relevant for Vehicle Dynam-
ics, with focus on Wheels and Tyres, see Figure 2-2. 

2.1.1 References for this Chapter 
• Tyres: (Pacejka, 2005), (Rill, 2006), and (Michelin, 2003) 
• Vehicle Aerodynamics: Reference (Barnard, 2010) 
• Driver models: “Chapter 38 Driver Models in Automobile Dynamics Application” in Reference 

(Ploechl, 2013) 

2.2 Wheels and Tyres 

2.2.1 Introduction 
The wheels and tyres of a vehicle have the following tasks: 
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o Carry the vertical load    
o Transmit longitudinal forces    (propulsion   > 0 and brake   < 0) 
o Transmit lateral forces  𝑦 (steering)  

To minimize negative effects, we can also list these: 
o Roll with minimum energy loss, minimum tyre wear, minimum particle emissions and noise 
o Isolate disturbances, mainly vertical. This includes also to not cause disturbances, which over-

all means that the wheel and tyre should be round and balanced. 

Wheel & Tyre

knuckle, bearing

brake disk

Propulsion

Brake

Suspension

Ctrl Steering

Propulsion, Brake and Steering are 
“active” in the meaning that they are 
“controllable through algorithms run 
on an electronic control unit ECU”.

(vehicle) 
body

Acceleration & Brake Pedal

steering 
wheel

Environment Sensing

 
Figure 2-2: Vehicle with the 6 Vehicle Dynamics relevant subsystems: Wheels and Tyres, Suspension, 

Propulsion, Brake, Steering, and Environment Sensing. Towed units, with similar subsystems, are not shown. 

2.2.1.1 Wheel Integration in Suspension 
To understand the “force flows” of a wheel, it is good to understand the conceptual integration, regard-
ing shaft, brake disks and wheel bearings. Cars typically have their inner bearing rings rotating with 
the wheel, while trucks instead have outer rings rotating, see Figure 2-3. 

from http://19526-presscdn-0-
66.pagely.netdna-cdn.com/wp-
content/uploads/2014/12/wheel-bearings.jpg

brake calliper brake calliper
Car, view from top or rear

shaft

    𝑝

Non-driven: shaft ends 
here, 𝑇 ℎ𝑎 𝑡 = 0.

Driven: shaft continue to 
propulsion system, via 
drive-joint if steered.

𝑇 ℎ𝑎 𝑡

Truck, view from top or rear

 ⃗ ℎ𝑙
Wheel 

bolted onto 
brake disk

b
ra

ke
 d

is
k

hub

𝑁   𝑝

𝑀 ℎ𝑙

𝑇 ℎ𝑎 𝑡
 ⃗ ℎ𝑙

Wheel 
bolted 

onto here

brake disk

𝑀 ℎ𝑙

axle end (non-driven)

axle end (driven)

 ⃗   𝑝

𝑁⃗   𝑝

 
Figure 2-3: Concepts of wheels are typically integrated. All vectors are 3D, while moment 𝑁⃗⃗⃗   is 2D in the 

wheels xz-plane and moment 𝑇 ℎ𝑎 𝑡  is perpendicular to the same plane. 

2.2.1.2 Tyre Design 
Before discussing the mechanics of tyre and road interactions, the physical structure of the wheel as-
sembly should be understood. Consisting of a steel rim and an inflated rubber toroid, pneumatic tyres 
were invented and patented by Robert William Thomson in 1845 and are essentially the only type of 
tyre found on motor vehicles today. 

The physical construction of the tyre carcass affects the response of the tyre to different road loadings. 
The carcass is a network of fabric and wire reinforcement that gives the tyre the mechanical strength. 
The structure of the carcass can be different: Bias-ply, Bias-ply Belted, and Radial-ply, see Figure 2-4. 
Bias-ply tyres were the first types of pneumatic tyres to be used on motor vehicles. Radial ply tyres fol-
lowed 1946 and became the standard for passenger cars and is today also dominating also on trucks. 

Note how the bias-ply constructions have textile structures oriented at an angle to the tyre centreline 
along the x-z plane. This angle is referred to as the crown angle and is further illustrated in Figure 2-4. 
Note the textile orientation for the bias-ply and radial tyres. Also note the difference in crown angles 
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between the two tyre constructions. This difference plays an important part in the rolling resistance 
characteristics of the tyre which is 2.2.1.6. 

The tyre components in Figure 2-4 have been constructed to provide the best tyre performance for dif-
ferent loading directions. Trade-offs are necessary between handling performance and comfort, be-
tween acceleration and wear, as well as between rolling resistance and desired friction for generating 
forces in ground plane. The rubber components and patterns incorporated in the tread are critical to 
the friction developed between the tyre and road under all road conditions (wet, dry, snow, etc.). Fric-
tion is most relevant in longitudinal and lateral vehicle dynamics. The belts define the circumferential 
strength of the tyre and thus braking and acceleration performance. The sidewall and plies define the 
lateral strength of the tyre and thus influence the lateral (cornering) performance of the vehicle. The 
sidewall as well as the inflation pressure are also significant contributors to the vertical stiffness prop-
erties of the tyre and affect how the tyre transmits road irregularities to the remainder of the vehicle. 
A tyre that has strong sidewalls will support vertical load well, but at the cost of vertical compliance. 

belt

si
d

ew
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l

bias-ply:

radial-ply (most common today):

 
Figure 2-4: Left: Carcass Construction, (Wong, 2001). Left top: Bias-ply construction. Left bottom: Radial 

construction. Right: Radial Tyre Structure, (Cooper Tire & Rubber Co., 2007). 

marking:           S/[mm]    / 100*H/S construction Dr/[inch]
example, car:      165        /         65                  R                14
example, truck:   315       /         80                  R                22.5

Unladen radius R0 = Dr*25.4/2+(H/S)*S
for car example = 14*25.4/2+0.65*165 = 285 mm
for truck example = 22.5*25.4/2+0.8*315 = 538 mm

From https://putneys.ca/winter-tires-time-
take-off-now/  

Figure 2-5: Left: Tyre marking (radial tyre). Right: Typical summer and winter tread patterns. 

2.2.1.3 Wheel Angles 
A wheel or a tyre is best described in its own coordinate system, see Figure 2-6. The 3 forces and 3 mo-
ments are acting on the wheel from the ground. The other quantities, such as slip angle 𝛼 and camber 
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angle 𝜀 , in Figure 2-6 are examples of variables which have influence on the forces and moments in 
the coming chapters.  

Plane perpendicular to road

  

𝑀 

𝑀𝑦

 𝑦

  

𝑀 

perpendicular 
to road plane

 
Figure 2-6: Tyre coordinate system. Forces and moments on tyre from ground. From (ISO 8855). 

2.2.1.3.1 Steer Angle 

A wheel on a vehicle has a Steer angle,  . The Steer angle is the angle from vehicle longitudinal axis to 
the wheel plane about the vehicle vertical axis (ISO 8855). Assuming vehicle 𝑥 -plane is parallell to 
road plane, this angle is same as angle from vehicle longitudinal axis to the intersection between wheel 
plane and road plane.  

2.2.1.3.2 Camber Angle 

A wheel on a vehicle on a road surface has a Camber angle. The Camber angle is the angle from vehicle 
longitudinal axis to the wheel plane about the vehicle longitudinal axis (ISO 8855). Assuming vehicle 
𝑥 -plane is parallell to road plane, this angle is same as the deviation from right angle between wheel 
plane and road plane. A symmetry within an axle means that camber angle typically has opposite signs 
on left and right wheel. However, for two-track vehicles, one can often see the sign convention that a 
wheel top leaning outward from vehicle body is negative, regardless of on left or right side. 

2.2.1.3.3 Steer and Camber 

If a wheel has both significant Steer angle and significant Camber angle at the same time, these angles 
alone does not define the orientation, since steering-before-cambering gives another orientation than 
cambering-before- steering. One way is to express the orientation in a rotational angle around the 
steering axis, see 2.2.1.3.5. An alternative is to use the concept of Euler rotations.  

2.2.1.3.4 Castor Angle 

A wheel, suspended to be steered, has a Castor angle (or Caster angle). This is the angle between the 
vehicle vertical axis and the projection of the steering axis (2.2.1.3.5) on the vehicle 𝑥 -plane (ISO 
8855). Castor angle is positive when top of steering axis is inclined rearward. Castor angle provides an 
additional aligning torque, see 2.2.4.6 and 0, and changes the Camber angle when the wheel is steered. 

2.2.1.3.5 Steering Axis Inclination  

A wheel, suspended to be steered, has a Steering axis inclination (or Kingpin inclination).  
This is the angle between the vehicle vertical axis and the projection of the steering axis (2.2.1.3.5) on 
the vehicle   -plane (ISO 8855). Steering axis inclination is positive when top of steering axis is in-
clined inward. See also 0. 
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2.2.1.3.6 Static Toe Angle 

A wheel on an axle has a Static toe angle (a.k.a. Toe-in). The Static toe angle is the angle between vehi-
cle longitudinal axis and the wheel plane about the vehicle vertical axis, with the vehicle at rest and 
steering in the straight-ahead position (ISO 8855). Positive Static toe angle (a.k.a. Toe-in or “−Toe-
out”) is when forward portion of the wheel is closer to the vehicle centreline than the wheel centre. 

Typically, left and right wheel on same axle has same Static toe angle. Hence it measures an axle prop-
erty rather than a wheel property. 

One could define an “instantaneous toe angle”, for an axle during arbitrary vehicle operation (non-rest 
and non-zero steering), as (  𝑖𝑔ℎ𝑡 + (− 𝑙𝑒 𝑡)) 2⁄ . This will have a different value than Static toe angle 

due to suspension linkage geometry and elasticity in suspension bushings.  

Toe (regardless of toe-in or toe-out) generally generates opposing lateral forces on left and right side 
leading to propulsion energy loss and tyre wear. Toe-out on front axle and toe-in on rear axle makes 
the vehicle more yaw stable (less over-steered). Tone-in on front axle makes vehicle more yaw agile 
but it also improves on-centre steering feel. Normal design choice for a passenger car is positive Static 
toe angle (Toe-in) on both axles, and more on front axle. 

2.2.1.4 How Tyres Carries Vertical Load 
Figure 2-7 shows how a pneumatic tyre carries the vertical load. In a traditional bicycle or motorbike 
wheel, the pre-tensioned spokes have a similar role as the air and rubber parts of a pneumatic tyre. 
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(Front and Rear Sidewall are neglected here, but 
could have been modelled as shear springs.)
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Figure 2-7: A pneumatic tyre is pre-tensioned by inflation pressure. This figure explains how the wheel and 

tyre takes (vertical) load without (significant) increase of inflation pressure.  

2.2.1.5 Tyre Model Architecture 
This section describes how a tyre model can be instantiated once per wheel and integrated in a model 
together with models of vehicle, driver, and environment. It is often difficult and seldom useful to dis-
tinguish exactly which is the model of the wheel and the tyre, respectively. We then need to differ be-
tween parameters and variables. The description assumes dynamic models used for simulation over 
time domain. Within each simulation, parameters are constant, but variables can vary. If design opti-
mization, as opposed to simulation, the design parameters also has a role of variables (i.e. they are var-
ied) in the optimization, but not in time domain. 
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Wheel and Tyre model

Rest of 
vehicle

Tyre

(Wheel and 

Tyre) Design 
Parameters

Operational parameters

Operational 
variables

Driver

Environment

Behavioural 
response 
variables

Wheel
Physical 
response
variables

 
Figure 2-8: How wheel and tyre models can come into a model context.  

2.2.1.5.1 (Wheel and Tyre) Design Parameters 

We limit ourselves to today’s traditional pneumatic tyres. Then the design is captured by:  

• Carcass/Material: Rubber quality and plies arrangement. 
• Tread/Grooves: Groove pattern, Groove depth, Tread depth, Spikes pattern (if spikes) 
• Main dimensions: Outer radius, Width, Aspect ratio 
• Installation parameters: Inflation pressure 

2.2.1.5.2 Operational Parameters 

These are operating conditions which vary slowly, and in this description assumed to be constant dur-
ing one manoeuvre/driving cycle. These are:  

• Road surface (dry/wet, asphalt/gravel/snow/ice, …) 
• Road compliance and damping (hard/soft, …) 
• Wear state of tyre 
• Age of tyre 
• Temperature 

2.2.1.5.3 Operational Variables 

These are operating conditions which vary quickly, and in this description assumed to be variable in 
time during one manoeuvre/driving cycle. These are:  

• Tyre velocities (    𝑦  ) or Tyre slip (𝑠  and 𝑠𝑦 or 𝛼) 

• Vertical tyre force, (  ) 
• Camber angle 

The wheel’s rotational velocity,  , can be contained in Wheel and Tyre model instead of inside Model of 
rest of the vehicle, which would mean that   will not be part of the Operational variables interface. 

Tyre forces in road plane (    𝑦) can be given instead of tyre slip. Another alternative is to give the 

corresponding actuation, e.g. wheel shaft torque and wheel steer angle relative to wheel course angle. 
With those setups, the response variables in 2.2.1.5.4. 

Vertical tyre force can be modelled as arbitrarily varying in time or as an offset amplitude for different 
frequencies where offset is from a mean value. The mean value would then be a parameter instead of a 
variable. The latter alternative can be more efficient if simulating a longer driving cycle, where follow-
ing each road wave would be very computational inefficient. 

2.2.1.5.4 Response Variables 

Response refers to response to Operational variables changes. 

2.2.1.5.4.1 Physical Response Variables 

The variables from tyre model to model of rest of the vehicle is essential the forces and moments, see 
Figure 2-6: 

• Longitudinal and lateral forces (    𝑦) 

• Roll moment or Overturning moment (𝑀 ) 
• Rolling resistance moment (𝑀𝑦) 
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• Spin moment or Aligning moment (𝑀 ) 

Other responses are: 

• Wear rate [worn rubber mass or tread depth per time unit] 
• Loaded radius ( 𝑙) 

2.2.1.5.4.2 Behavioural Response Variables 

The Responses can be modelled as Behavioural variables: 

• Slip characteristics (slip stiffnesses 𝐶   𝐶 𝑦 [𝑁 1], peak friction coefficient, … or other parame-

ters in physical or empirical tyre slip model, as in 2.2.3.4 and 2.2.4.3) 
• Rolling resistance coefficient and Loaded radius ( 𝑙) 
• Vertical stiffness and damping coefficients 
• Wear coefficient, Relaxation lengths or deformation stiffnesses [𝑁  ], … 

One can select to not introduce Behavioural response variables but only use Physical response varia-
bles. If Behavioural response variables are introduced, one should consider them as special from DAE 
point of view, e.g. they can be difficult to differentiate. Also, they require an agreed definition to be in-
terpreted, which is the reason to why they are not proposed as interface variables to the vehicle 
model. 

2.2.1.6 The Wheel as a Transmission 
The whole wheel, rim and tyre, can be seen as a transmission from rotational mechanical power to 
translational mechanical power. The shaft is on the rotating side; where we find rotational speed,  , 
and the torque, 𝑇. The torque 𝑇 is then the sum of torque on the propulsion shaft and torque on the 
brake disk or drum. The wheel hub is on the translating side of the transmission; were we find trans-
lating speed,   , and force,  ℎ    . See Figure 2-9. Normally, we approximate and denote  𝑔   𝑛   =

 ℎ    =    and  𝑔   𝑛   =  ℎ    =   . 

If we neglect deformation of tyre/ground and sliding, we find the intended function of the wheel:   =
𝑟   𝑢𝑠   ; and   = 𝑇 𝑟   𝑢𝑠⁄ ;. There will be force losses which makes    smaller, see rollnig re-
sistance in 2.2.2, and speed losses which makes    smaller, see longitudinal force and slip in 2.2.3. 

x-direction = 
= vehicle longitudinal forward

𝑭𝒉𝒖𝒃 𝒙

𝑭𝒉𝒖𝒃 𝒙
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 𝑔   𝑛   
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Figure 2-9: A wheel as a transmission from rotational [ ; 𝑇] to translational [ 𝑥; ℎ    ]. 

The longitudinal force in ground plane   , depends on the design of the tyre, the ground surface and 
the operational variables, such as velocities [    ] and vertical force   . The tyre can be under braking, 
free rolling, pure rolling or propulsion/traction, listed in order of increasing    and increasing 𝑇. 

2.2.1.7 Tyre Rolling and Radii 
Ideal rolling is shown in Figure 2-10 a). This relationship does not hold when the tyre is deflected as in 
Figure 2-10 b). Not even the deflected radius can be assumed to be a proportionality constant between 
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angular and translational velocity, since the tyre contact surface slides, or slips, versus the ground. 
Then, an even truer picture of a rolling tyre looks like Figure 2-10 c), where the deformation at the 
leading edge also is drawn. This means that    is only ≈  ∙   and only for limited slip levels. 

w

vx

 0 = inflated unloaded radius
  =    0

  = free radius when loaded
 𝑙 = lever when loaded
  >  0 and 

  ≈     ≈    𝑙 

vx

b) With vertical load   ≠ 0
and torque   ≈ 𝑇 ≈ 0: 

a) Ideal rolling: 

 2 = free radius when loaded and propelled
 𝑙2 = lever when loaded and propelled
 2 <   and 

  ≠    2 ≠    𝑙2

vx

c) With vertical load   ≠ 0
and (significant) torque 𝑇 > 0 : 

𝑭𝒛
𝑻

w w

𝑭𝒛

 
𝑙2

 
𝑙 

−𝑭𝒙

 
Figure 2-10: Radius and speed relations of a tyre.  0 and  𝑙  are not the same across a), b) and c). 

There is a relative speed between tyre and the road surface. The ratio between this relative speed and 
a reference speed is defined as the “tyre slip”. The reference speed can be the circumferential speed or 
the translational speed of the tyre, depending on the application. For a driven wheel, the slip definition 
in Eq [2.1] is often used and for braked wheels Eq [2.2] is often used. This is to avoid division by small 
numbers in take-off and brake tests, respectively. The physical model in 2.2.3.1 reveals that Eq [2.1] is 
the physically most motivated. 

𝑠 =
 ∙  −   
| ∙  |

; 
 

[2.1] 
 

𝑠 =
 ∙  −   

|  |
; [2.2] 

With the definition in Equation [2.1] and a model for how tyre longitudinal force varies with     and 
   (Eq [2.20] taken as example) we get Figure 2-11, which shows cuts in Figure 2-25. 

40 + − -40

40 + − -40

+ 

− 

𝑠  
  
1

  
  
𝑁

       𝑠  
Figure 2-11: Slip 𝑠  and force    as function of     for constant   . 𝐶 = 50 [𝑘𝑁 1⁄ ] and     = 5000 [𝑁]. 
Semi-inverted scales around |   | = 20 and |𝑠 | = 1. Dashed shows where definition of 𝑠  is not relevant, 

since    is not dependent of 𝑠 , since     < 0. 

It is not obvious which   to use in Equations [2.1]..[2.2], e.g.  0     2  𝑙  or  𝑙2. However, this com-
pendium recommends the free radius (   or  2), rather than the loaded radii ( 𝑙  or  𝑙2) because the 
free radii are better average value of the radius around the tyre and the tyre’s circumference is tangen-
tially stiff, so speed has to be same around the circumference.  

Sometimes one defines the Rolling radius  𝑒 = (   ⁄ )|𝑇=0, i.e. a speed ratio with dimension length, 
between translational and rotational speeds, measured when the wheel is undriven (𝑇 = 0). This ra-
dius can be used for relating vehicle longitudinal speed to wheel rotational speed sensors, e.g. for 
speedometer or as reference speed for ABS and ESC algorithms.  
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Yet another approach is to use the radius (   ⁄ )| 𝑥=0, i.e. the ratio when the wheel is pure rolling. Us-

ing  = (   ⁄ )|𝑇=0 or  = (   ⁄ )| 𝑥=0 in the slip definitions shifts   (𝑠 ) curve and 𝑇(𝑠 ) curve, see 

more in 2.2.3.5. 

The variable 𝑠  is the longitudinal slip value, sometimes also denoted as 𝜅 or 𝜆. When studying brak-
ing, one sometimes uses the opposite sign definition, so that the numerical values of slip becomes posi-
tive. 

2.2.1.8 Tyre Contact Length 
The contact length   represents the deformation shape. The   is not a design parameter, but an inter-
mediate parameter or variable, explaining both rolling resistance and tyre forces from slip. One way to 
model   in a physical way is shown in Figure 2-12. The tyre belt is modelled as circumferentially rigid 
(constant length), which gives: 

2  𝜋     𝑒𝑒 =
2  𝜋 − 2  𝛾

2  𝜋
 2  𝜋    𝑧 +  ; 

(   𝑒𝑒 −   )
2
+ ( 2⁄ )2 =   𝑧

2 ; 

 2⁄

   𝑒𝑒 −   
= tan(𝛾) ; 

[2.3] 

Additionally, we need a model for the vertical deformation. Simplest possible is a linear spring: 

  =      ;    [2.4] 
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Figure 2-12: Left: Physical model. Right: Example result of model defined by Eqs [2.3] and [2.5]. 

A typical usage of this model is to know variable    and parameters    𝑒𝑒  and   . This leaves 4 un-

known variables (   𝛾     𝑧) and equally many equations. An explicit solution is easy for   , but diffi-

cult for the remaining 3 variables [𝛾     𝑧]. For a single operation conditions, one can solve by itera-

tion. For whole simulations, it is more computational efficient to pre-process numerically in a table for 

how [       𝑧] varies with 𝛾 (for certain    𝑒𝑒 , which typically not varies during a simulation). For 

each time instant during simulation, interpolation in this table gives [𝛾     𝑧] from known   . 

The stiffness    can be found for an existing tyre with a certain inflation pressure, but it is far from a 
design parameter. Also, the linear model is often too simplified. To improve this, alternative vertical 
deformation models can be used. If studying only single operation conditions, Finite Element models 
are suitable. But for simulations, a more computational efficient solution is almost a necessity. The 
model in Eq [2.5] can replace Eq [2.4]. This is simple but indicates the mechanisms for how sidewall 
stiffness and inflation pressure come into play: Assume that the vertical load is carried by sidewalls 
(     ) and the belt area between the sidewalls (  𝑒𝑙𝑡  ). Assume belt has no bending stiffness and side-

walls follow Hertz contact theory:  
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  =      +   𝑒𝑙𝑡  ; 

  𝑒𝑙𝑡  = 𝑝𝑖𝑛 𝑙  𝑊   ;   (𝑊 = tyre width   𝑝𝑖𝑛 𝑙 = tyre inflation pressure) 

     = 𝑘    2;    

[2.5] 

So, Eq [2.5] can be solved for [          𝑒𝑙𝑡  ]. Then [2.3] can be solved for [𝛾      𝑧], using iterations 

or preprocessing with swept 𝛾 and interpolation, very similar as described above. The model is plotted 
for varying    in Figure 2-12. 

The 𝑘   is a radial stiffness of the sidewall. The set [𝑊 𝑘   𝑝𝑖𝑛 𝑙] is closer to design parameters than 

the parameter [  ]. 

When driving on soft ground, the deformation of the ground adds variables, beside  , that influences 
rolling resistance and forces in ground plane. Driving on soft ground is not well covered in this com-
pendium, except shortly in 2.2.2.4.4. Present section assumes rigid ground. 

2.2.2 Rolling Resistance of Tyres 
2.2.2.1 Definition of Rolling Resistance 
Rolling resistance on level road can be defined in two ways: 

• Energy definition:   𝐶 = 
𝐸𝑛𝑒 𝑔𝑦𝐿   

 𝑧 |𝐷𝑖 𝑡𝑎𝑛 𝑒|
=

∫|𝑇 𝜔− ⃗𝑥𝑦•𝑣⃗⃗𝑥𝑦|  𝑡

 𝑧 ∫|𝑣⃗⃗𝑥𝑦|  𝑡
= {

 𝑓 𝑛𝑜
𝑙 𝑡𝑒𝑟 𝑙
𝑠𝑙 𝑝

} =
∫|𝑇 𝜔− 𝑥 𝑣𝑥|  𝑡

 𝑧 ∫|𝑣𝑥|  𝑡
= {

 𝑓 
𝑠𝑡𝑒   
𝑠𝑡 𝑡𝑒

} =

|
𝑇 𝜔− 𝑥 𝑣𝑥

 𝑧 𝑣𝑥
| = {

𝑠 =
𝑅 𝜔−𝑣𝑥

|𝑅 𝜔|
 

 𝑛   𝑓  > 0 
} = |

𝑇

 𝑧
 

 

𝑅 ( − 𝑥)
−

 𝑥

 𝑧
| = {

 𝑓   =
= 𝐶  𝑠 

} = |
𝑇

 𝑧
 

 

𝑅 ( −
𝐹𝑥
𝐶𝑥

)
−

 𝑥

 𝑧
| ≈ {

 𝑓
  ≈ 0

} ≈ |
𝑇 𝑅⁄ − 𝑥

 𝑧
| ; 

This definition includes both force and slip losses. 

• Force definition:   𝐶 =
    𝑒𝐿    𝑖𝑛   𝑡𝑎𝑡𝑖 𝑛  𝑖 𝑒 𝑡𝑖 𝑛

 𝑧
=

𝑇 𝑅⁄ − 𝑥

 𝑧
 sign( ) ; This definition only in-

cludes force losses (relative to a nominal or expected force   = 𝑇  ); not velocity or slip losses. 

Energy definition has the advantage that it does not require  . But it is not useful in most vehicle dy-
namics models, since it does not resolve into force and velocity. And, its RRC value varies a lot if de-
fined for varying tyre forces in the ground plane, which makes slip vary. So, the compendium uses the 
force definition. It should be mentioned that (ISO28580, 2018) uses the Energy definition. 

2.2.2.2 Physical Explanation of Rolling Resistance 
The rolling resistance is difficult to model physically. In the following, some possible explanations are 
given. It focuses tyres on hard ground and moderate speeds, both positive and negative. On soft 
ground, there are mechanisms as in 2.2.2.4.4. At very high speeds, there are inertial impact mechanism 
which causes energy loss. The explanation model below mainly takes on the challenge to explain why a 
rolling resistance moment appears opposite to roll direction, also when speed is close to zero. 

The overall explanation of rolling resistance for pneumatic tyres on hard flat surfaces is that the pres-
sure distribution is off-set in rolling direction. Damping and friction, see Figure 2-13, is one reason for 
this and it is not dependent on the longitudinal force. Figure 2-13 also shows another off-set effect, 
which is directly influenced by the longitudinal force.  

The rolling resistance coefficient is almost the same for very low speeds; even when the wheel starts 
rolling from zero speed, after gradually increasing the torque up to the rolling resistance moment. The 
radial friction in Figure 2-13 can explain that, but there is also another explanation, see Figure 2-14. It 
explains how the contact patch is moved ahead of wheel hub. The belt is circumferentially stiff and 
takes a short-cut along the corda, through the contact. This builds up shear stresses in the sidewall, 
𝜏  . The belt is flexible for bending, so belt radius is proportional to belt tension force,   . This is be-
cause same effect as for tension in rope around a cylinder: 𝑓𝑜𝑟 𝑒 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  𝑟   𝑢𝑠     𝑡 ;. In our 
case, the pressure corresponds to the summed effects of inflation pressure 𝑝𝑖𝑛 𝑙 and radial stress in 

sidewalls 𝜎  . So, the radius becomes smaller than original radius in inlet and larger in outlet. 
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Assumption of constant contact length and geometric constraints from tensional rigid belt requires 
that contact patch is off-set towards the inlet, so 𝑒 = sign( )  |𝑒|;. 
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Figure 2-13: Normal force distribution on a tyre. The measure e is the force offset. In steady state, the forces 
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Figure 2-14: 1. Wheel at low speed (   small and negative). 2. Free body diagrams with belt separate. 3. How 
belt tension force changes before and after contact. 4. Influence of radii variation on contact patch position. 

2.2.2.3 Mathematical Representation of Rolling Resistance 
The rolling resistance force is defined as the loss of longitudinal force on the vehicle body, as com-
pared to the longitudinal force which would have been transferred with an ideal wheel. The Rolling 
Resistance Coefficient, 𝑓  or   𝐶,  is the rolling resistance force divided by the normal force,   . Assum-
ing force equilibria in longitudinal and vertical direction,  ℎ    =  𝑔   𝑛   =    and  ℎ    =

 𝑔   𝑛   =   , see Figure 2-9. 

𝑓 =   𝐶 = |
𝑇  ⁄ −   

  
| ; [2.6] 

   denotes the longitudinal force on the wheel, 𝑇 denotes the applied torque and   denotes the tyre 
radius. For a free rolling tyre, where 𝑇 = 0, 𝑓  becomes simply −    ⁄ . One often sees definitions of 𝑓  
which assumes free rolling tyre; but Eq [2.6] is also valid when 𝑇 ≠ 0, which is useful. 
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A free body diagram of the forces on the wheel can be used to explain the rolling resistance. Consider 
Figure 2-13 which represents a free rolling wheel under steady state conditions. The inertia of the 
wheel is neglected. 

Longitudinal and vertical force equilibria are already satisfied, due to assumptions above. However, 
moment equilibrium around wheel hub requires:   

𝑇 −   ∙  𝑙 −   ∙ 𝑒 = 0 ⇒    =
𝑇

 𝑙
−
𝑒

 𝑙
   ; [2.7] 

This result suggests that the force   , which pushes the vehicle body forward, is the term 𝑇  𝑙⁄  (arising 
from the applied torque T) minus the term   ∙ 𝑒  𝑙⁄ . The term can be seen as a force    𝑙𝑙  and referred 
to as the rolling resistance force. We seldom know neither  𝑙 or 𝑒, but they are rather constant and the 
form of Eq [2.7] is same as Eq [2.6] if:  

𝑓 =   𝐶 = |𝑒  ⁄ |; [2.8] 

Eq [2.8] is a definition of rolling resistance coefficient based on physical mechanisms internally in the 
tyre with road contact, while Eq [2.6] is based on quantities which are measurable externally, see Eq 
[2.6]. Sometimes one sees 𝑓 = −    ⁄  as a definition, but that is not suitable since it assumes absence 
of torque.  

It is not obvious which radius to use.  𝑙 is can be motivated because  𝑙 is the lever for   . However, in 
2.2.1.7, we found arguments for using other radii. If same radius is used, for slip and rolling resistance, 
we can fully see the tyre as a transmission with the nominal ratio   and zero energy loss if 𝑓 = 0 and 
𝑠 = 0. 

It is important to refer to this phenomenon as rolling resistance as opposed to rolling friction. It is 
not friction in the basic sense of friction, because   ≠ −𝑓 ∙    except for the special case when un-
driven wheel (𝑇 = 0). Figure 2-15 shows an un-driven and pure rolling. 

Rolling resistance is a torque loss. Other torque losses, which can be included or not in tyre rolling re-
sistance, are:  

• losses associated with friction in gear meshes,  
• drag losses from oil in the transmission,  
• wheel bearing (and bearing sealings) torque losses,  
• drag from brake discs,  
• drag losses from aerodynamic around the wheel, and 
• uneven road in combination with suspension damping that dissipates energy. 

These should, as rolling resistance, be subtracted from propulsion/brake torque. However, sometimes 
they are included as part of the tyres rolling resistance coefficient, which can be misleading. The wheel 
bearing torque loss have two torque terms: one is proportional to vertical load on the wheel (adds typ-
ically 0.0003 to rolling resistance coefficient), and the other is of constant magnitude but counter-di-
rected to rotation speed. The former term can be included in rolling resistance coefficient. The aerody-
namic losses due to wheel rotation are special since they vary with wheel rotational speed, meaning 
that they (for constant vertical load) are relevant to include when studying the variation of rolling re-
sistance coefficient with vehicle speed. A summarizing comment is that one has to be careful with 
where to include different torque losses, so that they are included once and only once. 

2.2.2.4 Variation of Rolling Resistance 
Several parameters will affect the rolling resistance moment (or Rolling resistance coefficient). Design 
parameters, see Figure 2-8: 

• Tyre material. Natural rubber often gives lower rolling resistance. 
• Radial tyres have more flexible sides, giving lower rolling resistance also bias ply have a 

greater crown angle causing more internal friction within the tyre during deflection. 
• Geometry:  

o Diameter. Large wheels often have lower coefficient of rolling resistance 
o Width 
o Groove depth 
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o Tread depth 
• Higher inflation pressure gives lower rolling resistance on hard ground but higher rolling re-

sistance on soft ground (and vice versa), see Figure 2-16 and Figure 2-17. 
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Figure 2-15: Driven wheel with rolling resistance. Special cases “Free-rolling” and “Pure rolling”. 

Operational parameters, see Figure 2-8: 
• Elevated temperatures give low rolling resistance, via increased inflation pressure. Tyres need 

to roll approximately 30 km before the rolling resistance drop to their lowest values. 
• Road/ground, sometimes covered: Clean asphalt, Asphalt with water/leaves/sand/…, 

Loose/hard gravel, Snow/ice. Soft ground or covered hard ground increases rolling resistance. 
• Wear state. Worn tyres have lower rolling resistance than new ones (less rubber to deform). 

Operational variables, see Figure 2-8: 
• Vertical force.  
• Speed. Rolling resistance increases with vehicle speed due to rubber hysteresis and air drag. 
• Tyre loads (propulsion/braking and lateral forces) 

2.2.2.4.1 Variation of Tyre Type 

Trucks tyres have a much lower rolling resistance coefficient than passenger vehicle tyres, approxi-
mately half. Tyres have developed in that way for trucks, because their fuel economy is so critical. 

2.2.2.4.2 Variation of Vertical Force 

In a first approximation, the rolling resistance force is proportional to vertical force, i.e. RRC is con-
stant. But, typically, the RRC decreases slightly with vertical force. This, and parasitic bearing losses, 
𝑡𝑜𝑟𝑞𝑢𝑒 = sign( )   𝑜𝑛𝑠𝑡 𝑛𝑡, explains why commercial vehicles lift axles when driven with low pay-
load. 

2.2.2.4.3 Variation of Speed 

As an example, left part of Figure 2-16 shows the influence of tyre construction and speed on rolling 
resistance. The sudden increase in rolling resistance at high speed is important to note since this can 
lead to catastrophic failure in tyres. The source of this increase in rolling resistance is a high energy 
standing wave that forms at the trailing edge of the tyre/road contact. 
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There are some empirical relationships derived for the tyre's rolling resistance. It is advisable to refer 
to the tyre manufacturer's technical specifications when exact information is required. This type of in-
formation is usually very confidential and not readily available. Some general relationships have been 
developed, from (Wong, 2001): 

Radial-ply passenger car tyres:   𝑓 = 0.0136 + 0.04 ∙ 10−6 ∙  2 
Bias-ply passenger car tyres:  𝑓 = 0.0169 + 0.19 ∙ 10−6 ∙  2 
Radial-ply truck tyres:   𝑓 = 0.006 + 0.23 ∙ 10−6 ∙  2 
Bias-ply truck tyres:   𝑓 = 0.007 + 0.45 ∙ 10−6 ∙  2 

As seen in Figure 2-16, a rule of thumb is that rolling resistance coefficient is constant up to around 
100 km/h. 
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Figure 2-16 : Left: Rolling resistance coefficient variation with speed for different tyre types (Gillespie, 1992). 

Right:  Range of Coefficient of Rolling Resistance for different road/ground material 

2.2.2.4.4 Variation of Road Surface 

The road or ground can mainly vary in two ways: how rigid and how slippery it is. It is not solely a 
question of the road, because such rigidness should be judge relative to tyre inflation pressure and 
such slipperiness should be judged relative to tyre tread pattern, including whether the tyre has spikes 
or not. 

Right part of Figure 2-16 shows that the rolling resistance changes a lot due to different road/ground 
material and inflation pressures. As can be expected, a range of values exist depending on the specific 
tyre and surface materials investigated. On hard ground, the rolling resistance decreases with in-
creased inflation pressure, which is in-line with the explanation model used above, since higher pres-
sure intuitively reduces the contact surface and hence reduces e. On soft ground the situation is re-
versed, which requires a slightly different explanation model, see Figure 2-17. On soft ground, the 
ground is deformed so that the wheel rolls in a “wheel-local up-grade” with inclination angle  . Intui-
tively, a higher inflation pressure will lead to more deformation of the ground, leading to a steeper  . 

The phenomena in Figure 2-17 is a plastic deformation of the ground, so if a vehicle has several tyres 
which takes the same path on ground, the rolling resistance will be different due to a memory (a state 
variable) in the ground.   

The “wheel-local up-grade” in Figure 2-17 follows each tyre so that it is constant in time for each tyre. 
This is a difference to simply uneven (rigid) road, where the wheels experience alternating wheel-local 
up- and ground-grade. In average, the alternating up and down does not generate rolling resistance in 
tyre, but it can cause energy-loss in wheel suspension and consequently this contributes to energy 
consumption for the vehicle. 
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Figure 2-17 : Rolling resistance explanation for hard and soft ground. Subscripts: c=contact, v=vechile. 

2.2.2.4.5 Variation of Longitudinal Force, Propulsion and Braking 

Figure 2-13 shows an offset of contact patch due to longitudinal force   . This makes   𝐶 dependent 
of   . The phenomena is not well studied, since   𝐶 is often given for free-rolling tyres, but according 
to Figure 2-18 RRC increases with positive    and decreases with negative   . The wheel radius also 
decreases with magnitude of force. For negative forces, these two effects have opposite influence, so 
the change is less for negative force, as seen in Figure 2-18. 
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Figure 2-18 : Rolling resistance dependency of longitudinal tyre force. Inspired by (Wong, 2001) 

2.2.3 Longitudinal Force due to Slip 
The longitudinal force,   , between the tyre and ground influences the vehicle propulsion and braking 
performance. We can see it as a depending on the sliding between the tyre and the ground.  

First, compare friction characteristics for a translating block of rubber with a rolling wheel of rubber. 
Figure 2-19 shows the basic differences between classical dry-friction, or Coulomb friction, of such 
sliding block and the basic performance of a rolling tyre. Experiments have shown that the relative 
speed between the tyre and the road produces a frictional force that has an initial linear region that 
builds to a peak value. After this peak is achieved, no further increase in the tangential (friction) force 
is possible. There is not always a peak value, which is shown by the dashed curve in the figure. The 
slope in the right diagram will be explained in 2.2.3.1, using the so called “tyre brush model”. 

2.2.3.1 Brush Model for Longitudinal Slip 
The brush model is frequently used to explain how tyre develop forces in ground plane, see e.g. Refs 
(Pacejka, 2005) and (Svendenius, 2007). The brush model is a physically based model that uses shear 
stress and dry friction at a local level, i.e. for each contact point in the contact patch. Figure 2-20 shows 
the starting point for understanding the brush model.  
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Figure 2-19: Friction characteristics.    
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Figure 2-20: Tyre ground contact for braked tyre. Origin to the “Brush model”. Picture from Michelin. 

2.2.3.1.1 Uniform Pressure Distribution and Known Contact Length 

A first simple variant of the brush model, uses the following assumptions: 

o Sliding and shear stress only in longitudinal direction (as opposed to combined longitudinal 
and lateral) 

o Uniform and known pressure distribution over a constant and known contact length (as op-
posed to using a contact mechanics-based approach, which can calculate pressure distribution 
and contact length  .) 

o Contact length is known (as opposed to function of vertical force). 
o No difference between static and dynamic coefficient of friction 
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o Only studying the steady state conditions, as opposed to including the transition between op-
erating conditions. Here, “steady state” refers to the distributions of tyre tread shear defor-
mation 𝛾(𝜉) and shear stress 𝜏(𝜉), which are assumed to not vary with time. 

At first, we also assume that the tread is built up of 𝑁 bristles of rubber. Each bristle is assumed as a 
shear piece of rubber without force interaction between neighbouring bristles. The shear stress of the 
element develops as in Hooke’s law:  𝑖 = 𝜏𝑖  𝐴𝑟𝑒 𝑖 = 𝐺  𝛾𝑖  𝐴𝑟𝑒 𝑖;. The 𝐴𝑟𝑒 𝑖 = 𝑊   𝑁⁄ , but we let 
𝑁 →  , we can use a continuous model:   = 𝜏   𝐴𝑟𝑒 = 𝜏  𝑊   𝜉;, where 𝑊 is width of tyre and 𝜉 a 
coordinate along the belt in the contact, see Figure 2-21. Figure 2-21 also shows that we assume fric-
tion contact between bristle and ground. (The bristles can alternatively be seen as bending beams 
fixed in the belt end or rigid beams connect with rotational springs in the belt end.)  

Velocities of bristle 
ends in stick zone:

Drawn for    >   

𝜉 =  
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Figure 2-21: The physical model of simple brush model for longitudinal slip. Drawn for propelled tyre. The 

bristles represent the rubber tread, so they don’t include elasticity in sidewall. Drawn for  ∙  >   .  

We can now state the first equation: 
𝜏 = 𝐺 ∙ 𝛾; 
  𝑒𝑟𝑒 𝜏 = 𝑠 𝑒 𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 𝐺 = 𝑠 𝑒 𝑟  𝑜 𝑢𝑙𝑢𝑠  
 𝑛  𝛾 = 𝑠 𝑒 𝑟  𝑒𝑓𝑜𝑟  𝑡 𝑜𝑛  𝑛 𝑙𝑒;  

[2.9] 

When a bristle enters the contact patch, it lands un-deformed, i.e. with 𝛾 = 0. The further into contact, 
along coordinate 𝜉, we follow the element, the more sheared will it become. Since the ground end of 
the element sticks to ground, the increase becomes proportional to the speed difference    and the 
time 𝑡 it takes to reach the coordinate 𝜉: 

𝛾 =
  ∙ 𝑡(𝜉)

𝐻
=
( ∙  −   ) ∙ 𝑡(𝜉)

𝐻
; 

  𝑒𝑟𝑒 𝑡(𝜉) = 𝜉  𝑇 𝑎𝑛 𝑝  𝑡⁄   𝑛   𝑇 𝑎𝑛 𝑝  𝑡 ≈  ∙  ; 
[2.10] 

The velocity  𝑇 𝑎𝑛 𝑝  𝑡 is the velocity of which the brush bristles are transported through the contact. 

We use  𝑇 𝑎𝑛 𝑝  𝑡 =     and integrate 𝜏 from 𝜉 = 0 to 𝜉 =  . The initial assumption is that 𝜉 = 0 in 

the leading edge, i.e. where the bristles are entring the contact. Hence,  𝑇 𝑎𝑛 𝑝  𝑡 = |   |. 
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(It is possible to reach Eq [2.14] via integration over 𝜉  instead. Then, one uses  𝑇 𝑎𝑛 𝑝  𝑡 = |  |. After 

a more complex derivation, the resulting slip definition 𝑠 = ( ∙  −   ) | ∙  |⁄  falls out in the final 
expression for   , i.e. Eq [2.14]. Despite this, one often sees 𝑠 = ( ∙  −   ) |  |⁄ .) 

Combining equations for 𝜏 and 𝛾 and identifying the slip 𝑠  gives: 

𝜏 =
𝐺

𝐻
∙
 ∙  −   
| ∙  |

∙ 𝜉 = {𝑠 =
 ∙  −   
| ∙  |

; } =
𝐺

𝐻
∙ 𝑠 ∙ 𝜉; [2.11] 

Note that this model simplifies    from a function of 2 variables (  and   ) to 1 variable (𝑠 ). Experi-
ments, except in odd operation conditions such as     < 0, support this. 

With this definition of slip, 𝑠 , we automatically handle   and    both positive and   and    both nega-
tive. The case when   and    have different signs will be handled below.  

As long as friction limit is not reached (|𝜏| <   𝑝) within the whole contact, we can find the force as 
this integral: 

  = ∫ 𝜏 ∙  𝐴

𝑊 𝐿

= 𝑊 ∙ ∫𝜏 ∙  𝜉

𝐿

0

= 𝑊 ∙ ∫
𝐺

𝐻
∙ 𝑠 ∙ 𝜉 ∙  𝜉

𝐿

0

=
𝐺  𝑊   2

2  𝐻
∙ 𝑠 =

= {𝐶 =
𝐺  𝑊   2

2  𝐻
} = 𝐶 ∙ 𝑠 ;    𝑓𝑜𝑟 𝑠 <

    
2  𝐶 

  

[2.12] 

If friction limit is reached within the contact, i.e. at the break-away point 𝜉 <  , we have to split the 

integral in two. The point 𝜉  is defined by 𝜏(𝜉 ) =
 

𝐻
 𝑠  𝜉 =

2  𝑥

𝑊 𝐿2
 𝑠  𝜉 =   𝑝;⇒  𝜉 =

  𝑝 𝑊 𝐿2

2  𝑥  𝑥
=

   𝑧 𝐿

2  𝑥  𝑥
;. For 𝜉 > 𝜉 , the rubber element will slide with a constant 𝜏 =  ∙ 𝑝.  

  = 𝑊 ∙ ∫𝜏 ∙  𝜉

𝐿
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= 𝑊 ∙ ∫
2  𝐶 
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𝜉𝑐

0

+𝑊 ∙ ∫ ∙ 𝑝 ∙  𝜉

𝐿

𝜉𝑐
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     =
2  𝐶 
 2

∙ 𝑠 ∙
𝜉 
2

2
+  ∙ 𝑝 ∙ 𝑊 ∙ ( − 𝜉 ) = {𝑝 =

  
𝑊   

;     𝑛     𝜉 =
      

2  𝐶  𝑠 
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     =
 2    

2

4  𝐶  𝑠 ⏟      
 𝑥 𝑠𝑡𝑖𝑐𝑘

+  ∙   ∙ (1 −
    

2  𝐶  𝑠 
)

⏟              
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) ;      𝑓𝑜𝑟 𝑠 >

    
2  𝐶 

 

[2.13] 

As seen in Eq [2.13], the force terms,     𝑡𝑖 𝑘 and     𝑙𝑖𝑝, from each of stick and slip regions are identi-

fied. These two terms are shown plotted in Figure 2-23. 

The case when   and    have different signs leads to that 𝜉 = 0;, since the bristles will deform in the 
opposite direction; macro slip. So, the whole contact has 𝜏 =  ∙ 𝑝, which leads to   =     ;. Hence, 
the total expression for    becomes as in [2.14], where a generalisation to cover also when   and    
have different signs (     < 0) is done. We also add subscript 𝑥 on 𝐺 and 𝐻, to prepare for a corre-
sponding model for lateral forces, in 2.2.4. 

  =

{
 
 

 
 
= sign(   −   ) ∙  ∙   = sign(𝑠 ) ∙  ∙   ;  𝑓      < 0 (   𝑟𝑜 𝑠𝑙 𝑝)

= 𝐶 ∙ 𝑠 ; 𝑒𝑙𝑠𝑒  𝑓 |𝑠 | ≤
 ∙   
2 ∙ 𝐶 

⇔ |  | ≤
 ∙   
2

= sign(𝑠 ) ∙  ∙   ∙ (1 −
 ∙   
4 ∙ 𝐶 

∙
1

|𝑠 |
) ; 𝑒𝑙𝑠𝑒

 

  𝑒𝑟𝑒 𝐶 =
𝐺 ∙ 𝑊 ∙  2

2 ∙ 𝐻 
;      𝑒𝑛𝑠 𝑜𝑛: [𝑓𝑜𝑟 𝑒]     𝑛  𝑠 =

   −   
|   |

; 

[2.14] 

It is important to reflect over which of the physical quantities that reasonably has to be modelled as 
varying. This will of course depend on the driving manoeuvre studied, but here is a typical situation: 
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The slip 𝑠  and normal load    are typical varying and defined by the vehicle model. The quantities 
  𝐺  𝑊 𝐻  are often reasonably constant, so they can be parameters. However, it is often not reason-
able to assume that the contact length   is constant.   is rather a function of   :  (  );. 

The case when      < 0 is unusual and can only occur when |𝑠 | > 1. An example is when vehicle 
moves rearward with   = −1   𝑠, would be that the wheel spins forward, e.g. with    = 1   𝑠. 
Then 𝑠 = +2 and   =  ∙   . Also, if increase to    = +    𝑠, we get same   =  ∙   , but 
with 𝑠 = + . One can also note that there is another    , for same   , which gives 𝑠 = +2. This is 
   = −1 3⁄   𝑠 and then   =  ∙   ∙ (1 −  ∙   (8 ∙ 𝐶 )⁄ ), which is <     . So,    is uniquely de-
fined for any (    ), but    has double solutions for some 𝑠 , when |𝑠 | > 1. 

If we instead hold a certain forward vehicle speed, e.g.   = 1   𝑠, and study how    varies with  , we 
can identify 4 specific levels of  : 

• Full rearward traction:    = −   𝑠⁄ . This gives 𝑠 = − , with different signs on   and   , 
and   = −    ; 

• Locked wheel:    = 0  𝑠⁄ . This also gives 𝑠 = −  and   = −    ; 
• Pure rolling wheel:    = 1  𝑠⁄ . This gives 𝑠 = 0 and   = 0; 
• Full forward traction:    = +   𝑠⁄ . This gives 𝑠 = +1 and   =  ∙   ∙ (1 −

 ∙   (4 ∙ 𝐶 )⁄ ) ≈ {𝑡 𝑝   𝑙𝑙 } ≈ (0.95. .0.98)   ∙   , which is <     ; 

The first case is achievable, with an electric motor braking but not with friction brakes, where   and 
   have different signs. The last case shows that we cannot reach      in the direction the vehicle 
moves, since there will always be a small part on the inlet side of the contact where the shear stress 
has not reached   𝑝. In practice, we can see it as ≈     , but when using the model mathematically, it 
can be good to note such small phenomena. 

2.2.3.1.2 Longitudinal Tyre Slip Stiffness 

In summary for many models (and tests!) the following is a good approximation for small longitudinal 
slip, and certain normal load and certain friction coefficient: 

  = 𝐶 ∙ 𝑠  [2.15] 

For the brush model, or any other model which describes   (𝑠        ), one can define the “Longitu-
dinal tyre (slip) stiffness” 𝐶 , which have the unit 𝑁 = 𝑁 1⁄ = 𝑁 ((  𝑠) (  𝑠)⁄ ). It is the derivative of 
force with respect to slip. In many cases one means the derivative at 𝑠 = 0: 

𝐶 = (
𝜕

𝜕𝑠 
  (𝑠        ))|

 𝑥=0

 [2.16] 

Note that 𝐶  is not a stiffness in the conventional sense, force/deformation. The tyre also has such a 
deformation stiffness. Often, it is obvious which stiffness is relevant, but to be unambiguous one can 
use the wording: “slip stiffness” 𝐶  [N/1=N/((m/s)/(m/s))] and “deformation stiffness” [N/m]. 

With the brush models with both pressure distributions, Eq [2.14] and Eq [2.20], we get the 𝐶 =
𝐺 ∙ 𝑊 ∙  2 (2  𝐻)⁄ . With 𝐺 = 0.5 [𝑀𝑁  2⁄ ] (typical shear modulus in rubber), 𝑊 =  = 0.1. .0.12 [ ] 
(typical sizes of contact patch for passenger car) and 𝐻 = 0.01 [ ] (approximate tyre tread depth) one 
gets ≈ 25[𝑘𝑁] < 𝐶 = 𝐺 ∙ 𝑊 ∙  2 (2  𝐻)⁄ <≈ 40[𝑘𝑁 1]. Empirically, we can measure 𝐶  for passenger 
car tyres around 25. .50 [𝑘𝑁 1]. This indicates that the brush model models the essential physical phe-
nomena and that the sheared part (the bristles) is rather only the tread than the whole elastic part 
sidewall and tread together. 

2.2.3.1.3 Influence of Vertical Load and Friction in Brush Model 

The vertical load on the tyre affects the force generation,   . For large slip our dry friction model moti-
vates that    is proportional to   . This is also a good approximation for small slip, via 𝐶    . Then, 
one can define the Longitudinal Slip Coefficient, 𝐶𝐶 : 

  = 𝐶  𝑠 = 𝐶𝐶     𝑠 ; [2.17] 
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The contact length   will reasonably vary according to some deformation model. Hertz’s contact the-

ory for line contact motivates that   √  
2 .  This is implemented as  2 =    𝑘, where 𝑘 is a material 

modulus with dimension force/area, gives: 

𝐶 =
𝐺 ∙ 𝑊 ∙  2

2 ∙ 𝐻 
=
𝐺 ∙ 𝑊 ∙    𝑘

2 ∙ 𝐻 
=

𝐺 ∙ 𝑊

2 ∙ 𝐻  𝑘⏟      
  𝑥

   ; 

So, the assumption   √  
2  explains why 𝐶 ≈ 𝐶𝐶       ;. This can be verified with experiments, 

see Figure 2-48. A small tendency for degressive increase (𝜕2𝐶 𝜕  
2⁄ < 0) can be found. 

The result is summarised in Figure 2-22. Increasing   only increases the saturation level, while leaving 
the slope at lower 𝑠  constant, or possibly slightly increased. Variation of    involves the contact length 

model. The assumption “  √  
2 ” simply scales the curve in force direction. Overall, it can be con-

cluded that there are arguments for two conceptual ways how the tyre characteristics changes, varied 
vertical force and varied friction coefficient, see Figure 2-22. 
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Figure 2-22: How tyre characteristics typically vary due to varying vertical force and road friction. Left: 

Theory. Right: Measurements with varying friction, i.e. varying surfaces, from PhD course by Ari Tuononen, 
Aalto university, Finland, Saariselkä, Finland 2014-03-15..22. 

The influence of vertical force on 𝐶  (and on lateral slip stiffness 𝐶𝑦) is further discussed in 2.2.4.3 and 

2.2.5.4. 

2.2.3.1.4 Influence of Different Static and Dynamic Friction 

A common model for friction is that coefficient of friction to remain sticking,   𝑡𝑖 𝑘 , is higher than the 
coefficient of friction when slipping has started,   𝑙𝑖𝑝. This is sometimes called “stiction”. If this is im-

plemented in the model, the brush model can explain why the overall   (𝑠 ) often has a peak, as indi-
cated already in Figure 2-19. In the derivation in Eq [2.13], the differing between   𝑡𝑖 𝑘 and   𝑙𝑖𝑝, af-

fects like this:     𝑙𝑖𝑝 = 𝑊 ∙ ∫   𝑙𝑖𝑝 ∙ 𝑝 ∙  𝜉
𝐿

𝜉𝑐
; and 𝜉 =

 𝑠𝑡𝑖𝑐𝑘  𝑧 𝐿

2  𝑥  𝑥
;.  

  =

{
 
 

 
 
= sign(𝑠 ) ∙   𝑙𝑖𝑝 ∙   ;                   𝑓      < 0 (   𝑟𝑜 𝑠𝑙 𝑝)

= 𝐶 ∙ 𝑠 ;                                         𝑒𝑙𝑠𝑒  𝑓 |𝑠 | ≤
  𝑡𝑖 𝑘 ∙   
2 ∙ 𝐶 

⇔ |  | ≤
  𝑡𝑖 𝑘 ∙   

2

= sign(𝑠 ) ∙   𝑙𝑖𝑝 ∙    (1 −
  

2  𝐶  |𝑠 |
   𝑡𝑖 𝑘  (1 −

  𝑡𝑖 𝑘
2    𝑙𝑖𝑝

)) ;           𝑒𝑙𝑠𝑒

 

  𝑒𝑟𝑒 𝐶 =
𝐺 ∙ 𝑊 ∙  2

2 ∙ 𝐻 
;      𝑒𝑛𝑠 𝑜𝑛: [𝑓𝑜𝑟 𝑒]     𝑛  𝑠 =

   −   
|   |

; 

[2.18] 

This model only gives a peak if   𝑡𝑖 𝑘 > 2    𝑙𝑖𝑝, see Figure 2-24. The model explains that a peak can 

occur, but the shape of the curve does not correlate well with tyre measurements. The model can work 
to explain some phenomena on vehicle level, but a better model can be found if assuming parabolic 
pressure distribution, see 2.2.3.1.5. 



VEHICLE INTERACTIONS AND VEHICLE SUBSYSTEMS 

77 

2.2.3.1.5 Brush Model with Parabolic Pressure Distribution 

Hertz’s contact theory for line contact motivate an elliptical pressure distribution. A parabolic pres-
sure distribution approximates an elliptical and it gives an alternative brush model, as compared to 
the one appearing from uniform pressure. The coefficients in the parabolic pressure function have to 

be chosen such that ∫ 𝑝(𝜉)  𝑊   𝜉
𝐿

0
=    and 𝑝(0) = 𝑝( ) = 0;: 

𝑝(𝜉) =
6 ∙   
𝑊   

∙
𝜉

 
 (1 −

𝜉

 
) ; [2.19] 

If we do the corresponding derivation as for the uniform pressure distribution, e.g. assuming a stick 
and slip zones, the location of where slip starts, 𝜉 , becomes: 

𝜏(𝜉 ) =
𝐺

𝐻
 𝑠  𝜉 =   𝑝(𝜉 ) =   

6 ∙   
𝑊   

∙
𝜉 
 
 (1 −

𝜉 
 
) ;⇒  𝜉 =  −

𝐺  𝑊     𝑠 
6    𝐻    

; 

The slip where 𝜉  appears outside 0 < 𝜉 <   is when 𝜉  becomes < 0, which is when the whole con-
tact slips: 

𝜉 =  −
𝐺  𝑊     𝑠 
6    𝐻    

=   (1 −
𝐶  𝑠 
3      

) < 0;⇒ 𝑠 >
3      

𝐶 
; 

Total longitudinal force,   , becomes: 

   sign(𝑠 ) =

{
  
 

  
 
=  ∙    𝑓      < 0

= (𝐶 ∙ |𝑠 | −
(𝐶 ∙ |𝑠 |)

2

3 ∙  ∙   
+

(𝐶 ∙ |𝑠 |)
 

27 ∙ (    )
2) ; 𝑒𝑙𝑠𝑒  𝑓 |𝑠 | <

3 ∙  ∙   
𝐶 

⇔

               ⇔ |  | ≤  ∙   
  
=  ∙   ; 𝑒𝑙𝑠𝑒

 

  𝑒𝑟𝑒 𝐶 =
𝐺 ∙ 𝑊 ∙  2

2 ∙ 𝐻
;      𝑒𝑛𝑠 𝑜𝑛: [𝑓𝑜𝑟 𝑒]     𝑛  𝑠 =

   −   
|   |

; 

[2.20] 

The shape of this curve becomes as shown in Figure 2-23. The uniform pressure distribution model is 
drawn as reference. Note that the parabolic pressure distribution does not give any linear part, but the 
derivative at 𝑠 = 0 is same, 𝐶 = 𝐺 ∙ 𝑊 ∙  2 (2  𝐻)⁄ . 

 
Figure 2-23: Shape of force/slip relation derived with brush model with parabolic pressure distribution and 

different contact length models. Also, the force terms from stick- and slip-regions are shown. 

2.2.3.1.6.1 Different Static and Dynamic Friction 
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We now introduce different   𝑡𝑖 𝑘 and   𝑙𝑖𝑝. We also identify each force term, for stick and slip regions, 

as follows: 

    𝑡𝑖 𝑘 = 𝑊 ∙ ∫ 𝜏(𝜉) ∙  𝜉

𝜉𝑐

0

= 𝑊 ∙ ∫
2  𝐶 
𝑊   2

∙ 𝑠 ∙ 𝜉 ∙  𝜉

𝜉𝑐

0

= { 𝜉 =   (1 −
𝐶  𝑠 

3    𝑡𝑖 𝑘    
) ; } = ⋯ = 

= 𝐶 ∙ (1 −
 𝑥  𝑥

   𝑠𝑡𝑖𝑐𝑘  𝑧
)
2
 𝑠 ;  

    𝑙𝑖𝑝 = 𝑊 ∙ ∫  𝑙𝑖𝑝 ∙ 𝑝 ∙  𝜉

𝐿

𝜉𝑐

=  𝑙𝑖𝑝 ∙ 𝑊 ∙ ∫𝑝 ∙  𝜉

𝐿

𝜉𝑐

=

{
 

 𝑝 =
6 ∙   
𝑊   

∙
𝜉

 
 (1 −

𝜉

 
) ;

𝜉 =   (1 −
𝐶  𝑠 

3    𝑡𝑖 𝑘    
) ;
}
 

 
= ⋯ = 

=   𝑙𝑖𝑝 ∙   ∙ (3 − 2  
𝐶  𝑠 

3    𝑡𝑖 𝑘    
)  (

𝐶  𝑠 
3    𝑡𝑖 𝑘    

)
2

; 

𝐵𝑜𝑡  𝑒𝑥𝑝𝑟𝑒𝑠𝑠 𝑜𝑛𝑠   𝑙   𝑜𝑛𝑙  𝑓𝑜𝑟 𝑠 <
3 ∙   𝑡𝑖 𝑘 ∙   

𝐶 
; 

The force terms,     𝑡𝑖 𝑘 and     𝑙𝑖𝑝, from each of stick and slip regions are identified for 𝑠 <

3 ∙   𝑡𝑖 𝑘 ∙   𝐶 ⁄ . When slip is larger, 𝑠 > 3 ∙   𝑡𝑖 𝑘 ∙   𝐶 ⁄ , the whole contact slips,     𝑡𝑖 𝑘 = 0; and 

    𝑙𝑖𝑝 =   𝑙𝑖𝑝    ;. If we sum to   =     𝑡𝑖 𝑘 +     𝑙𝑖𝑝 we get: 

   sign(𝑠 ) =

{
  
 

  
 
=   𝑙𝑖𝑝 ∙   ;                 𝑓      < 0

= 𝐶 ∙ |𝑠 | − (2 −
  𝑙𝑖𝑝
  𝑡𝑖 𝑘

)  
(𝐶 ∙ |𝑠 |)

2

3 ∙   𝑡𝑖 𝑘 ∙   
+ (3 − 2  

  𝑙𝑖𝑝
  𝑡𝑖 𝑘

)  
(𝐶 ∙ |𝑠 |)

 

27 ∙ (  𝑡𝑖 𝑘    )
2
;

                                      𝑒𝑙𝑠𝑒  𝑓 |𝑠 | <
3 ∙   𝑡𝑖 𝑘 ∙   

𝐶 
=   𝑙𝑖𝑝 ∙   ;                𝑒𝑙𝑠𝑒

 

  𝑒𝑟𝑒 𝐶 =
𝐺 ∙ 𝑊 ∙  2

2 ∙ 𝐻
;      𝑒𝑛𝑠 𝑜𝑛: [𝑓𝑜𝑟 𝑒]     𝑛  𝑠 =

   −   
|   |

;  

[2.21] 

Typical values of friction coefficients that give good resemblance with measurements are 
  𝑡𝑖 𝑘    𝑙𝑖𝑝⁄ = 1.3. .1.8. In (Ludwig, o.a., 2017), the ratio   𝑡𝑖 𝑘    𝑙𝑖𝑝⁄  is experimentally found to vary 

approximately between 1.1 and 2.0. Note that the peak of the curve neither means     ⁄ =   𝑙𝑖𝑝 nor 

    ⁄ =   𝑡𝑖 𝑘. For example, the curve with [  𝑙𝑖𝑝    𝑡𝑖 𝑘] = [1  2] peaks at     ⁄ ≈ 6300 5000⁄ ≈ 1.26, 

which is far from   𝑡𝑖 𝑘 . 

Eq [2.21] gives same peak    𝑝𝑒𝑎𝑘and asymptotic     𝑙𝑖𝑝 independent of 𝐶 . The peak slip 𝑠  𝑝𝑒𝑎𝑘 be-

comes independent of 𝐶   ⁄ = 𝐶𝐶 , which is often constant: 

   𝑝𝑒𝑎𝑘 = ±     𝑡𝑖 𝑘  
4−  

𝜇𝑠𝑙𝑖𝑝

𝜇𝑠𝑡𝑖𝑐𝑘

( −2 
𝜇𝑠𝑙𝑖𝑝

𝜇𝑠𝑡𝑖𝑐𝑘
)
2 ;   and   𝑠  𝑝𝑒𝑎𝑘 =

±   𝑧

 𝑥
 

 𝑠𝑡𝑖𝑐𝑘

 −2 
𝜇𝑠𝑙𝑖𝑝

𝜇𝑠𝑡𝑖𝑐𝑘

=
± 

  𝑥
 

 𝑠𝑡𝑖𝑐𝑘

 −2 
𝜇𝑠𝑙𝑖𝑝

𝜇𝑠𝑡𝑖𝑐𝑘

; 

The model and analysis can be transferred to lateral slip, except that there is often a tendency that 
𝐶𝑦   ⁄ ≠ 𝐶𝐶𝑦, but rather that 𝐶𝑦   ⁄  decreases with   . Hence, 𝑠𝑦 𝑝𝑒𝑎𝑘 increases with   . 
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  𝑡𝑖 𝑘 = 3;

  𝑡𝑖 𝑘 = 2;

  𝑡𝑖 𝑘 = 1;

  𝑡𝑖 𝑘 = 1.5;

  𝑡𝑖 𝑘 = 3;

  𝑡𝑖 𝑘 = 2;

  𝑡𝑖 𝑘 = 1;

  𝑡𝑖 𝑘 = 1.5;

  𝑙𝑖𝑝 = 1;
  𝑙𝑖𝑝 =   𝑡𝑖 𝑘 = 1.65306; (tuned in)

 
Figure 2-24: Brush model with uniform (left) and parabolic (right) pressure. Varying   𝑡𝑖 𝑘   𝑙𝑖𝑝 . 

Parabolic pressure distribution, 𝐶𝐶 = 10;   = 5000 𝑁 ;   𝑙𝑖𝑝 = 1;   𝑡𝑖 𝑘 = 2;

If wheel locked (e.g. by 
friction brake), i.e.   0: If vehicle  stand-still (e.g. held 

by other wheels), i.e.    0:

   

If vehicle has constant non-zero velocity (e.g. 
controlled by other wheels), i.e.     𝑜𝑛𝑠𝑡 𝑛𝑡 ≠ 0:

  

   

(  𝑙𝑖𝑝 < 𝑝𝑒𝑎𝑘 <  𝑡𝑖 𝑘)

  

   

  

  < 0

  > 0

 
Figure 2-25: Eq [2.21] plotted over the [      ]-plane. 

2.2.3.2 Measurements 
Some examples of measurements are given Figure 2-26. It is important to understand that there is a 
big spread between different tyres (e.g. studded or not, as shown in the figure) and that the physical 
phenomena we try to measure and model is not only the tyre, but the contact between one certain tyre 
and one certain ground surface (e.g. ice, as shown in figure). Additionally, there is one certain wheel 
suspension which can cause different high frequency oscillations which affect the averaged measured 
signals. The figure shows both longitudinal and lateral grip, so both relevant for 2.2.3 and 2.2.4, but not 
the combined situation in 2.2.5. 
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Figure 2-26: Typical measurements for passenger car tyres on ice. From Hjort and Eriksson, VTI report  875, 

2015. https://www.vti.se/en/Publications . 

2.2.3.3 Parameter Fitting in Physical Tyre Models 
The brush model variants presented above are physical tyre models. They can to some extent represent 
changing tyre design parameters and changing ground properties. It is almost impossible to know the 
correct numerical values of the real design parameters, such as 𝐺  𝑊 𝐻  in 𝐶 = 𝐺  𝑊   2 (2  𝐻 )⁄  
or  . But if one has experimental data, one can at least fit 𝐶  and  , to one experiment. Changing 𝐶  or   
then makes sense. However,   is no design parameter, but a variable dependent of   . So, if also chang-
ing   , one would need more experimental data with variation in    or a model for  =  (  ). The com-
pendium argues for using slip definition from Eq [2.1] instead of Eq [2.2] when fitting parameters in 
physical tyre models.  

2.2.3.4 Curve Fit Tyre Models 
The brush model is a physical tyre model. However, if a model is required which is numerically accu-
rate for one specific tyre of which one have experimental data, and there is no need for changing tyre 
design parameters and ground properties, one can use a curve fit tyre model instead. 

Those “Curve Fit Tyre Models” often uses a mathematical curve approximation, such as trigonometric 
and exponential forms instead of models as in Eq [2.14]. Most curve fit tyre models use the "collapse 
from 3 to 2 independent variables", by which is meant that the fitted curves have 2 independent varia-

bles: [    𝑦] = 𝑓𝑢𝑛 (𝑠 (      ) 𝑠𝑦(      )) ; instead of [    𝑦] = 𝑓𝑢𝑛 (      𝑦);. This selection 

of number of independent variables is typically the only very physical assumption in the curve fit mod-
els. The argument of physics to use slip definition from Eq [2.1] instead of Eq [2.2] are typically ne-
glected for curve fit tyre models, and it is usual that Eq [2.2] is selected. Regardless which slip defini-
tion is used, it is important that same slip definition is used when numerical parameter values are fit-
ted as when the tyre model is used, e.g. for simulation. 

2.2.3.4.1 Magic Formula Tyre Model 

The most well-known curve fit tyre model is probably the “Magic Formula”. It was proposed by Profes-
sor Hans Pacejka, 1934-2017. It is described, e.g., in (Bakker, 1987). The curve fit has the general form: 

 𝑜𝑟 𝑒 =  (𝑥) = 𝐷 ∙ sin(𝐶 ∙ arctan(𝐵 ∙ 𝑥 −  ∙ (𝐵 ∙ 𝑥 − arctan(𝐵 ∙ 𝑥)))) + 𝑆𝑉; 

𝑆𝑙 𝑝 = 𝑠 = 𝑥 =  + 𝑆𝐻; 
[2.22] 

The variable 𝑥 = 𝑠  is the tyre slip value. The parameters are: 𝐷 [𝑁] is peak force, 𝐵 [𝑁 1⁄ ] is slip stiff-
ness, 𝐶 [1] is shape and   [1] is curvature. The parameters 𝑆𝑉 and 𝑆𝐻 simply shifts the curve so that it 
passes through the origin, which might not be the case for measurement data, since there can be er-
rors in tyre radius and correction for rolling resistance. The relationship between these parameters 
and the tyre slip/friction relation is shown in Figure 2-27.  

https://www.vti.se/en/Publications
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Figure 2-27: Magic Formula Tyre Parameters, (Pacejka, 2005) 

2.2.3.4.2 TMsimple and TMeasy Tyre Models 

TMsimple and TMeasy are two other curve fit models. TMsimple is shown in Eq [2.23] (without influ-
ence of vertical force). Both are shown in Figure 2-28. TMsimple is a simplified variant of TMeasy. For 
example, in TMsimple, it is not possible to set the maximum force value to a specific slip. TMeasy is de-
scribed in Ref (Hirschberg, et al., 2007). 

 (𝑠) =   𝑎  sin(𝐵  (1 − 𝑒−| | 𝐴⁄  )  sign(𝑠)) ; 

  𝑒𝑟𝑒 𝐵 = 𝜋 − arcsin( ∞   𝑎 ⁄ ) ;   𝑛  𝐴 =   𝑎  𝐵 arctan(𝐶)⁄ ; 
  𝑡    𝑎   ∞  𝑛  𝐶  𝑠  𝑛  𝑞 [2.29]  

[2.23] 

2.2.3.4.3 More Advanced Models 

There are numerous of more advanced tyre models, such as Swift and FTire. They mix physical and 
curve fit parameters. FTire is almost a finite element model and demands very many parameters. 

2.2.3.4.4 Very Simple Tyre Models 

There are many more models with different degree of curve fitting to experimental data. However, one 
can often have use for very simple curve fits, such as: 

• Linearized:   = 𝐶 ∙ 𝑠  
• Linearized and saturated:   = sign(𝑠 ) ∙   𝑛(𝐶 ∙ |𝑠 |;  ∙   ) 
• Stiff: 𝑠 = 0;⇔    =   ; (as if linear with 𝐶 →  ) 
• Stiff and saturated:  𝑓 𝑠𝑡  𝑘 𝑠 = 0;  𝑒𝑙𝑠𝑒   =     ; Discrete state switching:   𝑒𝑛 𝑠 <

0 𝑡 𝑒𝑛 𝑠𝑡  𝑘 ← 𝑡𝑟𝑢𝑒;  𝑒𝑙𝑠𝑒  𝑒𝑛   >   𝑡 𝑒𝑛 𝑠𝑡  𝑘 ← 𝑓 𝑙𝑠𝑒; (Approximately described.) 

  
 
 

 ∞

1

𝐶

Tyre model TMeasy

 
Figure 2-28: Left: TMsimple (Lex, 2015). Right: TM-Easy Tyre Model, (Hirschberg, et al., 2007).  

2.2.3.5 Transients or Relaxation in Contact Patch 
Both the physical and empirical tyre models assume of steady state condition in the contact patch, 
meaning steady state deformation pattern and steady state sliding speed distribution. Transients 
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between different steady state conditions take some time which is why the phenomena is called relax-
ation. Often in Vehicle Dynamics, the relaxation is such a quick process that it can be assumed to take 
place instantaneously, i.e. the algebraic relation   =   (𝑠 ) can be used. But sometimes it is relevant 
to model the transients more carefully. Transients are triggered by variations; variations in slip (   
and/or  ), vertical force (  ) and surface conditions (e.g. expressed in varying  ). Transients can also 
appear for constant conditions (constant          ) if the tyre and its suspension constitute a system 
that comes into stick-slip oscillations. 

Note that also start from stand-still and deceleration to stand-still are examples of strong transients in 
slip, even if vehicle acceleration/deceleration is small. We can see this in Figure 2-11 where we see 
that the smaller |  |, the steeper the curve   ( ) becomes during sign change. So, if   = 0, the   ( ) 
will have same step-form as a dry friction contact. If using slip, we experience this as a mathematical 
singularity; slip approaches ±  when   approaches zero. Modelling transients often solve both the 
mentioned transients in slip, vertical force and surface conditions as well as driving situations involv-
ing/close to stand-still. 

The physical phenomena to be modelled is elasticity; in tyre sidewalls and/or in contact patch. 

2.2.3.5.1 Transients due to Relaxation in Contact Patch Modelled as Filter  

The elasticity in the side walls, modelled in 2.2.3.5.1, explains delay; e.g. when changing   𝑖  stepwise, 
the force    will not follow 𝑓𝑆𝑆 directly, but with a delay. Another phenomenon that causes delay is that 
the bristles in the contact patch needs to adopt to a new deformation pattern and sliding speed distri-
bution. Following the brush model, the physically correct way would be to formulate the equations as 
a partial differential equation (PDE), with derivatives with respect to both time and position along the 
contact patch, 𝜉. A “quasi-physical” way to model this is to apply a 1st order time delay of force: 

   = (1 𝜏) ∙ (𝑓𝑆𝑆(𝑠        ) −   );  

where 𝑓𝑆𝑆(𝑠        ) is the force according to a steady state model, e.g.Eq 

[2.14] and the time delay, 𝜏 =
𝐿𝑟

𝑣𝑇𝑟𝑎 𝑠𝑝 𝑟𝑡
=

𝐿𝑟

|𝑅∙𝜔𝑟𝑖 |
 and    is the relaxation length, 

which often is given as a fraction (≈ 25. .50%) of tyre circumference. 

[2.24] 

Alternatively, one can also express the delay as a 1st order time delay of the slip, as follows: 

  = 𝑓𝑆𝑆(𝑠   𝑒𝑙𝑎𝑦𝑒        );  

𝑠    𝑒𝑙𝑎𝑦𝑒 = (1 𝜏) ∙ (𝑠 − 𝑠   𝑒𝑙𝑎𝑦𝑒 );  

where 𝑓𝑆𝑆(𝑠   𝑒𝑙𝑎𝑦𝑒        ) is the force according to a steady state model, e.g. 

Eq [2.14] and 𝜏 is as defined in Eq [2.24]. 

[2.25] 

Eq [2.24] is similar to “spring in series”, as in 2.2.3.5.1, if a linear tyre-to-slip-model is used. This can 
motivate that delaying force (Eq [2.24]) is more physical than delaying the slip (Eq [2.25]). The delay 
in slip rather proposes that relative speed as state variable, which is not physical in this context. How-
ever, the delayed force has the non-physical effect that    sometimes can become >      in cases 
when wheel is off-loaded quickly, i.e. when     is a large negative value. So, an extension to 

  = max(𝑓𝑆𝑆(𝑠   𝑒𝑙𝑎𝑦𝑒        )     ) ; can be motivated. 

It would make sense from physical point of view, if the relaxation length was approximately same 
magnitude as the contact length, or possibly the length of the sticking zone. However, commonly given 
size of relaxation length is 25. .50% of tyre circumference, which is normally several times larger than 
the contact length. This can be because one measures delay due to sidewall elasticity also, but then in-
terpreted as a relaxation length. 

With 𝑓𝑆𝑆 = 𝐶  𝑠 ;, and   𝑖 > 0; and   > 0;, we can simplify Eq [2.24] to Eq [2.26]: 

   =
𝐶 
  

∙     𝑖 −
𝐶 
  

∙   −
    𝑖 

  
∙   ;    ⇒ {𝑠 =

  
𝐶 
  𝑠 𝑠  𝑙𝑙} ⇒    

⇒    ≈
𝐶 
  

∙     𝑖 −
𝐶 
  

∙   ; 

[2.26] 
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2.2.3.5.2 Transients due to Elasticity of Sidewalls 

Figure 2-29 shows a physical model which can model how the force change is delayed during quick 
changes in slip. The model can also handle vehicle stand-still. This type of model is often called a rigid 
ring tyre model, because the belt is modelled as a rigid ring. The ring is here massless but has mass and 
rotational inertia. The longitudinal and vertical support are here rigid, but they can be modelled as 
compliant. If no significant inertia in wheel hub, the driveshaft compliance will be series coupled with 
the rotational compliance,    . The torque 𝑇 𝑖  is the sum of torque from propulsion system and brake 
system. Damper elements can be added beside the compliances.  

The mathematical model becomes as follows, where 𝑓𝑆𝑆 denotes a steady state tyre model, e.g. from 
2.2.3.1: 

   =    ∙ (    𝑖 −     𝑒𝑙𝑡); 

  = 𝑓𝑆𝑆(𝑠        );      𝑒𝑟𝑒   𝑠 =
    𝑒𝑙𝑡 −   
|    𝑒𝑙𝑡|

; 
[2.27] 

  

    

Rigid longitudinal 
and vertical supports

Massless 
ring/belt

Wheel rotational 
elasticity of sidewalls

  

     

    𝑖 

𝑓

Brush model or similar:
  = 𝑓 𝑠 ;

𝑠 =
𝑅 𝜔  𝑙𝑡−𝑣𝑥

𝑅 𝜔  𝑙𝑡
;

Note: This can be seen as a non-linear damper: 
  = 𝑓     𝑒𝑙𝑡   ;

𝑓

Wheel rotational elasticity 
of sidewalls transformed to 
tangential elasticity with 
stiffness     𝑁  .

    𝑒𝑙𝑡
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rim and road

Road

Rim & 
wheel shaft
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Figure 2-29: Tyre model including the rotational elasticity of tyre sidewalls.  

Damping in parallel with the elasticity is often motivated also: 

  =    +    ; 

    =    ∙ (    𝑖 −     𝑒𝑙𝑡); 

   =    ∙ (    𝑖 −     𝑒𝑙𝑡); 

  = 𝑓𝑆𝑆(𝑠        );      𝑒𝑟𝑒   𝑠 =
    𝑒𝑙𝑡 −   
|    𝑒𝑙𝑡|

; 

[2.28] 

If used in a system where   𝑖  and    are input variables to tyre, the force    will become a state vari-
able. It is then not a problem that slip is undefined for  = 0, because the explicit form of equations 
will become as follows. Note that we simplify by only considering the case when   𝑒𝑙𝑡    > 0. And the 
model validity is limited to           such that uniquely defines 𝑠 . 
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𝑠 ←  𝑆𝑆(         ); 

  𝑒𝑙𝑡 ←
  

  (1 − 𝑠  sign(  ))
;   (𝑜𝑛𝑙    𝑙   𝑓𝑜𝑟   𝑒𝑙𝑡    > 0) 

   ←    ∙ (    𝑖 −     𝑒𝑙𝑡); 

  𝑒𝑟𝑒  𝑆𝑆  𝑠 𝑡 𝑒  𝑛 𝑒𝑟𝑠𝑒 𝑜𝑓 𝑓𝑢𝑛 𝑡 𝑜𝑛 𝑓𝑆𝑆 𝑠𝑢   𝑡  𝑡 𝑠 =  𝑆𝑆(       ); 

[2.29] 

With 𝑓𝑆𝑆 = 𝐶  𝑠 ;, and   𝑖 > 0; and   > 0;, we can simplify Eq [2.29]to Eq [2.30]: 

   =    ∙     𝑖 −
   ∙   

1 −
  
𝐶 

;    ⇒ {𝑠 =
  
𝐶 
  𝑠 𝑠  𝑙𝑙} ⇒    

⇒    ≈    ∙     𝑖 −    ∙   ; 

[2.30] 

Eq [2.29] means that we read the function 𝑓𝑆𝑆 from force    to slip 𝑠 . When knowing slip, we can cal-
culate the rotational speed   𝑒𝑙𝑡. Then, the state derivative     can be calculated, so that the state    can 
be updated in each time step. 

With any reasonable tyre function 𝑓𝑆𝑆, there is a maximum magnitude of force, |  | =     , above 
which there is no slip 𝑠  that gives that   . In most problems, one never ends up there in the simula-
tions, since when approaching  |  | =     , the velocity   𝑒𝑙𝑡 changes quickly in the direction that 
makes |  | stays <    . But, if      decreases stepwise, one might end up there anyway for short time 
intervals. In that case, it often gives physically acceptable solutions on vehicle level, to simply saturate 
𝑠  so that |  | is saturated at a certain level, e.g. 0.95      . For the brush model with uniform pres-
sure distribution, Eq [2.14], the inverted function   becomes as follows, including such saturation: 

𝑠 =  (       ) =

{
 
 
 

 
 
 =

  
𝐶 

; 𝑓𝑜𝑟 |  | ≤
 ∙   
2

;

=
 ∙   
4 ∙ 𝐶 

∙
sign(  )

1 −
|  |
 ∙   

; 𝑓𝑜𝑟 |  | < 0.95   ∙   ;

=
 ∙   
4 ∙ 𝐶 

∙
sign(  )

1 − 0.95
; 𝑒𝑙𝑠𝑒

 

  𝑒𝑟𝑒 𝐶 =
𝐺 ∙ 𝑊 ∙  2

2 ∙ 𝐻
;      𝑒𝑛𝑠 𝑜𝑛: [𝑓𝑜𝑟 𝑒] 

[2.31] 

2.2.3.5.3 Relation between the two Transients Models 

The models in 2.2.3.5.1 and 2.2.3.5.1 describe two different phenomena which both are present in the 
real world. Since it is difficult to distinguish between the two delay-creating parameters,     and 
𝐶   ⁄ , one often models only one phenomenon. But then, one adjusts the numerical value of the used 
parameter so that the model captures about the same delay as a real-world test. If    = 𝐶   ⁄ ;, the 
two models coincide approximately. 

This compendium does not give any recommendation of which of the two models is best. 

Note that, with unsaturated    in Eq [2.24], one has to limit the integration of     to |  | ≤  ∙   . 

2.2.3.6 Tyre with Both Rolling Resistance and Slip 
So far, the models in 2.2.3 have not included rolling resistance. As we regard rolling resistance as a 
torque, not a force, it does not affect the   (𝑠 ) curve. But the rolling resistance does move the 𝑇(𝑠 ) 
curve vertical. The curve moves upwards if the wheel is rolling forward and downwards if rolling rear-
wards, see Figure 2-30. The   (𝑠 ) curve is normally the suitable view for vehicle level studies, while 
the 𝑇(𝑠 ) curve is sometimes needed for involving a model of the propulsion and brake systems. As 
mentioned in 2.2.1.7, one can select different   in the slip definition. In Figure 2-30, it is assumed that 
one uses an   such that   = 0 for 𝑠 = 0, i.e. for pure rolling. Often, for wheel slip control (ABS, TC, …), 
one instead uses an   such that 𝑇 = 0 for 𝑠 = 0, i.e. for free-rolling, because it is much easier to know 
when 𝑇 = 0 than when   = 0. 
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Figure 2-30: Longitudinal tyre force (  ) and normalized wheel torque (𝑇  𝑙) for both rolling resistance and 

slip. Slip defined so that curve   (𝑠 ) passes through diagram origin, which means that 𝑇(𝑠 )  𝑙⁄  does not. 

2.2.4 Lateral Force of Tyre 
After a vehicle starts moving, controlling the direction of travel becomes a high priority for the opera-
tor. For wheeled vehicles, the primary mode to control travel direction is to change the orientation of 
the tyre, i.e. to apply a steer angle. Tyres generate a lateral force when they are oriented at an angle 
different to the direction of the vehicle motion. The tyre typically deforms as in Figure 2-31. 

 𝑦

 ⃗ 

a) yz plane, view from rear b) xy plane, view from above

 𝑦

left non-steered wheel left non-steered wheel rest of vehicle

 ℎ𝑦

𝑀ℎ 

rest of vehicle

𝑡𝑝

𝛼

𝑀ℎ 

 ℎ𝑦

 ℎ𝑦

𝑀 

𝑀 

𝑀ℎ  ℎ𝑦

𝑀ℎ 

 ℎ𝑦 ≈  𝑦;

𝑀ℎ ≈ 𝑀 ;
 

Figure 2-31: Deformation and forces of a Cornering Tyre. Wheel side slip angle is 𝛼. 

It is essential to distinguish between the steer angle and wheel (lateral or side) slip angle of the tyre. 
Lower right part of Figure 1-20 shows this difference. The steer angle,   or d, is the angle between ve-
hicle longitudinal direction and tyre longitudinal direction. The wheel side slip angle, 𝛼 is the angle be-
tween tyre longitudinal direction and the tyre translational velocity (=wheel hub velocity). 

Assuming no longitudinal tyre slip,    =   , the relation between the lateral force of a tyre and the 
wheel side slip angle is typically as shown in Figure 2-35. The behaviour of the curve is similar to that 
exhibited for longitudinal forces Figure 2-27 and Figure 2-28. It becomes even more similar if lateral 
slip angle is replaced by lateral wheel slip, 𝑠𝑦, which is = tan(𝛼) ≈ 𝛼 for small lateral slip. 

𝑠𝑦 =
 𝑦

| ∙  |
=

 𝑦

 ∙  
 sign( ∙  ) = {

 𝑓 𝑠 = 0
 . 𝑒.     =   

} = tan(𝛼) ; [2.32] 
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Using magnitude in denominator | ∙  | gives same sign of 𝑠𝑦 and  𝑦 for all combinations of signs of   

and  𝑦, which leads to easier formulas. 

2.2.4.1 Tyre brush Model for Lateral Slip 
With corresponding simplification as in 2.2.1.6, we now use the brush model to also explain the lateral 
properties.  

2.2.4.1.1 Model with Independent Bristles 

Figure 2-32 shows the model for pure lateral slip (no longitudinal slip) and should be compared to Fig-
ure 2-21. The difference is that the model for lateral slip has the deformation of the bristles perpendic-
ular to drawing in the upper left view in the figure. 

Velocities of bristle 
ends in stick zone:

Drawn for    =   
and  𝑦 > 0

   =   

x
x=0x=L x=xc

tyre

road
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slip
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to top drawing)
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 𝑦 (relative 
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L=length of contact patch
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 𝑦
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 𝑦
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Figure 2-32: The brush model’s physical model for lateral slip. The bristles are to be thought of as the tread 

in series with sidewall lateral elasticity. 

Each bristle in Figure 2-32 is thought of as a part of the tread in series with a part of the sidewall. Fur-
ther, the bristles are considered as independent of each other, which is debatable. However, it is 
enough for a quantitative explanation of the brush model for lateral slip. The derivation of model equa-
tions becomes similar as for the longitudinal model: 

𝜏𝑦 = 𝐺𝑦 ∙ 𝛾𝑦 = 𝐺𝑦 ∙
  𝑦 ∙ 𝑡(𝜉)

𝐻𝑦
= 𝐺𝑦 ∙

− 𝑦 ∙ 𝑡(𝜉)

𝐻𝑦
= {

𝑡(𝜉) = 𝜉  𝑇 𝑎𝑛 𝑝  𝑡;⁄  

 𝑇 𝑎𝑛 𝑝  𝑡 ≈ | ∙  |;
} = 

= 𝐺𝑦 ∙
− 𝑦 ∙ 𝜉

𝐻𝑦  | ∙  |
= −

𝐺𝑦

𝐻𝑦
∙

 𝑦
| ∙  |

∙ 𝜉 = {𝐶𝑦 =
𝐺𝑦  𝑊   2

2  𝐻𝑦
;  𝑠𝑦 =

− 𝑦
| ∙  |

;} = −
2  𝐶𝑦

𝑊   2
∙ 𝑠𝑦 ∙ 𝜉; 

Note that subscript    has been introduced where we need to differ towards the longitudinal brush 
model. Correspondingly, subscript 𝑥 should be used in longitudinal model. As for longitudinal model, 
we have to express the force differently for when friction limit is not reached within the contact and 
when it is. Since we assume pure lateral slip (  =    ), we do not have the case      < 0. 
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 𝑦 =

{
 
 

 
 = −𝐶𝑦 ∙ 𝑠𝑦;  𝑓 |𝑠𝑦| ≤

 ∙   
2 ∙ 𝐶𝑦

⇔ | 𝑦| ≤
 ∙   
2

= −sign(𝑠𝑦) ∙  ∙   ∙ (1 −
 ∙   
4 ∙ 𝐶𝑦

∙
1

|𝑠𝑦|
) ; 𝑒𝑙𝑠𝑒

 

  𝑒𝑟𝑒 𝐶𝑦 =
𝐺𝑦 ∙ 𝑊 ∙  2

2 ∙ 𝐻𝑦
;      𝑒𝑛𝑠 𝑜𝑛: [𝑓𝑜𝑟 𝑒]       𝑛  𝑠𝑦 =

 𝑦
| ∙  |

; 

(Only valid for pure lateral slip, i.e.:    =    ;) 

[2.33] 

Note that the lateral tyre slip 𝑠𝑦 is the sliding speed of tyre over ground in lateral direction, divided by 

the same “transport speed” as for longitudinal slip, i.e. the longitudinal transport speed     . Note 
also that the lateral force  𝑦 and lateral tyre slip are counter-directed, which is logical since it is of fric-

tion nature. 

2.2.4.1.1.1 Tyre Lateral Slip vs Wheel Slip Angle 

The lateral tyre slip 𝑠𝑦 =  𝑦 | ∙  |⁄  in Eq [2.33] and Eq [2.35] can be compared with lateral wheel slip 

angle 𝛼 = arctan( 𝑦   ⁄ ), mentioned in context of Figure 2-31:  

• “Lateral wheel slip”= 𝑠𝑦 =  𝑦    ⁄ = tan(𝛼), is how wheel (hub and tyre) moves over 

ground and independent of wheel rotational speed. 
•  “Lateral tyre slip” = 𝑠𝑦𝑡 =  𝑦 | ∙  |⁄ , is the slip used in the constitutive relation  𝑦 =  𝑦(𝑠𝑦𝑡). 

• If no longitudinal tyre slip 𝑠 = 0, i.e. if    =   , we have 𝑠𝑦  = 𝑠𝑦𝑡. Then 𝑠𝑦  can be used in 

the constitutive relation.  

For a linearization, the most correct way is that lateral force is  𝑦  𝑠𝑦, as opposed to  𝑦  α. Often one 

finds  𝑦  α as starting point in the literature, but this compendium uses  𝑦  𝑠𝑦. (In (Pacejka, 2005), 

pp184-185, there is also a note that 𝑠𝑦 is more appropriate than 𝛼.) 

A difference is how one linearizes a vehicle model in  𝑦 and   . A non-steered axle   modelled with 

 𝑖𝑦  α𝑖, needs to be approximated with “𝛼𝑖 =  𝑟 𝑡 𝑛( 𝑖𝑦𝑣  𝑖 𝑣⁄ ) ≈  𝑖𝑦𝑣  𝑖 𝑣⁄ ” to make the vehicle 

model linear, see derivation of Eq [4.49]. However, with  𝑖𝑦  𝑠𝑖𝑦; the vehicle model becomes linear 

without further approximations. For a steered axle it is less obvious, but it does not help the lineariza-
tion to use  𝑖𝑦  α𝑖. 

2.2.4.1.2 Model with Dependent Bristles, String Model 

Opposed to the assumption in 2.2.4.1.1, the lateral deformations of the bristles are dependent on each 
other, especially since the tread is mounted on the belt and the belt is rather like a string. So, we as-
sume a certain deformation of the sidewall, expressed in 𝜀𝑖𝑛 and 𝜀  𝑡 for the belt=”string” in Figure 
2-33. This gives a slightly different model compared to 2.2.4.1.1. Models with such belt deformation 
are called “tyre string models”. The shape of the string is dependent on the sidewall elasticity, e.g. tyre 
profile height, but also of the side force itself. So, the model is intrinsically implicit; the string shape 
influences the side force and the side force influences the string shape. 

The derivation of model equations becomes similar as for the longitudinal model. Here is an interme-
diate result, an expression for the shear stress 𝜏𝑦: 

𝜏𝑦 = 𝐺𝑦 𝑡 ∙ 𝛾𝑦 = 𝐺𝑦 𝑡 ∙
  𝑦 ∙ 𝑡(𝜉)

𝐻𝑦 𝑡 
= 𝐺𝑦 𝑡 ∙

(    tan(𝜀𝑖𝑛) −  𝑦) ∙ 𝑡(𝜉)

𝐻𝑦 𝑡 
= 

= {
𝑡(𝜉) = 𝜉  𝑇 𝑎𝑛 𝑝  𝑡;⁄  

 𝑇 𝑎𝑛 𝑝  𝑡 ≈ | ∙  |;
} = 𝐺𝑦 𝑡 ∙

(    tan(𝜀𝑖𝑛) −  𝑦) ∙ 𝜉

𝐻𝑦 𝑡  | ∙  |
= 

=
𝐺𝑦 𝑡 

𝐻𝑦 𝑡 
∙

(

 tan(𝜀𝑖𝑛)  sign( ) −
 𝑦

| ∙  |⏟  
 𝑦 )

 ∙ 𝜉 = {𝐶𝑦 𝑡 =
𝐺𝑦 𝑡  𝑊   2

2  𝐻𝑦 𝑡 
} = 
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= −
2  𝐶𝑦 𝑡 

𝑊   2
∙ (𝑠𝑦 − tan(𝜀𝑖𝑛)  sign( ))⏟                

 𝑦𝜀

∙ 𝜉; 

pressure

slip
stick

“mode”

shear 
stress
(lateral)

𝜉

𝜉

𝜉

𝜀𝑖𝑛𝜀  𝑡

  
 𝑦

   

    tan 𝜀  𝑡

Belt deformation is 
drawn simplified as 
piecewise linear.

Velocities of bristle ends in stick zone:

Drawn for    =   and  𝑦 > 0

   =   
x

x=0x=L x=xc

tyre

road

H=height

L=length of contact patch

  =    
(relative to wheel hub)

rolling direction

view from rear,
at one certain x

W=width

 𝑦

   

  

inletoutlet

 𝑦

rim

    tan 𝜀𝑖𝑛
(relative to wheel hub)

rim
sidewalls

belt

Contact patch, view 
from above:

    tan 𝜀𝑖𝑛

    tan 𝜀𝑖𝑛tread

 
Figure 2-33: Tyre sidewall deformation and tread deformation with the belt (the “string”) in between. The 
drawn bristles are here assumed to represent only tread parts, while the sidewall is treated as an elastic 

structure between rim and belt. 

Comparing to 2.2.4.1.1, we can note that subscript 𝑡𝑟 is added to underline that 𝐶𝑦 𝑡  and 𝐺𝑦 𝑡  𝐻𝑦 𝑡  

now means only the tread, not including the sidewall. Sidewall elasticity is instead handled with 𝜀𝑖𝑛. 
The variable 𝑠𝑦𝜀 is an auxiliary mathematical variable introduced only to make the expressions more 

manageable; it will be eliminated later.  

 𝑦 =

{
 
 

 
 = −𝐶𝑦 𝑡 ∙ 𝑠𝑦 𝜀;  𝑓 | 𝑦| ≤

 ∙   
2

= −sign(𝑠𝑦 𝜀) ∙  ∙   ∙ (1 −
 ∙   
4 ∙ 𝐶𝑦 𝑡 

∙
1

|𝑠𝑦 𝜀|
) ; 𝑒𝑙𝑠𝑒

 

  𝑒𝑟𝑒 𝐶𝑦 𝑡 =
𝐺𝑦 𝑡 ∙ 𝑊 ∙  2

2 ∙ 𝐻𝑦 𝑡 
;      𝑒𝑛𝑠 𝑜𝑛: [𝑓𝑜𝑟 𝑒]  𝑛  𝑠𝑦 =

 𝑦
| ∙  |

    𝑛  𝑠𝑦 𝜀 = 𝑠𝑦 − tan(𝜀𝑖𝑛)  sign( ) ; 

Now, this model is still implicit because 𝜀𝑖𝑛 depends on 𝜏(𝜉). Introducing simplest possible (linear) 
constitutive equation for this dependency as in Eq [2.34]: 
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∫𝜏   𝜉 =  𝑦 = −𝐶   𝜀 𝑖𝑛  tan(𝜀𝑖𝑛) ; [2.34] 

Eq [2.34] makes it possible to derive the following explicit model: 

 𝑦 =

{
  
 

  
 = −

𝐶   𝜀 𝑖𝑛  𝐶𝑦 𝑡 

𝐶   𝜀 𝑖𝑛 + 𝐶𝑦 𝑡 
∙ 𝑠𝑦;       𝑓 | 𝑦| ≤

 ∙   
2

= −𝑠  𝑛(𝑠𝑦) ∙  ∙    

1 +
𝐶   𝜀 𝑖𝑛  |𝑠𝑦|

 ∙   
−√(1 −

𝐶   𝜀 𝑖𝑛  𝑠𝑦
 ∙   

)
2

+
𝐶   𝜀 𝑖𝑛
𝐶𝑦 𝑡 

2
;    𝑒𝑙𝑠𝑒

 

  𝑒𝑟𝑒 𝑠𝑦 =
 𝑦

| ∙  |
;     𝑛  𝐶𝑦 𝑡 =

𝐺𝑦 𝑡 ∙ 𝑊 ∙  2

2 ∙ 𝐻𝑦 𝑡 
;      𝑒𝑛𝑠 𝑜𝑛: [𝑓𝑜𝑟 𝑒]  

(Only valid for pure lateral slip, i.e.:    =    ;) 

[2.35] 

It should be noted that the constitutive relation in Eq [2.34] only states how the string is angled. It is 
still physically consistent to separately add, outside the tyre model, a constitutive equation for the lat-
eral translational deformation of the sidewall; something as  𝑦 =     𝑡 𝑎𝑛 𝑎𝑙𝑡𝑖 𝑛   𝑡𝑦 𝑒 𝑦;, where  𝑡𝑦 𝑒 𝑦 

would be the lateral deformation between wheel rim and contact patch. Such sidewall elasticity would 
appear in series with the lateral tyre slip force model, in a similar way as the torsional sidewall elastic-
ity in 2.2.3.5.2 appeared in series with the longitudinal tyre slip force model. 

2.2.4.1.3 Comparison of the Bristle Models  

Eq [2.35] (dependant bristles) is to be compared to Eq [2.33] (independent bristles). Using 𝐶𝑦  =

𝐶   𝜀 𝑖𝑛  𝐶𝑦 𝑡 (𝐶   𝜀 𝑖𝑛 + 𝐶𝑦 𝑡 )⁄ ; the models are identical up to      2 and have the same asymptote 

for 𝑠 →  . See Figure 2-34. 

 
Figure 2-34: Comparison of model with independent bristles and dependent bristles (String model). 

The influence of vertical load    was discussed in 2.2.3.1.2 but is better explained with dependent bris-
tles. Assumes that only the tread stiffness 𝐶𝑦 𝑡  (and not 𝐶   𝜀 𝑖𝑛) varies with contact length, and that 

this variation is proportional, 𝐶𝑦 𝑡 (  )    ;, as we found in 2.2.3.1.2. This indicates a degressive char-

acteristics of 𝐶𝑦(  ), which is also observed in measurements.  

The model with dependent bristles is probably more correct. Anyway, we will use the other most in 
this compendium, since it is much easier to combine with the longitudinal model (Eq [2.14]) to model 
combined (longitudinal and lateral) slip. 

2.2.4.2 Lateral Tyre Slip Stiffness 
In summary for many models (and tests!) the following is a good approximation for small lateral slip 
(and negligible longitudinal slip and constant normal load): 
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 𝑦 = −𝐶𝑦 ∙ 𝑠𝑦;      or      𝑦 = −𝐶𝛼 ∙ 𝛼; [2.36] 

For the brush model, or any other model which describes  𝑦(𝑠𝑦       ) or  𝑦(α       ), one can de-

fine the “Lateral tyre slip stiffness” or “Tyre Cornering Stiffness”, 𝐶𝑦 or 𝐶𝛼, which have the unit N/1 or 

N/rad. It is the derivative of force with respect to slip or slip angle. Reference (ISO8855) defines the 
cornering stiffness as 𝐶𝛼 for slip angle 𝛼 = 0;: 

𝐶𝛼 = −(
𝜕

𝜕𝛼
 𝑦)|

𝛼=0
      =       𝐶𝑦 = −(

𝜕

𝜕𝑠𝑦
 𝑦)|

 𝑦=0

 [2.37] 

When using only small slip, it does not matter if the cornering stiffness is defined as the slope in an  𝑦 

versus 𝛼 diagram or  𝑦 versus 𝑠𝑦 = 𝑡 𝑛(𝛼) diagram. Therefore, the notation for cornering stiffness 

varies between 𝐶𝛼  and 𝐶𝑦. Cornering stiffness has the unit 𝑁 which can be interpreted as 𝑁 = 𝑁 1⁄ =

𝑁 ((  𝑠) (  𝑠)⁄ ) or 𝑁 = 𝑁 𝑟  ⁄ . 

The longitudinal tyre slip stiffness, 𝐶 , is normally larger than the lateral tyre slip stiffness, 𝐶𝑦, which 

can be explained with that the tyre is less stiff in lateral direction. Since it is the same rubber one could 
argue that both 𝐺 and 𝐻 should be the same, but both due to longitudinal grooves in the tread and due 
to lateral deformable sidewall, it is motivated to introduce different subscripts: (𝐺 𝐻⁄ ) > (𝐺 𝐻⁄ )𝑦. 

One could elaborate with different friction coefficients    and  𝑦, but in this compendium it is claimed 

that friction is well modelled as isotropic. More about this in 2.2.4.6.5. 

The cornering tyre forces initially exhibit a linear relation with the slip angle. A non-linear region is 
then exhibited up to a maximum value. In Figure 2-35, the maximum slip angle is only 16 degrees (or 
𝑠𝑦 = tan(16  𝑒 ) = 0.29) and one can expect that the tyre forces will drop as the slip angle ap-

proaches 90 degrees. 
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Figure 2-35: Left: Influence of tyre design. Right: Influence of inflation pressure, (Gillespie, 1992).  

2.2.4.3 Influence of Vertical Load 
As discussed for longitudinal slip and the rolling resistance behaviour of tyres, the vertical load on the 
tyre affects the force generation. The general behaviour of the tyre’s cornering performance as the ver-
tical load changes is presented in Figure 2-35. These figures show that the cornering stiffness is influ-
enced by vertical load. A first approximation is that 𝐶𝑦     with proportionality coefficient 𝐶𝐶𝑦 =

𝐶𝐶𝛼, the Cornering Coefficient (or Lateral Slip Coefficient): 

 𝑦 = 𝐶𝑦  𝑠𝑦 = 𝐶𝐶𝑦     𝑠𝑦;   or    𝑦 = 𝐶𝛼  𝛼 = 𝐶𝐶𝛼     𝛼; [2.38] 

We have the linearized in two ways: with respect to    and 𝑠𝑦. A slightly better linearization is  𝑦 ≈

−𝐶𝐶𝑦𝑁   (  −   𝑁  )  𝑠𝑦; where subscript Nom is the tyre’s nominal load. Some examples are 

shown in Figure 2-36 and Figure 2-37. More about influence of vertical force in 2.2.5.4. 
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Figure 2-36: Example of cornering stiffness versus vertical load for a truck tyre 295/80R22.5. 

 
Figure 2-37: Cornering stiffness versus vertical load for some passenger car tyres. From flat track tests. 

2.2.4.4 Curve Fit Tyre Models for Lateral Slip 
The general form of the lateral force versus lateral slip curve is also suitable for the Magic Formula, 
TM-Easy, or similar curve fitting approach when sufficient test data is available. 

2.2.4.5 Transients and Relaxation in Contact Patch 
As for longitudinal, there is a delay in how fast the steady state conditions can be reached in contact 
patch, which is sometimes important to consider. A similar model, as for relaxation in longitudinal di-
rection 2.2.3.5.1, is to add a first order delay of the force: 

  𝑦 = 𝐴 ∙ (𝑓(𝑠𝑦       ) −  𝑦);  

where 𝑓(𝑠𝑦       ) is the force according to a steady state model and 𝐴 =
𝑣𝑇𝑟𝑎 𝑠𝑝 𝑟𝑡

𝐿𝑟
=

|𝑅∙𝜔|

𝐿𝑟
 or 𝐴 =

|𝑣𝑥|

𝐿𝑟
  and    is the relaxation length, which is a frac-

tion (≈ 25. .50%)  of tyre circumference. 

[2.39] 
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2.2.4.6 Other Forces and Moments in Lateral Use of Tyre 
(This section has strong connection with 2.6.2.) 

The deformations of the tyre during cornering are quite complex when compared to the case of pure 
longitudinal motion, see Figure 2-31. Hence, there are more effects than simply a lateral force. Some of 
these will be discussed in the following. 

2.2.4.6.1 Tyre Aligning Moment due to Lateral Shear 

In the lowest diagram in Figure 2-32, one can see that shear stress is concentrated to the outlet side of 
the contact patch for small slip angles. So, the equivalent lateral force acts behind the centre of wheel 
rotation for small slip angles. As seen in Figure 2-31 b) it acts at a position 𝑡𝑝 behind the wheel’s y axis. 

The distance 𝑡𝑝 is called the pneumatic trail, see also Figure , and the resulting yawing moment around 

a vertical axis through centre of the contact patch will be =  𝑦  𝑡𝑝, which is often called the tyre align-

ing moment, 𝑀 . The moment is named after that is normally acts to align the wheel in direction of 

zero side slip. Figure 2-38 shows 𝑀 =  𝑦  𝑡𝑝, but also a similar moment,  𝑦  (𝑡𝑝 +  ). Additional ef-

fects from 𝜏  are not drawn. 

If the tyre is on a steered axle, the aligning moment influence on steering wheel torque is important. 
When finding that influence, the moment around the steering axis intersection with ground is the im-
portant moment =  𝑦  (𝑡𝑝 +  ), which can be called the steering moment. The distance   is the me-

chanical trail, which is built into the suspension linkage design. One typically designs the suspension 
so that  > 0, which makes the whole steering moment act in the same direction as the aligning mo-
ment. If driver takes his hands from steering wheel in a curve, and/or if steering power assistance is 
lost, the steering will tend to steer in the direction of body motion above the steered axle, which is nor-
mally relatively smooth and safe.  

Figure 2-38 shows the combined response of lateral force and slip angle. It is interesting to note that 
the steering torque reaches a peak before the maximum lateral force capacity of the tyre is reached. It 
can be used by drivers to find, via steering wheel torque, a suitable steer angle which gives a large lat-
eral force but still does not pass the peak in lateral force. The reason why pneumatic trail can become 
slightly negative is because pressure centre is in front of wheel centre, see Figure 2-13. 

2.2.4.6.1.1 Tyre Aligning Moment in due to Lateral Shear in Brush Model 

A model for (yawing) aligning moment around a vertical axle through centre of contact point, 𝑀 , will 
now be derived. Any model for lateral shear stress can be used, but we will here only use the uniform 
pressure distribution and independent bristles in 2.2.4.1.1. A corresponding expression as Eq [2.33] is 
derived, but for 𝑀  instead of  𝑦. 

𝑀 = −𝑊 ∙ ∫𝜏 ∙ (𝜉 −
 

2
)   𝜉

𝐿

0

= ⋯

=

{
 
 

 
 = −C  

 

6
∙ 𝑠𝑦; 𝑓𝑜𝑟  𝑦 <

    
2

⇔ 𝑠𝑦 <
    
2  𝐶𝑦

= −
 2    

2 ∙  

8 ∙ 𝐶𝑦 ∙ 𝑠𝑦
 (1 −

    
3 ∙ 𝐶𝑦 ∙ 𝑠𝑦

) ; 𝑒𝑙𝑠𝑒

 

  𝑒𝑟𝑒 𝐶𝑦 =
𝐺𝑦  𝑊   2

2  𝐻𝑦
; 

[2.40] 

The curve of Eq [2.40] is plotted in Figure 2-39. 

The lateral force and the aligning torque can be used to calculate the steering forces. If also the steer-
ing assistance is known, the steering wheel torque can be calculated. It can be noted that the model 

does not include the moment from steering rotation itself, i.e. the torque counteracting   . 
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Figure 2-38: General Response of Steering torque to Side slip angle. Tyre aligning moment =  𝑦 ∙ 𝑡𝑝 is one 

part of the steering moment=  𝑦 ∙ (𝑡𝑝 +  ). 

Small and increasing  𝑦 , 

and constant non-zero 
lever

Large  𝑦 , but lever 

approaches zero

 
Figure 2-39: Aligning moment (𝑀 ) around contact patch center for uniform pressure distribution. 

2.2.4.6.2 Influence from Longitudinal Tyre Force 

Figure 2-38 does not show effects from 𝜏 , but this is shown in Figure 2-40. 

2.2.4.6.3 Tyre Spin Torque 

The none-symmetry in shear stress around wheel centre in Figure 2-40 can appear as steady state; 
non-symmetry in 𝜏𝑦 due to brush model and in 𝜏  due to non-symmetric vertical pressure. But there is 

one additional reason to yaw moment in tyre contact patch. That is the friction yaw velocity of the 
wheel   ℎ𝑒𝑒𝑙  . The additional moment from this effect is often called (tyre) spin torque. One way to 
model it is, are conceptually an elastic torsional spring in series with friction. The influence from spin 

torque is only important at low speed, e.g. steering in low speed, where   ℎ𝑒𝑒𝑙  ≈    ℎ𝑒𝑒𝑙 . 
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Figure 2-40: Influence from both lateral and longitudinal shear stress on aligning moment. 

2.2.4.6.4 Camber Force 

Camber force (also called Camber thrust) is the lateral force caused by the cambering of a wheel. Cam-
ber thrust  𝑦 𝑎  𝑒  is approximately linearly proportional to camber angle     for small angles: Cam-

ber thrust=  𝑦 𝑎  𝑒 = −𝐶 𝑎  𝑒 ∙    . The camber stiffness, 𝐶 𝑎  𝑒 , is typically 5..10 % of the cor-

nering stiffness. The tyre lateral forces due to lateral slip  𝑦𝑆𝑙𝑖𝑝 and due to camber  𝑦 𝑎  𝑒  are super-

imposable when they are small: 

 𝑦 =  𝑦𝑆𝑙𝑖𝑝 +  𝑦 𝑎  𝑒 = −𝐶𝑦 ∙ 𝑠𝑦 − 𝐶𝛾 ∙    ; [2.41] 

 𝑦𝑆𝑙𝑖𝑝 and  𝑦 𝑎  𝑒  use same friction contact to ground so the sum will be saturated by     . 

A physical model for camber thrust can be derived very similarly to how models in 2.2.3.1 and 2.2.4.1, 
see Figure 2-41: Brush modes for Camber force (or Camber thrust)  𝑦 𝑎  𝑒 . There action line of 

 𝑦 𝑎  𝑒  is often ahead of contact patch centre, which is called Camber Lead. 

𝜏𝑦(𝜉) = 𝐺𝑦 ∙ 𝛾𝑦(𝜉) = {
 𝑡 𝑡 𝑘𝑒𝑠 𝑡  𝑒 𝑡𝜉
𝑓𝑜𝑟    𝑟 𝑠𝑡𝑙𝑒
𝑓𝑟𝑜   𝑛𝑙𝑒𝑡 𝑡𝑜 𝜉

} = 𝐺𝑦 ∙
∫ (𝑣𝑙 𝑤 𝑟 𝑦−𝑣𝑢𝑝𝑝 𝑟 𝑦(𝜉))∙ 𝑡𝜉
𝑡𝜉
0

𝐻𝑦
= 𝐺𝑦 ∙

∫ ((𝜉− 𝐿 2⁄ ) 𝜔𝑧𝑔−0)∙ 𝑡𝜉
𝑡𝜉
0

𝐻𝑦
=

{
𝜉 =  𝑡 𝑎𝑛 𝑝  𝑡𝜉 =

=       𝑡𝜉
} =

 𝑦

𝐻𝑦
   𝑔 ∙ ∫ (      𝑡𝜉 −  2⁄ ) ∙  𝑡𝜉

𝑡𝜉
0

=
 𝑦

𝐻𝑦
   𝑔 ∙ [      

𝑡𝜉
2

2
−

𝐿

2
 𝑡𝜉]

0

𝑡𝜉

=
 𝑦

2 𝐻𝑦
   𝑔 ∙

(      
𝑡𝜉
2

2
−   𝑡𝜉) = {𝑡𝜉 =

𝜉

𝑅𝑤 𝜔𝑤
;    𝑔 ≈      𝑎  𝑒 } =

 𝑦

2 𝐻𝑦
      𝑎  𝑒 ∙ (      (

𝜉

𝑅𝑤 𝜔𝑤
)
2

−   

𝜉

𝑅𝑤 𝜔𝑤
) =

 𝑦

2 𝐻𝑦
 
 

𝑅𝑤
∙ (𝜉2 −   𝜉) ≈

 𝑦

2 𝐻𝑦 𝑅𝑤
∙   𝑎  𝑒  (𝜉

2 −   𝜉); 

Integration  𝑦 𝑎  𝑒 = ∫ 𝜏𝑦(𝜉) ∙  𝜉
𝐿

0
; gives: 

 𝑦 𝑎  𝑒 = −𝐶 𝑎  𝑒 ∙   𝑎  𝑒 ;      𝑒𝑟𝑒 𝐶 𝑎  𝑒 =
𝐺𝑦  𝑊    

12  𝐻𝑦    
; 

Note: Only valid when no part of the contact patch is saturated by friction. 

[2.42] 

Checking with typical values for a passenger car tyre gives: 𝐶 𝑎  𝑒 𝐶𝑦⁄ =

(𝐺𝑦  𝑊    (12  𝐻𝑦    )⁄ ) (𝐺𝑦 ∙ 𝑊 ∙  2 2 ∙ 𝐻𝑦⁄ )⁄ =  6    ⁄ ≈ 0.1 (6  0.3)⁄ ≈ 0.05 = 5%; which is of 

same magnitud as 5..10%, which was mentioned in beginning of 2.2.4.6.4. 
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Conditions where  𝒚 is saturated by   𝒑: 

  

inlet
outlet

 𝑦𝑔 =

=    cos   𝑎  𝑒 ≈
≈   

  𝑔 =

=    sin   𝑎  𝑒 ≈
≈      𝑎  𝑒 

𝜉=0𝜉= 
𝜉

Upper bristle ends follows 
this straight line, so 
  𝑝𝑝𝑒  𝑦 𝜉  0;

Lower bristle follows the rotating ground, so 
 𝑙  𝑒  𝑦 𝜉 = 𝜉 −  2⁄       𝑎  𝑒 ;

     =   

Subscripts:
 :  𝑟𝑜𝑢𝑛 
 :   𝑒𝑒𝑙

𝜏𝑦 = −  𝑝

Deformation 
and 𝜏𝑦 𝜉 have 

this shape

𝜏𝑦 = 0
𝜏𝑦 = +  𝑝

𝜏𝑦 = 0

𝜏𝑦

Conditions with low  and/or very stiff bristles 
(as a “metal-to-metal rolling contact”): 

𝜏𝑦 = −  𝑝

𝜏𝑦

Conditions:
No slip (     =   ; and  𝑦 = 0;)

 𝑦 𝑎  𝑒 

forward

Contact 
patch

 𝑦 𝑎  𝑒 

 𝑦𝑔
  𝑔

   𝑎  𝑒 

vertical section, through 
wheel centre, seen  from rear

 𝑦 𝑎  𝑒 

same relative 
motion vs 
ground, so 

same  forces

  

 
 
 
co
s
 
 
𝑎
 
 
𝑒
 
≈

≈
 
 

Fixed ground        𝑎  𝑒 

ground rotates   𝑔

stickstick slip

Moving 
ground

𝜉=0
𝜉= 2⁄

 𝑦 𝑎  𝑒 = 0
𝑀  𝑎  𝑒 

 
Figure 2-41: Brush modes for Camber force (or Camber thrust)  𝑦 𝑎  𝑒 . For intuitive understanding, note 

that the ground is thought of as rotating opposite to the vertical component of wheel rotation  ⃗⃗⃗ . 

2.2.4.6.5 Overturning Moment 

The contact patch is deflected laterally from the centre of the carcass. This creates an overturning mo-
ment 𝑀  due to the offset position of the normal force. The lateral force  𝑦 also contributes to the over-

turning moment. 

2.2.5 Combined Longitudinal and Lateral Slip 
Operation of vehicles often involves a combination of steering/cornering and braking/propulsion.  

Generally, one can experience two causal effects of combined slip:  

• Loss of sidegrip due to increased wheel torque or longitudinal tyre slip. Typically, this is when 
propulsion or braking directly cause undesired lateral vehicle motion (reduced steerability or 
reduced yaw stability). 

• Loss of longitudinal grip due to increased lateral tyre force or tyre side slip. Typically, this is 
when steering cause undesired wheel rotation, and only indirectly causes undesired longitu-
dinal vehicle motion (reduced acceleration or reduced deceleration). 

The first effect is more directly affecting vehicle motion than the latter. So, one can say one have to be 
more careful when changing wheel torques in a curve than when changing steering angle while accel-
erating or braking. Engineering for these manoeuvres requires models of vehicle and wheels/shafts 

but also tyres. These tyre models have to represent combined slip, i.e. how [    𝑦] varies with (𝑠  𝑠𝑦). 

If the tyre has isotropic adhesion properties in the lateral and longitudinal direction, one can assume 
that the maximum force magnitude   𝑦 is determined by the maximum resultant friction force,  ∙   . 

   𝑦
2 =   

2 +  𝑦
2 ≤ ( ∙   )

2 ⇒ (
 𝑥

 𝑧
)
2
+ (

 𝑦

 𝑧
)
2
≤  2 [2.43] 
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Equation [2.43] can be plotted as a circle, called the “Friction Circle”. Since the lateral and longitudinal 
properties are not isotropic (due to carcass deflection, tread patterns, camber, etc) the shape may be 
better described as a “Friction Ellipse” or simply “Friction limit”. 

When not cornering, the tyre forces are de-
scribed by a position between -1 (braking) and 
+1 (acceleration) along the Y-axis. Note that 
the scales of both axes are normalized to the 
maximum value for friction.  

The “actuation” of the wheel means the pro-
pulsion, braking and steering (and sometimes 
suspension control) of the wheel. An ideal ac-
tuation allows all conditions within the bound-
aries of the friction circle to be achieved any-
time during a vehicle manoeuvre. An example 
of limitation in actuation is a wheel on a non-
steered rear axle. They cannot access any of 
the lateral parts of the circle; unless the vehi-
cle slides laterally. 

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Fx/(mu*Fz)

F
y
/(

m
u
*F

z
) partial propulsion

max propulsion

maximum turning left 
without propulsion and 
brakingturning left while 

braking

 
Figure 2-42: Friction Circle with some examples 
of utilization. View from above, forces on tyre. 

At the boundary of the friction circle, tyres become more sensitive to changes in slip. It is therefore ex-
tra important to model the direction of the force in relation to shear deformation and relative slip mo-
tion in the tyre contact patch. Here, isotropic shear and friction properties are assumed:  

𝑙 𝑡𝑒𝑟 𝑙 𝑠𝑙   𝑛  𝑠𝑝𝑒𝑒 

𝑙𝑜𝑛  𝑡𝑢  𝑛 𝑙 𝑠𝑙   𝑛  𝑠𝑝𝑒𝑒 
=

 𝑦

 ∙  −   
= −

 𝑦

  
; [2.44] 

When considering a combined slip model, one can establish the “total slip” 𝑠 𝑦 = 𝑠, through the defini-

tion 𝑠 𝑦
2 = 𝑠2 = 𝑠 

2 + 𝑠𝑦
2;. Then, it can be tempting to look for a function   𝑦 = 𝑓(𝑠 𝑦); and then decom-

pose   𝑦 into    and  𝑦 through [  ;  𝑦] = [+𝑠 𝑠 𝑦⁄ ;−𝑠𝑦 𝑠 𝑦⁄ ]    𝑦. This is not fully physical, which is 

easiest understood by looking at the brush model for uniform pressure distribution: When 𝑠 𝑦 is small 

enough, there will be no slip in the contact, because 𝜏 <   𝑝 in whole contact. For such conditions and 
isotropic linear deformation model of the bristles, the longitudinal and lateral models from before are 
valid. So,    is independent of 𝑠𝑦 and  𝑦 is independent of 𝑠 . So, going via 𝑠 𝑦 would create a non-phys-

ical dependence. Anyway, such approximate models can be useful for conditions with larger slip, see 
2.2.5.3.1. 

For small 𝑠 , one can still assume  𝑦  𝑠𝑦. Then:  𝑦 = −𝐶𝑦  𝑠𝑦𝑡 = −𝐶𝑦   𝑦 (    )⁄ =

{𝑠 = (    −   ) (    )⁄ } = −𝐶𝑦   𝑦  (1 − 𝑠 )   ⁄ = −𝐶𝑦  (1 − 𝑠 )  𝑠𝑦 ;. Increasing 𝑠  from 0 to 

small positive 𝑠  means reduction of | 𝑦|, which should be intuitive since utilization of friction in one 

direction reduce force in the other. However, decreasing 𝑠  from 0 to small negative 𝑠  means increase 
in | 𝑦|, which can be counter-intuitive. However, the explanation is that the “transport speed” de-

creases, which means a “slip stiffer” tyre. The increase in  𝑦 for small braking was seen already in Fig-

ure 2-43: slight brake torque on a wheel improves lateral grip! 
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Figure 2-43: Combined Longitudinal and Lateral Slip. 

2.2.5.1 Anisotropic Brush Model 
The longitudinal model Eq [2.14] and the lateral model with independent bristles in 2.2.4.1.1 will now 
be used with the anisotropy 𝐶 ≠ 𝐶𝑦;. This is motivated by that sidewall contributes more to lateral 

bristle elasticity than to longitudinal bristle elasticity. With significantly different tread grooves in lon-
gitudinal and lateral direction, one could motivate also difference in friction coefficient  , but here we 
assume same   in both directions. The derivation of model equations becomes similar as for the pure 
longitudinal and lateral models. For the stick zone: 

𝜏 =
2  𝐶 
𝑊   2

∙ 𝑠 ∙ 𝜉;    𝑛    𝜏𝑦 =
2  𝐶𝑦

𝑊   2
∙ 𝑠𝑦 ∙ 𝜉; 

If no slip in contact: 

  = 𝑊 ∙ ∫𝜏 ∙  𝜉

𝐿

0

= 𝑊 ∙ ∫
2  𝐶 
𝑊   2

∙ 𝑠 ∙ 𝜉 ∙  𝜉

𝐿

0

=
2  𝐶 
 2

∙ 𝑠 ∙ ∫ 𝜉 ∙  𝜉

𝐿

0

=
2  𝐶 
 2

∙ 𝑠 ∙
 2

2
= 𝐶 ∙ 𝑠 ; 

 𝑦 = 𝑊 ∙ ∫𝜏𝑦 ∙  𝜉

𝐿

0

= 𝑊 ∙ ∫
2  𝐶𝑦

𝑊   2
∙ 𝑠𝑦 ∙ 𝜉 ∙  𝜉

𝐿

0

=
2  𝐶𝑦

 2
∙ 𝑠𝑦 ∙ ∫ 𝜉 ∙  𝜉

𝐿

0

=
2  𝐶𝑦

 2
∙ 𝑠𝑦 ∙

 2

2
= 𝐶𝑦 ∙ 𝑠𝑦; 

Now, if there is a break-away point (𝜉 ) where slip starts, we can find it from 𝜏(𝜉 ) =   𝑝;  ⇒    𝜏 
2 +

𝜏𝑦
2 =  2  𝑝2;. Introducing an auxiliary parameter, 𝑘 = 𝐶 𝐶𝑦⁄ ;, and an auxiliary variable, 𝑠𝑘 =

√(𝑘 ∙ 𝑠 )
2 + 𝑠𝑦

2;, gives the following break-away point: 

𝜏(𝜉 ) =   𝑝;  ⇒    𝜏 
2 + 𝜏𝑦

2 =  2  𝑝2;   ⇒ ⋯ ⇒   𝜉 =
   𝑧 𝐿

2  𝑦  𝑘
;  

The forces, when 0 < 𝜉 <   and     > 0 becomes: 

  = 𝑊 ∙ ∫ 𝜏 ∙  𝜉
𝐿

0
= 𝑊 ∙ ∫

2  𝑥

𝑊 𝐿2
∙ 𝑠 ∙ 𝜉 ∙  𝜉

𝜉𝑐
0

+𝑊 ∙ ∫ 𝜏   𝑙𝑖𝑝   𝜉
𝐿

𝜉𝑐
=  

= 𝑊 ∙ ∫
2  𝑥

𝑊 𝐿2
∙ 𝑠 ∙ 𝜉 ∙  𝜉

𝜉𝑐
0

+𝑊 ∙ ∫  ∙ 𝑝  
 𝑥

 
  𝜉

𝐿

𝜉𝑐
= ⋯ =

 𝑥∙ 𝑥∙𝜉𝑐
2

𝐿2
+

 ∙ 𝑧  𝑥

𝐿  
 ( − 𝜉 );    and  

− 𝑦 = 𝑊 ∙ ∫ 𝜏𝑦 ∙  𝜉
𝐿

0
={

 𝑛 𝑙𝑜 𝑜𝑢𝑠𝑙 
  𝑡  𝑥   𝑟𝑒 𝑡 𝑜𝑛

} = ⋯ =
 𝑦∙ 𝑦∙𝜉𝑐

2

𝐿2
+

 ∙ 𝑧  𝑦

𝐿  
 ( − 𝜉 );  

Arranging for all combinations of (    𝑦  ), we find Eq [2.45]. Figure 2-45 shows results from the 

model. It can be observed that    is independent of 𝑠𝑦 and  𝑦 is independent of 𝑠  for   𝑦 ≤  ∙   𝑠⁄ . 

This is a reasonable consequence of that no sliding occurs so that forces are purely defined by the elas-
ticity, not the friction. At 𝑠𝑦 ≈ 0.01. .0.04, we see that  𝑦 increases with utilization of |  | at some areas. 

This is a redistribution of force from longitudinal to lateral, due to that the tyre stiffer in longitudinal 
than lateral. 
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 𝑦

Velocities of bristle ends 
in stick zone:

Drawn for    >   
and  𝑦 > 0

 𝑦

   
  

   

x
x=0x=L x=xc

tyre

road

pressure

slip
stick

“mode”

longitudinal 
shear stress

H=height

 𝑦 (relative 
to wheel hub)

L=length of contact patch

view from rear,
showing rubber element 

on one certain x

  (relative 
to wheel hub)

rolling direction

x

x

x

Contact patch, 
view from above:

lateral 
shear stress

x

W=width
inletoutlet

𝜏   𝑙𝑖𝑝

𝜏𝑦  𝑙𝑖𝑝

𝜏   

𝜏𝑦  

𝑠 

𝑠𝑦
𝑠 
𝑠𝑦

𝐺  𝑠 𝐻 ⁄

𝐺𝑦  𝑠𝑦 𝐻𝑦⁄
𝐻𝑦  𝑠𝑦 𝐺𝑦⁄

𝐻  𝑠 𝐺 ⁄

force on bristle

Continuous 𝜏 across break-away 

point (𝜏   𝑙𝑖𝑝
2 + 𝜏𝑦  𝑙𝑖𝑝

2 =

= 𝜏   
2 + 𝜏𝑦  

2 ), but redistribution 

towards sliding direction in slip zone.

 
Figure 2-44: Physical model for deriving brush model for combined slip. 

 

[
  
 𝑦
] =

{
 
 
 
 

 
 
 
 = [

+ ∙    
 𝑥

 

− ∙    
 𝑦

 

] ;                                                             𝑓      < 0

= [
+𝐶  𝑠 
−𝐶𝑦  𝑠𝑦

] ;        𝑒𝑙𝑠𝑒  𝑓 𝑠𝑘 ≤
 ∙ 𝑧

2∙ 𝑦
⇔   𝑦 = √  

2 +  𝑦
2 ≤

 ∙ 𝑧

2

= [
+(

𝜉𝑐

𝐿
)
2
 𝐶 ∙ 𝑠 +

 ∙ 𝑧

𝐿
 cos(   𝑦)  ( − 𝜉 )

− (
𝜉𝑐

𝐿
)
2
 𝐶𝑦 ∙ 𝑠𝑦 +

 ∙ 𝑧

𝐿
 sin(   𝑦)  ( − 𝜉 )

] ;                      𝑒𝑙𝑠𝑒

  

  𝑒𝑟𝑒     𝑦 =  𝑟 𝑡 𝑛2(− 𝑦     −   );  𝑠 =
𝑅 𝜔−𝑣𝑥

|𝑅∙𝜔|
;    𝑠𝑦 =

−𝑣𝑦

|𝑅∙𝜔|
;    𝑠 =

√𝑠 
2 + 𝑠𝑦

2;    𝑘 =
 𝑥

 𝑦
;    𝑠𝑘 = √(𝑘  𝑠 )

2 + 𝑠𝑦
2;    𝜉 =

   𝑧 𝐿

2  𝑦  𝑘
;    𝐶 =

 ∙𝑊∙𝐿2

2∙𝐻
;  

 

[2.45] 
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Figure 2-45: Tyre  (𝑠) with iso-curves for longitudinal slip 𝑠  and lateral tyre slip 𝑠𝑦 =  𝑦 |    |⁄  (left 5 

diagrams) and for 𝑠 = (    −   ) |    | and slip angle 𝛼 =  𝑟 𝑡 𝑛 (   𝑦⁄ ) (left 5 diagrams). Tyre 

model from Eq [2.45] used. Levels used for slip and 𝑡 𝑛(𝑠𝑙 𝑝  𝑛 𝑙𝑒): 
0 ±0.01 ±0.03 ±0.05 ±0.1 ±0.2 ±0.3 ±0.4. 

2.2.5.2 Anisotropy, Parabolic Pressure, Stick and Slip Friction 
Above is for uniform pressure distribution and same friction coefficient for stick and slip. We will now 
change to the more realistic parabolic distribution and replace   with   𝑡𝑖 𝑘 and   𝑙𝑖𝑝. The model gets 

one more parameter and consequently becomes easier to tune to experiments, see Eq [2.46]. 
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[
  
 𝑦
] =

{
  
 

  
 = [

+  𝑙𝑖𝑝 ∙    
 𝑥

 
=   𝑙𝑖𝑝 ∙    cos(   𝑦)

−  𝑙𝑖𝑝 ∙    
 𝑦

 
=   𝑙𝑖𝑝 ∙    sin(   𝑦)

] ;        
 𝑓      < 0 𝑜𝑟

𝑠𝑘 >
   𝑠𝑡𝑖𝑐𝑘∙ 𝑧

 𝑦

 

= [
+𝐶 ∙ 𝑠 ∙ (

𝜉𝑐

𝐿
)
2
+   𝑙𝑖𝑝 ∙    cos(   𝑦)  (1 − 3  (

𝜉𝑐

𝐿
)
2
+ 2  (

𝜉𝑐

𝐿
)
 
)

−𝐶𝑦 ∙ 𝑠𝑦 ∙ (
𝜉𝑐

𝐿
)
2
+   𝑙𝑖𝑝 ∙    sin(   𝑦)  (1 − 3  (

𝜉𝑐

𝐿
)
2
+ 2  (

𝜉𝑐

𝐿
)
 
)
] ;    𝑒𝑙𝑠𝑒

  

  𝑒𝑟𝑒     𝑦 =  𝑟 𝑡 𝑛2(− 𝑦     −   );   𝑠 =
   −   
| ∙  |

;   𝑠𝑦 =
− 𝑦
| ∙  |

;    

𝑠 = √𝑠 
2 + 𝑠𝑦

2;    𝑘 =
𝐶 
𝐶𝑦

;    𝑠𝑘 = √(𝑘  𝑠 )
2 + 𝑠𝑦

2;    
𝜉 
 
= 1 −

𝐶𝑦  𝑠𝑘

  𝑡𝑖 𝑘  3    
;    

𝐶 =
𝐺 ∙ 𝑊 ∙  2

2 ∙ 𝐻
; 

 

[2.46] 

Eq [2.46] assumes that tyre is rotating, so it does not reflect that break-away friction force for a locked 
tyre becomes   𝑦 =   𝑡𝑖 𝑘    . If 𝑠  is varied while 𝑠𝑦  0 in Eq [2.46], leads exactly to the longitudinal 

slip model with peak (Eq [2.21]). Similar peak in  𝑦 is found for varying 𝑠𝑦 while 𝑠  0. The peaks in 

   and  𝑦 are equally large, but the peak in  𝑦 occurs at larger slip: 𝑠𝑦 𝑝𝑒𝑎𝑘 > 𝑠  𝑝𝑒𝑎𝑘. Also for combined 

slip, a maximum in   𝑦occurs, but it is found on a “2-dimensional ridge” in the “cake plot” in Figure 

2-46. 

 

Figure 2-46: Plots of the vector field [    𝑦] = 𝑓([𝑠  𝑠𝑦]) or  ⃗ = 𝑓(𝑠), using the results from Figure 2-47. 

“Cake-plot” is an expression from (Weber, 1981). 

2.2.5.3 Approximate Combined Slip Models 
2.2.5.3.1 Using Scalar Force Function of Combined Slip 

A simple but not fully physically consistent combined slip model can be expressed using “total slip, 
𝑠 𝑦”, as shown in Equation [2.47].  

[
  
 𝑦
] = [

+𝑠 
−𝑠𝑦

]  
  𝑦

𝑠 𝑦
= [

  ∙  −   
− 𝑦

]  
  𝑦

√(  ∙  −   )
2 + ( 𝑦)

2
; 

  𝑒𝑟𝑒 𝑠 𝑦
2 = 𝑠2 = 𝑠 

2 + 𝑠𝑦
2;      𝑒𝑟𝑒 𝑠 =

  ∙  −   
|  ∙  |

;     𝑛    𝑠𝑦 =
 𝑦

|  ∙  |
; 

 𝑛    𝑦 = {
=     ;  𝑓     < 0

=   ∙ 𝑓(𝑠 𝑦);   𝑒𝑙𝑠𝑒
    

     𝑒𝑟𝑒 𝑒.  .  𝑓(𝑠 𝑦) = {Eq [2.14], [2.18], [2.20] or [2.21]};    𝑜𝑟 

   𝑓(𝑠 𝑦) = min(𝐶𝐶 𝑦 ∙ 𝑠 𝑦;  ) ;   𝐶𝐶 𝑦 ≈ {𝑡 𝑝   𝑙𝑙 } ≈ 5. .15 [non-dimensional]; 

[2.47] 
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Figure 2-47: Tyre  (𝑠) with iso-curves for longitudinal slip 𝑠  and lateral tyre slip 𝑠𝑦 =  𝑦 |    |⁄  (left 5 

diagrams) and for 𝑠 = (    −   ) |    | and slip angle 𝛼 =  𝑟 𝑡 𝑛 (   𝑦⁄ ) (left 5 diagrams). Tyre 

model from Eq [2.46] used. Levels used for slip and 𝑡 𝑛(𝑠𝑙 𝑝  𝑛 𝑙𝑒): 
0 ±0.01 ±0.03 ±0.05 ±0.1 ±0.2 ±0.3 ±0.4. 

2.2.5.3.2 Friction Circle Inspired Combined Slip Model 

A combined model for cases when one knows    without involving 𝑠  is shown in Eq [2.48]. It can be 
used when we know the wheel torque, e.g. by prescribed propulsion or braking. Eq [2.48] also shows 
the corresponding, less usual, case when  𝑦 is known without involving 𝑠𝑦. Eq [2.48] is not completely 

physically motivated but works relatively well if both 𝑠  and 𝑠𝑦 are small. One can consider Eq [2.48] 

as “a mathematical scaling, inspired by the friction circle”. 
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  𝑦 ≈ √1 − (
 𝑥

 ∙ 𝑧
)
2
∙  𝑦| 𝑥=0

;     𝑛      ≈ √1 − (
 𝑦

 ∙ 𝑧
)
2
∙   | 𝑦=0; 

[2.48] 

If this concept of scaling is applied on the slip stiffnesses instead, where (𝜕 𝑖 𝜕𝑠𝑖⁄ )| 𝑗=0 is the uni-di-

rectional slip stiffness:  

 𝐶𝑦(  ) = √1 − (
 𝑥

   𝑧
)
2
∙
𝜕 𝑦

𝜕 𝑦
|
 𝑥=0

;     𝑛    𝐶 ( 𝑦) =  √1 − (
 𝑦

   𝑧
)
2
∙
𝜕 𝑥

𝜕 𝑥
|
 𝑦=0

; [2.49] 

2.2.5.4 Influence of Vertical Force 
Figure 2-48 shows experiment data on how slip stiffness varies with vertical force. 
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Figure 2-48: Measurements for varying vertical force. Left: Slip stiffnesses. Right: Contact length. 

2.2.5.4.1 Explanation of Higher Slip Stiffness Longitudinal than Lateral 

The model in 2.2.4.1.1.1 explains why tyre is more slip stiff in longitudinal than lateral direction, i.e. 
why 𝐶 > 𝐶𝑦. We can then assume iso-tropic brush bristles in both friction and shear stiffness, i.e. 

𝐶𝑡   = 𝐶𝑡  𝑦 = 𝐶𝑡 ;⇒ 𝐶 = 𝐶𝑡 ; and 𝐶𝑦 = 𝐶   𝜀 𝑖𝑛  𝐶𝑡 (𝐶   𝜀 𝑖𝑛 + 𝐶𝑡 )⁄ ;. From experiments, we typi-

cally find 𝐶 𝐶𝑦⁄ = { 𝑡 𝑛𝑜  𝑛 𝑙   =   𝑁  } = 𝐶 𝑁  𝐶𝑦𝑁  ⁄ = 𝑘𝑁  = 1.5 . . 2. This could be ex-

plained with the model if 𝐶   𝜀 𝑖𝑛 𝐶𝑡 ⁄ = 1 (𝑘𝑁  − 1)⁄ = 2 . . 1. This shows that neither of 𝐶   𝜀 𝑖𝑛 nor 
𝐶𝑡  is neglectable. 

2.2.5.4.2 Model for how Lateral Slip Stiffness is Degressive with Vertical Force 

The model in 2.2.4.1.1.1 can also explain why lateral slip stiffness 𝐶𝑦 is degressive with   , as indicated 

already in 2.2.3.1.3. The 𝐶𝑡  was found to be proportional to   , due to that contact length increase pro-

portional to √  . A very conceptional reasoning of how 𝐶   𝜀 𝑖𝑛 could vary with    follows now: We de-

fined 𝐶   𝜀 𝑖𝑛 = 𝜀𝑖𝑛  𝑦⁄ . For a fix lateral deformation 𝜀𝑖𝑛 ≈ 1  ⁄  and  𝑦 ≈  . So, 𝐶   𝜀 𝑖𝑛  1  2⁄  

1   ⁄ . With 𝐶     and 𝐶   𝜀 𝑖𝑛  1   ⁄ , and given 𝐶 = 𝐶 𝑁   and 𝐶𝑦 = 𝐶𝑦𝑁   at given nominal   =

  𝑁  , the model gives [2.50] and Figure 2-49. So, by knowing  zNo  and measuring 𝐶 𝑁   and 𝐶𝑦𝑁   

one can get 𝑘𝑁   as 𝑘𝑁  = 𝐶 𝑁  𝐶𝑦𝑁  ⁄  and thereby get a quantified model of 𝐶 (  ) and 𝐶𝑦(  ). 

𝐶 =
  

  𝑁  
 𝐶 𝑁  ;     𝑛    𝐶𝑦 =

  

  𝑁  +
𝑘𝑁  − 1
  𝑁  

   
2
 𝐶 𝑁  ; [2.50] 

2.2.5.5 Transients and Relaxation in Contact Patch 
The models above for combined slip assume steady state conditions. For separate longitudinal and lat-
eral slip, there is a delay in how fast the steady state conditions can be reached, which is sometimes 
important to consider. A similar model, as for relaxation in longitudinal direction 2.2.3.5.1, is to add a 
first order delay of the force: 
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[   ;    𝑦] = [𝐴 ∙ (𝑓 (𝑠  𝑠𝑦       ) −   ); 𝐴𝑦 ∙ (𝑓𝑦(𝑠  𝑠𝑦       ) −  𝑦)];  

where [𝑓 ;  𝑓𝑦] are the forces according to steady state models and 

[𝐴 ; 𝐴𝑦] are relaxation lengths, as defined in Eq [2.24] and Eq [2.39]. 

[2.51] 

Most reasoning in 2.2.3.5 is applicable also for combined slip relaxation. 

 
Figure 2-49: Model with Dependent Bristles explains that Lateral Slip Stiffness is degressive with   . The 𝐶𝑡  

is (direction independent) slip stiffness due to tread (𝑡𝑟). 

2.2.6 Summary of Tyre Force vs Slip Models 
Categorization of tyre models for longitudinal force and slip: 

• No lateral slip: 
o Ideally rolling (      ; leaving    to be defined by other than the tyre) 
o Linear   = +𝐶  𝑠 = +𝐶𝐶     𝑠 ; 
o Saturated due to road friction: 

▪ Simplest, saturated linear:   = +sign(𝑠 )  min(𝐶  |𝑠 |     ); 
▪ General:   = 𝑓 (     𝑠 ); 

• Influence from lateral slip:   = 𝑓(𝑠      𝑦); 

Categorization of tyre models for lateral force and slip: 
• No longitudinal slip: 

o Ideally tracking ( 𝑦  0; leaving  𝑦 to be defined by other than the tyre) 

o Linear  𝑦 = −𝐶𝑦  𝑠𝑦 = −𝐶𝐶𝑦     𝑠𝑦; 

o Saturated due to road friction: 

▪ Simplest, saturated linear:  𝑦 = −sign(𝑠𝑦)  min(𝐶𝑦  |𝑠𝑦|     );  

▪ General:  𝑦 = 𝑓𝑦(     𝑠𝑦); 

• Influence from longitudinal slip:  𝑦 = 𝑓(𝑠𝑦      ); 

A general Combined force and slip model: [    𝑦] = 𝑓(𝑠  𝑠𝑦   ); or [    𝑦] = 𝑓(      𝑦   );. 

2.2.7 Vertical Properties of Tyres 
The most important vertical property of a tyre is probably the stiffness. It mainly influences the verti-
cal dynamics, see Chapter 5. For normal operation, the vertical force of the tyre can be assumed to 
vary linearly with vertical deflection. If comparing a tyre with different pressures, the stiffness in-
creases approximately linear with pressure. See Figure 2-50. 
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Figure 2-50: Vertical properties of a truck tyre. 

 
Figure 2-51: Different tyre models which will filter road irregularities differently. Picture from Peter 

Zegelaar, Ford Aachen. 

2.2.8 Tyre Wear 
There are many other aspects of tyres, for instance the wear. Wear models are often based around the 
Archard’s (or Reye’s) wear hypothesis: worn material is proportional to work done by friction, i.e. fric-
tion force times sliding distance. Wear rate (worn material per time) is therefore friction force times 
sliding speed. Different approaches to apply this to tyres and expanding to temperature dependency 
etc. is found for instance in Reference (Grosch, et al., 1961). A generalization of 𝑊𝑒 𝑟  𝑡𝑒 [in mass/s 
or mm tread depth/s], for one certain tyre at certain temperature, becomes as follows: 

𝑊𝑒 𝑟  𝑡𝑒   𝑟  𝑡 𝑜𝑛 𝑜𝑟 𝑒 ∙ 𝑆𝑙   𝑛 𝑆𝑝𝑒𝑒  ⇒ 𝑊𝑒 𝑟  𝑡𝑒 = 𝑘  𝑎𝑣 ∙  ∙   ≈ 

≈ 𝑘 ∙  ∙ √(   −   )
2 +  𝑦

2 ≈ 𝑘  𝑎𝑣 ∙ (𝐶 ∙ 𝑠) ∙ √(   −   )
2 +  𝑦

2 ≈ 

≈ 𝑘  𝑎𝑣 ∙ (𝐶 ∙ 𝑠) ∙ (𝑠 ∙  𝑇 𝑎𝑛 𝑝  𝑡) ⇒ 𝑊𝑒 𝑟  𝑡𝑒 ≈ 𝑘  𝑎𝑣 ∙ 𝐶 ∙ 𝑠
2 ∙   ; 

where  = √  
2 +  𝑦

2;   𝑠 = √𝑠 
2 + 𝑠𝑦

2;    𝑇 𝑎𝑛 𝑝  𝑡 defined as in Eq [2.10] 

and 𝑘  𝑎𝑣 is a constant for a certain tyre with a certain temperature, rolling 
on a certain road surface, which characterises the wear averaged over the 
contact patch. 

[2.52] 

2.3 Suspension System 
Suspension can mean suspension of wheels (or axles), suspension of sub-frame and drivetrain and 
suspension of cabin (for heavy trucks). In this compendium, only wheel and axle suspension are 
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considered. Suspension design is explained in 2.3, but also used in complete vehicle models in  3.4.5-
3.4.7, 4.3.9, and 4.5.3.  

Suspension influences road grip and ride comfort, so merely all vehicle motion, Chapters 3..5. The in-
fluence is through how vertical forces and camber and steer angles on the wheels changes with 
body motion (heave, roll, pitch), road unevenness (bumps, potholes, waviness) and wheel forces in 
ground plane (from Propulsion, Braking and Steering subsystems). Important is also that suspension 
influences the material stresses (extreme values and fatigue), both in the suspension itself and other in 
other parts of the vehicle body. Figure 2-52 shows one way to see the suspension systems role. 

(sprung) 
body

road surface

vertical 
displacement 

under each wheel

motion of sprung body 
above each wheel

WhlTorques, 
AxleSteAnglesprop, brk, ste

systems (HW&SW)

forces on vehicle from each 
tyre to ground contact

WhlRotSpeeds, 
AxleSteForces

driver,
environment
(except road surface)

suspension 
(linkage, 

elasticities, 
dampers)

wheel 
& tyre

Fx

Fy

Fz Fx

Fy

Fz

 
Figure 2-52: Wheel/axle suspension described as modular sub-model per axle. It may be noted that both 

wheel model (main geometry such as wheel radius) and tyre model (how    and  𝑦 vary with tyre slip and 

  ) is a part of each wheel&tyre sub-model. 

The simplest view we can have of a suspension system is that it is an individual suspension between 
the vehicle body and each wheel, consisting of one linear spring and one linear damper in parallel. 
Chapter 5 uses this simple view for analysis models, because it facilitates understanding and it is 
enough for a first order evaluation of the functions studied (comfort, road grip and fatigue load) dur-
ing normal driving on normal roads. 

The full 3D aspect of suspension is not covered here in 2.3. Instead, a division into 2D is done in 2.3.3 
Suspension -- Heave and Pitch and 2.3.4 Suspension -- Heave and Roll, aiming at Longitudinal and Lat-
eral dynamics, respectively. The full 3D aspects are briefly addressed in 4.5.3.1.5 and 5.7.2.2.4. 

2.3.1 Components in Suspension 
Each wheel can rotate in its hub. Each hub can be individually suspended to the body or left and right 
hub can be mounted on a rigid beam which is suspended to the body. The suspension parts are below 
grouped in: Linkage, Elasticities and Dampers. One might count in additional parts in the suspension, 
such as bearings, shafts, brake parts, etc. 

2.3.1.1 Linkage 
Linkage, which has the purpose to constrain the relative motion between wheel and body via kinemat-
ics to one dof (approximately vertical translation), or, for a steered axle, also allow one more dof (ap-
proximately yaw rotation) per axle. The linkage defines how longitudinal and lateral tyre forces are 
brought to the body (sprung mass). 

The linkage consists of links (or members) and joints; mainly ball joints, but sometimes others, such as 
hinge joints. The coordinates (“hard-points”) of these joints are the real design parameters, but the dy-
namic behaviour of a complete vehicle model can be expressed in much fewer parameters, namely the 
“effective pivot points”. These effective points are used in 2.3.3 and 2.3.4.  
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2.3.1.2 Elasticities or Compliances 
Springs are examples of elasticities or compliances. The springs develop forces when the wheels are 
vertically displaced relative to the body. There is often one spring per wheel but also an anti-roll bar 
per axle. The anti-roll bar connects left and right wheel to each other to reduce body roll.  

Springs often have a rather linear relation between the vertical displacement and force of each wheel, 
but there are exceptions: 

• Anti-roll bars make two wheels dependent of each other (still linear). Anti-roll bars can be 
used on both individual wheel suspensions and rigid axle suspensions. 

• The springs are intentionally designed to be non-linear in the compressed end of their stroke 
with bump stops. Bump stops at passenger cars are typically designed at (3.5. .4)    vertical 
acceleration when vehicle is fully loaded. (A somewhat opposite non-linearity appears in the 
rebound end of the stroke, due to wheel lift. Here it is the contact force with ground that is sat-
urated to zero, not the spring force. The difference is the damping force.) 

• The compliances can be non-linear during the whole stroke, e.g. air-springs and leaf-springs. 
Air-springs are non-linear due to the nature of compressing gas, e.g. assuming ideal gas: 𝑝  𝑉 =
𝑛    𝑇;  ⇒     𝑜𝑟 𝑒 = 𝑛    𝑇 ( 0 − 𝐶𝑜 𝑝𝑟𝑒𝑠𝑠 𝑜𝑛)⁄ ;. 

• The compliances can be controllable during operation of the vehicle. This can be to change the 
pre-load level to adjust for varying roads or varying weight of vehicle cargo or to be controlla-
ble in a shorter time scale for compensating in each oscillation cycle. The latter is very energy 
consuming and no such “active suspension” is available on market. 

The springs are the main compliance, but also other smaller compliances are present and makes the 
effective stiffness lower: the links themselves, the bushings in the joints between the links and the 
brackets where the links are connected to the body. For the complete vehicle model, the tyres vertical 
compliance adds to the suspension compliance. 

2.3.1.3 Dampers 
Dampers have the purpose to dissipate energy from any oscillations of the vertical displacement of the 
wheel relative to the body. The most common design is the hydraulic piston type. Dampers often has a 
rather linear relation between the vertical deformation speed and force of each wheel, but there are 
exceptions: 

• The dampers are normally intentionally designed to be different in different deformation di-
rection. Typical values are about 3 times more damping in rebound (extension) than compres-
sion (bump). This can be motivated from that driving over a steep bump requires low damping 
to reduce upward jerk in vehicle, especially since there is a hard bump stop in the end of the 
spring stroke. In the other direction, driving over equally steep hole the downward jerk is lim-
ited by that the wheel cannot develop pulling forces on the ground; instead it lifts from ground 
if hole is too steep. So larger damping can be allowed in rebound. A reflection here is that high 
damping damps oscillations, but high damping also increases the shock transmittance (with 
this reasoning, the name “shock-absorber” is misleading). 

• Damping in leaf springs is non-linear since they work with dry friction. 
• The dampers can be designed to be controllable during operation of the vehicle. This can be 

used to change the damping characteristics to adjust for varying roads or varying weight of ve-
hicle cargo or to be controllable in a shorter time scale for compensating in each oscillation cy-
cle. The latter is called “semi-active suspension” and is available on some high-end vehicles on 
market. 

2.3.2 Axle and Wheel Rates 
All compliances (springs, bushings, etc) contribute to the stiffness between the body and the wheels. 
The wheels are not independent of each other; we have especially a connection between left and right 
due to the anti-roll bars. Therefore, we define both axle (compliance) rate and wheel (compliance) 
rate, see Figure 2-53. We can also call these Effective stiffnesses of the axle and wheel, respectively. 
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Test to define and/or determine 
axle (stiffness) rate, 𝒄𝒂𝒙𝒍:
• Fix the sprung body and the wheels on 

the other axle(s)
• Lift both wheel on the axle   with  𝑎 𝑙  

•  𝑎 𝑙 =
  𝑎𝑥𝑙 𝑧

  𝑟
;

sprung 
body

suspension

left wheel 
on axle i

right wheel 
on axle i

 𝑎 𝑙  

  

Test to define and/or determine 
wheel (stiffness) rate, 𝒄𝒘𝒉𝒍:
• Fix the sprung body and all other wheels
• Lift the wheel   with   ℎ𝑙  (slowly 

to not engage damping)

•   ℎ𝑙 =
  𝑤 𝑙 𝑧

  𝑟
;

  ℎ𝑙  

  

Note: Lift slowly to avoid engaging (speed dependent) damping. 
Check also lowering, to detect if dry friction damping.  

Figure 2-53: Definition of axle and wheel (stiffness) rates. 

Alternatively to lifting one wheel, the axle can be rolled (without lifting the midpoint of the axle): 
 𝑙𝑒 𝑡 =   =     𝑊 2⁄ ; and   𝑖𝑔ℎ𝑡 = −  = −    𝑊 2⁄ ;. It is then natural to find the measure axle 

roll stiffness    𝑙𝑙[𝑁 𝑟  ⁄ ] =   ℎ𝑙   𝑊    ;, instead of   ℎ𝑙[𝑁  ⁄ ]. If the vehicle is symmetric and 

track width is known, these measures carry the same information and    𝑙𝑙 =   ℎ𝑙  𝑊
2 2⁄ ;. 

With these definitions, the vertical wheel forces for a two-axle vehicle will be as follows. It is assumed 
that the vehicle is symmetrical and that there are connections between the wheels only as anti-roll 
bars on each axle. The body is fixed and road under the wheels are displaced with   𝑖𝑗 . Notation  𝑖 𝑎 𝑙 is 

axle rate and  𝑖  ℎ𝑙 is wheel rate for axle  . The time derivative of spring force    𝑖𝑗  and vertical veloci-

ties are used to avoid involving pre-tension in the springs. 

[
 
 
 
 
    𝑙
     
   2𝑙
   2 ]

 
 
 
 

= [
𝑪𝒘𝟏 𝟎
𝟎 𝑪𝒘𝟐

]  [

   𝑙 
     
  2𝑙 
  2  

] ;      𝑒𝑟𝑒 𝑪𝒘𝒊 = [
 𝑖  ℎ𝑙 −( 𝑖  ℎ𝑙 −

 𝑖 𝑎 𝑙
2

)

−( 𝑖  ℎ𝑙 −
 𝑖 𝑎 𝑙
2

)  𝑖  ℎ𝑙

] ; 

If both body and road under the wheels is moving, we simply exchange [  𝑙      2𝑙  2  ]𝑇 with 
[   𝑙        2𝑙   2  ]𝑇 − [  𝑙      2𝑙  2  ]𝑇 . The axle roll stiffness becomes  𝑖   𝑙𝑙 =

(     𝑙 −     𝑥𝑙 4⁄ )  𝑊2; [Nm/rad] for 𝑀    =  𝑖 𝑎 𝑙      . 

Similarly, for axle  , we can define axle (damping) rate  𝑖 𝑎 𝑙, wheel (damping) rate  𝑖  ℎ𝑙 and axle roll 
damping  𝑖   𝑙𝑙. However,  𝑖 𝑎 𝑙 is often simply 2   𝑖  ℎ𝑙 since there are typically no dampers connect-
ing left and right wheel. Corresponding 4 × 4 damping matrix becomes a diagonal matrix, since  𝑖 𝑎 𝑙 

normally is 2   𝑖  ℎ𝑙.  

If we know the design parameters (stiffness and location of the actual spring) we can calculate the 
rates. This will be exemplified in 2D and briefly discussed for general (3D) below. 

2.3.2.1 Explanation in 2D 
A very simplified suspension is assumed in Figure 3-26. The stiffnesses    and    are the effective stiff-

nesses at each axle. The physical spring may have another stiffness, but its effect on vertical force is 
captured in the effective stiffness. An example of how the effective stiffness is found for a 2D model 
(heave and pitch) from a real suspension design is given in Figure 2-54.  
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Moment equilibrium of arm:

 𝑝   𝑝   =      ;  ⇒    =  𝑝   𝑝  
 

 
;

Compatibility: 
 𝑝

𝑎
=

 𝑟𝑟

 
;

Equivalence in stiffness:    =       ;

⇒    𝑝      
 

 
 
 

 
=       ;    ⇒     =  𝑝  

 

 

2

;

 𝑝   𝑝
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Figure 2-54: From suspension design to effective stiffness. 6a: Final Mathematical model. 6b: Interpretation 
(“Reverse modelling”) back from Mathematical to Physical model, showing “Trivial (linkage) suspension”. 

Note that the factor (  ⁄ )2 is not the only difference between effective and physical stiffness, but the 
effective can also include compliance from other parts than just the spring, such as bushings and tyre. 
There will also be a need for a corresponding effective damping coefficient, see 3.4.5.2.2, or axle 
(damping) rate. How forces in road plane is transferred is not well captured in this model, see     in 
Figure 2-54. Compared to suspension models later in compendium, Figure 2-54 ends with a “trivial 
(linkage) suspension model”. In 3.4.5.2, the suspension linkage is better modelled, which allows valid-
ity for  𝑖  (propulsion and braking). Corresponding for  𝑖𝑦 is modelled in 4.3.9.3. 

2.3.3 Suspension -- Heave and Pitch 
2.3.3.1 Examples of Suspension Designs 
In Figure 3-28, a “trailing arm” is drawn both for front and rear axle. For rear axle, that is a realistic de-
sign even if other designs are equally common. However, for front axle a so-called McPherson suspen-
sion is much more common, see Figure 2-55. Figure 2-56 shows a suspension for a heavy vehicle. 

2.3.4 Suspension -- Heave and Roll 
2.3.4.1 Examples of Suspension Designs 
There are axles with dependent wheel suspensions, which basically look as the roll centre axle model 
in Figure 4-33 , i.e. that left right wheel are rigidly connected to each other. Then, there are axles with 
dependent wheel suspensions, which look more like the model with wheel pivot points in Figure 4-33. 
For these, there are no (rigid) connections between left and right wheel. 

Many axles have a so-called anti-roll bar, which is an elastic connection between left and right side. It 
is connected such that if the wheel on one side is lifted, it lifts also the wheel on the other side. Note 
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that, if an anti-roll bar is added to an independent wheel suspension it is still called independent, be-
cause the connection is not rigid. 

gf

ef

90 deg
gf

ef

 
Figure 2-55: Example of typical front axle suspension, and how pivot point is found. The example shows a 

McPherson suspension. From Gunnar Olsson, LeanNova. 
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Figure 2-56: Axle suspensions/installations for double rear axle heavy vehicles. 

Figure 2-57 and Figure 2-58 show design of two axles with independent wheel suspensions. Figure 
2-59 shows an axle with dependent wheel suspension. These figures show how to find wheel pivot 
points and roll centre. In the McPherson suspension in Figure 2-58, one should mention that the strut 
is designed to take bending moments. For the rigid axle in Figure 2-59, one should mention that the 
leaf spring itself takes the lateral forces. Symmetry between left and right wheel suspension is a rea-
sonable assumption and it places the roll centre symmetrically between the wheels, which is assumed 
in the previous models and equations regarding roll centre.  
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Figure 2-57: Example of how to appoint the pivot point for one wheel, and roll centre height, for an  axle 

with double wishbone suspension. 
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Figure 2-58: Example of how to appoint the pivot point for one wheel, and roll centre height, for axle with 

double McPherson suspension. 

Generally, a “rigid axle” gives roll centre height on approximately the same magnitude as wheel radius, 
see Figure 2-59. With individual wheel suspension one has much larger flexibility, and typical chosen 
designs are 30..90 mm front and 90..120 mm rear. 

 
Figure 2-59: Example of how to appoint the pivot point for one wheel and roll centre for axle with rigid axle 

suspended in leaf springs. From (Gillespie, 1992). 

The target for roll centre height is a trade-off. On one side, high roll centre is good because it reduces 
roll in steady state cornering. On the other side, low roll centre height is good because it gives small 
track width variations due to vehicle heave. Track width variations are undesired, e.g. because it 
makes the left and right tyre lateral force fight against each other, leaving less available friction for lon-
gitudinal and lateral grip. Roll centre is normally higher rear than front. One reason for that is that the 
main inertia axis leans forward, and parallelism between roll axis and main inertia axis is desired. 
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2.4 Propulsion System 
A generalised propulsion system is shown in Figure 2-73, along with a specific example of a conven-
tional one. There are 1+2=3 control degrees of freedom marked for the generalized one (e.g. engine 
power, transmission ratio and storage power) while there is only 1+1=2 for the conventional. 

Note that the approach in Figure 2-60 is one-dimensional: we consider neither the differential be-
tween left and right wheel on the driven axle nor distribution between axles. Instead, we sum up the 
torques at all wheels and assume same rotational speed. 
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Figure 2-60: Propulsion system models, as appearing in a vehicle model 

It is often suitable to model propulsion systems “connecting in nodes”, see 1.5.1.9.1 and Figure 2-61.  

Component 

A
Component 

B
Component 

C

Component 

D

Node 1 Node 2

Node 3

Node N

 𝑁

𝑇𝑁 𝑇𝑁

input signal output signal • Nodes only on connections (shafts).
• A node has a positive direction, from left to 

right, in which  𝑁 and  𝑁 are positive.
• A system model with natural causality has to 

have, for each component, equally many 
equations as connected shafts, plus number 
of output signals.
In example: Components [A, B, C, D] has to 
have [1, 3+1, 1, 1] equations. 𝑁  

Figure 2-61: Proposed notation and sign conventions for Propulsion system models. 

2.4.1 Prime movers 
The conversion of stored energy to power occurs in the prime mover, see Figure 2-60. Details of the 
conversion processes and transmission of power to the tyres are not covered in this compendium. 
Some basic background is still necessary to describe the longitudinal performance of the vehicle. The 
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main information that is required is a description of the torque applied to the wheels over time and/or 
as a function of speed. Sketches of how the maximum torque varies with speed for different prime 
movers (internal combustion engine (ICE), electric motor or similar) are shown in Figure 2-62. The 
torque speed characteristics vary dramatically between electric and internal combustion engines. Also, 
gasoline and diesel engines characteristics vary. 

The curve for electric motors in Figure 2-62 shows that the main speciality, compared to ICEs, is that 
their operation range is nearly symmetrical for negative speeds and torques. However, the curve 
should be taken as very approximate, since electric motors can work at higher torque for short periods 
of time. The strong time duration dependency makes electric motors very different to ICEs from a ve-
hicle dynamics point of view. Other properties that makes them special are quick and accurate re-
sponse, well known actual torque and that it is much more realistic to divide them into several smaller 
motors, which can operate on different wheels/axles. 

  [𝑊 𝑘 ]

 𝑢𝑟 𝑡 𝑜𝑛 [𝑠]
10 100101 104 10 
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𝑇
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Figure 2-62: Torque Characteristics of 3 Prime Movers 

A bicycle uses the human body as prime mover. It reminds of an electric motor in that it has torque 
from zero speed. The duration dependency is high, with maximum power ≈ 10 W/kg up to a minute 
duration and ≈ 2 W/kg for an hour duration. 

2.4.1.1 Efficiency and Consumption 
The efficiency (𝜂) is the output power per input power. The specific consumption can be the inverted 
value, but often the input power is measured in fuel rate [  𝑠] or [𝑙 𝑡𝑟𝑒 𝑠], which makes specific con-
sumption inversely proportional to efficiency and not the exact inverse value.  

 𝑓𝑓   𝑒𝑛  = 𝜂 =
𝑃 𝑢𝑡

𝑃𝑖 
;  

𝑆𝑝𝑒  𝑓  𝐶𝑜𝑛𝑠𝑢 𝑝𝑡 𝑜𝑛 =
  𝑒𝑙𝑅𝑎𝑡𝑒

𝑃 𝑢𝑡
     𝑆𝑝𝑒  𝑓  𝐶𝑜𝑛𝑠𝑢 𝑝𝑡 𝑜𝑛2 =

𝑃𝑖 

𝑃 𝑢𝑡
=

  𝑒𝑙𝑅𝑎𝑡𝑒  

𝑃 𝑢𝑡
;  

            𝑒𝑟𝑒  𝑢𝑒𝑙  𝑡𝑒  𝑠  𝑛 [𝑘  𝑠] 𝑜𝑟 [𝑙 𝑡𝑟𝑒 𝑠] 

           𝑛   = 𝑠𝑝𝑒  𝑓   𝑒𝑛𝑒𝑟    𝑜𝑛𝑡𝑒𝑛𝑡  𝑛 [𝐽 𝑘 ⁄ ] 𝑜𝑟 [𝐽 𝑙 𝑡𝑟𝑒⁄ ] 

[2.53] 

The efficiency is dependent on the operating point in the speed vs torque diagram, or map, for the 
prime mover. An example of a specific consumption map for an ICE is given in Figure 2-63. Maps with 
similar function can be found for other types of prime movers, such as the efficiency map for an elec-
tric motor, see Figure 2-64.  

Figure 2-63 and Figure 2-64 also show that the efficiencies can be transformed to the traction diagram. 
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The maps for different gears partly overlap each other, which show that an operating point of the vehi-
cle can be reached using different gears. The most fuel or energy efficient way to select gear is to select 
the gear which gives the lowest specific fuel consumption, or highest efficiency. Such a gear selection 
principle is one way of avoiding specifying the gear selection as a function over time in the driving cy-
cle. For vehicles with automatic transmission, that principle can be programmed into the control algo-
rithms for the transmission. However, the gear selection is often a trade-off with acceleration reserve, 
see 3.3.4.5, which argues for lower gear. Assuming very tightly stepped transmission, or CVT, gives 
that a high efficiency can be kept down to around 0.3 of maximum power. 
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Figure 2-63: Left: Fuel consumption map. Curves with constant specific fuel consumption [ (𝑘𝑊   )⁄ ], 
which is  1 efficiency⁄ . Middle: Specific fuel consumption curves transformed to Traction Diagram, for 
different gears. Right: How efficiency with efficiency-optimal gear ratio drops when  <  0   𝑖𝑡    𝑎 . 
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Figure 2-64: Left: Efficiency map for a typical brushless DC motor, from (Boerboom, 2012). Elliptic curves 

show where efficiency is constant. Right: The efficiency curves can also be transformed in Traction Diagram, 
for a given gear. 

2.4.2 Transmissions 
In some contexts, “transmission” means the 1-dimensional transmission of rotational mechanical 
power from an input shaft to one output shaft. Such are called “Main transmissions”. In other contexts, 
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“transmission” means the system that distributes the energy to/from an energy buffer and to/from 
multiple axles and/or wheels. Such are called “Distribution transmissions”. 

2.4.2.1 Main Transmissions 
Main transmission can be either stepped transmissions or continuously variable transmissions, CVTs. 
Among stepped transmissions, there are manual an automatic. Among automatic, there are those with 
power transmission interruption during shifting and other with powershifting, see 2.4.2.1.1. Clutches 
and torque converters can also be part of models of main transmissions, see 2.4.3 and 2.4.3.3. A 
stepped transmission, can be modelled e.g. as: 

𝑇  𝑡 =𝑟 ∙ 𝑇𝑖𝑛 ∙ 𝜂  𝑔𝑔𝑀𝑒 ℎ𝑒 −  𝑇0 ∙ sign(   𝑡) ; 

   𝑡 =
 𝑖𝑛

𝑟
; 

  𝑒𝑟𝑒 𝑟 = 𝑟  𝑟2 ⋯ 𝑟𝑁;    𝑟 ≠ 0; 

[2.54] 

 𝑇0 is the “parasitic” or “load independent” losses, arising from oil, sealings and bearings. Eq [2.54] is 
not valid for neutral gear, because then there is no speed equation, but instead two torque equations: 
𝑇  𝑡 =−  𝑇0   𝑡 ∙ sign(   𝑡) ; and 𝑇𝑖𝑛 = 𝑇0 𝑖𝑛 ∙ sign( 𝑖𝑛) ;. 

For any 1-dimensional transmission of rotational mechanical power between two rotating shafts, the 
total efficiency, 𝜂𝑡 𝑡𝑎𝑙 =    𝑡  𝑖𝑛⁄ = 𝑇  𝑡 ∙    𝑡 (𝑇𝑖𝑛 ∙  𝑖𝑛)⁄ ;, is depending on operating condition. If as-
suming a nominal ratio, 𝑟, the total efficiency can be decomposed in 𝜂𝑡 𝑡𝑎𝑙 = 𝜂𝑇 ∙ 𝜂𝜔;, where 𝜂𝑇 =
𝑇  𝑡 (𝑟 ∙ 𝑇𝑖𝑛)⁄ ; and 𝜂𝜔 =    𝑡 ( 𝑖𝑛 𝑟⁄ )⁄ ;. 

2.4.2.2.1 Powershifting Main Transmissions 

The most common powershifting transmission is using planetary gears and torque converter, see Fig-
ure 2-75. During 2000-2010, developments in mechatronics has enabled to leave out the torque con-
verter and the planetary gears resulting in what often meant with powershifting transmissions, see 
concept in Figure 2-65. In practice, one can often manage with 2 clutches, and instead select different 
paths through gear wheels with synchronisers. An advanced design of powershifting transmission for 
a hybrid propulsion system is seen in Figure 2-66. A dummy sequence of shifting is simulated in Figure 
2-67. 
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Vehicle body

 
Figure 2-65: Conceptual design of powershifting transmission with 3 gears. 

2.4.2.3 Distribution Transmissions 
The distribution to energy buffer and multiple axles and/or wheels can basically be done in two ways: 

• Distribute in certain fractions of (rotational) speed. A (rotationally) rigid shaft between left 
and right wheel is one example of this. We find this in special vehicles, such as go-carts, and in 
more common vehicles when a differential lock is engaged. There are 3 shafts in such an axle: 
input to the axle and two outputs (to left and right wheel). The equations will be: 

 𝑖𝑛 =  𝑙𝑒 𝑡; 
 𝑖𝑛 =   𝑖𝑔ℎ𝑡; 
𝑇𝑖𝑛 = 𝑇𝑙𝑒 𝑡 + 𝑇 𝑖𝑔ℎ𝑡; 

[2.55] 
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Figure 2-66: Hybrid propulsion system with powershifting, designed using planetary gears. Upper left: 

Design. Upper right: Gear/Clutch schedule. Lower half: Dynamic model. 
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Figure 2-67: Simulation of the transmission in Figure 2-66 (with approximate clutch models from Eq [2.58]). 

Example sequence of shifts: Simply shift each 10th second, in order as in table in Figure 2-66. 

• Distribute in certain fraction of torque. This requires some type of planetary gear arrangement. 
A conventional (open) differential gear is one example of this, where the equations will be: 

 𝑖𝑛 =
 𝑙𝑒 𝑡 +  𝑖𝑔ℎ𝑡

2
; 

𝑇𝑙𝑒 𝑡 = 𝑇 𝑖𝑔ℎ𝑡; 
𝑇𝑖𝑛 = 𝑇𝑙𝑒 𝑡 + 𝑇 𝑖𝑔ℎ𝑡; 

[2.56] 

Generally speaking, the open differential is rather straight-forward to use in most vehicle dynamics 
manoeuvres: The speeds are given by vehicle motion (e.g. curve-outer wheel runs faster than curve-
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inner wheel, defined by vehicle yaw velocity and track width). The torques are defined by the differen-
tial, as half of the propulsion torque at each side. 

Also, a locked differential, it is generally more complex to model and understand in a vehicle manoeu-
vre. Here, the wheels are forced to have same rotational speed, and, in a curve, that involves the tyre 
longitudinal slip characteristics. The solution involves more equations with shared variables. 

So, open/locked differential is the basic concept choice. But there are additions to those: One can build 
in friction clutches which are either operated automatically with mechanical wedges or similar or op-
erated by control functions. One can also build in electric motors which moves torque from one wheel 
to the other. However, the compendium does not intend to go further into these designs. 

Parts of the distribution transmissions are also shafts. If oscillations are to be studied, these has to be 
modelled with energy storing components:  

• Rotating inertias or Flywheels (𝐽    = 𝑇𝑖𝑛 − 𝑇  𝑡;) and  

• Elasticities, compliances or springs: (𝑇 =  ∙ ( 𝑖𝑛 −   𝑡)). 

2.4.3 Clutches and Brakes in Transmission 
The modelling techniques shown in this section are also  applicable also for tyres (2.2) and brakes (2.5). 

Seen as machine elements, brakes are special cases of clutches, specialized by that one of the clutch 
halves is fixed. There are brakes on the wheels, but there are also brakes inside the transmission. A 
tyre operates as a transmission clutch (2.2.1.6) which can stick and slip (2.10.1.2). Also, when operat-
ing between forward and rearward rolling, the rolling resistance of the tyre acts as a brake, with stick 
and slip. 

Clutches with dry friction are difficult to model in dynamic systems since they introduce “discrete dy-
namics”, sticking and slipping, see 1.5.1.4. The conceptual mathematical model of a controlled clutch is 
given in Figure 2-68 and Eq[2.57]. Here, the interface variables are 𝑇     2 and   . Capacity    [𝑁 ] 
is an input signal representing the magnitude of torque when the clutch slips. In the model below, a 
discrete state variable, 𝑥 = −1 0 𝑜𝑟 + 1, is introduced to model the discrete dynamics.  

  𝑒𝑙 <0

  =   𝑡 =clutch torque capacity 

𝑇𝑇

 2  
  𝑒𝑙 =   − 2;

2 variants of (Discrete) State Transition diagrams:

𝑥 =0:
  𝑒𝑙 = 0;

𝑥 =+1:
𝑇 = +  ;

𝑥 = −1:
𝑇 = −  ;

𝑇<−  
𝑇>+  

  𝑒𝑙 >0

𝑥
 
=
0

  𝑒𝑙

𝑇

𝑥 = +1
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Discrete states:

  𝑒𝑙

 
Figure 2-68: Model of a clutch. The 𝑥  is a discrete state, declared as Integer. 

(Continuous) Equations 
using the discrete state 𝑥 :

 {

 𝑓 𝑥 = −1 𝑡 𝑒𝑛 𝑇 = +  ;
𝑒𝑙𝑠𝑒 𝑓 𝑥 = 0 𝑡 𝑒𝑛   𝑒𝑙 = 0;
𝑒𝑙𝑠𝑒 𝑓 𝑥 = +1 𝑡 𝑒𝑛 𝑇 = −  ;   𝑒𝑛   𝑓;

 

(Discrete State)
 ransition Equation:

 

{
 

 
  𝑒𝑛 (𝑥 = −1    𝑛      𝑒𝑙 > 0) 𝑡 𝑒𝑛 𝑥 =  0;

𝑒𝑙𝑠𝑒  𝑒𝑛 (𝑥 = 0    𝑛    𝑇 < −  ) 𝑡 𝑒𝑛 𝑥 =  −1;

𝑒𝑙𝑠𝑒  𝑒𝑛 (𝑥 = 0    𝑛    𝑇 > +  ) 𝑡 𝑒𝑛 𝑥 = +1;

𝑒𝑙𝑙𝑠𝑒  𝑒𝑛 (𝑥 = +1    𝑛      𝑒𝑙 < 0) 𝑡 𝑒𝑛 𝑥 =  0;    𝑒𝑛    𝑒𝑛;

 

[2.57] 
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2.4.3.1 Modelling Format and Tool Aspects 
A tool with discrete dynamic support should log at least two values for an event: the value before and 
after the event. So, there will be 2 identical time values in the time vector. Several transitions can hap-
pen during on event, e.g. switching from 𝑥 = −1 to 𝑥 = +1 without 𝑥 = 0 in between in Figure 
2-68. For this reason, the simulation tool needs to do “event iteration”, which means that the whole 
model is evaluated repeatedly during the event until no further changes happens. It can be discussed 
whether intermediate values during the event iteration should be logged or not. Modelica is designed 
to not log those. 

2.4.3.2 Different Surroundings for the Clutch 
Different implementations can be needed for different surroundings; energy dissipating or generating 
components (dampers or power sources), kinetic energy storing components (flywheels) or potential 
energy storing components (elasticities), see examples in Figure 2-69. The challenge is to handle that 
the set of state variables can change between the different discrete states.  

flywheel

J

clutch flywheel

Further 
components

Further 
components

J ……

flywheel clutch elasticity

J ……

clutch elasticity

……

elasticity

clutch damper
(e.g.   (𝑠 )
tyre model)

……
…

Connected to control algorithm, which 
calculates “clutch torque capacity”,   𝑡 .

…

…
…

damper
(e.g. 𝑇( ) prime 

mover model)  
Figure 2-69: Examples of differently modelled surroundings of a clutch. 

For complete main transmissions, as automatic transmissions, there are several clutches involved, the 
implementation of the ideal model in Eq [2.57] can be very demanding. It is modelled in Modelica. The 
discrete dynamics is modelled with the discrete state (xd declared Integer) and the operator 

“pre(z)”, which holds the   value from last time instant or, in an event, from the last event iteration. 

2.4.3.2.1 Clutch and Elasticity in Series 

The easiest surrounding to a clutch is in series with elasticity, assuming velocities can be input. Figure 
2-70 shows such. It also adds 𝑠𝑡  𝑡 𝑜𝑛 = 𝑠𝑡 > 1; a different static and dynamic friction,   𝑡𝑖 𝑘 = 𝑠𝑡  
  𝑙𝑖𝑝;. 

2.4.3.2.2 Clutch between Inertias 

When connecting 2 inertias or 2 elasticities with a clutch is more complicated. For clutch between in-
ertias, it is proposed to use   𝑒𝑙  as state variable, because it makes it easy to keep   𝑒𝑙  0 during 
stick.be modelled, see Figure 2-71. The values 𝑥 = ±1 are temporary during a state event; it enables a 
total state transition during one event between 𝑥 = −2 and 𝑥 = +2, without (wrongly) logging an 
intermediate 𝑥 = 0. With 𝑠𝑡 < 1, there is risk for chattering solutions. 

2.4.3.2.3 Functional or Inverse Clutch Model 

In some cases, it can be suitable to prescribe how the clutch is operates in terms of   𝑒𝑙(𝑡) instead of 
  (𝑡). This means that we rather assume a successful engagement as that   𝑒𝑙 → 0 during an assumed 
engagement time, than assuming a   (𝑡) and find out how long time it takes to engage (or fail to en-
gage. The   𝑒𝑙(𝑡) is then declared as input and the (required) torque 𝑇(𝑡) and the torque capacity 
  (𝑡) becomes an output. This can simplify the modelling. This is not further discussed in this compen-
dium but see http://blog.xogeny.com/blog/part-2-kinematic/. 

 

http://blog.xogeny.com/blog/part-2-kinematic/
http://blog.xogeny.com/blog/part-2-kinematic/
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//Clutch and Elasticity:

if slip == 0 then

w1 = wx; der(T_state) = cs*(wx - w2); T_state=T;

T_noState = 0; //not interpreted to physics

elseif slip == +1 then

T_noState = +cc; T_noState=T; 0 = (wx - w2);

der(T_state) = 0; //not interpreted to physics 

else // if slip==-1

T_noState = -cc; T_noState=T; 0 = (wx - w2);

der(T_state) = 0; //not interpreted to physics end if;

when pre(slip)== 0 and T >+st*cc then

slip=+1; reinit(T_state, +cc);

elsewhen pre(slip)== 0 and T <-st*cc then

slip=-1; reinit(T_state, -cc);

elsewhen pre(slip)==+1 and w1<wx then slip= 0;

elsewhen pre(slip)==-1 and w1>wx then slip= 0; end when;

//Clutch and Elasticity:

if T > +st*cc and w1 > w2 then der(T) = +der(cc);

elseif T < -st*cc and w1 < w2 then der(T) = -der(cc);

else der(T) = cs*(w1 - w2); end if;

//Clutch:

if slip==0 then w1 = wx;

else der(T) = sign(slip)*der(cc); end if;

when pre(slip)== 0 and T >+st*cc then

slip=+1; reinit(T, +cc);

elsewhen pre(slip)== 0 and T <-st*cc then

slip=-1; reinit(T, -cc);

elsewhen pre(slip)==+1 and w1<wx then

slip= 0;

elsewhen pre(slip)==-1 and w1>wx then

slip= 0; end when;

//Elasticity:

der(T) = cs*(wx-w2);

1

2

3

 
Figure 2-70: Model of clutch and elasticity in series, modelled for speed input from both sides. Implemented 

in Modelica. Implementation 2 (without discrete state and without when) only works well (without 

chattering) for 𝑠𝑡 = 1.0. Implementation 3 uses a different physical model which has different number of 
states depending on the discrete state 𝑠𝑙 𝑝; elasticity is modelled only when 𝑠𝑙 𝑝 = 0. 
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(Discrete) State Transition diagrams:

𝑥 =0:
   𝑒𝑙 = 0;
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(𝑥 = −1 and +1 are only temporary during the event.)
 

Figure 2-71: Modelica of a clutch which works to be connected between inertias. 

2.4.3.3 Implementation of Clutches as Stiff Dampers 
A way around model implementation problems is to use an approximate clutch model as in Eq [2.60]. 
The advantage is that it can handle any surrounding without leading to changing set of state variables. 
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The drawback is that it has a trade-off between modelling the intended physics (Eq [2.60]) and the 
computational efficiency in simulation; the more  →  , the closer to the intended model we come, 
but the simulation time will increase towards infinity. The approximation can be seen as putting a stiff 
damper in direct series with an ideal clutch. There are also other approximations, which could be seen 
as putting a stiff spring with stiffness   in series with an ideal clutch. This will work if clutch is sur-
rounded by inertias: 

𝑇𝑙𝑒 𝑡 = 𝑇 𝑖𝑔ℎ𝑡;     𝑛      𝑒𝑙 =  𝑙𝑒 𝑡 −  𝑖𝑔ℎ𝑡; 

𝑇𝑙𝑒 𝑡

 
 sign(  𝑒𝑙) =

=

{
  
 

  
 = min(

1 − 𝜀

𝜀
 
|  𝑒𝑙|

 𝑛  
    ;   1 +

𝜀

1 − 𝜀
 (
|  𝑒𝑙|

 𝑛  
− 1)) ;  𝑓

|  𝑒𝑙|

 𝑛  
< 1

= max(
1

1 +
𝜀

1 − 𝜀  (
 𝑛  
|  𝑒𝑙|

− 1)
    ;   

𝜀

1 − 𝜀
 
|  𝑒𝑙|

 𝑛  
) ; 𝑒𝑙𝑠𝑒

 
[2.58] 

Figure 2-73 shows an example that the ideal and approximate models can give comparable results 
with respect to torques and speeds. About computational efficiency, the ideal needs around 5  𝑠 time 
step with Euler forward integration, while the approximate needs 100 times smaller time step. If bet-
ter agreement than in Figure 2-73 is needed, 𝜀 needs to be reduced, which slows down the approxima-
tion even more. Note also that, for energy dissipation, the approximate model of course calculates a 
higher energy dissipation, since it assumes the clutch has to slip to transfer torque. 
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Figure 2-72: Example of approximation of clutch model. Strategies:  𝑛  = typical slip speed of clutch, 𝜀 ≪ 1. 

Dashed curve shows before approximation. 

There are clutch models also in the standard Modelica (see 1.5.4.10) library, see Figure 2-74. Note that 
the library is built such that the “small inertia” is needed, which forces down computational efficiency 
during clutch slip. 

Brakes, one-way clutches and backlashes often causes similar difficulties and can be modelled simi-
larly as clutches. 

2.4.4 Hydrodynamic Torque Converters 
Hydrodynamic torque converters serve almost same purpose as a clutch, but it is much less complex to 
model as a member of a dynamic system. Such converters have a pump in input side and turbine on 
output side. They can operate with substantial slip, and when slip, there is a torque amplification, 
which leads to that a vehicle with converter have typically good acceleration performance and drivea-
bility also without the corresponding lowest gear needed on same vehicle without converter. 
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Figure 2-73: Example with clutch, modelled in two ways 

(Inputs to "eninge" and "clutch" governed by equations) 
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Figure 2-74: Model example with clutch, using standard Modelica library “Modelica.Mechanics.Rotational” 

The following model gives the steady state characteristics of a hydrodynamic torque converter. Steady 
state characteristics are often enough but combined with that hydrodynamic torque converters often 
are possible to lock-up with a clutch, mounted in parallel to the impellers. 

𝑇  𝑡
𝑇𝑖𝑛

=  (𝜈);  
𝑇𝑖𝑛

 𝑖𝑛
2 = 𝜆(𝜈);      𝑒𝑟𝑒    𝑛  𝜆  𝑟𝑒 𝑓𝑢𝑛 𝑡 𝑜𝑛𝑠  𝑛  𝜈 =

   𝑡

 𝑖𝑛
; 

But if locked-up: 
𝑇 𝑢𝑡

𝑇𝑖 
= 1;    𝑛  

𝜔 𝑢𝑡

𝜔𝑖 
= 1; 

The moment capacity, 𝜆  is often given on a dimensionless form  

𝜆 = 𝑇𝑖𝑛 ( 𝑖𝑛
2     𝑙𝐷𝑒𝑛𝑠 𝑡   𝑢𝑡𝑒𝑟    𝑢𝑠 )⁄ . 

[2.59] 
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gears)

 
Figure 2-75: Left: Traditional automatic transmission. Right: Conceptual curves of the torque converter. 

2.4.5 Energy Storages 
Fuel tank and battery are two examples of energy storages. An “energy buffer” often refers to an en-
ergy storage that can not only be emptied (during propulsion), but also refilled by regenerating energy 
from the vehicle during deceleration. A fuel tank is an energy storage, but not an energy buffer. Also, a 
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battery which can only be charged from the grid, and not from regenerating deceleration energy, is not 
an energy buffer. 

Energy buffers in vehicles are today often electro-chemical batteries. However, other designs are pos-
sible, such as flywheels and hydrostatic accumulators. A simple model of a buffer is as follows: 

  = {
= ( 𝑖𝑛 −    𝑡) ∙ 𝜂 ℎ𝑎 𝑔𝑒;    𝑓𝑜𝑟  𝑖𝑛 >    𝑡;

= ( 𝑖𝑛 −    𝑡) 𝜂  𝑒;    𝑒𝑙𝑠𝑒;                           
 

  𝑒𝑟𝑒  𝑖𝑛 = 𝑇𝑖𝑛 ∙  𝑖𝑛;  𝑛     𝑡 = 𝑇  𝑡 ∙    𝑡; 

[2.60] 

Including how the buffer is connected, one more equation can be found: Typically,  𝑖𝑛 =    𝑡; or 
𝑇𝑖𝑛 = 𝑇  𝑡;. 

The model uses stored energy,  . For batteries, one often uses state of charge, 𝑆𝑜𝐶, instead. Conceptu-
ally, 𝑆𝑜𝐶 =     𝑎 ;, where   𝑎  is a nominal maximum charge level. 

A first approximation of the efficiencies, can be 𝜂 ℎ𝑎 𝑔𝑒 = 𝜂  𝑒 =  𝑜𝑛𝑠𝑡 𝑛𝑡 < 1, but typically the effi-

ciency is dependent of many things, such as  𝑖𝑛 −    𝑡. The model above does not consider any leakage 
when buffer is “resting”:  𝑖𝑛 =    𝑡. 

2.5 (Wheel) Braking System 
Braking can refer to either wheel braking which means adding wheel torques from (wheel) braking sys-
tem or vehicle braking which can be achieved with negative wheel torques from propulsion system. Sel-
dom used, it would also be possible to apply unusual wheel  steering angles, e.g. steer left and right wheel 
in different directions. Other ways are possible such as raise brake shields on the vehicle body  to increase 
longitudinal aerodynamic resistance. 

There are several systems that can brake a vehicle: 
• Service brake system (brake pedal and ABS/ESC controller, which together applies brake pads 

to brake discs/drums) 
• Parking brake (lever/button that applied brake pads to brake discs/drums, normally on rear 

axle on cars but all axles on heavy vehicles) 
• Prime mover brakes: 

o Engine braking (ICE operates at “engine brake” as marked in Figure 2-62) 
o Electric machines (machines can be used symmetrical, i.e. both for positive and nega-

tive torques, see Figure 2-62) 
• Heavy vehicles often have Retarders. They normally use hydraulic or Eddy current to dissipate 

engine, as opposed to dry-friction. So, they cannot brake at low speeds or stand-still. 
• Large steer angles will decelerate the vehicle, see 3.2.2.2. 

This section is about Friction brakes, meaning Service brakes and Parking brake. In vehicle dynamics 
perspective, these have the following special characteristics: 

• Friction brakes are almost unlimited in force for a limited time since they can lock the wheels 
for most driving situations and road friction (ICE and electric motors are often limited by their 
maximum power, since it is often smaller than available road friction.) However, if the friction 
brakes are used for a long time, the brake lining will start to fade. This means friction coeffi-
cient is lowered due to high temperature (oxidation and melting of pad/lining material).  

• Friction brakes can only give torque in opposite direction to wheel rotation. (Electric motors 
can brake so much that wheel spins rearwards.) 

• Friction brakes can hold the vehicle at exact standstill. (If using electric machines for holding 
stand-still in a slope, a closed loop control would be necessary, resulting in that vehicle “floats” 
a little.) 

The basic design of a passenger car brake system is a hydraulic system is show in Figure 2-76. Here, 
the brake pedal pushes a piston, which causes a hydraulic pressure (pressure = pedal force/piston 
area). The hydraulic pressure is then connected to brake callipers at each wheel, so that a piston at 
each wheel pushes a brake pad towards a brake disc (Disc orce = Pressure  PistonArea). The brake 
torque on each wheel is then simply: 𝑇 = NumberOf rictionSurfaces  DiscCoefficientOf riction  
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DiscRadius  Disc orce. (Normally, there are 2 friction surfaces, since double-acting brake calipers.) By 
selecting different piston area and disc radii at front and rear, there is a basic hydro mechanical brake 
distribution ratio between front and rear axle. There are normally two circuits for redundancy. It 
should be mentioned that DiscCoefficientOf riction varies a lot; during one strong brake event, it can 
typically drop 10..25% due to temperature rise and sliding velocity decrease. 

Brake systems for heavy trucks are generally based on pneumatics, as opposed to hydraulics, see Fig-
ure 2-78. Ref (Tagesson, 2017), has a good descriptive chapter about brake systems for heavy vehicles. 

Hydraulic pump for 
ABS/ESC and hydraulic 
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II HI

LL HH

 
Figure 2-76: Layouts of a hydraulically applied brake system, which is conventional on passenger cars. 

Brake systems for modern road vehicles are almost always mechatronic systems, i.e. they contain both 
mechanical parts and control algorithms. As minimum, one can include the wheel slip control, see 
4.6.2.1.4, or ABS/EBD, see 3.5.2.3/3.5.2.4. 
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Figure 2-77: Concept of hydraulically applied brake system for ABS and ESC functions. 
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Figure 2-78: Pneumatically applied brake system for heavy vehicles. Electronics Brake System, EBS, from 

Volvo GTT, Mats Sabelström.  

2.6 (Wheel) Steering System 
Steering can refer to either wheel steering which means adding yaw angles to the wheels relative to the 
vehicle body or vehicle steering which can be achieved with wheel steering but also other actuators, such 
as propelling or braking the wheels on side. 

The steering system is here referred to the link between steering wheel and the road wheel’s steering, 
on the steered axle. It is normally the front axle that is steered. Driver’s interaction is two-folded, both 
steering wheel angle and torque, which is introduced in 2.9. In present section, we will focus on how 
wheel steer angles are distributed between the wheels. 

2.6.1 Chassis Steering Geometry 
The most basic intuitive relation between the wheels steer angles is probably that all wheels’ rotation 
axes always intersect in one point. This is called Ackermann geometry and is shown in Figure 2-79. 
The condition for having Ackermann geometry is, for the front axle steered vehicle that: 

1

tan( 𝑖)
=
  − 2⁄

 
;

1

tan(  )
=
  + 2⁄

 
;
}
 
 

 
 

⇒
1

tan(  )
=

1

tan( 𝑖)
+
 

 
; [2.61] 

The alternative to Ackermann steering geometry is parallel steering geometry, which is simply that 
 𝑖 =   . Note that Ackermann geometry is defined for a vehicle, while parallel steering is defined for 
an axle. This means that, for a vehicle with 2 axles, each axle can be parallel steered, which means that 
the vehicle is non-Ackermann steered. However, the vehicle can still be seen as Ackermann steered 
with respect to mean steer angles at each axle. 

For low-speed, Ackermann gives best manoeuvrability and lowest tyre wear. For high-speed, Parallel 
is better in both aspects. This is because vehicles generally corner with drift outwards in curves, which 



VEHICLE INTERACTIONS AND SUBSYSTEMS 

 124  

means that the instantaneous centre is further away than Ackermann geometry assumes, i.e. more to-
wards optimal for parallel. Hence the chosen geometry is normally somewhere between Ackermann 
and parallel. 

Practical arrangement to design the steering geometry is shown in Figure 2-80. The design of linkage 
will also make the transmission from steering wheel angle to road wheel steer angle non-linear. This 
can lead to different degrees of Ackerman steering for small and large steering wheel angles. 

di
do

L

w
Common intersection of all 
wheels’ axes of rotation

Lwio += )tan(1)tan(1 dd

1 turn centre
a Ackermann error, front.
b Ackermann error, rear.

Rr
 

Figure 2-79: Ackermann steering geometry. Left: One axle steered. Right: Both axles steered and including 
“Ackermann errors”. From (ISO 8855). 

In traditional steering systems, the steering wheel angle has a monotonically increasing function of the 
steer angle of the two front axle road wheels. This relation is approximately linear with a typical ratio 
of 15..17 for passenger cars. For trucks the steering ratio is typically 18..22. In some advanced solu-
tions, steering on other axles is also influenced (multiple-axle steering, often rear axle steering). There 
are also solutions for dynamically adding steer angle through a planetary gear and electric angle-con-
trolled motor on the steering shaft, so called Active Front Steering (AFS). In reference (Tagesson, 
2017), there is a good descriptive chapter about steering systems for heavy vehicles. 

Ackermann 
steering
(trapezoidal 
geometry)
(Erasmus Darwin 
1758, Rudolph 
Ackermann 1810)

 𝑙 = 𝑓 𝑟𝑝𝑖𝑛     ;

  = −𝑓 −𝑟𝑝𝑖𝑛     ;
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Figure 2-80: Left: Ackermann (Trapezoidal) Steering. Right: Rack Steering, common on passenger cars. 
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Eq [2.62] shows the relation between steering angles for rack steering, with 𝑇  =Tie Rod Length,   
𝑆𝐴 =Steering Arm Length,  𝑆𝐴=Rack to Steering Axis lengths. 

𝑇  2 = ( 𝑆𝐴 − 𝑆𝐴  cos(𝛾 +  𝑙))
2 + ( 𝑆𝐴𝑦 − 𝑆𝐴  sin(𝛾 +  𝑙) + 𝑟𝑝𝑖𝑛 ∙    )

2
; 

𝑇  2 = ( 𝑆𝐴 − 𝑆𝐴  cos(𝛾 −   ))
2 + ( 𝑆𝐴𝑦 − 𝑆𝐴  sin(𝛾 −   ) − 𝑟𝑝𝑖𝑛 ∙    )2; 

[2.62] 

The 𝑇   determines a toe-in. To get  toe-in, design (or adjust) the 𝑇   to:  

𝑇  = √( 𝑆𝐴 − 𝑆𝐴  cos(𝛾 −  toe-in))
2 + ( 𝑆𝐴𝑦 − 𝑆𝐴  sin(𝛾 −  toe-in))2;. 

2.6.2 Steering System Forces 
(This section has large connection with 2.2.4.6Other Forces and Moments in Lateral.) 

The steering wheel torque, 𝑇  , should basically be a function of the tyre/road forces, mainly the 
wheel-lateral forces. This gives the driver a haptic feedback of what state the vehicle is in. The 
torque/force transmission involves a servo actuator, which helps the driver to turn the steering sys-
tem, typically that assists the steering wheel torque with a factor varying between 1 and 10, but less 
for small 𝑇   (highway driving) than large 𝑇   (parking), see Figure 2-81. Here, the variation in assis-
tance is assumed to be hydraulic and follows a so-called boost curve. At 𝑇  = 0, the assistance is 
≈0.45/0.55≈1 and for 𝑇  = 4 Nm, it is ≈0.9/0.1≈10. 

Assisted

Rack
Force

SteWhlTq

UnAssisted

Assistance

 
Figure 2-81: Left: Boost Curve with different working areas depending on the driving envelope. Middle: 

Torque distribution between manual torque, FM, and assisting torque, FA, depending on applied steering 
wheel torque. From Reference (Rösth, 2007). Right: Unassisted and assisted steering wheel torque. 

2.7 Environment Sensing System 
This subsystem has to be mentioned since it is maybe the most important new enabler for today’s de-
velopment of automated driving. The technology to sense (radar, camera, lidar, GPS, etc) is not typi-
cally part of vehicle dynamics, but many vehicle dynamics control functions can be invented or im-
proved through usage of the information from the subsystem. Some typically available information is 
listed in 3.5.1 and 4.6.1. Another vehicle dynamics aspect is that some sensor fusion, but primarily 
some predictions, can be made using vehicle dynamics models.  

2.8 Vehicle Aerodynamics  
The flow of air around the vehicle body produces different external forces and moments acting on the 
vehicle. The fluid mechanics will not be covered in this course. However, practical first order models 
for aerodynamic forces have been established and are presented here. 
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2.8.1 Longitudinal Relative Wind Velocity 
The most relevant aerodynamic force of interest in this course is the resistance force to forward mo-
tion,  𝑎𝑖   , which is proportional to the square of the longitudinal component of the wind speed rela-
tive to the vehicle,     𝑒𝑙 . For aerodynamic loads resisting forward motion of the vehicle, the Equation 
[2.63] can be used. The parameters    𝜌 and 𝐴   𝑛𝑡 represent the drag coefficient, the air density and a 

reference area of the vehicle, respectively. The 𝐴   𝑛𝑡 is the area of the vehicle projected on a vehicle 

transversal plane. 

 − 𝑎𝑖   =
 

2
∙   ∙ 𝜌 ∙ 𝐴   𝑛𝑡 ∙     𝑒𝑙

2; [2.63] 

Typical values of drag coefficients (  ) for cars can be found from sources such as: (Robert Bosch 
GmbH, 2004), (Barnard, 2010), (Hucho, 1998), and (Schuetz, 2015). These coefficients are derived 
from coast down tests, wind tunnel tests or CFD (Computational Fluid Dynamics) calculations. The air 
resistance can often be neglected for city speeds, but not at highway speeds. 

Since a car structure moving through the air is not unlike an aircraft wing, there are also an aerody-
namic lift force and pitch moment. This affects the vertical forces on front and rear axle, and conse-
quently the tyre to road grip. Hence, it affects the lateral stability. 

 𝑎𝑖   =
1

2
∙  𝑙 ∙ 𝜌 ∙ 𝐴   𝑛𝑡 ∙     𝑒𝑙

2; 

𝑀𝑎𝑖  𝑦 =
 

2
∙  𝑝 ∙   ∙ 𝜌 ∙ 𝐴   𝑛𝑡 ∙     𝑒𝑙

2;  
[2.64] 

The coefficient  𝑙  represents the lift characteristics of the vehicle. For extreme vehicle, such as racing 
cars, one can achieve negative  𝑙 , but often by sacrificing with higher   . The forces  𝑎𝑖    and  𝑎𝑖    are 

assumed to act through the same reference point, often centre of gravity (CoG), which defines 𝑀𝑎𝑖  𝑦. 

One can replace [ 𝑎𝑖     𝑎𝑖    𝑀𝑎𝑖  𝑦] with equivalent [ 𝑎𝑖     𝑎𝑖          𝑎𝑖        ] or 

[ 𝑎𝑖     𝑎𝑖      𝑎𝑖    ], Figure 2-82 and Eq [2.65]. 

− 𝑎𝑖   

𝑀𝑎𝑖  𝑦
 𝑎𝑖         𝑎𝑖        

 𝑎𝑖   

− 𝑎𝑖   

 𝑎𝑖     𝑎𝑖    

− 𝑎𝑖   
 𝑎𝑖 = 0 𝑎𝑖 ≈     

aerodynamic 
reference point, 

often ≈CoG 

 
Figure 2-82: Force-equivalent ways to model longitudinal-wind aerodynamic forces in 𝑥 -plane.  𝑎𝑖     and 

 𝑎𝑖     differs between mid and right figure but  𝑎𝑖    is the same for all 3 figures. 

 𝑎𝑖    =
 

2
∙  𝑙 ∙ 𝜌 ∙ 𝐴   𝑛𝑡 ∙     𝑒𝑙

2;  

 𝑎𝑖    =
 

2
∙  𝑙 ∙ 𝜌 ∙ 𝐴   𝑛𝑡 ∙     𝑒𝑙

2;  

For a reference height  𝑎𝑖 , often CoG heigth. 

[2.65] 

2.8.2 Lateral Relative Wind Velocity 
When the wind comes from the side, there can be direct influences on the vehicle lateral dynamics. Es-
pecially sensitive are long but light vehicles (such as buses or vehicles with unloaded trailers). The 
problem can be emphasized by sudden winds (e.g. on bridges or exiting a forested area). Besides direct 
effects on the vehicle lateral motion, side-winds can also disturb the driver through disturbances in the 
steering wheel feel. 

Similar expressions to the longitudinal loads are derived for lateral forces and from side-winds.  

  𝑎𝑖  𝑦 =
 

2
∙   ∙ 𝜌 ∙ 𝐴 ∙  𝑦  𝑒𝑙

2; 

𝑀𝑎𝑖   =
 

2
  𝑦 ∙ 𝜌 ∙ 𝐴 ∙   ∙  𝑦  𝑒𝑙

2;  
[2.66] 
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The speed  𝑦  𝑒𝑙  is the lateral component of the vehicle velocity relative to the wind. Note that 𝐴 and    

may now have other interpretations and values than in Equations [2.63]-[2.65], e.g. 𝐴   𝑛𝑡 or 𝐴 𝑖 𝑒 . 

2.9 Driving and Transport Application 
The driver drives and experiences the vehicle in the short time scale through pedals, steering wheel 
and seat. But the drivers’/users’ choice of load (cargo weight and position) and choice of route is im-
portant on the longer time scale. One can differ between, Ref (Pettersson, 2019): 

• Transport Application is how the vehicle is used by one user/owner during its lifetime. It can 
be commuting 2 × 15 km/day, 5 days/week (e.g. for passenger car) or loading and transport-
ing timber on 10 km forest road + 300 km high way, twice per day (e.g. for a truck). 

• Transport Operation is how the vehicle is used along a specific route. It is typically 10 min to 
10 h driving. Driving Cycles,  (𝑡), mentioned in 3.3.1.1 have the purpose to describe approxi-
mately the same. 

• Transport Mission is the purpose of one Transport Operation, such as where to stop and 
load/unload a certain payload. 

2.9.1 Mission, Road and Traffic 
This section is kept very short, but it is included for completeness, beside 2.9.2. See more in 3.3.1. 

2.9.2 Driver 
To study how different vehicle designs work in a vehicle operation a driver model is needed. In its eas-
iest form, a driver model can be steering wheel angle   𝑡  0;. Another extreme interpretation of 
what can be called a driver model is an implicit/inverse statement, like “driver will push accelerator 
pedal so that speed    20 [ 𝑠⁄ ] during the manouvre”, which leads to that accelerator pedal posi-
tion becomes an output, as opposed to input, to the vehicle model. Beyond those very simple driver 
models, there is often need for a driver model which react on vehicle states in relation to an environ-
ment or traffic. In this section, driver models are primarily thought of as models of the driver of the 
subject vehicle, but when modelling surrounding traffic carefully, each object vehicle can also use a 
driver model. 

The driver interacts with the vehicle mainly through steering wheel, accelerator pedal and brake pe-
dal. In addition to these, there are clutch pedal, gear stick/gear selector, and various buttons, etc., see 
Figure 2-83, but we focus here on the first 3 mentioned. 

•Accelerator Pedal Position, 
•Brake Pedal Force,

• Steering Wheel Angle

•Accelerator Pedal Force, 
•Brake Pedal Position,
•Steering Wheel Torque, 

•Seat motion, 
•View of environment relative to vehicle

Other:
• Clutch Pedal and Gear 

Stick or Gear Selector  
• Parking Brake
• Direction indicators
• HMI (buttons, lamps, 

text, sounds, …)
• …

 
Figure 2-83: Interface of driver, and some commonly assumed causality. 

Driver’s control of vehicle dynamics, or vehicle motion including position, can be discussed in longitu-
dinal (mainly pedals) and lateral (mainly steering wheel). 

Driver reacts on several stimuli, such as motion (mainly through seat), sounds, and optical. Among mo-
tion, it is primarily the accelerations (and their time derivative, jerk) that is sensed by the driver, but 
also rotational velocity in yaw can be sensed by human. Among the optical there is looming (optical 
expansion of an object in the driver’s field of view [ 𝑒  𝑠]) is often used as a cause for how driver uses 
the pedals. The optical flow (the pattern of apparent motion of objects, surfaces, and edges in the 
driver’s field of view) is often used as a cause for highest comfortable speed and yaw velocity. 

https://en.wikipedia.org/wiki/Motion_(physics)
https://en.wikipedia.org/wiki/Motion_(physics)
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Driver models are here discussed as models of the “human driver” for use in vehicle verification simu-
lations. However, driver models can also be understood as models of “virtual driver”, and then they are 
actually implemented as algorithms in the vehicle product, e.g. as prediction algorithms or automated 
driving controllers. In the first context, it is often important to vary the driver model (at least its pa-
rameters, maybe even its equations) for robustness, as mentioned in Figure 1-3. In the latter context, 
the driver model of the subject vehicle is rather varied for optimization/satisficing, see Figure 1-3 
again. 

An important aspect of driver modelling is how the user (driver or occupant) experiences the vehicle. 
This is often referred to as subjective evaluation, but for some cases one can establish methods to ob-
jectively calculate a measure of how good or bad the experience is. The measure can sometimes be a 
physical quantity but often it has to be a rating or grading without unit. Examples are “driveability 
[rating 0-10, high is good]”, “steering effort [deg/s, low is good]” and “ride comfort [m/s2, low is 
good]”.   

2.9.2.1 Driver Modelling 
As in all modelling, it is important to model, or select model, after what the model should be used for. 
Driver modelling for “verification of vehicle functions” and for implementation in “driving automa-
tion functions” are similar in that they should react on the vehicle’s environment, but there are also 
differences. Driver models for verification of vehicle functions should be as human-like as possible. 
They should also judge feedback to driver, such as assessing steering effort. Driver models for use in 
driving automation functions should also be human-like to facilitate cooperation between human and 
automated driving, such as hand-over/take-back or simultaneous control. However, there are also rea-
sons to not mimic all aspects from a human driver, such as the human’s inability to watch in several 
directions simultaneously.  

A categorization of modelling concept is whether the model uses equations that reflect the biological 
processes human’s perception, cognition and neuro-muscular or equations from a vehicle model. The 
first concept (exemplified in 2.9.2.3.3) would rather use angle to obstacle as opposed to distance to ob-
stacle, since humans rather see angles than distances. The latter concept (exemplified in 2.9.2.2.1) as-
sumes that driver has adapted to the specific vehicle and (subconsciously) operates the vehicle in a 
good way; a kind of inverse model thinking. Overall, both concepts can reflect approximately the same 
driving, but they are differently parameterized; typically, in biological parameters and vehicle parame-
ters, respectively. 

Driver can be modelled in 2 parts: Strategic and Operative. A division in Longitudinal and Lateral is 
also relevant. One can think of different ways of arranging these dimensions on each other; one possi-
ble way is shown in Figure text. 

Strategic 
Longitudinal

Strategic 
Lateral

Operative
Longitudinal

Operative
Lateral

Pedals, 
ForwardOrReverse, 
CruiseButtons

SteeringWheel

Requested longitudinal motion 
of subject vehicle, e.g.    𝑅𝑒 

Longitudinal motion relative 
to other road users/obstacles 

and to road grades and 
curves, road unevennesses, 

lane widths, legal speed, ...

Lateral motion relative to 
other road users/obstacles 

and to road edges.

Actual longitudinal 
motion of subject vehicle

Actual lateral motion 
of subject vehicle.

Requested lateral motion of 
subject vehicle, e.g.    𝑅𝑒 

Driver

 
Figure 2-84: One possible arrangement of Strategic vs Operative and Longitudinal and Lateral. 

 



LONGITUDINAL DYNAMICS 

129 

3 LONGITUDINAL DYNAMICS 
3.1 Introduction 
The primary purpose of a vehicle is transportation, which requires longitudinal dynamics. The chapter 
is organised with one group of functions in each section as follows: 

• 3.2 Steady State Function 
• 3.3 Functions Over (Long)  
• 3.4 Functions in (Short) Events 
• 3.5 Control Functions  

3.1.1 References for This Chapter  
• 2.4 Propulsion System and “Chapter 23. Driveline” in Ref (Ploechl, 2013) 
• 2.5 (Wheel) Braking System “Chapter 24. Brake System Dynamics” in Ref (Ploechl, 2013) 
• “Chapter 27 Basics of Longitudinal and Lateral Vehicle Dynamics” in Ref (Ploechl, 2013) 
• “Chapter 6: Adaptive Cruise Control” in Ref (Rajamani, 2012) 

3.2 Steady State Functions 
Functions as top speed and grade-ability are relevant without defining a certain time period. For such 
functions, it is suitable to observe the vehicle in steady state, i.e. independent of time. Those functions 
are therefore called steady state functions, in this compendium. The main subsystems that influences 
here are the propulsion system, see 2.4, and the (Friction) Brake system, see 2.5. 

3.2.1 Traction Diagram 
The force generated in the prime mover is transmitted through a mechanical transmission to the 
wheel which then generates the propulsive forces in the contact patch between tyre and road. In an 
electric in-wheel motor, the transmission can be as simple as a single-step gear. In a conventional vehi-
cle, it is a stepped transmission with several gear ratios (i.e. a gearbox). Then, the drivetrain can be 
drawn as in Figure 3-1. The torque and rotational speed of the engine is transformed into force and 
velocity curves via the mechanical drivetrain and driven wheel. The result is a Traction diagram. The 
transformation follows the following formula, if losses are neglected: 

 = 𝑟 𝑡 𝑜 ∙
𝑇

𝑊 𝑒𝑒𝑙    𝑢𝑠
;      𝑛      = 𝑊 𝑒𝑒𝑙    𝑢𝑠 ∙

 

𝑟 𝑡 𝑜
; [3.1] 

𝝎

𝑻

Traction Diagram

𝝎 𝒓𝒂𝒕𝒊𝒐⁄

𝒓𝒂𝒕𝒊𝒐  𝑻
𝝎

𝑻
𝝎 𝒓𝒂𝒕𝒊𝒐⁄

𝒓𝒂𝒕𝒊𝒐  𝑻

𝒗 =
𝒓𝒂𝒅𝒊𝒖𝒔

𝒓𝒂𝒕𝒊𝒐
 𝝎

𝑭 =
𝒓𝒂𝒕𝒊𝒐

𝒓𝒂𝒅𝒊𝒖𝒔
 𝑻

𝒗

𝑭

prime mover

transmission

driven wheel

(vehicle) body

𝒗

𝑭
Multiply torque by 

𝒓𝒂𝒕𝒊𝒐

𝒓𝒂𝒅𝒊𝒖𝒔

Multiply rotational speed by 
𝒓𝒂𝒅𝒊𝒖𝒔

𝒓𝒂𝒕𝒊𝒐
𝝎

𝑻

prime mover characteristics:

 
Figure 3-1: Construction of Traction Diagram. 
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A traction diagram for a truck is given in Figure 3-2, which also shows that there will be one curve for 
each gear. 

lowest gear

highest gear

 
Figure 3-2: Example of engine map and corresponding traction diagram map from a truck. (D13C540 is an 

I6 diesel engine of 12.8-litre and 540 hp for heavy trucks.) 

Losses in transmission can be included by loss models for transmission, such as: 

 = 𝜂𝑇 ∙ 𝑟 𝑡 𝑜 ∙
𝑇

𝑟   𝑢𝑠
;    𝑒𝑟𝑒 𝜂𝑇 ≤ 1; 

 = 𝜂𝜔 ∙ 𝑟   𝑢𝑠 ∙
 

𝑟 𝑡 𝑜
;    𝑒𝑟𝑒 𝜂𝜔 ≤ 1; 

  𝑒𝑟𝑒    𝜂𝑇 ∙ 𝜂𝜔 = 𝜂𝑡 𝑡𝑎𝑙 =
 𝑣𝑒ℎ𝑖 𝑙𝑒
 𝑒𝑛𝑔𝑖𝑛𝑒

=
 ∙  

𝑇 ∙  
≤ 1; 

[3.2] 

This will move the curves in the first quadrant downwards due to ηT < 1 and to the left due to 𝜂𝜔 < 1. 
Tyre rolling friction is a torque loss mechanism, which on its own yields 𝜂𝜔 = 1 and ηT < 1. Tyre lon-
gitudinal slip is a speed loss mechanism, which on its own yields 𝜂𝜔 < 1 and ηT = 1. See 2.2.1.6. The 
multiplication with 𝜂 is only demonstrative and should be seen more generic: in many cases the losses 
are additional instead of multiplicative, e.g. for rolling resistance:  = 𝑟 𝑡 𝑜  (𝑇 − 𝛥𝑇) 𝑟   𝑢𝑠⁄ =
𝑟 𝑡 𝑜  (𝑇 − 𝑓    ) 𝑟   𝑢𝑠⁄ ;. Which wheels’    to use is discussed in 3.2.2. 

A traction diagram is a kind of “one degree of freedom graphical model”. The traction diagram is on 
complete vehicle level, so the force axis represents the sum of forces from all wheels. This can include 
more than one propulsion system and also brakes. 

3.2.2 Power and Energy Losses 
There are power losses  𝑙    (and energy losses  𝑙   = ∫ 𝑙     𝑡) which causes an energy consump-
tion    𝑛  for a transport operation. If the operation starts and stops at same speed (often zero) and 
same altitude,    𝑛 =  𝑙   . And  𝑙   = ∑ 𝑙   𝑖 = ∑(∫ 𝑙     𝑡) = ∫(∑ 𝑙   𝑖)   𝑡 = ∫ 𝑙     𝑡 
where   denotes different losses. One can count the energy consumption per distance   𝐷 =
   𝑛 𝑥⁄ = (∫ 𝑙     𝑡) ∫    𝑡⁄  [𝐽  ⁄ = 𝑁  ⁄ = 𝑁]. The   𝐷 can be seen as a time-averaged re-
sistance force, summed over all “parts”, ∀ , where there are losses. If the operation has same character 
(hilliness, speed, etc) lover a long distance, ∑  𝐷𝑖 →   𝐷 when 𝑥 →   and  𝑡 →  . See also 3.3.4.1. 

3.2.2.1 Driving Resistance Force 
Some losses can be identified as true forces, visible directly in a free body diagram, i.e. we don’t need 
to go via a “Energy loss per distance,   𝐷”. Such are forces from gravity due to road grade and aerody-
namic resistance. 

Another way to approach this is to study Figure 3-2 and extrapolate that a very low transmission ratio, 
i.e., a very high gear, we would enable infinite speed, which of course is not realistic. This is because 
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“driving resistance force” is missing in Figure 3-2. Such force can be added to traction diagram as a 
curve that typically increases with speed. The top speed is found as the intersection between propul-
sion curve and driving resistance force curve, see Figure 3-3. 

One part of the driving resistance force comes from driving uphill: the grade or gravitational load on 
the vehicle. This is negative when driving down-hill. There is also aerodynamic driving resistance 
force, see Eq [2.63]. Grade and aero-dynamic resistance are (vehicle) body forces. 

Also rolling resistance is, often, counted as a resistance force. However, it is not a body force, but in-
stead it acts as a torque on the wheel, not a longitudinal force, on each wheel  :  𝑖 = 𝑇𝑖 − 𝑓   𝑖 ;. But 
for a non-driven wheel, the rotational equilibrium of the wheel leads to a small negative longitudinal 
force in tyre-to-road contact. So, rolling resistance can be included in traction diagram in either the 
“supply” or resistance curve. If one want to use the traction diagram to show the friction limit where a 
wheel start to spin,  𝑖 >    𝑖  as in 3.2.6, it can be suitable to include rolling resistance in supply 
curve for that wheel, but in the resistance curve for the other wheels. In the following, rolling re-
sistance is represented as a torque on driven wheels (which lowers the supply curve) and a longitudi-
nal force on non-driven wheels (which lifts the resistance curve). The traction diagram can then also 
host a curve for friction limit for spinning driven wheels, as in Figure 3-8. 

Available for acceleration:      𝑣 −   𝑒 

  

Supplied (from propulsion system): 
     𝑣 = 𝑇 − 𝑓       𝑣    ;

Note: The rolling resistance on driven axle is 
included in the transformation from the prime 
mover to      𝑣. But the rolling resistance on 
non-driven axle leads to a force,    𝑙𝑙 𝑛 𝑛  𝑣, in 

the diagram.

−  𝑦
(downhill positive, 

after ISO8855)

road grade resistance:  𝑔 𝑎 𝑒 =
    sin −  𝑦 ;

rolling resistance, drv: 
   𝑙𝑙 𝑛 𝑛  𝑣 = 𝑓     𝑛 𝑛  𝑣;

Driving resistance:   𝑒 =
=  𝑔 𝑎 𝑒 +    𝑙𝑙 𝑛 𝑛  𝑣 +  𝑎𝑖 ;

   

topspeed

air resistance: 
 𝑎𝑖 = 0.5  𝜌  𝐴       

2;

Traction diagram

  

 
Figure 3-3: Traction diagram. Head wind speed,   𝑖𝑛   , is assumed to be zero. See also Figure 3-8. 

  𝑒 =    𝑙𝑙 + ∙  ∙ sin(− 𝑦) +
1

2
∙   ∙ 𝜌 ∙ 𝐴 ∙ (  −   𝑖𝑛   )

2
; 

   𝑙𝑙 = ∑ 𝑓    ℎ𝑒𝑒𝑙  
non-dri en wheels

; 

 𝑓  𝑙𝑙   𝑒𝑒𝑙𝑠  𝑟𝑒 𝑢𝑛 𝑟  𝑒𝑛:    𝑙𝑙 = 𝑓 ∙  ∙  ∙ cos( 𝑦) ; 

[3.3] 

As seen in Figure 3-3, the supply and resistance curves are drawn in same diagram. The resulting in-
tersection identifies the top speed of the vehicle. This is a stable point in the diagram, so the vehicle 
condition at top speed is for steady state (no acceleration). 

Figure 3-3 also shows that the acceleration can be identified as a vertical measure in the traction dia-
gram, divided by the mass. However, one should be careful when using the traction diagram for more 
than steady state driving. We will come back to acceleration performance later, after introducing the 
two effects “Load transfer” and “Rotating inertia effect”. 

3.2.2.2 Losses due to Longitudinal Tyre Slip 
Consider a vehicle with 𝑁 ≥ 3 wheels. Assume a certain vehicle speed    and a certain desired propul-
sion force   = ∑ (𝑇𝑖   ⁄ )𝑖= ..𝑁 . Also assume that wheel torques 𝑇𝑖 can be distributed according to 𝑁 −
1 equations, e.g. 𝑇 = 𝑇2; 𝑇 = 𝑇4 = 0; for a conventional front axle driven 4 wheeled car. Also assume 
same longitudinal stiffness coefficient 𝐶𝐶  on all wheels and that out-of-road-plane equilibria and sus-
pension equations defines the vertical forces    . .  𝑁 . The, the power loss due to longitudinal tyre slip 
can be calculated as: 



LONGITUDINAL DYNAMICS 

 132  

 𝑙   = ∑ (𝑇𝑖  (   𝑖 −   ))

𝑖= :𝑁

= ∑ (𝑇𝑖  𝑠𝑖  |   𝑖|)

𝑖= :𝑁

= ∑ (
 𝑖 
 
 
 𝑖 
𝐶𝑖 

 |   𝑖|)

𝑖= :𝑁

=

=
1

 
 ∑ (

 𝑖 
2

𝐶𝐶𝑖   𝑖 
 |   𝑖|)

𝑖= :𝑁

≈
  

  𝐶𝐶𝑖 
 ∑

 𝑖 
2

 𝑖 
𝑖= :𝑁

; 

An example with a fore-aft-symmetric 2-axle vehicle, propelled on one axle gives: 

 𝑙   ≈
  

  𝐶𝐶𝑖 
 (

02

   2⁄
+

  
2

   2⁄
) =

2       
2

  𝐶𝐶𝑖     
; 

The same vehicle, but propelled equally much on both axles gives:  

 𝑙   ≈
  

  𝐶𝐶𝑖 
 (
(  2⁄ )2

   2⁄
+
(  2⁄ )2

   2⁄
) =

     
2

  𝐶𝐶𝑖     
; 

So, twice as much energy is lost due to longitudinal tyre slip if propelling on 1 instead of 2 axles. 

When negative wheel torque, one can brake with friction brakes and then there is no energy loss. How-
ever, if braking with electric propulsion, the loss can be negative, meaning that energy is regenerated 
to electric energy storage. If braking so much with electric propulsion that wheel rotates rearwards, 
there would again be an energy loss,  𝑙   = 𝑇𝑖   𝑖 = 𝑛𝑒  𝑡  𝑒  𝑛𝑒  𝑡  𝑒 > 0. 

3.2.2.3 Losses due to Lateral Tyre Slip 
(This section might require some studying of Chapter 4 for full understanding.) 

There are more driving-resistance effects than covered in Equation [3.3]. One example is that none-
Ackermann steering geometry (toe or parallel steering on an axle, or two non-steered axles). 

Another effect, which appears also for Ackermann steering geometry, is that power is lost due to lat-
eral axle slip. Now, we use the same simple model as in Figure 4-18, but additionally use  𝑦 =     ⁄ ; 

and define power losses  𝑙    as sliding velocity counterdirected to force:  

 𝑙   = −  𝑦    𝑦 −   𝑦    𝑦 = −  𝑦  𝑠 𝑦    −   𝑦  𝑠 𝑦    ;.  

We also define a Cornering Resistance Coefficient, 𝐶 𝐶: 

𝐶 𝐶 =
 𝑙     ⁄

    
=
   𝑦

2

 
 ((

𝑙𝑓

 
)
2

 
1

𝐶𝑟
+ (

𝑙𝑟

 
)
2

 
1

𝐶𝑓
) ≈

1

𝐶𝐶 
 (
 𝑦

 
)
2

; [3.4] 

𝐶 𝐶 is such that the additional propulsion force due to cornering is ≈ 𝐶 𝐶      or the additional 
power is ≈ 𝐶 𝐶        . During a transport operation, the cornering in each time instant is typi-
cally described by two variables, e.g. (    𝑝), but only the combined scalar measure  𝑦 =   

2  𝑝⁄  influ-

ences 𝐶 𝐶. Hence, we can plot the following graph: 

𝐶
 
𝐶

 
Figure 3-4: Left: Cornering Resistance Coefficient. Right: Required steer angle.  

Vehicle data:   = 1500 𝑘 ;   = 3; 𝑙 = 1.25; 𝐶 = 60 [𝑘𝑁 1]; 𝐶 = 80 [𝑘𝑁 1]. 
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Notes: 
• The model used above is not advanced enough to differ between which axle is driven. For such 

purpose, one would need e.g. the model in Figure 4-15. 
• Normal driving is often below 2 or 3  𝑠2⁄ , so the coefficient typically stays below 0.01. So, the 

influence on energy consumption, during such “maximum normal” negotiation of corners, is 
still of the same magnitude as rolling resistance coefficient   𝐶 ≈ 0.005. .0.010. 

• For ideally tracking axles, see 2.2.6, 𝐶 →   and 𝐶 →  , which gives that 𝑓 𝑅 → 0 and conse-

quently no power loss and no required propulsion force. Therefore, high cornering stiffness is 
fuel efficient when cornering. 

• When driving extreme cornering, such as driving as fast as possible in a circle on a test-track, 
one will experience that the top speed is much lower than driving straight ahead. That is NOT 
explained by [3.4]. It would require inclusion of a combined tyre slip model. 

3.2.3 Functions After Start 
Figure 3-5 shows how the functions can be found in a traction diagram. 

3.2.3.1 Top Speed * 
Function definition: Top speed is the maximum longitudinal forward speed the vehicle can reach and maintain 
on level and rigid ground without head-wind. 

Top speed is the speed where the sum of all driving resistance terms is equal to the available propul-
sion forces. 

3.2.3.2 Grade-ability * 
Function definition: Grade-ability is the maximum grade that a vehicle is capable to maintain the forward mo-
tion on an uphill road at a certain constant speed, at a certain road friction level and with a certain load. (from 
Reference (Kati, 2013)) 

For vehicles with high installed propulsion power per weight, the road friction can be limiting, but this 
is not visualised in Figure 3-5. Since the speeds are higher than for start-ability, the air resistance can-
not be neglected. 

L
o

n
g

it
u

d
in

a
l

fo
rc

e
, F

x

Speed,  
0

0

  𝑒 for 
varying 
road grades

(Grade-ability here limited by 
propulsion, not road friction)

   2

Road slope of this curve 
( 𝑟  𝑒2) is the Grade-
ability for speed  2

Road slope of this curve 
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Figure 3-5: How Top speed, Grade-ability and Down grade holding capability is read-out from Traction 
diagram. 

3.2.3.3 Down-grade Holding Capability * 
Function definition: Down-grade holding capability is defined as the maximum down-grade in which the 
vehicle with certain weight is able to maintain a certain speed without using friction brakes.  
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The function is typically of interest for heavy trucks and certain typical certain weight and certain 
speed is payload corresponding to maximum allowed weight and 80 km/h downhill. 

The function is defined assuming there are clear friction brakes and other brakes, where the other 
brakes are typically engine brake and retarders. For newer vehicle concepts having electric propul-
sion, also regenerative braking via reversed electric propulsion motors can be discussed to be allowed. 
However, because sometimes the energy storage will be full so that regenerative braking cannot be 
applied. Also, a small energy storage will have a limited downhill length, which might call for also pre-
scribing a certain downhill distance. 

3.2.4 Starting with Slipping Clutch 
As seen in previous traction diagrams, there is no available positive propulsion force at zero speed. 
This means that the diagram can still not explain how we can start a vehicle from stand-still. 

The concepts in Figure 3-1 were used to create the force-velocity diagram in  

Figure 3-6. It shows the smooth curve of a Continuously Variable (ratio) Transmission (CVT) in com-
parison to the stepped transmission. The CVT is the ideal situation for the engine since it can always 
let the engine work at a maximum power or minimum fuel consumption (minimum for the momen-
tarily required power). If the CVT has unlimited high ratio, it can actually have a non-zero propulsion 
force at zero vehicle speed. Without losses, this force would be infinite, but in reality, it is limited, but 
still positive, so the vehicle can start from stand-still. 

A stepped transmission, as well as a CVT with limited ratio range, instead needs a clutch to enable 
starting from vehicle stand-still. This is shown in Figure 3-6. The highest force level on each curve can 
be reached at all lower vehicle speeds, because the clutch can slip. It requires the clutch to be engaged 
carefully to the torque level just below the maximum the engine can produce. In traditional automatic 
transmissions, the slipping clutch is replaced with a hydrodynamic torque converter, to enable start 
from stand-still. 

ICE on continuously variable ratio
(can keep power at maximum ICE power, 𝑇 =   𝑎   )

ICE on lowest gear (highest ratio)

ICE on highest gear (lowest ratio)
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(start from v=0 is not possible)

0
0

 
Figure 3-6: Force/Speed Curves for a Multiple Gear Transmission and for CVT. 

3.2.5 Steady State Vertical Force Distribution be-
tween Axles 

The vehicle performance discussed previously does not rely on knowing the distribution of (vertical) 
load between the axles. To be able to introduce limitations due to road friction, this distribution must 
be known. Hence, we set up the free-body diagram in Figure 3-7. 
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m*g

  𝑦

 
Figure 3-7: Free Body Diagram for steady state vehicle. With ISO coordinate system, the road gradient is 

positive when downhill. (Rolling resistance force on non-driven axles is included in   .) 

From the free-body diagram we can set up the equilibrium equations as follows and derive the formula 
for load on front and rear axle: 

Moment equilibrium, around rear contact with ground ():  
 ∙  ∙ (𝑙 ∙ cos(  𝑦) +  ∙ sin(  𝑦)) −  𝑎𝑖 ∙  𝑎𝑖 −    ∙ (𝑙 + 𝑙 ) = 0;⇒ 

⇒    =  ∙  ∙
𝑙 ∙ cos(  𝑦) +  ∙ sin(  𝑦)

𝑙 + 𝑙 
−  𝑎𝑖 ∙

 𝑎𝑖 
𝑙 + 𝑙 

 

Moment equilibrium, around front contact with ground ():  
   ∙ (𝑙 + 𝑙 ) −  ∙  ∙ (𝑙 ∙ cos(  𝑦) −  ∙ sin(  𝑦)) −  𝑎𝑖 ∙  𝑎𝑖 = 0;⇒ 

⇒    =  ∙  ∙
𝑙 ∙ cos(  𝑦) −  ∙ sin(  𝑦)

𝑙 + 𝑙 
+  𝑎𝑖 ∙

 𝑎𝑖 
𝑙 + 𝑙 

 

[3.5] 

For most vehicles and reasonable gradients, one can neglect  ∙ sin(  𝑦) since it is ≪ |𝑙 ∙ cos(  𝑦)| ≈

|𝑙 ∙ cos(  𝑦)|. 

3.2.6 Friction Limit 
With a high-powered propulsion system, there is a limitation to how much the vehicle can be pro-
pelled, due to the road friction limit. It is the normal load and coefficient of friction, which limits this. 
For a vehicle which is driven only on one axle, it is only the normal load on the driven axle,      𝑖𝑣𝑒𝑛, 
that is the limiting factor: 

  = min(   𝑃  𝑝𝑆𝑦 𝑡  ;   ∙      𝑖𝑣𝑒𝑛) [3.6] 

One realises, from Figure 2-15, that the rolling resistance on the driven axle works as a torque loss and 
that the road friction limitation will be limiting 𝑇𝑒𝑛𝑔 ∙ 𝑟 𝑡 𝑜 − 𝑒 ∙      𝑖𝑣𝑒𝑛 rather than limiting 𝑇𝑒𝑛𝑔 ∙

𝑟 𝑡 𝑜. Expressed using the rolling resistance coefficient, 𝑓  𝑙𝑙, gives: 

  = min(   𝑃  𝑝𝑆𝑦 𝑡  ;   ∙      𝑖𝑣𝑒𝑛) = min (
𝑇𝑒𝑛𝑔 ∙ 𝑟 𝑡 𝑜

𝑟   𝑢𝑠
− 𝑓  𝑙𝑙 ∙      𝑖𝑣𝑒𝑛 ;   ∙      𝑖𝑣𝑒𝑛) [3.7] 

This is shown in the traction diagram in Figure 3-8, where it should also be noted that the rolling re-
sistance curve only consists of the rolling resistance on the non-driven axles. See also Figure 2-15. 

3.2.7 Start Functions 
3.2.7.1 Start-ability * 

Function definition: Start-ability is the maximum grade that a vehicle is capable to start in and maintain the 
forward motion at a certain road friction level and a certain load. (Reference (Kati, 2013)) 
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   𝑃  𝑝𝑆𝑦 𝑡 =
𝑇𝑒𝑛𝑔  𝑟 𝑡 𝑜 − 𝑒       𝑖𝑣𝑒𝑛

𝑟   𝑢𝑠
=

=
𝑇𝑒𝑛𝑔  𝑟 𝑡 𝑜

𝑟   𝑢𝑠
− 𝑓  𝑙𝑙       𝑖𝑣𝑒𝑛
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Figure 3-8: Traction diagram with Road Friction limitation and Driving Resistance curves. 

Figure 3-9 shows how we find the start-ability in the traction diagram. There are two phenomena that 
can limit start-ability: propulsion system or road friction. Also, in each case, we can theoretically reach 
somewhat higher start-ability by allowing clutch or tyre to slip. However, in practice the start-ability 
has to require “forward motion without significant slip in clutch or tyre”, because there will be a lot of 
wear and heat in the slipping clutch or tyre. Hence, the lower curves in Figure 3-9 are used. The reduc-
tion is however very small, since the resistance curves does not change very much in this speed inter-
val (the resistance curves in the figure have exaggerated slope; the air resistance can typically be ne-
glected for start-ability). 

However, the energy loss (heat, wear) in clutch and tyre should be limited also during the starting 
sequence. This can limit the start-ability more severely than the slope of the resistance curves, but it 
cannot be shown in the traction diagram, since it is limited by energy losses in clutch or tyre, which is a 
time integral of 𝑇 ∙   𝑙 𝑡 ℎ and 𝑇 ℎ𝑒𝑒𝑙 ∙   ℎ𝑒𝑒𝑙. There can also be quite other limitations of start-ability, 
such as deliberately limited engine torque at low gears, to save drive shafts. 
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Figure 3-9: How Start-ability is read-out from Traction diagram. 

3.2.7.2 Towing Capacity * 
Function definition: Towing capacity is the maximum vehicle-external longitudinal force the vehicle can have 
on its body and start and maintain a certain forward speed at a certain road friction and a certain up-hill gradient. 

The driving situation for defining towing capacity is similar to the one for defining grade-ability. Tow-
ing capacity describes how much load the vehicle can tow,    in Figure 3-10, on a certain up-hill gradi-
ent. Since towing a load is more relevant as part of a longer transport mission, it is normally also for a 
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particular constant speed, typically in range 80 to 100 km/h. Since the speed is that large, the air re-
sistance may not be neglected. It is also important consider air resistance of the trailer and that axle 
loads can change, which changes both friction limitation and rolling resistance. A free-body diagram is 
shown in Figure 3-10. It is noticeable, that there can also be an additional air resistance of the trailer 
which will influence in a test of Towing capacity. 

For pure off-road vehicles and agriculture tractors, the term “towing” can mean the maximum pulling 
force at very low forward speeds at level ground. This is related but different to the above described 
towing capacity for road vehicles. 

m*g

  𝑦

mt*g

 
Figure 3-10: Towing Loads. The towing vehicle is front axle driven. 

3.3 Functions Over (Long) Cycles 
Functions as fuel or energy consumption and emissions are relevant only over longer periods of driv-
ing, typically some minutes to hours of driving. A collective name for this kind of driving can be cycles. 
There are different ways of defining such cycles.  

3.3.1 Description Formats of Vehicle Operation 
This section is about how to describe “all except the vehicle”, e.g. road, traffic, driver and payload. The 
overall idea is to model the vehicle operation as independent of the vehicle, so that different vehicles, or 
different designs or configurations of a certain vehicle, can be compared in a fair way. 

3.3.1.1 (Traditional) Driving Cycles 
One way to model vehicle operation is a so-called driving cycle; where the relevant variables are pre-
scribed as function of time. At least on defines speed as a function of time. Examples of commonly used 
driving cycles are given in Figure 3-11 to Figure 3-12. In addition, it can also be relevant to give road 
inclination as function of time. Engine temperature and selected gear as functions of time may also be 
defined. For hybrid vehicles, the possibility to regenerate energy via electric machines is limited in 
curves, so curvature radius can also be prescribed as function of time. For heavy vehicles, the weight of 
transported goods can be another important measure to prescribe. 

FTP and HFTP are examples of cycles derived from logging actual driving, mainly used in North Amer-
ica. NEDC is an example of a “synthetically compiled” cycle, mainly used in Europe. Worldwide harmo-
nized Light duty driving Test Cycle (WLTC) is a work with intention to be used world-wide, see Figure 
3-14. WLTC exists in different variants for differently powered vehicle [power/weight]. 
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80 km/h

 
Figure 3-11: New European Driving Cycle (NEDC). From (Boerboom, 2012) 

20 min

80 km/h

Federal Test Procedure (FTP) Driving Trace

 
Figure 3-12: FTP cycle from http://www.epa.gov/oms/regs/ld-hwy/ftp-rev/ftp-tech.pdf 

3.3.1.2 Driving Pattern 
A driving cycle can be condensed into a Driving pattern, i.e. a 2-dimensional function of speed and ac-
celeration, as shown in Figure 3-15. Note that the chronological order is no longer represented in such 
representation; it is not a dynamic model. Figure 3-15 shows simply a scatter plot of time-sampled 
combinations of speed and acceleration. Using the same diagram axis, such information can also be 
shown as durations (in seconds or fractions of total time or frequency). A Driving pattern can only be 
combined with a steady state model of the vehicle, such as “fuel consumption=function(speed, accelera-
tion)”, as opposed to a dynamic model of the vehicle. The Driving pattern itself includes the driver, so 
no driver model is needed. 

10 min

80 km/h

 
Figure 3-13: HFTP cycle from http://www.epa.gov/nvfel/methods/hwfetdds.gif 

http://www.epa.gov/oms/regs/ld-hwy/ftp-rev/ftp-tech.pdf
http://www.epa.gov/nvfel/methods/hwfetdds.gif
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Figure 3-14: WLTC cycle from http://www.unece.org. 

 
Figure 3-15: FTP cycle converted to a Driving pattern, i.e. a distribution of operating duration in speed and 

acceleration domain. From http://www.epa.gov/oms/regs/ld-hwy/ftp-rev/ftp-tech.pdf.  

Driving patterns can use more than 2 dimensions, such as [speed, acceleration, road gradient]. In prin-
ciple, they can also use less than 2 dimensions, maybe only [speed]. The (steady state) vehicle model 
has to reflect the corresponding dimensions. 

3.3.1.3 Operating Cycle 
A vehicle independent description uses legal speed rather than actual speed, and it varies with posi-
tion along the route, 𝑠, rather than time. Also other parameters, like road grade, weight of transported 
goods etc. are defined in position rather than time. For stops along the route, the stop duration or de-
parture time then has to be separately defined. This leads to a more realistic description (model) of the 
vehicle usage, here called Operating cycle. Important is that an Operating cycle becomes vehicle inde-
pendent, so that different vehicles or different vehicle configurations can be fairly compared. See 
(Pettersson, 2017). 

Simulation with an Operating cycle requires some kind of driver model. A consequence is that different 
driver models will give different results, e.g., different fuel consumption due to different driver pre-
ferred acceleration. Hence, the driver model itself can be seen as a part of the vehicle usage definition. 

3.3.2 Rotating Inertia Influence on Acceleration 
In Figure 3-3 it was shown that the acceleration cannot be found directly as a force difference (dis-
tance between curves) divided by vehicle mass. This is because the Traction Diagram does not contain 

http://www.epa.gov/oms/regs/ld-hwy/ftp-rev/ftp-tech.pdf
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any dynamics, and dynamics are more complicated than accelerating the vehicle mass. The phenome-
non that occurs is referred to here as “Rotating Inertia Influence on Acceleration”. If no velocity losses, 
the rotating part of the propulsion system, e.g. engine and wheels, must be synchronically accelerated 
with the vehicle mass. This “steals” some of the power from the propulsion system. This affects the re-
quired propulsion force when following accelerations in a driving cycle. 

Consider a wheel rolling which is ideally rolling (no slip), with a free-body diagram and notations as in 
Figure 3-16. Setting up 2 equilibrium equations and 1 compatibility equation gives Eq [3.8]. 

  

   𝐽 

𝑇
 

  

     

 
Figure 3-16: Rolling wheel 

  ∙    =   ; 
𝐽 ∙   = 𝑇 −   ∙   ; 
  =   ∙  ⇒    =   ∙   ; 

[3.8] 

Eliminate   and    gives: 

(  + 𝐽   
2⁄ ) ∙    = 𝑇   ⁄ ;    or 

𝑘    ∙    = 𝑇   ⁄ ;      𝑒𝑟𝑒   𝑘    =   + 𝐽   
2⁄ ; 

[3.9] 

Note that we can keep   and   :  =     ⁄ ; and   = 𝑇 (𝑘    )⁄ ;. 

So, the rotating inertia makes the mass    appear a factor 𝑘 larger and the reaction force    (ex-
pressed in 𝑇) correspondingly lower. We call the factor 𝑘 the “rotational inertia coefficient”. 

A vehicle with total mass   will appear to have larger mass due to inertias in the propulsion system. 
There are rotational inertias at two places: before transmission, i.e. rotating with same speed as en-
gine: 𝐽𝑒 and after transmission, i.e. rotating with same speed as the wheel: 𝐽 . The appearant mass, 𝑘 ∙
 , will be dependent on the main transmission ratio 𝑟 as well: 

𝑘 ∙  ∙    =    ∗ = 𝑇𝑒  
𝑟

  
;         𝑒𝑟𝑒 𝑘 ∙  =  +

𝐽 
  
2
+
𝐽𝑒 ∙ 𝑟

2

  
2

; [3.10] 

Typically for a passenger car with traditional ICE propulsion, 𝑘 = 1.3. .1.4 in the first gear and 𝑘 = 1.1 
in the highest gear (𝐽𝑒 ≈ 0.2 [𝑘   2] 𝑟 ≈  4  4 = 16   = 0.3 [ ]). So, the phenomena is significant! 
Typically for electrical propulsion of  same vehicle, 𝐽 is smaller and there are fewer gears, so 𝑘 is lower 
for low speed and higher for high speed. 

When the clutch is slipping, there is no constraint between engine speed and vehicle, so the term with 
𝐽𝑒 disappears from Equation [3.10]. If the wheel spins, both terms 𝐽𝑒 and 𝐽  disappear. 

We can now learn how to determine acceleration from the Traction Diagram, see Figure 3-17. 
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• 𝑘 = rotating inertia coefficient on gear 1, 
without engine intertia and without 
wheel inertia, since slipping tyre, i.e. 
𝑘 =1

• 𝑘2= rotating inertia coefficient on gear 1, 

• 𝑘 = rotating inertia coefficient on gear 2, 
without engine intertia, since slipping 
clutch

• 𝑘4= rotating inertia coefficient on gear 2

 
Figure 3-17: Acceleration in Traction Diagram. Rotating inertia effects are shown assuming that the engine 

is run on its maximum curve and the gear (or slipping clutch) for highest acceleration is selected. 
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It should be noted that, if tyre slip is modelled, the effect of rotating inertia is regarded without using 
the 𝑘 factor above. That is, if the mathematical model in [3.11] is used instead of [3.8]. Eq [3.11] gives 
an explicit form model with two states [   ] and it becomes increasingly computational demanding 
the larger 𝐶  is. (Similar decoupling between inertias 𝐽𝑒 and 𝐽  happens if torque converter or elastic 
driveshafts are modelled between engine inertia and wheel.)  

 ∙   =   ; 
𝐽 ∙   = 𝑇 −   ∙   ; 

  = 𝐶  𝑠 ;      𝑒𝑟𝑒   𝑠 =
    −   
|    |

; 
[3.11] 

3.3.3 Four Quadrant Traction Diagram 
When the driving cycle shows a deceleration, which is larger than can be achieved with resistance 
force, we need to brake with a combination of engine braking and friction brakes. If only friction brak-
ing is used, it can be with engaged or disengaged clutch. That influences the rotating inertia coefficient 
by using or not using the 𝐽𝑒 term in Equation [3.10], respectively. The traction diagram can be ex-
tended to also cover engine braking and friction braking. However, the friction brake system is seldom 
limiting factor for how negative the longitudinal force can be. But the road friction is, see Figure 3-18. 

Marks upper and lower limits between 
which operating points can be found 
using propulsion and friction brake 
systems, including slipping clutch and 
spinning driven axle.

Speed,   

Propulsion force, Fx

Gear 1

Gear 2

Braking friction limit, −     

Propulsion friction limit, 
+       𝑖𝑣𝑒𝑛 ≈ +     2⁄ ;

Reverse gear

Braking friction limit, +     

Propulsion friction limit, 
−       𝑖𝑣𝑒𝑛 ≈ −     2⁄ ;

 
Figure 3-18: Traction Diagram in 4 quadrants. One of two axles is assumed driven, which limits propulsion 

to ≈half of braking friction limit. Up-hill slope is assumed, which is seen as asymmetric resistance. 

3.3.4 Functions Over Cycles 
3.3.4.1 Energy Consumption * 

Function definition: Energy (or Fuel) Consumption is the amount of energy [𝐽] (or fuel [𝑘 ] or 
[𝑙 𝑡𝑟𝑒]) consumed by the vehicle per performed transportation amount. Transportation amount can e.g. be meas-

ured in km, 𝑘  𝑝𝑒𝑟𝑠𝑜𝑛  𝑘  𝑡𝑜𝑛  𝑘    or    𝑘 . The vehicle operation has to be defined, e.g. with a 
certain driving cycle (speed as function of time or position), including road gradient, cargo load, road surface condi-
tions, etc. 

The consumption arises in the prime mover, see Figure 2-63 and Figure 2-64, but as a cycle measure it 
is dependent of the overall vehicle operation. 
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Driving cycles are used for legislation and rating for passenger cars. For commercial vehicles, the legis-
lation has been for the engine alone, and not for the whole vehicle. CO2-rating for commercial vehicles 
is newly introduced, see http://ec.europa.eu/clima/events/docs/0096/vecto_en.pdf.  

1.1.1.1 Assessing Energy Consumption and Other Cycle 
Measures 

The measures of all functions mentioned in 3.3.4 can be assessed in some sort of driving cycle/opera-
tion cycle computation. Such computations are described in the following, as exemplified by only one 
measure, the Energy Consumption.  

How to predict the consumption for a vehicle during a certain driving cycle is rather straight-forward 
using what has been presented earlier in this chapter. Since a driving cycle is a prediction of how the 
vehicle is moving, it actually stipulates the acceleration of a mass, which calls for an “inverse dynamic 
analysis”. In such one assumes that the driving cycle is met exactly, which means that both required 
wheel speed and required wheel torque can be calculated for each time instant. Then, via a propulsion 
and brake system model, the corresponding fuel consumption in the engine can also be found for each 
time instant. A summary of such an inverse dynamic algorithm for prediction of fuel or energy con-
sumption is given in Equation [3.12]. 

For each time step in the driving cycle: 

• Calculate operating point for vehicle (speed and acceleration) from 

driving cycle. Acceleration is found as slope of v(t) curve. Other quan-

tities, such as road slope, also needs to be identified; 

• Select gear (and clutch state, tyre spin, friction brake state, etc) to 

obtain this operating point. Select also friction brake, especially for 

operating points which can be reached using only friction brake. If the 

vehicle has an energy buffer, regenerative braking is also an option; 

• Calculate required actuation from propulsion system on the driven wheel, 

i.e. rotational speed and shaft torque; 

• Calculate backwards through propulsion system, from wheel to prime mo-

tor. It gives the operating point for prime mover (rotational speed and 

torque); 

• Read prime mover consumption [in kg/s or W=J/s, not specific consump-

tion, not efficiency] from prime mover consumption map; 

• Sum up consumption [in kg or J] with earlier time steps, e.g. using the 

Euler forward integration method: AccumulatedConsumption =  

AccumulatedConsumption + Consumption*TimeStepLength; 

end; 

[3.12] 

The final accumulated consumption [in kg or J] is often divided by the total covered distance in the 
driving cycle, which gives a value in kg/km or J/km. If the fuel is liquid, it is also convenient to divide 
by fuel density, to give a value in litre/(100*km). It can also be seen as a measure in  2, which is the 
area of the “fuel pipe” which the vehicle “consumes” on the way. 

For hybrid vehicles (with energy buffers) the same driving cycle can be performed (same  (𝑡)) but 
ending with different level of energy in the buffer. Also, the level when starting the driving cycle can be 
different. This makes it unfair to compare energy consumption only as fuel consumption, one should 
rather weight it to energy cost, € 𝑘  or €/(ton km). 

3.3.4.1.1 Forward and Backward Simulation 

We should note that the calculation scheme in Equation [3.12] does not always guarantee a solution. 
An obvious example is if the driving cycle prescribes such high accelerations at such high speeds that 
the propulsion system is not enough, i.e. we end up outside maximum torque curve in engine diagram. 
This is often the case with “inverse dynamic analysis”, i.e. when acceleration of inertial bodies is pre-
scribed, and the required force is calculated. An alternative is to do a dynamic analysis, which means 
that a driver model calculates the pedals in order to follow the driving cycle speed approximately, but 
not exactly. Inverse dynamic analysis is often more computational efficient, but limits what can phe-
nomena that can be modelled in the propulsion and brake system. The computational benefit is espe-
cially large if state variables can be omitted, which is often the case but not always. Inverse dynamics 

http://ec.europa.eu/clima/events/docs/0096/vecto_en.pdf
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and dynamic simulations are sometimes referred to as backward and forward simulation, respectively; 
see Reference (Wipke, o.a., 1999). 

3.3.4.1.2 Stepped, CVT and Energy Buffering Main Transmissions 

For a given driving cycle   (𝑡) there is a certain [     ] for each time instant. For different types of 
main transmissions, one can select operating point [𝑇𝑒   𝑒] in prime mover diagram differently, see 
Figure 3-19. 

𝑇𝑒

gear 1

gear 2 (=optimal stepped 
transmission gear)

gear 3

 𝑒

  

  
   𝑦 𝑙𝑒

   𝑦 𝑙𝑒

optimal ratio 
(reachable 
with CVT)

optimal point (with 
energy buffer, one can 
operate intermittent here)

optimal curve for varying 
     (reachable with CVT)

 
Figure 3-19: Conceptual difference between Stepped, Continuously Variable and Energy Buffering 
transmission. Operating intermittent would only follow the driving cycle with same average speed.  

1.1.1.2 Transport time * 

Function definition: Transport Time is the time [𝑠] or [ ] for the vehicle to perform a certain transportation 
mission. Transportation mission can e.g. be defined in terms of distance, payload, road topography, etc. 

Transport Time is often in conflict with Energy Consumption. Either, one have independent require-
ments (constraints), but one can also formulate the total transport cost and minimize it, e.g.: 𝐶𝑜𝑠𝑡 =
 𝑛𝑒𝑟  𝐶𝑜𝑠𝑡[€ 𝐽⁄ ]   𝑛𝑒𝑟  𝐶𝑜𝑛𝑠𝑢 𝑝𝑡 𝑜𝑛[𝐽] + 𝑇  𝑒𝐶𝑜𝑠𝑡[€  ⁄ ]  𝑇𝑟 𝑛𝑠𝑝𝑜𝑟𝑡𝑇  𝑒[ ];. (That cost model 
is for exemplification and very simplified. Important other costs are investment and maintenance.) 

For commercial freight traffic, 𝑇  𝑒𝐶𝑜𝑠𝑡 is mainly the driver salary, so it can be quantified. For person 
transport, especially private travels, it is much more difficult to motivate a number. One can typically 
find studies which uses around≈ 120 𝑆 𝐾  ⁄ ≈ 12 €   for private travels in Sweden.  

3.3.4.2 Emissions * 
Function definition: As Energy consumption but amount of certain substance instead of amount of energy. 

There are emission maps where different emission substances (NOx, HC, etc.) per time or per pro-
duced energy can be read out for a given speed and torque. This is conceptually the same as reading 
out specific fuel consumption or efficiency from maps like in Figure 2-63 and Figure 2-64. A resulting 
value can be found in mass of the emitted substance per driven distance. 

Noise is also sometimes referred to as emissions. It is not relevant to integrate noise over the time for 
the driving cycle, but maximum or mean values can have relevance. Noise emissions are very periph-
eral to vehicle dynamics. 

3.3.4.3 Tyre Wear * 
Function definition: Tyre wear is the worn-out tyre tread depth on a vehicle per performed transportation 
amount. Transportation amount can be measured as for Energy consumption. Tyre wear as a vehicle function has 
to consider all tyres on the vehicle, e.g. as maximum over the wheels (assuming that all tyres are changed when one 
is worn out) or average (assuming that single tyres are exchanged when worn out). 

There are models for tyre wear (e.g. outputting “worn tread depth per time”), see Equation [2.52]. For 
a certain driving cycle, we can integrate the 𝑊𝑒 𝑟  𝑡𝑒 [in mass/s or mm tread depth/s], over time 
similar to energy consumption rate, which becomes worn material [in mass or mm tread depth]. The 
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wear rate per wheel is a function of the total slip, so it can include both longitudinal slip (propulsion 
and brake) and lateral slip (from cornering and toe angles). 

Generally, the worn material will be different for different axles, or wheels, so a tyre change strategy 
might be necessary to assume to transform the worn material on several axles into one cost. The cost 
will depend on whether one renews all tyres on the vehicle at once or if one change per axle. The tyre 
wear is a cost which typically sums up with energy cost and cost of transport time (e.g. driver salary, 
for commercial vehicles). 

3.3.4.4 Range * 
Function definition: Range [km] is the inverted value of Energy consumption [kg/km, litre/km or J/km], and 
multiplied with fuel tank size [kg or litre] or energy storage size [J]. 

The range is how far the vehicle can be driven without refilling the energy storage, i.e. filling up fuel 
tank or charging the batteries from the grid. This is in principle dependent on how the vehicle is used, 
so the driving cycle influences the range. In principle, the same prediction method as for energy con-
sumption and substance emissions can be used. In the case of predicting range, you have to integrate 
speed to distance, so that you in will know the travelled distance. 

3.3.4.5 Acceleration Reserve * 
Function definition: Acceleration reserve is the additional acceleration the vehicle will achieve within a certain 
time (typically 0.1..1 s) without manual gear-shifting by pressing accelerator pedal fully, when driving in a certain 
speed on level ground without head-wind. For vehicles with automatic transmissions or CVTs the certain time set 
can allow automatic gear-shift (or ratio-change) or not. The reserve can also be measured in propulsion force. 

In general terms, the lowest consumption is found in high gears. However, the vehicle will then tend to 
have a very small reserve in acceleration. It will, in practice, make the vehicle less comfortable and less 
safe to drive in real traffic, because one will have to change to a lower gear to achieve a certain higher 
acceleration. The gear shift gives a time delay.  

Figure 3-20 shows one way of defining a momentary acceleration reserve. The reserve becomes gener-
ally larger the lower gear one selects. A characteristic of electric propulsion systems is that an electric 
motor can be run at higher torque for a short time than stationary, see Figure 2-62. On the other hand, 
the stationary acceleration reserve is less gear dependent, since an electric motor can work at certain 
power levels in large portions of its operating range. 

One can calculate the acceleration reserve at each time instant over a driving cycle. However, integra-
tion of acceleration reserve, as we did with fuel, emissions and wear, makes less sense. Instead, a mean 
value of acceleration reserve tells something about the vehicle’s driveability. Minimum or maximum 
values can also be useful measures. 

Acceleration reserve was above described as limited by gear shift strategy. Other factors can be limit-
ing, such as energy buffer state of charge for parallel hybrid vehicles or how much overload an electric 
machine can take short term, see right part of Figure 3-20. 
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Figure 3-20: Acceleration reserves for different gears. Large dots mark assumed operating points.  
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3.3.5 Load Transfer with Rigid Suspension 
Longitudinal load transfer redistributes vertical force from one axle to the other. The off-loaded axle 
can limit the traction and braking. This is because the propulsion and brake systems are normally de-
signed such that axle torques cannot always be ideally distributed.  

For functions over longer events it is often reasonable to consider the suspension as rigid. We start 
with the free-body diagram in Figure 3-21, which includes acceleration,   . 

   

x

z

y

  𝑦

 
Figure 3-21: Free Body Diagram for accelerating vehicle. Rolling resistance in     and    . 

Note that the free-body diagram and the following derivation is very similar to the derivation of Equa-
tion [3.5], but we now include the fictive force  ∙   . 

Moment equilibrium, around rear contact with ground:  
−   ∙  +  ∙  ∙ (𝑙 ∙  𝑜𝑠(  𝑦) +  ∙ 𝑠 𝑛(  𝑦)) −  𝑎𝑖 ∙  𝑎𝑖 − ∙   ∙  = 0;⇒ 

          ⇒    =  ∙ ( ∙
𝑙 ∙  𝑜𝑠(  𝑦) +  ∙ 𝑠 𝑛(  𝑦)

 
−   ∙

 

 
) −  𝑎𝑖 ∙

 𝑎𝑖 
 

; 

Moment equilibrium, around front contact with ground:  
+   ∙  −  ∙  ∙ (𝑙 ∙  𝑜𝑠(  𝑦) −  ∙ 𝑠 𝑛(  𝑦)) −  𝑎𝑖 ∙  𝑎𝑖 − ∙   ∙  = 0;⇒ 

          ⇒    =  ∙ ( ∙
𝑙 ∙  𝑜𝑠(  𝑦) −  ∙ 𝑠 𝑛(  𝑦)

 
+   ∙

 

 
) +  𝑎𝑖 ∙

 𝑎𝑖 
 

; 

[3.13] 

These equations confirm what we know from experience, the front axle is off-loaded under accelera-
tion with the load shifting to the rear axle. The opposite occurs under braking.  

The load shift has an effect on the tyre’s grip. If one considers the combined slip conditions of the tyre 
(presented in Chapter 2), a locked braking wheel limits the amount of lateral tyre forces. The same is 
true for a spinning wheel. This is an important problem for braking as the rear wheels become off-
loaded. This can cause locking of the rear wheels if the brake pressures are not adjusted appropriately. 
See more in 3.4.4. 

3.3.5.1 Varying Road Pitch 
The model in 3.4.4..3.4.5.2 assumes flat but not level road, i.e.   𝑦 is constant. An example where 

  𝑦 varies is when passing a crest or a sag, see Figure 3-22. If negotiating a curve at the same time as a 

crest, a vehicle can lose vertical force under tyres so that lateral grip is affected. 

Moment equilibrium, around rear and front wheel contact with ground gives: 
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   =  ∙ (( +  ″    
2) ∙

𝑙 ∙ cos( ) + h ∙ sin( )

 
−   ∙

 

L
) −  𝑎𝑖 ∙

 𝑎𝑖 
L

; 

   =  ∙ (( +  ″    
2) ∙

𝑙 ∙ cos( ) − h ∙ sin( )

 
+   ∙

 

 
) +  𝑎𝑖 ∙

 𝑎𝑖 
 

; 

[3.14] 

Assuming that we have the road as  (𝑠), then  = −arctan (
  

  
) ≈ −

  

  
; and  ″ =

 2 

  2
;.  

Note that this model is assuming that vertical variations of road are larger than wheel base and track 
width and same on left and right side of the road/vehicle. Else the variation would be called road une-
venness, which will be more treated in Chapter 5.  

If models with body vertical and pitch motion and suspension springs, such as in 3.4.5 and 3.4.5.2 it is 
often suitable to express the vertical fictive force,    ̈  with     𝑦 instead of    ″    

2. The fictive 

force downwards will then be −    
2  𝜅𝑦 = −      𝑦  instead. This can be understood from basic 

geometry,  ″ ≈ −𝜅𝑦, where 𝜅𝑦 is the road pitch curvature [1 𝑙𝑒𝑛 𝑡 ⁄ ], see Figure 3-22.  

crest sag

 
  

 
  ̈  𝑦

• The variable s is the distance along the road.
• Road gradient versus inertial coordinate 

system,   𝑦 ≈ − ′, is a function of s

•where  ′ =
  

  
; is a function of s.

• Vertical acceleration in inertial coordinate 
system,  ̈ ≈      

2;, 

•where   =
 2 

  2
; is a function of s.

s

s  𝑦 = − ′ s  𝑦 = − ′

 

 𝑦

 
Figure 3-22: Free Body Diagram for driving over non-flat vertical road profile. 

3.3.6 Acceleration 
Acceleration performance like, typically, 0-100 km/h over 5..10 s, will be addressed in this section. 
These accelerations are relatively steady state (vehicle pitch and heave are relatively constant), so the 
suspension compliance is not considered.  

Accelerations will also be covered in 3.4, as being shorter events. The vehicle pitch and heave vary 
more and, consequently, the suspension compliance becomes important to model. This modelling is 
also more suited for braking, which typically involve suspension more than propulsion. 

3.3.6.1 Acceleration Performance * 
Function definition: Acceleration performance is the time needed to, with fully applied accelerator pedal, 
increase speed from a certain speed to another certain higher speed, at certain road friction on level ground without 
head-wind and certain load. 

3.3.6.2 Solution using Integration over Time 
A front-wheel-drive passenger car with a stepped gearbox should accelerate from 0 to 100 km/h. A 
Matlab code is given in Equation [3.15], which simulates the acceleration uphill from stand-still, using 
simple numerical integration. The code calculates the possible acceleration in each of the gears, and 
one mode with slipping clutch. In each time step it selects that which gives the highest acceleration. 
The numerical data and results are not given in the code, but some diagrams are shown in Figure 3-23. 
The code is not fully documented, only using equations so far presented in this compendium. 
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dt=0.1; t_vec=[0:dt:10]; vx_vec(1)=0;  

for i=1:length(t_vec) 
    vx=vx_vec(i); 
    Fres=m*g*sin(p)+froll*m*g*cos(p)+0.5*roh*A*cd*vx*vx; 
     
    %if gear 1 (clutch engaged) 
    ratio=ratios(1); 
    we=vx*ratio/radius; 
    Te=interp1(Engine_w,Engine_T,we); 
    Fx=Te*ratio/radius; 
    ax=(Fx-Fres)/(m+(Jw+Je*(ratio^2))/(radius^2)); 
    Ffz=m*(g*lr/L-ax*h/L); 
    if Fx>mu*Ffz 
        Fx=mu*Ffz; 
        ax=(Fx-Fres)/m; 
    end 
    ax1=ax; 
     
    %if gear 2 (clutch engaged) 
    ratio=ratios(2); 

    … then similar as for gear 1 
    ax2=ax; 
     
    %if gear 3 (clutch engaged) 
    ratio=ratios(3); 
    … then similar as for gears 1 and 2 
    ax3=ax; 
     
    %if clutch slipping on gear 2 
    ratio=ratios(2); 
    wc=vx*ratio/radius; %speed of output side of clutch 
    Te=max(Engine_T); 
    we=Engine_w(find(Engine_T>=Te)); %engine runs on speed where max torque 
    Fx=Te*ratio/radius; 
    ax=(Fx-Fres)/(m+Jw/(radius^2)); 
    Ffz=m*(g*lr/L-ax*h/L); 
    if Fx>mu*Ffz 
        Fx=mu*Ffz; 

        ax=(Fx-Fres)/m; 
    end 
    if wc>we %if vehicle side (wc) runs too fast, we cannot slip on clutch  
        ax=-inf; 
    end 
    ax0=ax; 
     
    [ax,gear_vec(i)]=max([ax0,ax1,ax2,ax3]);  vx_vec(i+1)=vx+ax*dt; 
end 

[3.15] 

Phenomena that are missing in this model example are: 

• Gear shifts are assumed to take place instantly, without any duration 
• The option to use slipping clutch on 1st and 3rd gear is not included in model 
• The tyre slip is only considered as a limitation at a strict force level, but the partial slip is not 

considered for simplification. The code line “we=vx*ratio/radius;” is hence not fully cor-
rect. Including the slip, the engine would run at somewhat higher speeds, leading to that it 
would lose its torque earlier, leading to worse acceleration performance.  

• Load transfer is assumed to take place instantly quick; delays due to Suspension compliance, as 
described in 3.3, are not included. 

3.3.6.3 Solution using Integration over Speed 
An alternative way to find the relation between   and 𝑡 is to separate the differential equation: 

 ∙   =  ∙
   
 𝑡

=   (  ) −   𝑒 (  );⇒
 ∙    

  (  ) −   𝑒 (  )
=  𝑡 ⇒ 

⇒ ∫
 ∙    

  (  ) −   𝑒 (  )

𝑣𝑥   𝑑

0

= ∫  𝑡

𝑡  𝑑

0

⇒     𝑡𝑒𝑛 =  ∫
 ∙    

  (  ) −   𝑒 (  )

𝑣𝑥   𝑑 

0

; 

[3.16] 
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The time 𝑡𝑒𝑛  is calculated through integration over speed, as opposed to integration over time. If sim-
ple mathematic functions are used to describe   (  ) and   𝑒 (  ) the solution can be on closed form. 
However, but integration over time is more general and works for more advanced models. 
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Figure 3-23: Example of simulation of acceleration, using the code in Equation [3.15]. 

3.4 Functions in (Short) Events 
This section targets models and methods to define and verify functions in a certain and shorter time 
frame, typically 0.5 to 5 seconds. It can be both acceleration and deceleration. (Friction) Brake system 
and phenomena as load transfer then becomes important, why these are presented early. But first, 
some typical driving manoeuvres are presented. 

3.4.1 Typical Test Manoeuvres 
When applying the longitudinal actuator systems (propulsion system and brake system) there are a 
couple of different situations which are typical to consider: 

• Straight line maximum braking from, typically 100 km/h to stand-still for passenger cars.  
• Braking in curve with significant lateral acceleration, see References (ISO, 2006) and (ISO, 

2011). 
• Straight line acceleration, typically 0 to 100 km/h and 80-100 km/h.  
• Accelerating in curve with significant lateral acceleration. 

For these four main situations, one can also vary other, typically:  
• At high road friction and at low friction, often called “hi-mu” and “lo-mu” 
• At different road friction left and right, often called “split-mu” 
• At sudden changes in road friction, called “step-mu” or “step-up” and “step-down” when going 

to higher and lower friction, respectively.  
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• At high speed, typically 200 km/h, for verifying lateral stability 
• At different up-hill/down-hill gradients 
• At different road banking (slope left to right) 

A propelled or braked wheel or axle develops a longitudinal force,   , counter-acting the rotation.    is 
limited by the road friction: |  | 𝑎 =  ∙   ;. (not |  | 𝑎 =  ∙   − 𝑓 ∙   , see Figure 2-15). 

Braking Coefficient = −    ⁄ , is a property defined for an axle or a single wheel. It can be seen as the 
utilized friction coefficient,   𝑡𝑖𝑙 = brake force/normal load. The   𝑡𝑖𝑙 should not be mixed up with 
(available) friction coefficient,  ; the relation between them is   𝑡𝑖𝑙 ≤  . 

3.4.2 Deceleration Performance 
There are some different functions that measures braking performance or deceleration performance. 

3.4.2.1 Braking Efficiency * 
Function definition: Braking Efficiency is the ratio of vehicle deceleration and the best brake-utilized axle (or 
wheel), while a certain application level of the brake pedal at a certain speed straight ahead, at certain road friction 
on level ground without head-wind and certain load at a certain position in the vehicle. 

In equation form, the Braking Efficiency becomes = (−   ⁄ ) ( max
∀𝑎 𝑙𝑒 

(  𝑡𝑖𝑙))⁄ ;. If Braking Efficiency = 1 

= 100%, the distribution of braking is optimal. 

3.4.2.2 Braking Distance * 
Function definition: Braking Distance is the distance travelled during braking with fully applied brake pedal 
from a certain speed straight ahead to another certain lower speed, at certain road friction on level ground without 
head-wind and certain load at a certain position in the vehicle. 

For passenger cars one typically brakes fully from 100 km/h and then the braking distance is typically 
around 40 m (average   = −9.65  𝑠2⁄ ). For a truck it is typically longer, 51..55 m (−7.5. . −7  𝑠2⁄ ). 

3.4.2.3 Stopping Distance * 
Function definition: Stopping Distance is the distance travelled from that an obstacle becomes visible to driver 
have taken the vehicle to stand-still. Certain conditions, as for Braking Distance, have to be specified, but also a 
certain traffic scenario and a certain driver to be well defined. 

Stopping Distance is the braking distance + the “thinking/reaction distance”, which depends on the 
speed and the reaction time. The reaction time of a driver is typically 0.5..2 seconds. 

3.4.3 Pedal Functions 
3.4.3.1 Pedal Response * 

Function definition: Accelerator pedal response is how vehicle acceleration varies with accelerator pedal po-
sition, for a certain vehicle speed and possibly certain gear, on level ground without pressing the brake pedal. 

Function definition: Brake pedal response is how vehicle deceleration varies with brake pedal force, for a cer-
tain vehicle speed, on level ground without pressing the accelerator pedal. 

These functions, together with the functions in 3.4.3.2, enable the driver to operate the vehicle longitu-
dinally with precision and in an intuitive and consequent way. The requirements based on above func-
tion definitions, are typically that the translation of pedal position (or force) to vehicle acceleration (or 
deceleration) should be consistent, progressive and oscillation-free. 

For accelerator pedal steps, there should be enough acceleration, but also absence of “shunt and shuf-
fle” (driveline oscillations). When accelerator pedal is suddenly lifted off, there shall be certain decel-
eration levels, depending on vehicle speed and gear selected. 
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3.4.3.2 Pedal Feel * 
Function definition: Accelerator pedal feel is the pedal’s force response to pedal position. 

Function definition: Brake pedal feel is the pedal’s position response to pedal force. 

These functions, together with the functions in 3.4.3, enable the driver to operate the vehicle longitudi-
nally with precision and in an intuitive and consequent way. 

3.4.4 Brake Proportioning  
For brake performance it is important that both axles are used as much as possible during braking. But 
one also should consider that, in most driving situations, it is preferred that the front wheels lock first, 
because: 

• A vehicle with locked front wheels (  = 0) tends to be yaw stable. However, steering ability 

is lost, so vehicle continues straight, incapable of curving its path. 
• A vehicle with locked rear wheels (  = 0) tends to be yaw unstable. It turns around and 

ends up sliding with the rear first.  

Hence, there are trade-offs when designing the wheel torque distribution. Same reasoning works for 
propulsion, if “locked“ is replaced by “spin”, meaning large positive longitudinal tyre slip. Spin at front 
makes vehicle more yaw stable than spin rear. The yaw stability then has a trade-off with acceleration 
performance. 

Wheel torques is influenced simultaneously by both propulsion system and (friction) brake system, 
especially if regenerative braking with electric propulsion system. So, coordination of brake and pro-
pulsion systems might be needed. 

The basic function of a brake system is that brake pressure (hydraulic on passenger cars and pneu-
matic on trucks) is activated so that it applies brake pads towards brake discs or drums. In a first ap-
proximation, the pressure is distributed with a certain fraction on each axle. For passenger cars this is 
typically 60..70% of axle torque front. In heavy trucks, the proportioning varies a lot, e.g. 90% for a 
solo tractor and 30% for heavy off-road construction rigid truck. The intention is to utilize road fric-
tion in proportion to the normal load, but not brake too much rear to avoid yaw instability. 

If neglecting air resistance and road grade in Eq [3.13], the vertical axle loads can be calculated as 
function of deceleration (−  ). An ideal brake distribution would be if each axle always utilize same 

fraction of available friction: 
 𝑓𝑥

 𝑓∙ 𝑓𝑧
=

 𝑟𝑥

 𝑟∙ 𝑟𝑧
   ⇒    {

𝐴𝑠𝑠𝑢 𝑒 
  =   ;

}    ⇒    
 𝑓𝑥

 𝑟𝑥
=

 𝑓𝑧

 𝑟𝑧
   ⇒    
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or:       ⁄ =
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  𝑔 𝐿
   ;   and        ⁄ =

𝑙𝑓

𝐿
+

ℎ

  𝑔 𝐿
   ; 

[3.17] 

If including non-zero  𝑎𝑖  and non-zero (but small)   𝑦:      ⁄ = 𝑙  ⁄ −   ∙  ( ∙    )⁄ +  𝑎𝑖 ∙
( −  𝑎𝑖 ) ( ∙    )⁄ ;   and        ⁄ = 𝑙  ⁄ +   ∙  ( ∙    )⁄ −  𝑎𝑖 ∙ ( −  𝑎𝑖 ) ( ∙    )⁄ ;. Air re-

sistance  𝑎𝑖  and road gradient   𝑦, of course, influences so that we need to adjust    to reach a certain 

  . However, road gradient does not influence the distribution of longitudinal tyre force be-
tween axles and air resistance only if  ≠  𝑎𝑖 . 

Eq [3.17] is plotted for variation in centre of gravity height and longitudinal position in Figure 3-24.  
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Figure 3-24: Brake Proportioning diagram. The curved curves mark optimal distribution for some variation 
in position of centre of gravity. 

The proportioning is done by selecting pressure areas for brake calipers, so the base proportioning 
will be a straight line, marked as “Hydrostatic brake proportioning”. For passenger cars, one typically 
designs this so that front axle locks first for friction below 0.8 for lightest vehicle load and worst vari-
ant. For heavier braking than 0.8   , or higher (or front-biased) centre of gravity, rear axle will lock 
first, if only designing with hydrostatic proportioning. 

To avoid rear axle lock-up, one restricts the brake pressure to the rear axle. This is done by pressure 
limiting valve, brake pads with pressure dependent friction coefficient or Electronic Brake Distribu-
tion (EBD). In principle, it bends down the straight line as shown in Figure 3-24. With pressure de-
pendent values one gets a piece-wise linear curve, while pressure dependent friction coefficient gives 
a continuously curved curve. EBD is an active control using same mechatronic actuation as ABS. EBD is 
the design used in today’s passenger cars, since it comes with ABS, which is now a legal requirement 
on most markets. 

On heavy vehicles with EBS (Electronic Brake System) and vertical axle load sensing, the brake pres-
sure for each axle can be tailored. For modest braking (corresponding to deceleration ≤ 2  𝑠2⁄ ) all 
axles are braked with same brake torque, to equal the brake pad wear which is importance for vehicle 
maintenance. When braking more, the brake pressure is distributed more in proportion to each axle’s 
vertical load. 

3.4.5 Heave and Pitch 
So far, in 3.3.5 and 3.4.4, we modelled transfer of vertical forces between axles, but neither heave and 
pitch motion nor displacement. This will be added in 3.4.5. In 3.4.5.1, the load transfer is steady state 
and the linkage “trivial”. In 3.4.5.2, the load transfer is transient and the linkage “non-trivial”. 

3.4.5.1 Steady State Load Transfer and Trivial Linkage 
Additional to that the axle vertical loads change due to acceleration   , there are also change in out-of-
road-plane motion (heave and pitch). In the following section, we study constant acceleration, e.g. 
when mild braking for a long time. We propose the steady state model in Figure 3-26. The model dif-
fers between the “unsprung mass” (wheels and the part of the suspension that does not heave) and the 
“sprung mass” or “body” (parts that heaves and pitches as one rigid body). The wheels are assumed to 
be linked to the body through “trivial linkage” as in Figure 2-54. 



LONGITUDINAL DYNAMICS 

 152  

ECE regulation 
limits to this region

Ideal curve

[data from BMW 320i E46]

 
Figure 3-25: Brake Proportioning. From (Boerboom, 2012). If looking carefully, the “HydroStatic” curve is 

weakly degressive, thanks to brake pad material with pressure dependent friction coefficient. 

Suspension model with “trivial suspension”
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static stand-still position. 
   =    = 0 means that road is smooth.

    

Quasi steady-state assumed, so that longitudinal 
acceleration (  ) may be non-zero, but vertical 
and pitch acceleration are zero.

  

    

 

𝑙 𝑙 

 

 
Figure 3-26: Model for steady state heave and pitch due to longitudinal wheel forces. 

There is no damping included in model, because their forces would be zero, since there is no displace-
ment velocity, due to the steady-state assumption. As constitutive equations for the compliances 
(springs) we assume that displacements are measured from a static condition and that the compli-
ances are linear. The road is assumed to be smooth, i.e.    =    = 0. 

   =    0 +   ∙ (   −   );       𝑛          =    0 +   ∙ (   −   );  

  𝑒𝑟𝑒    0 +    0 =  ∙  ;     𝑛       0 ∙ 𝑙 −    0 ∙ 𝑙 = 0; 
[3.18] 

We see already in free-body diagram that     and     always act together, so we rename    +    =

   , where w refers to wheel. The assumption of “trivial linkage” explains how longitudinal forces are 
transferred between wheels and body. Equilibrium then gives: 
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− 𝑎𝑖 − ∙   +    = 0; 
 ∙  −    −    = 0; 

   ∙ 𝑙 −    ∙ 𝑙 −    ∙  −  𝑎𝑖 ∙ ( 𝑎𝑖 −  ) = 0; 
[3.19] 

Compatibility, to introduce body displacements,   and 𝑝𝑦, gives: 

  =  − 𝑙 ∙  𝑦;      𝑛       =  + 𝑙 ∙  𝑦; [3.20] 

Solving constitutive relations, equilibrium, compatibility using Matlab Symbolic toolbox gives: 
>> clear, syms zf zr Ffz Frz Ffz0 Frz0 ax z py 

>> sol=solve( ... 

    'Ffz=Ffz0-cf*zf', ... 

    'Frz=Frz0-cr*zr', ... 

    'Ffz0+Frz0=m*g', ... 

    'Ffz0*lf-Frz0*lr=0', ... 

    '-Fair-m*ax+Fxw=0', ... 

    'm*g-Ffz-Frz=0', ... 

    'Frz*lr-Ffz*lf-Fxw*h-Fair*(hair-h)=0', ... 

    'zf=z-lf*py', ... 

    'zr=z+lr*py', ... 

    zf, zr, Ffz, Frz, Ffz0, Frz0, ax, z, py); 

The solution is given in Eq [3.21]: 

  =
   −  𝑎𝑖 

 
; 

  = − 
  ∙ 𝑙 −   ∙ 𝑙 

  ∙   ∙  
2

∙ (   ∙  +  𝑎𝑖 ∙ ( 𝑎𝑖 −  )) 

𝑝𝑦  =  −
   +   

  ∙   ∙  
2
∙ (   ∙  +  𝑎𝑖 ∙ ( 𝑎𝑖 −  )) 

[3.21] 

In agreement with intuition and experience the body dives (positive pitch) when braking (negative 
   ). Further, the body centre of gravity is lowered (negative z) when braking and weaker suspension 
front than rear (  ∙ 𝑙 <   ∙ 𝑙 ), which is normally the chosen design for cars. 

The air resistance force is brought into the equation. It can be noted that for a certain deceleration, 
there will be different heave and pitch depending on how much of the decelerating force that comes 
from air resistance and from longitudinal wheel forces. But, as already noted, heave and pitch does not 
depend on how wheel longitudinal force is distributed between the axles. 

3.4.5.2 Transient Load Transfer and Non-Trivial Linkage 
Compared to 3.4.5.1, we will now model also the transients of load transfer. If we study longer events 
when the wheel force is applied and then kept constant for a longer time (1-5 s), it is often a good 
enough model. But if the wheel forces vary more, we need to capture the transients better. Then it is 
important to consider that the linkage can transfer some of the wheel longitudinal forces. When study-
ing the transients, it is also relevant to consider the damping. 

There are basically two modelling ways to include the suspension linkage in the load transfer: through 
a pitch centre or through a pivot point for each axle, see Figure 3-27. 

3.4.5.2.1 Model with Pitch Centre 

This model will not be deeply presented in this compendium. It has drawbacks in that it has only one 
suspended degree of freedom. Also, it does not take the distribution of longitudinal wheel forces be-
tween the axles into account. These short-comings is not very important for studying dive and squat, 
but they are essential when studying rapid individual wheel torque changes in time frames of 0.1 s, 
such as studying ABS or traction control. So, since the model with axle pivot points is more generally 
useful and not much more computational demanding (and probably easier intuitively), that model is 
prioritized in this compendium.  



LONGITUDINAL DYNAMICS 

 154  

vz

vxwx

h
-
h
P
C

lf

Model with Axle Pivot PointsModel with pitch center

lPCf

h
-
h
P
C

lPCf lr

PC=Pitch Centre

PC

 
Figure 3-27: Models for including suspension effects in longitudinal load transfer 

3.4.5.2.2 Model with Axle Pivot Points 

Behold the free-body diagram in Figure 3-28. The road is assumed to be flat,    =     0. The force 

play in the rear axle is shown in more detail.     and     are reaction forces in the pivot point. The     
is the force in the elasticity, i.e. where potential spring energy is stored. The torque 𝑇   is the shaft 
torque, i.e. from the propulsion system. Both torque from propulsion and brake system contribute to 
   . But torque from friction brake 𝑇 𝑒𝑎    is not visible in free-body diagram, unless decomposed in 
suspension and wheel, as in the right-most part of Figure 3-28. This is because the friction braking ap-
pears as internal torque (or, depending on the brake design, probably forces) between brake pad and 
brake calliper. Any part of the longitudinal wheel force that is applied via reaction torque to unsprung 
parts will not add to shaft torque, such as an electric motor mounted on unsprung parts or propulsion 
via longitudinal propeller shaft to a final gear (as usual for rigid propelled axles).  

The term  𝑦     is easy to forget, but it does influence especially when    is large. The term can be ex-

plained as the other centripetal accelerations (giving centrifugal (fictive) forces) in 4.4.2.3. The term 
 𝑦     is generally much smaller. Both the terms appear due to that velocities and accelerations are 

expressed as components in the vehicle fix (and hence rotating) coordinate system. We could intro-
duce also velocities and accelerations in ground fix coordinate system, with subscripts differing be-

tween [  𝑣  𝑦𝑣] and [  𝑔  𝑦𝑔] and between [  𝑣  𝑦𝑣] and [  𝑔  𝑦𝑔], in a similar way shown in 

4.4.2.3.3 for yaw rotation where it is much more important to differ between vehicle and ground fix. 

We assume that displacements are measured from the forces    0 and    0, respectively, and that the 

compliances are linear. The total constitutive equations become: 

   =    0 +   ∙ (   −   );       𝑛          =    0 +   ∙ (   −   ); [3.22] 

Now, there are two ways of representing the dynamics in spring-mass systems: Either as second order 
differential equations in position or first order differential equations in velocity and force. We select 
the latter, because it is easier to select suitable initial values. Then we need the differentiated versions 
of the compliance’s constitutive equations: 

    = 0 +   ∙ (    −    ) = −  ∙    ;      𝑛         = 0 +   ∙ (    −    ) = −  ∙    ; [3.23] 
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Figure 3-28: Free-body diagram for model with Axle Pivot Points. (The model assumes drive shafts from 

propulsion system mounted on body. If rigid shaft with longitudinal propeller shaft, 𝑇  = 0.) 

The damper forces are denoted     and    . They will appear in the equilibrium equations quite simi-

lar to     and    . Note that the damping coefficients,    and   , are the effective ones, i.e. the ones de-

fined at the wheel contact point with ground, as opposed to the physical ones defined for the actual 
physical damper. C.f. effective stiffness in 3.4.5. 

   =   ∙ (    −    )  = −  ∙    ;      𝑛          =   ∙ (    −    ) = −  ∙    ; [3.24] 

Now, 3 equilibria for whole vehicle and one moment equilibria around pivot point for each axle gives:  

− ∙   +    +    = 0;   (  𝑡    =    − 𝑦    ≈    ; ) 

− ∙   − ∙  +    +    = 0;   (  𝑡    =    − 𝑦    ; ) 

−𝐽𝑦 ∙   𝑦 +    ∙ 𝑙 −    ∙ 𝑙 − (   +    ) ∙  = 0; 

(   −    −    ) ∙   −    ∙ 𝑒 + 𝑇  = 0; 

(   +    −    ) ∙   −    ∙ 𝑒 + 𝑇  = 0; 

[3.25] 

It can be noted that a “trivial suspension model” (as used in Eq [3.18] and see also Figure 2-54) falls 
out of the equations if we let   →   and   →  . With such trivial model, there is no difference if the 

vehicle is actuated with a   𝑖 via shaft torque 𝑇 𝑖 or via reaction to unsprung parts, 𝑇 𝑒𝑎  𝑖 . 

Compatibility, to connect to body displacements,   and  𝑦, gives: 

  =  − 𝑙 ∙  𝑦;      𝑛       =  + 𝑙 ∙  𝑦; 

   =   − 𝑙 ∙  𝑦;      𝑛        =   + 𝑙 ∙  𝑦; 

  =   ;     𝑛     𝑦 =  𝑦;  
[3.26] 

By combining constitutive relations, equilibrium and compatibility we can find explicit function so: 
• 𝑆𝑡 𝑡𝑒𝐷𝑒𝑟   𝑡  𝑒𝑠 =  𝑥𝑝𝑙   𝑡 𝑜𝑟  𝑢𝑛 𝑡 𝑜𝑛(𝑆𝑡 𝑡𝑒𝑠 𝐼𝑛𝑝𝑢𝑡𝑠); 
• 𝑆𝑡 𝑡𝑒𝑠 = [     𝑦         𝑦];  

• 𝑆𝑡 𝑡𝑒𝐷𝑒𝑟   𝑡  𝑒𝑠 = [        𝑦             𝑦]; 

• 𝐼𝑛𝑝𝑢𝑡𝑠 = [      𝑇  𝑇  ]; 

The ExplicitFormFunction can be integrated with well-established methods for numerical ODE. Such 
simulation of is shown in 3.4.8.1. Note that the model is linear. 

3.4.5.2.3 Additional Phenomena 

It is relevant to point out the following, which are not modelled in this compendium: 
• Stiffness and damping may be dependent of wheel (vertical) displacement and wheel steer 

angle. One way of inserting this in the model is to make the coefficients varying with spring 
force, which is a measure of how much compressed the suspension is. Here, non-linearity 
within spring working range, as well as bump stops, can be modelled. Also, position of pivot 
points (or pitch and roll centres) can be dependent of wheel displacement steer angle. 
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• Dampers are often deformation direction dependent, i.e. different damping coefficients are 
suitable to use for compression and rebound. Typical is 2..4 times softer (smaller d [N/(m/s)]) 
in compression than in rebound. 

3.4.6 Steady State Heave and Pitch, Non-Trivial 
Linkage  

If we study long term steady state for the model described in 3.4.5.2.2 we will find a steady state model 
comparable with the model in 3.4.5. So, Equations [3.22] to [3.26] are combined. We also neglect air 
resistance force for clarity of equations. Equation [3.22] becomes, in Matlab format: 

sol=solve( ... 
    F_sf==F_sf0-c_f*z_f, F_sr==F_sr0-c_r*z_r, ... 
    F_sf0+F_sr0==m*g,    F_sf0*l_f-F_sr0*l_r==0, ... 
    -m*a_x+F_fx+F_rx==0, ... 
    -m*0-m*g+F_fz+F_rz==0, ... 
    -J*0+F_rz*l_r-F_fz*l_f-(F_fx+F_rx )*h==0, ... 
    (F_rz-F_sr-0 )*g_r-F_rx*e_r+T_sr==0,   ... 
    (F_sf+0-F_fz )*g_f-F_fx*e_f+T_sf==0, ... 
    z_f==z-l_f*p_y, z_r==z+l_r*p_y, ... 
    F_sf0,F_sr0, F_fz, F_rz, z_f,z_r, a_x, F_sf,F_sr, z,p_y) 

  
%results: 
% ax = (F_xf + F_xr)/m 
% z  = -(Tsr*cf*gf*lf^2 - Tsf*cr*gr*lr^2 + Tsr*cf*gf*lf*lr –  

Tsf*cr*gr*lf*lr - Fxr*cf*er*gf*lf^2 + Fxf*cr*ef*gr*lr^2 + 

Fxf*cf*gf*gr*h*lf + Fxr*cf*gf*gr*h*lf - Fxf*cr*gf*gr*h*lr - 

Fxr*cr*gf*gr*h*lr - Fxr*cf*er*gf*lf*lr + 

Fxf*cr*ef*gr*lf*lr)/(cf*cr*gf*gr*(lf + lr)^2) 

% py = -(Tsr*cf*gf*lf + Tsr*cf*gf*lr + Tsf*cr*gr*lf +  

Tsf*cr*gr*lr + Fxf*cf*gf*gr*h + Fxr*cf*gf*gr*h + 

Fxf*cr*gf*gr*h + Fxr*cr*gf*gr*h - Fxr*cf*er*gf*lf - 

Fxf*cr*ef*gr*lf - Fxr*cf*er*gf*lr - 

Fxf*cr*ef*gr*lr)/(cf*cr*gf*gr*(lf + lr)^2) 

% F_fz = -(F_fx*h + F_rx*h - g*l_r*m)/(l_f + l_r) 

% F_rz =  (F_fx*h + F_rx*h + g*l_f*m)/(l_f + l_r)  

[3.27] 

The solution can be compared with corresponding solution in Equation [3.21]. The    is exactly the 
same. Then, a general reflection is that the displacement, z and py, in Equation [3.27] follows a com-
plex formula, but that they are dependent on how the    =    +     is applied: both dependent on 

distribution between axles and dependent on how much of the axle forces (    and    ) that are actu-

ated with shaft torques (𝑇   and 𝑇  , respectively). In Figure 3-29, dashed lines show the solutions 

from Equation [3.21]. 

3.4.7 Pitch Functions at Transient Wheel Torques 
3.4.7.1 Dive at Braking * 

Function definition: Dive at braking is pitch angle of the vehicle body when applying a step in deceleration re-
quest to a certain level. Either peak pitch or quasi-steady state pitch angle can be addressed.  

Now, study the suspension at front axle in Figure 3-28. When the axle is braked,     will be negative 

and push the axle rearwards, i.e. in under the body. The front of the vehicle will then be lifted as in pole 
jumping. This means that this design counter-acts the (transient) dive of the front. (Only the transient 
dive will be reduced, while the dive after a longer time of kept braking is dependent only on the stiff-
nesses according to Equation [3.21].) The design concept for front axle suspension to place the pivot 
point behind axle and above ground is therefore called “anti-dive”. 
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If the braking is applied without shaft torque 𝑇  , a good measure of the Anti-dive mechanism is 𝑒    . 

This is the normal way for braking, since both the action and reaction torque acts on the axle. For in-
board brakes, or braking via propulsion shaft, the reaction torque is not taken within the axle, but the 
reaction torque is taken by the vehicle body. The action torque 𝑇   then appears in the equilibrium 

equation for the axle, as shown in Equation [3.25]. If we neglect the wheel rotational dynamics for a 
while, we can insert 𝑇  =    ∙    in the equation with  𝑇   in Equation [3.25]: 

(   +    −    ) ∙   −    ∙ 𝑒 + 𝑇  = 0;  𝑡  𝑇  =    ∙   ;   ⇒ 

⇒ (   +    −    ) ∙   −    ∙ 𝑒 +    ∙   = 0;⇒ 

⇒ (   +    −    ) ∙   −    ∙ (𝑒 −   ) = 0; 

[3.28] 

We can then see that a good measure of the Anti-dive mechanism is (𝑒 −   )    instead. 

3.4.7.2 Squat at Propulsion * 
Function definition: Squat at propulsion is pitch angle of the vehicle body when applying a step in acceleration 
request to a certain level. Either peak pitch or quasi-steady state pitch angle can be addressed. 

Now, study the suspension at rear axle in Figure 3-28. When the axle is propelled,     will push the 
axle in under the body. This means that this design reduces the rear from squatting (transiently). The 
design concept for rear axle suspension to place the pivot point ahead of axle and above ground is 
therefore called “anti-squat”. 

3.4.7.3 Anti-dive and Anti-Squat Designs 
With Anti-dive front and Anti-squat rear, we avoid front lowering at braking and rear lowering at ac-
celeration, respectively. But how will the designs influence the parallel tendencies: that rear tend to lift 
at braking and front then to lift at propulsion? Well, they will luckily counteract also these: Braking at 
rear axle will stretch the rear axle rearwards and upwards relative to the body. When propelling the 
front axle, the propulsion force will stretch the front axle forwards and upwards relative to the body. 
(If one brakes at one axle and propels at the other, the reasoning is not valid. This mode can be desired 
for a hybrid vehicle with ICE on front axle and electric motor on rear axle, if one would like to charge 
batteries “via the road”.) 

In summary: Anti-dive and anti-squat refer to the front diving when braking and the rear squatting 
when acceleration. Anti-dive and anti-squat can be measured in fractions: Anti-dive for =𝑒     or =

(𝑒 −   )    and Anti-squat=𝑒     or = (𝑒 −   )   . Normal values are typically 0.05..0.15. 

3.4.8 Acceleration and Deceleration 
Acceleration performance like, typically, 0-100 km/h over 5..10 s, was addressed in 3.3.6. In present 
Section we address the similar functionality but include larger transients, such as when wheel longitu-
dinal wheel force is changed more rapidly, typically changing ±    2⁄  during 0.2-0.5 s. 

3.4.8.1 Deceleration Performance * 
Function definition: See 3.4.2.2. 

Deceleration performance can now be predicted, including the suspension mechanisms. It is a very im-
portant function, and every decimetre counts when measuring braking distance in standard tests like 
braking from 100 to 0 km/h. The active control of the brake torques (ABS function) is then very im-
portant, and this is so fast dynamics that the suspension mechanisms of Anti-lift and Anti-dive influ-
ences. The position of the load in the vehicle will influence, since it influences the load transfer. 

We will now set up a mathematical model, see Equation [3.29], which shows how the normal forces 
change during a braking event. It is based on the physical model in Figure 3-28. Driving resistance con-
tributes normally with a large part of the deceleration, but we will neglect this for simplicity, just to 
show how the suspension mechanism works. The equations in the model are presented in the dynamic 
modelling standardized format “Modelica”, and are hence more or less identical to Equation [3.23] to 
[3.26]. (The term  𝑦     is included but makes no visible difference.) 
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Ffx = if 1 < time and time < 3 then -0.4*m*g else 0; 

Frx = if 3 < time and time < 7 then -0.4*m*g else 0; 

Tsf/Rw = 0; 

Tsr/Rw = if 5 < time and time < 7 then -0.4*m*g else 0; 

 

// Motion equations: 

der(z) = vz; 

der(py) = wy; 

 

// Constitutive equations for the springs: 

der(Fsf) = -cf*vfz; 

der(Fsr) = -cr*vrz; 

 

// Constitutive equations for the dampers: 

Fdf = -df*vfz; 

Fdr = -dr*vrz; 

 

//(Dynamic) Equilibrium equations: 

-m*(der(vx)-vz*wy) + Ffx + Frx = 0; 

-m*(der(vz)-vx*wy) - m*g + Ffz + Frz = 0; 

-Jy*der(wy) + Frz*lr - Ffz*lf - (Ffx + Frx)*h = 0; 

(Frz - Fsr - Fdr)*gr - Frx*er + Tsr = 0; 

(Fsf + Fdf - Ffz)*gf - Ffx*ef + Tsf = 0; 

 

//Compatibility: 

zf = z - lf*py; 

zr = z + lr*py; 

vfz = vz - lf*wy; 

vrz = vz + lr*wy; 

[3.29] 

The simulation results are shown in Figure 3-29. It shows a constant deceleration, but it is changed 
how the decelerating force is generated. At time=3 s, there is a shift from braking solely on front axle 
to solely on rear axle. The braking is, so far, only done with friction brakes, i.e. generating torque by 
taking reaction torque in the axle itself. At time=5 s, there is a shift from braking with friction brakes to 
braking with shaft torque. It should be noted that if we shift axle or shift way to take reaction torque, 
gives transients even if the deceleration remains constant. 

One can also see, at time=1 s, that the normal load under the braked axle first changes in a step. This is 
the effect of the Anti-dive geometry. Similar happens when braking at rear axle, due to the Anti-squat 
geometry. Since brake performance is much about controlling the pressure rapidly, the transients are 
relevant, and the plots should make it credible that it is a control challenge to reach a high braking effi-
ciency. 

3.4.8.2 Acceleration Performance * 
Function definition: See 3.3.6.1. 

The model presented in Equation [3.29] can also be used to predict acceleration performance in a 
more accurate way compared to 3.3.6. Especially, the more accurate model is needed when propelling 
or braking on the limit of tyre to road adhesion, since the normal load of each tyre then is essential. It 
is a challenge to control the propulsion and brake wheel torques to utilize the varying normal loads 
under each axle. 

3.4.9 Other Functions 
There are many more longitudinal functions, originating from the attribute Driving dynamics, which 
could have fitted in 3.4. Examples of such: 

• Off-road accessibility: Ability to pass obstacles of different kind, such as uneven ground, ex-
treme up- and down-hills, mud depth, snow depth, etc. 

• Shift quality: Quick and smooth automatic/automated gear shifts 
• Shunt & shuffle: Absence from oscillation for quick pedal apply, especially accelerator pedal. 



LONGITUDINAL DYNAMICS 

159 

0 1 2 3 4 5 6 7 8 9 
0 

50 

w ithCentrifugalForce.vx 

0 1 2 3 4 5 6 7 8 9 

-0.02 

-0.01 

0.00 

0.01 

0.02 

0.03 

w ithCentrifugalForce.z [m] w ithCentrifugalForce.py [rad] w ithCentrifugalForce.zf [m] w ithCentrifugalForce.zr [m] w ithoutCentrifugalForce.z [m] w ithoutCentrifugalForce.py [rad] w ithoutCentrifugalForce.zf [m] w ithoutCentrifugalForce.zr [m] trivial_w ithCentrifugalForce.z [m] trivial_w ithCentrifugalForce.py [rad] trivial_w ithCentrifugalForce.zf [m] trivial_w ithCentrifugalForce.zr [m] 

0 1 2 3 4 5 6 7 8 9 
4.0E3 

6.0E3 

8.0E3 

1.0E4 

1.2E4 

1.4E4 

w ithCentrifugalForce.Fzf w ithCentrifugalForce.Fzr w ithoutCentrifugalForce.Fzf w ithoutCentrifugalForce.Fzr trivial_w ithCentrifugalForce.Fzf trivial_w ithCentrifugalForce.Fzr 

Braking on front axle 
with friction brakes

Braking on rear axle 
with friction brakes

Braking on rear axle 
with shaft torque

Different displacements, both 
transiently and steady state 

    [ ]

    [ ]

   

   

   [ ]

py= 𝑦   [𝑟  ]

Same steady state vertical 
forces, but transiently different

 
Figure 3-29: Deceleration sequence with constant vehicle deceleration but changing between different ways 

of actuation. (With the centripetal term  𝑦     (solid) and without (dashed). Dotted shows without anti-

dive/-squat geometry, i.e.   =   =  . The term  𝑦     makes no visible difference.) 

3.5 Control Functions 
Some control functions will be described. First, some general aspects on control are given. 

3.5.1 Longitudinal Control 
Some of the most important sensors available in production vehicles and used mainly for longitudinal 
control are listed below. (Sensors for instrumented vehicles for testing can be many more.) 
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• Wheel Speed Sensors, WSS. For vehicle control design, one can often assume that “sensor-
close” software also can supply information about longitudinal vehicle speed. 

• Vehicle body inertial sensors. There is generally a yaw velocity gyro and a lateral accelerome-
ter available, but sometimes also a longitudinal accelerometer. The longitudinal accelerometer is 
useful for longitudinal control and longitudinal velocity estimation. 

• Pedal sensors. Accelerator pedal normally has a position sensor and brake pedal force can be 
sensed via brake system main pressure sensor. Heavy vehicles often have both a brake pedal po-
sition and brake pressure sensors. 

• Today’s vehicles have environment sensors (camera, radar, GPS with electronic map, etc.) that 
can give information (relative distance and speed, etc.) about objects ahead of subject vehicle. It 
can be both fixed objects (road edges, curves, hills, …) and moving objects (other road users, ani-
mals, …). See also 2.7 Environment Sensing System. 

• Information about what actuation that is actually applied at each time instant is available, but 
it should be underlined that the confidence in that information often is questionable. Infor-
mation about axle propulsion torque is generally present, but normally relies on imprecise mod-
els of the whole combustion process and torque transmission, based on injected amount of fuel 
and gear stick position. (Electric motors can typically give better confidence in estimation, espe-
cially if motor is close to the wheel without too much transmission in between.) Wheel individ-
ual friction brake torque is available, but normally rely on imprecise models of the brake sys-
tems hydraulic/pneumatic valves and disc friction coefficient, based on brake main cylinder 
pressure. 

• Information about what actuation levels that are possible upon request (availability or capa-
bility) is generally not so common. It is difficult to agree of general definitions of such infor-
mation, because different functions have so different needs, e.g. variations in accepted time de-
lay for actuation. 

• Sometime wheel/axle forces can be sensed. One case is when pneumatic suspension. More ex-
treme variants are under development, such as sensors in the wheel bearings which can sense 
forces (3 forces and roll and yaw moment) and sensors in shafts. 

3.5.2 Longitudinal Control Functions 
3.5.2.1 Pedal Driving * 

Function definition: See 3.4.3. 

These functions, Pedal Functions 

Pedal Response *, are often not seen as comparable with other control functions, but they become 
more and more relevant to define as such, since both accelerator and brake pedals tend to be electron-
ically controlled, and hence they become increasingly tuneable. Also, more and more functions, such as 
those below in 3.5.2, will have to be arbitrated with the pedals. 

In modern passenger vehicles, Accelerator pedal is normally electronically controlled but the Brake 
pedal is basically mechanical. In modern heavy commercial vehicles, both functions are electronically 
controlled. 

The functions in “3.4.3.2 Pedal Feel *” are normally not actively controlled, but in there are concept 
studies with active pedals, where also the pedal feel can be actively changed to give feedback to driver. 

3.5.2.2 Cruise Control and Adaptive Cruise Control (CC, ACC) * 
Function definition: Cruise Control, CC, controls the vehicle’s longitudinal speed. Driver can activate the func-
tion and decide desired speed. 

Function definition: Adaptive Cruise Control, ACC, is an addition to CC. ACC controls the vehicle’s time 
gap to a lead vehicle. Driver can activate the function and decide desired gap. When there is no lead vehicle, CC 
controls the vehicle’s speed. 
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The purpose of CC is to keep the vehicle at a driver selected longitudinal speed, while driver not 
pushes the accelerator pedal. The actuator used is the propulsion system. In heavy vehicles, also the 
braking system (both retarders and service brakes) is used to maintain or regulate the vehicle speed. 

ACC is an addition to CC. The purpose of ACC is to keep a safe distance to the lead vehicle (vehicle 
ahead of subject vehicle). ACC uses also friction brake system as actuator, but normally limited to a de-
celeration of 2. .4   𝑠2.  

The safe distance which ACC aims for, is often expressed as a time gap, driver adjustable in the range 
2. .3 𝑠. A model behind this is that the time gap is the driver reaction time and the subject vehicle can 
decelerate as much as the object vehicle. More advanced models can allow smaller time gap in certain 
situations. This is desired because it reduces the risk that other vehicles cut in between subject and 
leading object vehicle. Such models can consider, e.g., acceleration of the object vehicle, pedal opera-
tion of subject vehicle, road gradient, road curvature, road friction and deceleration capabilities of sub-
ject and object vehicles. 

Pedals and CC/ACC has to be arbitrated. Typically, accelerator pedal wins temporarily if pressed to 
higher request than CC/ACC, while any use of brake pedal turns off (wins permanently over) the 
CC/ACC . 

CC is normally only working down to 30.. 40 𝑘   . ACC can have same limitation, but with automatic 
transmission, good forward-looking environment sensors, brake actuators and speed sensing, ACC can 
be allowed down to stand-still. 

3.5.2.2.1 Topography adapted CC 

A development of CC has varying set speed which is optimized for a predicted road topography about a 
minute ahead. Such products are on the market, e.g. Volvo iSee and Scania Active Prediction. 

3.5.2.3 Anti-Lock Braking System, ABS * 
Function definition: Anti-lock Braking System, ABS, prohibits driver to lock the wheels while braking. 
The wheel brake torques requested are limited by ABS in a way that each individual wheel’s longitudinal slip 
stays above a certain (negative) value. An extended definition of ABS also includes vehicle deceleration requested 
by other functions than pedal braking, such as AEB. 

The purpose of ABS is to avoid losing vehicle brake force due to that the tyre force curve drops at high 
slips AND to leave some friction for steering and cornering, see 2.2.1.6 and 2.2.4.6.5. ABS is a wheel slip 
closed loop control, active when driver brakes via brake pedal. It keeps the slip above a certain value, 
typically -15..-20 %. ABS uses the friction brakes as actuator. 

Each wheel is controlled individually, but all wheels’ speed sensors contribute to calculation of vehicle 
longitudinal speed, for calculation of actual slip. In the ABS function, it may be included how slip are 
distributed between the wheels, such as normally the front axle is controlled to a slip closer to locking 
than the rear axle. Also, a sub-function called “select-low” which makes the wheel closest to locking 
decide the pressure also for the other wheel at the same axle. Select-low is typically used at rear axles. 

 
Figure 3-30: ABS control. Principle and control sequence, from Ref (Gillespie, 1992) 
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3.5.2.4 Electronic Brake Distribution, EBD * 
Function definition: Electronic Brake Distribution prohibits driver to over-brake the rear axle while brak-
ing. An extended definition of EBD also includes vehicle deceleration requested by other functions than pedal 
braking, such as AEB. EBD only uses friction brake as actuator. 

With a fix proportioning between front and rear axle braking, there is a risk to over-brake rear axle 
when friction is very high, since rear axle is unloaded so much then. Before electronic control was 
available, it was solved by hydraulic valves, which limited the brake pressure to rear axle when pedal 
force became too high. In today’s cars, where electronic brake control is present thanks to legislation 
of ABS, the software base function EBD fulfils this need. EBD is primarily a feedforward control of 
   𝑅𝑒  𝑒 𝑡 and    𝐴 𝑡 𝑎𝑙. Good estimates of mass, CoG location in x and z direction would be useful, but 

these are seldom available. EBD can also have feedback of longitudinal slip difference between axles. 
In heavy vehicles, pneumatic valves are used that limits the brake pressure in relation to the rear axle 
load (deflection of mechanical spring suspension or air pressure in air suspension). 
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Figure 3-31: ABS control, Data log from passenger car test. 

There are other side functions enabled by having ABS on-board. Such are “select low”, which means 
that the brake pressure to both wheels on an axel is limited by the one with lowest pressure allowed 
from ABS. So, if one wheel comes into ABS control, the other gets the same pressure. This is most rele-
vant on rear axle (to reduce risk of losing side grip) but one tries to eliminate the need of it totally, be-
cause it reduces the brake efficiency when braking in curve or on different road friction left/right. 

It is often difficult to define strict border between functions that is a part of ABS and which is part of 
EBD, which is why sometimes one say ABS/EBD as a combined function. 

3.5.2.5 Traction Control, TC * 
Function definition: Traction Control prohibits driver to spin the driven axle(s) in positive direction while ac-
celerating. An extended definition of TC also includes vehicle acceleration requested by other functions than pedal 
braking, such as CC. TC uses both friction brakes and propulsion system as actuators. 
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The purpose of Traction Control is to maximise traction AND to leave some friction for lateral forces 
for steering and cornering. Traction control is similar to ABS, but for keeping slip below a certain 
value, typically +(15..20)%. 

Traction control can use different ways to control slip, using different actuators. One way is to reduce 
engine torque, which reduces slip on both wheels on an axle if driven via differential. Another way is to 
apply friction brakes, which can be done on each wheel individually. Vehicles with propulsion on sev-
eral axles can also redistribute propulsion from one axle to other axles, when the first tends to slip. Ve-
hicles with transversal differential clutch or differential lock can redistribute between left and right 
wheel on one axle. 

3.5.2.6 Engine Drag Torque Control, EDC * 
Function definition: Engine Drag Torque Control prohibits over-braking of the driven axle(s) while en-
gine-braking. EDC uses both friction brakes and propulsion system as actuators. 

The purpose of Engine Drag Torque Control is as the purpose of ABS, but the targeted driving situation 
is when engine braking at low road friction, when engine drag torque otherwise can force the wheels 
to slip too much negative. Similarly to ABS, it keeps the slip above a certain negative value. However, it 
does it by increasing the engine torque from negative (drag torque) to zero (or above zero for a short 
period of time). 

3.5.2.7 Automatic Emergency Brake, AEB * 
Function definition: Automatic Emergency Brake decelerates vehicle without driver having to use brake 
pedal when probability for forward collision is predicted as high. 

The purpose of AEB is to eliminate or mitigate collisions where subject vehicle collides with a lead ve-
hicle. AEB uses friction brake system as actuator, up to full brake which would be typically 10 m/s2. 
An AEB system is often limited by not trigger too early, because driver would be disturbed, or it could 
actually cause accidents. Therefore, in many situations, AEB will rather mitigate than avoid collisions. 

Conceptually, an AEB algorithm can be assumed to know physical quantities as marked in Figure 3-32. 
The quantity time-to-collision, TTC, can then be defined as 𝑇𝑇𝐶 = 𝑥 (   −    )⁄ , which means the 
time within a collision will appear if no velocities changes. Subscript 𝑠 and 𝑜 means subject and object 
vehicle, respectively.  

Also, one can define enhanced time-to-collision measure, eTTC, which considers the present accelera-
tions of the lead vehicle. TTC shall not be mixed up with “time gap” (TG), which is the time when sub-
ject vehicle will reach the present position of the lead vehicle, 𝑇𝐺 = 𝑥    ⁄ ;.  

AEB function shall, continuously, decide whether or not to trigger AEB braking. AEB shall intervene by 
braking when driver can be assumed to collide without intervention. If no other information, this can 
be predicted as when driver can NOT avoid by normal driving. Avoidance manoeuvres that have to be 
considered are (normal) deceleration and (normal) lateral avoidance to the left and to the right. What 
to assume as normal driving is a question of tuning; here the following limits are used |    | <    𝑛 =

𝑒.  . 4  𝑠2⁄  and |   𝑦| <   𝑦𝑛 = 𝑒.  . 6  𝑠2⁄ . The concept of a physical model-based algorithm is this: 

• Normal deceleration (    = −   𝑛 = −4  𝑠2⁄ ) leads to collision if:  
min
𝑡>0

(𝑥 (𝑡)) < 0   ⇒    min
𝑡>0

(𝑥 +    ∙ 𝑡 − (   ∙ 𝑡 +    𝑛 ∙ 𝑡
2 2⁄ )) < 0   ⇒  

⇒   (𝑥 +    ∙ 𝑡 − (   ∙ 𝑡 +    𝑛 ∙ 𝑡
2 2⁄ ))|

𝑡=
𝑣 𝑥−𝑣𝑠𝑥
𝑎𝑠𝑥 

< 0   ⇒  

⇒   𝑥 −
 

2∙(−𝑎𝑠𝑥 )
∙ (   −    )

2 < 0  ⇒    
  

𝑣𝑠𝑥−𝑣 𝑥
<

𝑣𝑠𝑥−𝑣 𝑥

2∙(−𝑎𝑠𝑥 )
   ⇒    𝑻𝑻𝑪 <

𝒗𝒔𝒙−𝒗𝒐𝒙

𝟖
;  

• Normal avoidance to the left (   𝑦 =   𝑦𝑛 = 6  𝑠2⁄ ) leads to collision if:  

(  𝑙(𝑡) +
 

2
)|
  =0

< 0   ⇒    (  𝑙 −   𝑦𝑛 ∙
𝑡2

2
+

 

2
)|
𝑡=

𝑥 
𝑣𝑠𝑥−𝑣 𝑥

< 0   ⇒  

⇒   
  

𝑣𝑠𝑥−𝑣 𝑥
< √2 ∙

𝑦 𝑙+  2

𝑎𝑠𝑦 
= {𝑒.  . } = √

0.6+ .8 2

 
≈ 0.4 𝑠  ⇒    𝑻𝑻𝑪 < 𝟎. 𝟒 𝒔;  
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• Normal avoidance to the right (   𝑦 = −  𝑦𝑛 = −6  𝑠2⁄ ) leads to collision if:  

⋯   ⇒    
  

𝑣𝑠𝑥−𝑣 𝑥
< √2 ∙

−𝑦 𝑟− 2⁄

𝑎𝑠𝑦 
= ⋯   ⇒    𝑻𝑻𝑪 < 𝟎. 𝟒 𝒔;  

• Assuming that the AEB intervention decelerates the vehicle with −    =    𝐴𝐸 = −8  𝑠2⁄ , a 
forward collision can be avoided if AEB intervenes AND if:  

⋯ ⇒ 
  

𝑣𝑠𝑥−𝑣 𝑥
>

𝒗𝒔𝒙−𝒗𝒐𝒙

𝟐∙(−𝒂𝒔𝒙𝑨𝑬𝑩)
=

𝑣𝑠𝑥−𝑣 𝑥

 6
   ⇒  𝑻𝑻𝑪 >

𝒗𝒔𝒙−𝒗𝒐𝒙

𝟏𝟔
;  

Figure 3-32 shows a diagram where different condition areas are marked. The sectioned area shows 
where AEB will be triggered, using above rules. The smaller of the sectioned areas shows where it also 
will be possible to trigger AEB so timely that a collision is actually avoided; with the assumed num-
bers, this is for speeds up to 6.4 m/s≈23 km/h. 
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Figure 3-32: Left: Quantities known for an AEB algorithm in the subject vehicle, assuming “symmetrically 
behind” (  𝑙 = −   ). Right: Model based decision of triggering AEB and effectiveness of AEB if triggered. 

The reasoning above is very simplified. Additional information can improve effectiveness of AEB, such 
as knowing if a lateral avoidance on one side of object vehicle is blocked, the acceleration of the object 
vehicle, pedal operation of subject vehicle, road gradient, road curvature and road friction is. The vehi-
cle dynamics model used is simply a point mass with predicted constant velocity and certain assumed 
acceleration capability, which of course can be extended a lot; both with taking actual accelerations 
into account and more advanced vehicle dynamics models. The decision to intervene is dependent of 
many pieces of information and simple models; vehicle dynamics and driver behaviour (in both sub-
ject and object vehicles) as well as road characteristics. AEB function has to be designed together with 
other similar functions, such as ACC and Forward Collision Warning (FCW). 

AEB is on market and legal requirement for both passenger vehicles and heavy vehicles (ISO19377, 
2017). 

Related functions are, e.g. extra force assistance in brake pedal when driver steps quickly onto brake. 
Another related function is automatic braking triggered by a first impact and intended to mitigate or 
avoid secondary accident events, starts to appear at market, see Reference (Yang, 2013). In semantic 
meaning, this could be seen as AEB, but they are normally not referred to as AEB; AEB normally refers 
to functions that use environment sensors (forward directed radar, camera, etc.). 
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When designing and evaluating AEB, it is important to also know about the function Forward Collision 
Warning, FCW. FCW is a function that warns the driver via visual and/or audio signals when a forward 
collision is predicted. FCW is typically triggered earlier than AEB. 

AEB as described above could be called “Rear-end AEB”. Another similar functionality, not included in 
today’s AEB, could be called “Intersection AEB” and include braking for intersecting traffic, see 
(Sander, 2018).   

3.5.3 Longitudinal Motion Functionality in a Refer-
ence Architecture 

All control functions controls have to cooperate, and they have to be transferable between platforms 
and vehicle variants. It is very complex to take all functions into consideration, but with a scope lim-
ited to the longitudinal Motion functionality  

Figure 3-33 can be drawn as a solution within the reference architecture.  

By using a reference architecture, it can be illustrated that Adaptive Cruise control and cruise control 
can be seen as part of Traffic Situation Layer (ACC=CC if no vehicle ahead). The Traffic Situation Layer 
has the purpose and scope to understand the ego vehicle’s surrounding traffic by looking at e.g. For-
ward Sensors. The forward-looking sensor is in this case part of Vehicle Environment sensors.   

Vehicle Motion and Coordination Layer would include the arbitration of Driver’s Acceleration and 
Brake pedal input and Traffic functionality, see Figure 3-33. In addition, Vehicle Motion and Coordina-
tion Layer would perform the powertrain coordination and brake distribution. The coordinated re-
quests are then sent to Motion Support Device Layer. 

The Human Machine Interface would include the services available for the driver to activate or re-
quest, E.g. ACC activation to Traffic Situation or Deceleration by pressing the brake pedal. 
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Figure 3-33: Functional architecture for conventional front axle driven passenger car. Mainly longitudinal 

functions (plus ESC, RSC) are shown, e.g. no steering. Cf. Figure 1-28. 

If a reference architecture is used, it can assist function developers from OEM’s Electrical, Powertrain, 
and Chassis departments and suppliers to have a common view of how vehicle’s embedded motion 
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functionality is intended to be partitioned and to understand how different functions relate and inter-
act with each other and what responsibilities they have. 
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4 LATERAL DYNAMICS 
4.1 Introduction 
The lateral motion of a vehicle is needed to follow the road curves, select route in intersections and 
laterally avoid obstacles, which all involve steering. Vehicle steering is studied mainly through the ve-
hicle degrees of freedom: yaw rotation    and lateral translation  𝑦.  

A vehicle can be steered in different ways: 
• Applying steer angles on road wheels. Normally both of front wheels are steered with approxi-

mately same angle. Steering system described in 0. 
• Applying longitudinal forces on road wheels; directly by unsymmetrical between left and right 

side of vehicle, e.g. one-sided braking, or indirectly by deliberately use up much friction longi-
tudinally on one axle in a curve, so that that axle loses lateral force. 

• Articulated steering, where the axles are fixed mounted on the vehicle body, but the vehicle 
itself can bend. 

The turning manoeuvres of vehicles encompass two sub-attributes. Handling is the driver’s perception 
of the vehicle’s response to the steering input. Cornering is the physical response (open-loop) of the 
vehicle independent of how it influences the driver. 

The lateral dynamics of vehicles is often experienced as the most challenging for the new automotive 
engineer. Longitudinal dynamics is essentially motion in one plane and rectilinear. Vertical dynamics 
may be 3 dimensional, but normally the displacements are small and in this compendium the vertical 
dynamics is mainly studied in one plane as rectilinear. However, lateral dynamics involves motion in 
the vehicle coordinate system which introduces curvilinear motion since the coordinate system is ro-
tating as the vehicle yaws.  

The chapter introduces the models, more or less, in order of increasing number of states. For some 
readers, it might be comprehensive to start with a look-ahead on the “linear 1-track model” in 4.4.2. 
This is the simplest model which yet captures the essential lateral motion quantities  𝑦 and    as 

states. The models earlier in the chapter can then be seen as simplifications. 

4.1.1 Lateral Model Categorization 
The chapter is organised as shown in Table 4.1. The table also shows a high-level categorization of 
functions/models in the sections. Generally speaking, the input is steer angle   and the output is yaw 
rate    and lateral velocity  𝑦. The longitudinal speed    is often treated as a parameter (    0). 

Table 4.1: Approximate high-level categorization of lateral functions/models 

Section Longitudinal 
velocity 𝒗𝒙 

Typical input variables 
or parameters 

Typical output variables 

4.2 Low Speed  
Parameter,    
0+ 𝑜𝑟 0− [ 𝑠⁄ ] 

Path limitations, like 
road width and radius 

Path 𝑥(𝑠)  (𝑠)   (𝑠), i.e.     𝑦    

integrated over the manoeuvre 

4.3 Steady State Cor-
nering at High Speed 

Parameter,   =
10. .30 [ 𝑠⁄ ] 

   and Path radius  𝑝 
Steady states  ( 𝑝   ) 

 𝑦(    )   (    ) and  𝑦(    ) 

4.4 Stationary Oscil-
lating Steering 

Parameter,   =
10. .30 [ 𝑠⁄ ] 

  , Steering amplitude  ̂, 
Frequency 𝑓 

Stationary oscillating responses 

 ̂ ( ̂ 𝑓) and  ̂𝑦(    ) 

 
4.5 Transient Driving 
 
 

Variable,    ≠ 0 
Initial   0, Steering  (𝑡), 
Wheel torques (𝑻(𝑡)) 

<Numerous and various> 

Parameter,   =
0. .30 [ 𝑠⁄ ] 

Pure and simplified handling manoeuvres, such as “4.5.3.4 
#Draft: (Example 
Step Steering Response *” 
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There are other categorizations in 1.5.6, such as irp/oorp and 1-track/2-track. Categorization of tyre 
models is found in 2.2.6.  

4.1.2 References for this Chapter  
• 0   and “Chapter 25 Steering System” in Ref (Ploechl, 2013). 
• “Chapter 27 Basics of Longitudinal and Lateral Vehicle Dynamics” in Ref (Ploechl, 2013). 
• “Chapter 8: Electronic Stability Control” in Ref (Rajamani, 2012) 

4.2 Low Speed Manoeuvres 
This section is about operating vehicles in low speeds, including stand-still and reverse. Specific for 
low speed models is that inertia effects can be neglected, i.e. one can neglect  ∙  𝑦  in equilibrium 

equation. In low speed, one often needs to find the path [𝑥(𝑠)  (𝑠)] of the vehicles body edges, which 
can be obtained from CoG path with orientation, see 1.5.7.5. 

4.2.1 Low Speed Model, Ackermann, without 
Forces 

Low speed manoeuvres are characterised by that the inertial forces are neglected, i.e.  ∙  = 0. If the 
geometry is according to Ackermann and the forces on the vehicle are small, it is reasonable to assume 
that the tyre forces also are small, and we can use ideally tracking tyre model for wheels or axles, see 
2.2.6. We can see this as Eq [2.36] with infinite cornering stiffness: Eq [2.36] ⇒  𝑦 = −𝐶𝑦  𝑠𝑦 →   

𝑠𝑦;⇒ 𝑠𝑦 = 0; ⇒  𝑦 = 0;. The tyre force  𝑦 can be any (finite) value, determined by other part of the 

system than the tyre. This tyre model can be seen as a compatibility relation (or “kinematic model”), 
since it relates velocities to eachother without involving any force. However, in this compendium we 
still consider it as a constitutive model, keeping in mind that it is definitely invalid if  𝑦 >     ;.  

The effects of ideal tracking are that the intersection point of the wheels rotational axes coincides with 
the instantaneous centre of vehicle rotation in ground plane. This directly relates steer angles and path 
radius to each other. For the one-track model in Figure 1-25 this relation becomes: 

tan(  ) =
 

  
;

 2 =   
2 + 𝑙 

2;

} ⇒   = arctan

(

 
 

√ 2 − 𝑙 
2

)

 ∙ sign( ) ≈
 

√ 2 − 𝑙 
2

∙ sign( ) ≈
 

 
; 

  𝑒𝑟𝑒  > 0  𝑒 𝑛𝑠 𝑡  𝑡  𝑛𝑠𝑡 𝑛𝑡 𝑛𝑒𝑜𝑢𝑠  𝑒𝑛𝑡𝑟𝑒 𝑜𝑓 𝑟𝑜𝑡 𝑡 𝑜𝑛  𝑠 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡 𝑒  𝑒   𝑙𝑒 

[4.1] 

4.2.2 Low Speed Functions 
4.2.2.1 Turning Diameter * 

Function definition: Turning diameter is the diameter of the smallest possible circular path obtained steady 
state at low speed, measured to a certain point at the vehicle. The certain point can be either outer-most point on 
wheel (Kerb Turning diameter) or outer-most point on body (Wall Turning diameter). 

The end of the simulation in Figure 4-5 is made with constant steer angle. If we assume that it is the 
maximum steer angle, the circle actually shows the turning circle for centre of gravity. If we add the 
path for the outermost wheels, we get the kerb turning diameter, see Figure 4-1. If we add the path for 
the outermost point at the vehicle body we get the wall turning diameter, also shown in Figure 4-1. 
The outermost point at the vehicle body is normally the front outer corners of the vehicle body. 

4.2.2.2 Swept Path Width, SPW * 
Function definition: Swept path width is the distance between the outermost and innermost paths of wheels (or 
body points). The paths are then from a certain turning or lane change manoeuvre at a certain speed.  
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For manoeuvrability, there is a function which is complementary to turning diameter. It is “Swept Path 
Width” (SPW), see Figure 4-1. It can be defined for circle driving with maximum steering angle, as 
Turning diameter, but also for any other certain manoeuvre. It can be defined for kerb and wall; dis-
tance between wheels or body points. The SPW should be small for good manoeuvrability. 
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Figure 4-1: Paths for wheels and body points (added to result in Figure 4-5). 

4.2.2.3 Low Speed Off-Tracking, LSOT * 
Function definition: Off-tracking is the distance between the outermost and innermost paths of mid-points of 
axles. The paths are then from a certain turning or lane change manoeuvre at a certain speed.  

Another measure of manoeuvrability 
is “Off-tracking”, see Figure 4-2. It is 
like Swept Path Width, but for the 
mid points of the axles. It is also 
used for higher speeds, and then the 
rear axle often tracks on a larger ra-
dius than front axle. A variant of def-
inition of Off-Tracking uses (lateral) 
midpoints of body and it can be 
much larger than the first definition 
for vehicles with long front or rear 
overhangs.  

df

L

 
Figure 4-2: Off-tracking (added to result in Figure 4-5). 

4.2.2.4 Circle and Manoeuvre Measures 
SPW and Off-tracking is most relevant for vehicles with several units, such as truck with trailer. They 
can be defined for driving several rounds in a circle with constant steering angle (“Circle SPW/Off-
tracking”). It is a well-defined measure since it is a steady state with respect to articulation angle. 
However, circle driving is seldom the most relevant manoeuvre. So, one often set requirements on 
“Manoeuvre SPW/Off-tracking”, e.g. when driving from straight, via curve with certain outer radius, 
to a new straight in a certain angle from the first straight, e.g. 12.5 m and 90 deg is common. A way to 
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predict SPW/Off-tracking for such a manoeuvre is to simulate with time integration, see 4.2.5.2. One 
can integrate in travelled distance 𝑠 instead of time, but time is often easier and allows stand-still parts 
in the manoeuvre. The states in the simulation are the path coordinates with orientation (𝑥     ) and 
articulation angles (    2  ). 

The steady state is typically approached asymptotically, so the corresponding circle values requires 
either long simulations or inserting state derivatives zero and algebraic solution. From geometry in 
Figure 4-2 on can find an expression for (Circle) Off-tracking  : 

 (    ) =   −   =   −√  
2 −  2; 

 (    ) =   −   =  sin(  )⁄ −  tan(  )⁄ ; 
[4.2] 

4.2.2.5 Steering Effort at Low Speed * 
Function definition: Steering effort at low speed is the steering wheel torque needed to turn the steering 
wheel a certain angle at a certain angular speed at vehicle stand-still on high road friction. 

At low or zero vehicle speed, it is often difficult to reach a low steering wheel torque, due to: 
• Castor offset in Figure  gives the wheel a side slip when steering and hence a tyre lateral force 

is developed. Tyre lateral forces times castor offset increases the steering wheel torque.  
• Additionally, there is a spin moment in the contact patch, 𝑀𝑍𝑇 in Figure 2-6. It does not influ-

ence very much, except for at very low vehicle speed. Quantitative models for 𝑀𝑍𝑇 are not pre-
sented in this compendium.  

A critical test for steering effort at low speed is to steer a parked vehicle with a certain high steering 
wheel rotational speed, typically some hundred  𝑒  𝑠. The steering wheel torque is then required to 
stay under a certain design target value, normally a couple of Nm. The torque needed will be depend-
ent on lateral force, spin moment and steering geometry and dependent on the capability of the power 
steering system (which is dependent on steering, due to delays in the steering assistance actuator). A 
failure in this test is called “catch-up”, referring to that driver catches up with the power steering sys-
tem. It can be felt as a soft stop and measured as a step in steering wheel torque. 

4.2.3 Low Speed Model, Ackermann, with Forces 
4.2.3.1 Implications of Forces on Turning Circle 
If we have a vehicle with Ackermann geometry, it is tempting to model without involving forces, using 
Eq [4.1]. But forces can influence low speed paths. When introducing rolling resistance, the force equi-
librium is obtained by counter-directed tyre-longitudinal forces on the two axles. Due to the steer an-
gle, a lateral force on the front wheel is required, which gives a lateral tyre slip, 𝛼 ≠ 0, see  igure 4-3. 

This changes the motion compared to Figure 1-25. Road grade resistance influences in same way and 
superimposes on rolling resistance.  

For heavy combination vehicles, these effects can be significant, adding also rolling resistance from 
towed units and non-Ackermann effects of several non-steered axles on some units. Then, the function 
to turn can be quantified by required road friction on steered and driven axle, as opposed to radius at 
maximum steer angle. 
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−    =      𝑙𝑙

Rear axle propulsion:

 ⃗ 

 ⃗ 
−𝛼 

  

   =  𝑝  𝑝

  𝑦 = −𝐶  𝛼 
    =  𝑝  𝑝

Front axle propulsion:

 ⃗ 

 ⃗ 

𝛼 

  

−   =      𝑙𝑙 −  𝑦 = − −𝐶  𝛼 
 

Figure 4-3: Smaller turning circle diameter for front axle propulsion, as compared to rear axle propulsion 
due to rolling resistance on the un-driven axle. 

4.2.3.2 Model 
The model in Eq [4.1] predicts a motion without involving forces, or actually assuming forces are zero. 
To get a more complete model, where more variables can be extracted, we can set up the model in Fig-
ure 4-4.  
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 𝑦 

 𝑟 = 0

    

  

    

  𝑦 

Velocities: Forces:
   𝑣 

  
𝑦
𝑣
  ⃗ 

 ⃗ 

 ⃗ 

 ⃗ 

  
𝑦
𝑣
 

  

𝛼 = arctan 𝑠𝑦 𝛽 = arctan
  𝑦𝑣

   𝑣

   𝑣 

 

𝑙 𝑙 

  

 
Figure 4-4: One-track model with ideally tracking axles. Lower view of front wheel shows conversion 

between wheel and vehicle coordinate systems. 

The “physical model” in Figure 4-4 gives the following “mathematical model”: 

Equilibrium (longitudinal, lateral and yaw around CoG): 
0 =    𝑣 +    ; 

0 =   𝑦𝑣 +   𝑦; 

0 =   𝑦𝑣 ∙ 𝑙 −   𝑦 ∙ 𝑙 ; 

Transformation between vehicle and wheel coordinate systems: 
   𝑣 =     ∙ cos(  ) −   𝑦 ∙ sin(  ) ; 

  𝑦𝑣 =     ∙ sin(  ) +   𝑦 ∙ cos(  ) ; 

   𝑣 =     ∙ cos(  ) −   𝑦 ∙ sin(  ) ; 

  𝑦𝑣 =     ∙ sin(  ) +   𝑦 ∙ cos(  ) ; 

Compatibility between CoG and axles: 
   𝑣 =   ;     𝑛      𝑦𝑣 =  𝑦 + 𝑙 ∙   ; 

   =   ;     𝑛      𝑦 =  𝑦 − 𝑙 ∙   ; 

Ideal tracking (Constitutive relation, but without connection to forces): 
  𝑦 = 0;     𝑛      𝑦 = 0; 

Path with orientation (compatibility), from Eq [1.4]: 
𝑥 =   ∙ cos(  )  −  𝑦 ∙ sin(  ) ; 

  =  𝑦 ∙ cos(  )  +   ∙ sin(  ) ; 

   =   ; 
Controls (driver or actuation): 

  = {
= (35 ∙ 𝜋 180⁄ ) ∙ sin(0.5 ∙ 2 ∙ 𝜋 ∙ 𝑡) ;  𝑓 𝑡 <  4.5;
= 35 ∙ 𝜋 180; 𝑒𝑙𝑠𝑒

  

[4.3] 
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Constitution (Rear axle undriven, which gives drag from roll resistance): 
   = −100  sign(  ) ; 

Note that, since we have Ackermann geometry, we can (mathematically) use the ideal tracking tyre 
model ( 𝑖𝑦 = 0;) even if forces are now introduced. For some engineering problems, it might be moti-

vated to use  𝑖𝑦 = −𝐶𝑖𝑦  𝑠𝑖𝑦 = −𝐶𝑖𝑦   𝑖𝑦 |   |⁄ ≈ −𝐶𝑖𝑦   𝑖𝑦 | 𝑖  |⁄ ;, but we leave this to 4.2.4. 

The compatibility in Eq [4.3] neglects the influence of steering axis offsets at ground, see 0. The terms 

neglected are of the type LateralOffset ∙   ; in the equation for    𝑣 and LongitudinalOffset ∙    in the 

equation for   𝑦𝑣 . This is generally well motivated for normal road vehicles, except for very quick 

steering when vehicle is close to stand-still. 

Equation [4.3] is written in Modelica format in Equation [4.4]. Comments are marked with //. The sub-
scripts v and w refer to vehicle coordinate system and wheel coordinate system, respectively. The ac-
tual assumption about ideal tracking lies in that   𝑦 =   𝑦 = 0. Global coordinates from Figure 1-26 

is also used. A driving resistance of 100 N is assumed on the rear axle (   = −100;) to exemplify that 
forces do not need to be zero. 

//Equilibrium: 

  0 = Ffxv + Frx; 

  0 = Ffyv + Fry; 

  0 = Ffyv*lf - Fry*lr; 

//Ideal tracking (Constitutive relation, but without connection to forces): 

  vfyw = 0;     vry = 0; 

//Compatibility: 

  vfxv = vx;    vfyv = vy + lf*wz; 

  vrx = vx;     vry = vy - lr*wz; 

//Transformation between vehicle and wheel coordinate systems: 

  Ffxv = Ffxw*cos(df) - Ffyw*sin(df); 

  Ffyv = Ffxw*sin(df) + Ffyw*cos(df); 

  vfxv = vfxw*cos(df) - vfyw*sin(df); 

  vfyv = vfxw*sin(df) + vfyw*cos(df); //or atan(vfyv/abs(vfxv))=df+atan(sfy); sfy=0; 

//Path with orientation: 

  der(x) = vx*cos(pz) - vy*sin(pz); 

  der(y) = vy*cos(pz) + vx*sin(pz); 

  der(pz) = wz; 

// Prescription of actuation: 

  df = if time < 4.5 then (35*pi/180)*sin(0.5*2*pi*time) else 35*pi/180; 

//Rear axle undriven, which gives drag from roll resistance: 

  Frx = -100; 

[4.4] 

4.2.3.3 Simulation 
The longitudinal speed is a parameter,   = 10 𝑘   . A simulation result from the model is shown in 
Figure 4-5. It shows the assumed steer angle function of time, which is an input. It also shows the re-
sulting path,  (𝑥). 
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y [m]

x[m]
time [s]

df [rad]

35 deg

 
Figure 4-5: Simulation results of one-track model with ideal tracking tyres. 

The variables 𝑥   𝑝 =    are the only state variables of this simulation. If not including the path 
model (Eq [1.4]), the model would be only an algebraic system of equations. That system of equations 
could be solved isolated for any value of steer angle without knowledge of time history.  

4.2.4 Low Speed Model, Non-Ackermann 
If Non-Ackermann geometry, we have to include the forces. Non-Ackermann geometry can be seen as 
lateral wheel or tyre forces fight each other; either between left and right wheels or between axles. Ex-
amples are a two-axle vehicle which has parallel steering and truck with 3 axles, whereof the two rear 
are non-steered, respectively.  

4.2.4.1 Non-Ackermann between Axles 
We will go through model changes needed for the latter example. In order to compare the models as 
closely as possible, we simply split the rear axle into two rear axles, in the example in 4.2.1. The physi-
cal model becomes as in Figure 4-6. The measures appear in Figure 4-8, and you see that it is not a typ-
ical truck, but a very unconventional vehicle of passenger car size but with two rear axles. 
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Figure 4-6: Non-Ackermann geometry, due to un-steered rear axles.  
Top: Rigid Truck with 3 axles, whereof only the first is steered. Bottom: One-track model.  
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The changes we have to do in the model appear as underlined in Equation [4.5]. There has to be double 
variables for       𝑦       𝑦, denoted 1 and 2 respectively. Also, we cannot (mathematically) use 

  𝑦 =   𝑦 = 0 anymore, but instead we introduce a lateral tyre force model, as described in 2.2.4. 

//Equilibrium: 

  0 = Ffxv + Fr1x + Fr2x; //grade resistance could be added here, e.g. “+500” 

  0 = Ffyv + Fr1y + Fr2y; 

  0 = Ffyv*lf - Fr1y*(lr - DLr/2) - Fr2y*(lr + DLr/2); 

//Constitutive relation (with slip, as opposed to Ideal tracking): 

  Ffyw = -Cf*sfy;    sfy = vfyw/abs(vfxw); 

  Fr1y = -Cr1*sr1y;  sr1y = vr1y/abs(vr1x); 

  Fr2y = -Cr2*sr2y;  sr2y = vr2y/abs(vr2x); 

//Compatibility: 

  vfxv = vx; 

  vfyv = vy + lf*wz; 

  vr1x = vx; 

  vr2x = vx; 

  vr1y = vy - (lr – DLr/2)*wz; 

  vr2y = vy - (lr + DLr/2)*wz; 

//Transformation between vehicle and wheel coordinate systems: 

  Ffxv = Ffxw*cos(df) - Ffyw*sin(df); 

  Ffyv = Ffxw*sin(df) + Ffyw*cos(df); 

  vfxv = vfxw*cos(df) - vfyw*sin(df); 

  vfyv = vfxw*sin(df) + vfyw*cos(df); 

//Path with orientation: 

  der(x) = vx*cos(pz) - vy*sin(pz); 

  der(y) = vy*cos(pz) + vx*sin(pz); 

  der(pz) = wz; 

// Prescription of steer angle: 

  df = if time < 4.5 then (35*pi/180)*sin(0.5*2*pi*time) else 35*pi/180; 

//Rear axles undriven, which gives drag from rolling resistance: 

  Fr1x = -100/2*sign(vx); 

  Fr2x = -100/2*sign(vx); 

[4.5] 

The new result is shown in Figure 4-7, which should be compared to Figure 4-5. The radius in the cir-
cle increases a little, which is intuitive, since the double rear axle makes turning less easy.  

y [m]

x[m]
time [s]

df [deg]

35 deg

vx=2.778m/s

vy=1.036m/s

wz=0.652rad/s

 
Figure 4-7: Simulation results of one-track model. Non-Ackermann geometry due to two non-steered rear 

axles. Tyres models are linear, as opposed to ideally tracking. 
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4.2.4.2 Equivalent Wheel Base 

We can also draw the different locations of the in-
stantaneous centre for both cases. This is shown, in 
scale, in Figure 4-8. 

We could tune the steer angle required to reach ex-
actly the same path radius as for the 2-axle reference 
vehicle. Then, we would have to steer a little more 
than the 35 degrees used, and we could find a new 
instantaneous centre, and we could identify a so-
called Equivalent wheelbase. This leads us to a defi-
nition: The equivalent wheel base of a multi-axle ve-
hicle is the wheel base of a conventional two-axle ve-
hicle which would exhibit the same turning behav-
iour as exhibited by the multi-axle vehicle, given 
same steer angle and similar axle cornering stiff-
nesses. In 4.2.4 it is shown that ideally tracking tyre 
model is not enough for non-Ackermann geometry; 
at least a linear tyre model is needed with 𝐶𝑦 ≠  . 

df

lf=1.3lr=1.5

• instantaneous centre for 
3-axle vehicle

• instantaneous centre for 
2-axle reference vehicle

 
𝐿
𝑟

2
=
1

 
𝐿
𝑟

2
=
1

 
Figure 4-8: Instantaneous centre with a 3-axle 
vehicle, with corresponding 2-axle vehicle as 

reference. 

Figure text: Two-track model with arbitrary angles  𝑖𝑗 , so that non-Ackermann steering can be modelled. 

Figure text: Simulation result showing Low Speed Manoeuvrability. The model from 4.2.4.3.1 is used. 

4.2.5 Low Speed Manoeuvres, Articulated Vehicles 
4.2.5.1 Ackermann Geometry for Articulated vehicles 
For vehicle without articulation, there has to be one common instantaneous centre for all points on the 
vehicle body. For articulated vehicles, each unit can have its own instantaneous centre. But these are 
dependent of each other through the coupling points. So, adding units with one axle does not disqual-
ify the Ackermann property of the resulting combination vehicle. See “transient state” in Figure 4-9. 

4.2.5.2 Transients in Articulation Angle 
For articulated vehicles, also the low speed case has transients in the sense that the articulation angles 
change transiently. The models are steady state with respect to velocities, but transient with respect to 
articulation angle, see “transient state” in Figure 4-9. Consider the case of instantaneous step steer. For 
a vehicle without articulation, a steady state is reached directly, since inertia is not considered. But for 
an articulated vehicle it takes some time (or travelled distance, since it can be studied independent of 
speed and time) before a steady state articulation angle is achieved, see “steady state” in Figure 4-9. 

So, for articulated vehicles, a scalar requirement on turning radius is not so relevant as for two axle 
vehicles. The functions “4.2.2.2 Swept Path Width, SPW *” and “4.2.2.3 Low Speed Off-Tracking, LSOT 
*” are better, assuming one defines a certain road geometry, e.g. through outer radius and total angle 
of turning. 
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1: Instantaneous centre of 
rotation for truck (2 axles, 
1 coupling point)

semi-trailer

2: Instantaneous centre of 
rotation for dolly (1 axle, 
2 coupling points)

3: Instantaneous 
centre of rotation for 
semi-trailer (1 axle and 
1 coupling points)

Instantaneous centre of 
rotation, common for all units 
(4 axles, 2 coupling points)

Vehicle (non-Ackermann geometry)

Model in transient state Model in steady state 
(driving in circle)

Model as Ackermann 
geometry by collapsing each 
axle group as one axle AND 

each axle as one-track

 
Figure 4-9: Instantaneous centre of rotation for truck with trailer. 

4.2.6 Reversing 
Low speed manoeuvring is often about both driving forward and reversing. The derived models work 
formally also for   < 0. Assume that, after some driving forward,    is changed to a negative value. 
Assume that steering is same for same position along the path,  =  (𝑠). The vehicle will then reverse 
in approximately same path as it first drove forward. If ideal tracking tyres, such as Eq [4.1], the paths 
will be identical. If adding forces to the model, the reverse path can deviate from forward path. A small 
such deviation can be seen in Figure text due to a large rolling resistance coefficient (  𝐶 = 0.10). 

In reality, the reverse path for an articulated vehicle often differs more from the forward path. This is 
mainly due to back-lash in couplings; even if only some centimetre backlash it can influence a lot. The 
backlash can be modelled by letting coupling point position be dependent of sign(coupling force). 

4.2.6.1 Stability when Reversing 
Single unit vehicles do not become unstable in low speed, neither for forward nor reverse driving. But 
articulated vehicles do, when reversing. To study this, we derive a linear model, by assuming small an-
gles. Note that the stability analysis for low speed differs from stability analysis at higher speeds, see 
4.4.4, in that the low speed models do not include inertial terms   𝑠𝑠     𝑒𝑙𝑒𝑟 𝑡 𝑜𝑛. 

4.2.6.2 Linear Low Speed Model for Tractor with Semi-trailer 
Figure 4-10 shows a physical model for tractor with trailer, assuming small angles    ,   and  . 
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      𝑙 
  
       

𝑙 
  

       

 2𝑦

 
Figure 4-10: A low speed model of tractor with semi-trailer. Small angles          are assumed. 

The mathematical model for lateral position variables (        ) becomes: 

   =
𝑙𝑐

𝐿1
       +    ∙    ;         (from Eq [1.4], with small    ) 

    =
𝑣1𝑥 𝛿

𝐿1
;        (rotational velocity = tangential speed / radius to instantaneous centre) 

  =
𝑣1𝑥 𝛿

𝐿1
−

𝑣2𝑦

𝐿2
;         (articulation angle is difference between units) 

 2𝑦 =      +
𝑙𝑐

𝐿1
      ;        (units have same velocity in coupling point, small  , small   ) 

Eliminating  2𝑦 gives: 

[

   
    

  
] = [

0    0
0 0 0
0 0 −    2⁄

]
⏟            

𝑨

 [

  
   
 
] +     [

𝑙   ⁄

1   ⁄

1   ⁄ − 𝑙 (    2)⁄
]    ; 

The eigenvalues to 𝑨 becomes 𝜆  2 = ±0; 𝜆 = −    2⁄ ;. So, the system is unstable when    < 0, be-

cause it makes Re(𝜆 ) > 0. It is probably intuitive for may readers that the vehicle is unstable, as the 
semi-trailer pushed rearwards via a moment-free joint. However, the analysis was included in the 
compendium to show how stability appears for low speed models, i.e. without inertial terms   𝑠𝑠  
   𝑒𝑙𝑒𝑟 𝑡 𝑜𝑛. The model can be extended with other multiple-unit vehicles, multiple axles in axle 
groups and driver models. The state variables will remain as        and one articulation angle  𝑖 for 
each coupling. 

4.3 Steady State Cornering at High Speed 
Steady state cornering refers to that all time derivatives of vehicle speeds (    𝑦   ) are zero. The 

physical understanding is then that the vehicle drives on a circle with constant yaw velocity, see Figure 
4-11. Alternatively, this can be described as driving with constant tangential speed ( ), on a constant 
path radius ( ) and with a constant side slip angle (𝛽).  

4.3.1 Steady State Driving Manoeuvres 
When testing steady state function, one usually runs on a so called “skid-pad” which appears on most 
test tracks, see Figure 1-25. It is a flat circular surface with typically 100 m diameter and some concen-
tric circles marked. A general note is that tests in real vehicles are often needed to be performed in 
simulation also, and normally earlier in the product development process. 

Typical steady state tests are: 
• Constant path radius. Driven for different longitudinal speeds. 
• Constant longitudinal speed. Driven for different path radii. 
• Constant steering wheel angle. Then increase accelerator pedal (or apply brake pedal) gently. 

(If too quick, the test would fall under transient handling instead.) 
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Steady state cornering can be defined by either 3 
or 2 quantities, depending on assumptions:

• For a general vehicle it is fully defined only by 

all 3 quantities, e.g.     𝑦   or   𝛽  𝑝 .

• For a certain vehicle it is often considered as 
fully defined by 2 inputs from driver: 
accelerator pedal and steering wheel. (Then, 
one have neglected other inputs from driver, 
such as brake pedal and parking brake. One 
have also neglected other possible automatic 
actuation, such as all wheel drive distribution 
and ESC-braking one wheel.)

𝛽 

 
Figure 4-11: Steady state cornering. (𝛽 will be negative for larger   , i.e. vehicle will point inwards.) 

Relevant standards for these test manoeuvres are: References (ISO 4138) and (ISO 14792). 

Skid pad

Vehicle
Dynamics

Area

Handling
track

High speed 
track

 
Figure 4-12: An example of test track and some parts with special relevance to Vehicle Dynamics. The 

example is Hällered Proving Ground, Volvo Car Corporation. 
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=Vehicle Dynamics Area

 
Figure 4-13: An example of test track. The example is AstaZero (Active Safety Test Arena), owned by 

Research Institute of Sweden (RISE) and Chalmers University of Technology. 

Vehicle Dynamics Area

Skid pad

Low 
friction 
strips

High 
speed 
circle

Hill 
strips

 
Figure 4-14: An example of test track. The example is CASTER’s (virtual) test track. Used for CASTER’s 

driving simulator at Chalmers University of Technology. 

4.3.2 Steady State 1-Track Model 
In steady state we have neither inertial effect from changing the total vehicle speed ( = √  

2 +  𝑦
2 =

 𝑜𝑛𝑠𝑡 𝑛𝑡) nor from changing the yaw velocity (  =  𝑜𝑛𝑠𝑡 𝑛𝑡). However, the inertial “centrifugal” ef-
fect of the vehicle must be modelled. The related acceleration is the centripetal acceleration,   =  𝑝 ∙

  
2 =  2  𝑝 =   ∙  . 

A vehicle model for this is sketched in Figure 4-15. The model is a development of the model for low-
speed in Figure 4-4 and Equation [4.4], with the following changes: 
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• Longitudinal and lateral accelerations are changed from zero to components of centripetal ac-
celeration, ac, as follows (see Figure 4-15): 

o   = −   sin(𝛽) =  −     sin(𝛽) = −    𝑦;    

o  𝑦 = +   cos(𝛽) = +     cos(𝛽) = +     ;    

• The constitutive relations for the axles are changed from ideal tracking to a (linear) relation 
between lateral force and lateral slip: 

o   𝑦 = −𝐶 ∙ 𝑠 𝑦;  where 𝑠 𝑦 =   𝑦 |     |⁄ ≈   𝑦 |    |⁄ ; 

o   𝑦    = −𝐶 ∙ 𝑠 𝑦;  where 𝑠 𝑦 =   𝑦 |     |⁄    ≈   𝑦 |   |⁄ ; 

The constitutive relations above capture the slip characteristics for the tyres, see 2.2.4, but they can 
also capture steering system compliance, side force steering, and roll steering (see 4.3.6.3).  

b

 𝑦

−  

−  =    sin (𝛽);
+ 𝑦 =    cos (𝛽);

vehicle 
path 
centre

 𝑦 

  

vrx

  

velocities: forces:
 ⃗ 

 ⃗ 

 ⃗ 

 ⃗ 

   
   𝑣 

 
 
𝑦
𝑣
 

   

𝑙  𝑙  
 

  =     

  =   cos 𝛽

 𝑦 =   sin 𝛽
 

𝛽
   𝑣

  
𝑦
𝑣  𝑦

   

   𝑦

    

accelerations:

 
Figure 4-15: One-track model. Dashed forces and moment are fictive forces. 

The model in Figure 4-15 is documented in mathematical form in Equation [4.6] (in Modelica format). 
Longitudinal speed    is assumed to be positive. The subscripts v and w refer to vehicle coordinate 
system and wheel coordinate system, respectively. A driving resistance of 100 N is assumed on the 
rear axle (Frx=100;). The longitudinal speed is a parameter,   = 100 𝑘   .  

//Equilibrium: 

  m*ax = Ffxv + Frx;   //Air and grade resistance neglected  

  m*ay = Ffyv + Fry;   Jz*0 = Ffyv*lf - Fry*lr;   // der(wz)=0 

  -ax = wz*vy;   +ay = wz*vx; 

//Constitutive relation, i.e. Lateral tyre force model: 

  Ffyw = -Cf*sfy;  sfy = vfyw/vfxw; 

  Fry = -Cr*sry;   sry = vry/vrx; 

//Compatibility: 

  vfxv = vx;   vfyv = vy + lf*wz; 

  vrx = vx;    vry  = vy - lr*wz; 

//Transformation between vehicle and wheel coordinate systems: 

  Ffxv = Ffxw*cos(df) - Ffyw*sin(df); 

  Ffyv = Ffxw*sin(df) + Ffyw*cos(df); 

  vfxv = vfxw*cos(df) - vfyw*sin(df); 

  vfyv = vfxw*sin(df) + vfyw*cos(df); 

//Path with orientation (from Eq [1.4]): 

  der(x) = vx*cos(pz) - vy*sin(pz); 

  der(y) = vy*cos(pz) + vx*sin(pz); 

  der(pz) = wz; 

// Prescription of steer angle: 

  df = if time < 2.5 then (5*pi/180)*sin(0.5*2*pi*time) else 5*pi/180; 

// Rear axle undriven, which gives drag from roll resistance: 

  Frx = -100; 

[4.6] 

A simulation result from the model is shown in Figure 4-16. Note that steering start to the left, but ve-
hicle path starts bending to the right. This comes from that it is a steady state model but used in a tran-
sient manoeuvre. The steady state cornering condition is found directly and turning left has the steady 
state  𝑦 directed outwards, to the right, due to centrufugal force. 

Now, the validity of a model always has to be questioned. There are many modelling assumptions 
which could be checked, but in the following we only check the assumption  𝑦 =      ; instead of the 

more correct  𝑦 =   𝑦 +     ;, which we will learn in “4.4.2 Linear 1-Track Model”. Comparison of 



LATERAL DYNAMICS 

181 

the terms gives |  𝑦| 𝑎 
≈ |     | 𝑎 ≈ 10 𝑠2⁄ , so |     | is large and this jeopardizes the validity. 

Large |     | happens during 0 < 𝑡 <≈ 2 𝑠, so the model is not very valid there. But, at 𝑡 >≈ 2 𝑠, the 
model is valid, at least in this aspect, since there  |  𝑦| ≈ 0 ≪ |     |. So, the model is not so valid dur-

ing the initial sinusoidal steering. This shows that a steady state models should not be thrusted outside 
steady state conditions. 

Equation [4.6] is a complete model suitable for simulation, but it does not facilitate understanding very 

well. We will reformulate it assuming small    (i.e. cos(  ) = 1, sin(  ) = 0, and   
2 = 0). Eliminate 

slip, all forces that are not wheel longitudinal, and all velocities that are not CoG velocities: 

−      𝑦  (  + ( 𝑦 + 𝑙    )    ) = 

      =      (  + ( 𝑦 + 𝑙    )    ) + 𝐶  ( 𝑦 + 𝑙    )    +     (  + ( 𝑦 + 𝑙    )    ); 

        (  + ( 𝑦 + 𝑙    )    ) = 

      = −𝐶  (−     + ( 𝑦 + 𝑙    )) +           − 𝐶  
𝑣𝑦−𝑙𝑟 𝜔𝑧

𝑣𝑥
 (  + ( 𝑦 + 𝑙    )    );  

𝐶  (−     + ( 𝑦 + 𝑙    ))  𝑙 −         𝑙    = 

      = 𝐶  
 𝑦 − 𝑙    

  
 𝑙  (  + ( 𝑦 + 𝑙    )    );  

[4.7] 

Equation [4.7] is a complete model, which we can see as a dynamic system without state variables. 

• Actuation: Steering and wheel torque on each axle:            . 

• Motion quantities:     𝑦    

y [m]

x[m]
time [s]

df [rad]

Frx-100 Nm

5 deg

wz = 0.3995 rad/s

vy = -5.761 m/s

vx = 100 km/h=27.78 m/s

 =   2 +  𝑦
2

=

= 28.37   𝑠

Ffxw
Ffyw

 
Figure 4-16: Simulation results of steady state one-track model. The vehicle sketched in the path plot is not 

in scale, but correctly oriented. 

For propulsion on both axles, it can be a reasonable case that we know            and want to calcu-

late      𝑦   . Eq [4.8] is a rearrangement of Eq [4.7] for this purpose. It can be used for rear axle 

drive using     = 0 and calculating how large     needs to be. Front axle drive requires more rear-

rangements. 
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   =
𝐶  𝐶   + 𝐶        

𝐶  𝐶   
2 + (𝐶  𝑙 − 𝐶  𝑙 )      

2    
      ; 

 𝑦 =
𝐶  (𝐶    𝑙 − 𝑙      

2  )  +  (𝐶    𝑙 − 𝑙      
2)      

𝐶  𝐶   
2 + (𝐶  𝑙 − 𝐶  𝑙 )      

2  
      ; 

   = − ∙   ∙  𝑦 −     −
𝐶 ∙ ( 𝑦 + 𝑙 ∙   ) ∙   

(( 𝑦 + 𝑙 ∙   ) ∙   +   )
; 

[4.8] 

4.3.2.1 Relation 𝜹𝒇 𝒗𝒙 and 𝑹𝒑 
Solving the first equation in Equation [4.8] yields: 

  =
𝐶 ∙ 𝐶 ∙  

2 + (𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 ) ∙  ∙   
2

𝐶 ∙ 𝐶 ∙  + (𝐶 ∙ 𝑙 + 𝐶 ∙ 𝑙 ) ∙     
∙
  
  

≈ {
 𝑠𝑠𝑢 𝑒 𝑠  𝑙𝑙  𝑦 ⇒

⇒     ⁄ ≈  𝑝
} ≈ 

≈
1

1 +     𝐶 ⁄
∙
 

 𝑝
+

𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 

(𝐶 +     ) ∙ 𝐶 ∙  
∙
 ∙   

2

 𝑝
≈ {

 𝑠𝑠𝑢 𝑒:
    𝐶 ⁄ ≈ 0} ≈ 

≈
 

 𝑝
+
𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 

𝐶 ∙ 𝐶 ∙  
∙
 ∙   

2

 𝑝
= {𝑢𝑠𝑒: 𝐾 =

𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 

𝐶 ∙ 𝐶 ∙  
=

𝑙 
𝐶 ∙  

−
𝑙 

𝐶 ∙  
} = 

=
 

 𝑝
+ 𝐾 ∙

 ∙   
2

 𝑝
; 

[4.9] 

The coefficient 𝐾  is the understeer gradient and it will be explained more in 4.3.3. 

4.3.2.2 Relation 𝜹𝒇 𝒗𝒙 and 𝜷 
Solving the second equation in Equation [4.8] yields: 

  =
𝐶 ∙ 𝐶 ∙  

2 + (𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 ) ∙  ∙   
2

𝐶 ∙ (𝐶 ∙   𝑙 − 𝑙 ∙  ∙   
2) + (𝐶    𝑙 − 𝑙      

2) ∙     
∙
 𝑦

  
≈ 

≈ {𝑢𝑠𝑒:     = 0} ≈
𝐶 ∙ 𝐶 ∙  

2 − (𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 ) ∙  ∙   
2

𝐶 ∙ 𝐶 ∙ 𝑙 ∙  − 𝐶 ∙ 𝑙 ∙  ∙   
2

∙
 𝑦

  
 ≈ 

⇒

{
 
 

 
    

𝑣𝑥→0
→     

 

𝑙 
∙
 𝑦

  
;                                                          

   
𝑣𝑥→∞
→     

𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 

 𝐶 ∙ 𝑙 
∙
 𝑦

  
= −𝐾 ∙ 𝐶 ∙

 

𝑙 
∙
 𝑦

  
;

     

[4.10] 

We can see that there is a speed dependent relation between steer angle and side slip, 
𝑣𝑦

𝑣𝑥
. The side slip 

can also be expressed as a side slip angle, 𝛽 = arctan (
𝑣𝑦

𝑣𝑥
). Since normally 𝐾 > 0, the side slip changes 

sign, when increasing speed from zero to sufficient high enough. This should feel intuitively correct, if 
agreeing on the conceptually different side slip angles at low and high speed, as shown in Figure 4-17. 
We will come back to this equation in context of Figure 4-26. 

4.3.2.3 Relation 𝒗𝒙 𝑹𝒑 and 𝜷 
If we approximate     = 0 and use both equations in Equation [4.8] to eliminate    we get: 

𝐶    𝑙 − 𝑙      
2

𝐶    
= 𝑙 −

𝑙      
2

  𝐶  
=
 𝑦

  
 =

  
  

 
 𝑦

  
≈  𝑝  tan(𝛽) ;⇒ 

⇒
 𝑦

  
= tan(𝛽) = (𝑙 −

𝑙      
2

  𝐶  
)  

1

 𝑝
; 

[4.11] 
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Figure 4-17: Body Slip Angle for Low and High Speed Steady State Curves 

4.3.2.4 Simpler Derivation of Model 
A simpler way to reach almost same expression as first expression in Eq [4.8] is given in Figure 4-18. 
Here, the simplifications are introduced earlier, already in physical model, which means e.g. the influ-
ence of      is not captured. The simpler compatibility from 1.5.5.3 is used and   > 0 is assumed. 

Physical model:
• Path radius >> the vehicle. Then, all forces (and centripetal 

acceleration) are approximately co-directed.
• Small tyre and vehicle side slip. 

Then, angle=sin(angle)=tan(angle). 
(Angles are not drawn small, 
which is the reason why the 
forces not appear 
co-linear in figure.)

 
𝑙 

  𝑦
  𝑦

  
𝑣𝑥

2

𝑅𝑝

  

𝛼 
𝛽

Mathematical model:

Equilibrium:     
𝑣𝑥
2

𝑅
≈   𝑦+  𝑦;       0 ≈   𝑦  𝑙 −  𝑦  𝑙 ;

Constitution:     𝑦 = −𝐶  𝑠 𝑦;       𝑦 = −𝐶  𝑠 𝑦;

Compatibility:

𝑠 𝑦 ≈  𝑦 + 𝑙      ⁄ −   ;

𝑠 𝑦 ≈  𝑦 − 𝑙      ⁄ ;

  ≈    𝑝⁄ ;

Eliminate   𝑦,   𝑦 𝑠 𝑦 𝑠      𝑦 yields:

  ≈
 

 𝑝
+ 𝐾  

    
2

 𝑝
;      𝑒𝑟𝑒 𝐾 =

𝐶  𝑙 − 𝐶  𝑙 
𝐶  𝐶   

;𝑙 

  

𝛽 

𝛽 

 
Figure 4-18: Simpler derivation final step in Equation [4.9]. 

4.3.2.5 Steady State Cornering for Non-Ackermann Geometry 
Ackermann geometry has been assumed above. We will now try a vehicle like in 4.2.4 and Figure 4-6. 
Further on, we assuming     = 0;  𝑙 = (𝑙  + 𝑙 2) 2⁄ ;    = 𝑙 2 − 𝑙  ;   = 𝑙 + 𝑙 ;   𝑛  𝐶  = 𝐶 2 =

𝐶 𝑎 2⁄ ;. This gives an equation, comparable with Eq [4.9], as follows: 

  =
 

 𝑝
+ (

  𝑟
2   

)

2

 (1 +
𝐶 𝑎
𝐶 
)  

 

 𝑝⏟                    
𝛿𝐴

 + 𝐾  
    

2

 𝑝
;      𝑒𝑟𝑒  𝑛  𝐾 =

𝐶 𝑎  𝑙 − 𝐶  𝑙 

𝐶  𝐶 𝑎   
; [4.12] 

Note: We can still identify an 𝐾 , but the reference angle  𝐴, see also 4.3.3, is not as simple as   𝑝⁄ . 

4.3.2.6 Model Validity 
The validity of the steady state models described in 4.3.2, is of course limited by if the manoeuvre is 
transient which would mean that steady state is not reached, e.g. if driving above critical speed. But it 
is also limited by if the assumption of linear tyre characteristics,  𝑦 = −𝐶 ∙ 𝑠𝑦;, is violated. Therefore, 

one should check if some axle uses too much of available friction,  = √  
2 +  𝑦

2 > 𝑓𝑟  𝑡 𝑜𝑛 ∙  ∙   ;. 

Referring to the tyre brush model with uniform pressure distribution one can argue for using 0.5 as 
this limiting fraction, since the tyre force is linear with slip up to this value. 



LATERAL DYNAMICS 

 184  

4.3.3 Under-, Neutral- and Over-steering * 
Function definition: Understeering (gradient) is the additional steer angle needed per increase of lateral force 
(or lateral acceleration) when driving in high speed steady state cornering on level ground and high road friction. 
Additional refers to low speed. The gradient is defined at certain high-speed steady state cornering conditions, in-
cluding straight-line driving. Steer angle can be either road wheel angle or steering wheel angle. 

The first term in Eq [4.9],    , can be seen as a reference steer angle  𝐴, which is the Ackermann steer 
angle. The (ISO 8855) defines  𝐴 as the steer angle which would be needed to give same instantaneous 
centre of rotation if the vehicle would have had two axles, perfect Ackermann steering and no tyre side 
slip. So,  𝐴 corresponds to L/R for a two-axle vehicle. An extended definition of  𝐴 is the steering angle 
needed for a certain curvature 1  𝑝 at low speed. The understeer gradient is then understood as a 

measure of how this is changed with increasing speed   . 

The understeering gradient, 𝐾 , is normally positive, which means that most vehicles require more 
steer angle for a given curve, the higher the speed is. Depending on the sign of 𝐾  a vehicle is said to be 
oversteered (if 𝐾 < 0), understeered (if 𝐾 > 0) and neutral steered ( 𝑓 𝐾 = 0). In practice, all vehi-
cles are designed as understeered, because over steered vehicle would become unstable and difficult 
to control. 

The 𝐾  in Eq [4.9] is called “understeer gradient” and has hence the unit rad/N or 1/N. Sometimes one 
can see slightly other definitions of what to include in definition of understeer gradient, which have 
different units, see 𝐾 2 and 𝐾   in Eq [4.13]. 

  =
𝐿

𝑅
+

 𝑟∙𝑙𝑟− 𝑓∙𝑙𝑓

 𝑓∙ 𝑟∙𝐿
∙
 ∙𝑔∙𝑣𝑥

2

𝑔∙𝑅
= {𝐾 2 =  ∙  ∙

 𝑟∙𝑙𝑟− 𝑓∙𝑙𝑓

 𝑓∙ 𝑟∙𝐿
[1 𝑜𝑟 𝑟  ]} =

𝐿

𝑅
+ 𝐾 2 ∙

𝑣𝑥
2

𝑔∙𝑅
;  

  =
𝐿

𝑅
+

 𝑟∙𝑙𝑟− 𝑓∙𝑙𝑓

 𝑓∙ 𝑟∙𝐿
∙
 ∙𝑣𝑥

2

𝑅
= {𝐾  =  ∙

 𝑟∙𝑙𝑟− 𝑓∙𝑙𝑓

 𝑓∙ 𝑟∙𝐿
[

 

  2⁄
𝑜𝑟

 𝑎 

  2⁄
]} =

𝐿

𝑅
+ 𝐾  ∙

𝑣𝑥
2

𝑅
;  

[4.13] 

𝐾   is the definition used in (ISO 8855). For 𝐾  , one can sometimes see the unit “rad/g” used, which 
present compendium recommended to not use. 

If vertical loads on axles are only due to gravity ( 𝑖 =     ( − 𝑙𝑖)  ⁄ ) and tyres linear with vertical 
load (𝐶𝑖𝑦 = 𝐶𝐶𝑖𝑦   𝑖 ) we can express 𝐾 2 = 1 𝐶𝐶 ⁄ − 1 𝐶𝐶 ⁄ ;. 

4.3.3.1 Understeering as a Fix Built-In Measure 
The understeering gradient 𝐾  can be understood as how much additionally to the reference steer an-
gle one has to steer, to reach a certain centrifugal force,   =  ∙   

2  ⁄  (or, if using 𝐾  , a certain accel-
eration   =   

2  ⁄ ): 

  =  𝐴 + 𝐾 ∙   =  𝐴 + 𝐾 ∙
 ∙   

2

 
;   ⇒    𝐾 =

  −  𝐴

  
=
   

  
;    𝑜𝑟   𝐾  =

   

  
  

Understeering is a steady state property and does depend on which axle is steered, see Figure 4-19. 

  

1. If   small (Low speed)

2a: …𝐶 𝑦 ≪ 𝐶 𝑦 ⇒

curve radius increases, 
which indicates 
under-steering

2b: …𝐶 𝑦 ≪ 𝐶 𝑦 ⇒ curve 

radius increases, which 
indicates over-steering

2. If    increases, 
  increases and…

𝐶 𝑦

𝐶 𝑦

  𝑦 

  𝑦 

 
Figure 4-19: Under- and over-steering for a two-axle vehicle with 𝑙 = 𝑙 . It does not depend on which axle is 

steered, but which axle is first in the direction of motion. Figure drawn for vehicle driving forward. 
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4.3.3.2 Understeer Gradient as Varying with Steady State Lat-
eral Acceleration 

So far, the understeering gradient is presented as a fix vehicle parameter. There is nothing that says 
that a real vehicle behaves linear, so in order to get a well-defined value of 𝐾 , the     and the    

should be small. However, if we accept that 𝐾  can change with   , 𝐾  can be defined as a differential 
quantity. 𝐾  can also be understood as how much the additional steer angle,    , has to increase per 

increased centrifugal force,   , or per centrifugal acceleration,   : 

𝐾 =
𝜕(   )

𝜕  
=

𝜕

𝜕  
(  −  𝐴) =

𝜕   

𝜕  
;    𝑜𝑟   𝐾  =

𝜕(   )

𝜕  
=
𝜕  

𝜕  
; [4.14] 

Equation [4.14] shows the understeering gradient as a function of   , rather than a scalar parameter. 
But it is still fix and built-in in the vehicle. If assessing understeering for a lateral forces up to near road 
friction limit, Equation [4.14] is more relevant than Equation [4.9], because it reflects that understeer-
ing gradient changes. 

4.3.3.3 Understeering as a Varying Quantity during a Transient 
Manoeuvre 

A third understanding of the word understeering is quite different and less strictly defined. It is to see 
the understeering as a variable during a transient manoeuvre. For instance, a vehicle can be said to un-
dersteer if tyre side slip is larger on front axle than on rear axle, |  | > |  |, and over-steer if opposite, 

|  | > |  |. This way of defining understeering and oversteering is not built-in in vehicle but varies 

over time through a (transient) manoeuvre. E.g., when braking in a curve a vehicle loses grip on rear 
axle due to temporary load transfer from rear to front. Then the rear axles can slide outwards signifi-
cantly, and the vehicle can be referred to as over-steering at this time instant, although the built-in un-
dersteering gradient is >0. This “instantaneous” under-/over-steering (binary, not an understeer gra-
dient) can be approximately found from log data with this simple approximation: 

 𝑛𝑒 𝑡 𝑎𝑙 =
 

 
≈ {  ≈  ∙   } ≈

 ∙   
  

≈ { 𝑦 ≈   ∙   } ≈
 ∙  𝑦

  
2 ; [4.15] 

If the actual vehicle has |  | < | 𝑛𝑒 𝑡 𝑎𝑙| the vehicle oversteers, and vice versa. This is often very prac-

tical since it only requires simply logged data,       and  𝑦. Note that when    and  𝑛𝑒 𝑡 𝑎𝑙 have differ-

ent signs, neither understeer or oversteers is suitable as classification, but it can sometimes be called 
“counter-steer”. An example of applying Eq [4.15] is shown in Figure 4-20, where one also see that the 
ESC system does not follow the Eq [4.15] when deciding ESC interventions; ESC has more advanced 
“reference models”, see 4.6.2.1. 

A second look at Equation [4.9] tells us that we have to assume absence of propulsion and braking on 
front axle,     = 0, to get the relatively simple final expression. When propulsion on front axle 

(    > 0), the required steer angle,   , will be smaller; the front propulsion pulls in the front end of 

the vehicle. When braking on front axle (    < 0), the required steer angle,   , will be larger; the 

front braking hinders the front end to turn in. To keep    constant, which is required within definition 
of steady state, one have to propel the vehicle because there will always be some driving resistance to 
overcome. Driving fast on a small radius is a situation where the driving resistance from tyre lateral 
forces becomes significant, which is a part of driving resistance which was only briefly mentioned in 
3.2. 
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Figure 4-20: Log data from passenger car with ESC in a double lane change. Upper: Vehicle motion. Middle: 
 𝑛𝑒 𝑡 𝑎𝑙  from Eq [4.15] used to define “instantaneous under-/over-steering” (US/OS). Lower: Pressure to 

each wheel brake. 

4.3.3.4 Neutral Steering Point 
An alternative measure to understeering coefficient is the longitudinal position of the neutral steering 
point. The point is defined for lateral force disturbance during steady state straight-ahead driving, as 
opposed to steady state cornering without lateral force disturbance. The point is where a vehicle-ex-
ternal lateral force, such as wind or impact, can be applied on the vehicle without causing a yaw veloc-
ity (  = 0), i.e. only causing lateral velocity ( 𝑦 ≠ 0). From this definition, we can derive a formula for 

calculating the position of the neutral steering point, see Figure 4-21. 

The result is con-
densed in Eq [4.16]. 𝑙 =

𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 

𝐶 + 𝐶 
= 𝐾 ∙

𝐶 ∙ 𝐶 

𝐶 + 𝐶 
  ;      𝑒𝑟𝑒 𝐾 =

𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 

𝐶 ∙ 𝐶 ∙  
; [4.16] 

We can see that the understeer gradient from steady state cornering model appears also in the for-
mula for neutral steering point position, 𝑙 . Since 𝐶  𝐶   𝑛    are positive, the neutral steering point is 

behind of CoG for understeered (two-axle) vehicles, and in front of CoG for oversteered (two-axle) ve-
hicles. This is why 𝑙  and 𝐾  can be said to be alternative measures for the same vehicle function/char-
acter, the yaw balance. 

4.3.4 Required Steer Angle 
A fundamental property of the vehicle is what steer angle that is required to negotiate a certain curva-
ture (=1/path radius = 1  𝑝). This value can vary with longitudinal speed and it can be normalized 

with wheel base,  . From Equation [4.9], we can conclude: 

𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒔𝒕𝒆𝒆𝒓𝒊𝒏𝒈 𝒂𝒏𝒈𝒍𝒆 =
  ∙  𝑝

 
= 1 + 𝐾 ∙

 ∙   
2

 
; [4.17] 

The normalized required steer angle is plotted for different understeering gradients Figure 4-22. It is 
the same as the inverted and normalized curvature gain, see 4.3.5.2. 
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L

FfyFry

  = 0

b

Mathematical model:
Equilibrium:

0 =   𝑦+  𝑦 +  𝑒;   

0 =   𝑦  𝑙 −   𝑦  𝑙 −  𝑒  𝑙 ;

Constitution:    𝑦 = −𝐶  𝑠 𝑦; and   𝑦 = −𝐶  𝑠 𝑦;

Compatibility:            𝑠 𝑦 = 𝑠 𝑦 =
𝑣𝑦

𝑣𝑥
;  

Eliminate   𝑦,   𝑦 𝑠 𝑦 𝑠 𝑦  𝑒 yields: 𝑙 =
 𝑟 𝑙𝑟− 𝑓 𝑙𝑓

 𝑓+ 𝑟
;

Identify understeering gradient, 𝐾 =
 𝑟 𝑙𝑟− 𝑓 𝑙𝑓

 𝑓  𝑟 𝐿

Then: 

𝑙 = 𝐾  
𝐶  𝐶 
𝐶 + 𝐶 

  ;

Physical model:
• Steady state (   =   𝑦 =    = 0)

• Straight ahead driving (  = 0)
• No steering
• Small tyre and vehicle side slip. Then,  

angle=sin(angle)=tan(angle). 

Fey
𝑙 

𝑙 𝑙 

 
Figure 4-21: Model for definition and calculation of neutral steering point. 
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Figure 4-22: Normalized steer angle (  ∙   ⁄ ) for Steady State Cornering 

4.3.4.1 Critical and Characteristic Speed * 
Function definition: Critical speed is the speed above which the vehicle becomes unstable in the sense that the 
yaw velocity grows largely for a small disturbance in, e.g., steer angle. 

Function definition: Characteristic speed is the speed at which the vehicle requires twice as high steer angle for 
a certain path radius as required at low speed (Figure 4-22). (Alternative definitions: The speed at which the yaw 
velocity gain reaches maximum (Figure 4-23). The speed at which the lateral acceleration gain per longitudinal 
speed reaches its highest value. (Figure 4-25).) 

We can identify that zero steer angle is required for the over-steered vehicle at 28 m/s. This is the so-
called Critical Speed, which is the speed where the vehicle becomes unstable. It should be noted here, 
that there are stable conditions also above critical speed, but one has to steer in the opposite direction 
then. Normal vehicles are built understeered, which is why a Critical speed is more of a theoretical def-
inition. However, if studying (quasi-steady state) situations where the rear axle is heavily braked, the 
cornering stiffness rear is reduced, and a critical speed can be relevant.  

For understeered vehicles, we can instead read out another measure, the Characteristic Speed. The un-
derstanding of Characteristic Speed is, so far just that required steering increases to over twice what is 
needed for low speed at the same path radius. A better feeling for Characteristic Speed is suggested in 
4.3.5.3. 
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The vehicle is unstable for speeds above the critical speed. Instability is further discussed in 4.4.4. 
From Equation [4.9], we can find a formula for critical and characteristic speeds:  

  =
 

 𝑝
+ 𝐾 ∙

 ∙      𝑖𝑡
2

 𝑝
= 0  ⇒       𝑖𝑡 = √

 

−𝐾 ∙  
= √

𝐶 ∙ 𝐶 ∙  
2

(𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 ) ∙  
; 

  =
 

 𝑝
+ 𝐾 ∙

 ∙     ℎ𝑎 
2

 𝑝
= 2 ∙

 

 𝑝
   ⇒        ℎ𝑎 = √

 

𝐾 ∙  
= √

𝐶 ∙ 𝐶 ∙  
2

(𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 ) ∙  
; 

[4.18] 

4.3.5 Steady State Cornering Gains * 
Function definition: Steady state cornering gains are the amplification from steer angle to certain vehicle 
response measures for steady state cornering at a certain longitudinal speed. 

From Equation [4.9], we can derive some interesting ratios. We put steer angle in the denominator, so 
that we get a gain, in the sense that the ratio describes how much of something we get “per steer an-
gle”. If we assume     = 0, we get Equation [4.19]. 

𝒀𝒂𝒘 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒈𝒂𝒊𝒏 =  

  
  

= {𝑢𝑠𝑒: 
  
  

≈
1

 𝑝
} ≈

   𝑝⁄

 
 𝑝

+ 𝐾 ∙
 ∙   

2

 𝑝

=
  

 + 𝐾 ∙  ∙   
2
; 

𝑪𝒖𝒓𝒗𝒂𝒕𝒖𝒓𝒆 𝒈𝒂𝒊𝒏 =  

=
κ

  
=
1  𝑝⁄

  
=

1  𝑝⁄

 
 + 𝐾 ∙

 ∙   
2

 𝑝

=
1

 + 𝐾 ∙  ∙   
2
; 

𝑳𝒂𝒕𝒆𝒓𝒂𝒍 𝒂𝒄𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒈𝒂𝒊𝒏 =  

=
 𝑦

  
=

{
 

 
𝑢𝑠𝑒: 

 𝑦 =   ∙   ;

 𝑛  
  
  

≈
1

 𝑝
;
}
 

 
≈

  
2

 𝑝
 
 𝑝

+ 𝐾 ∙
 ∙   

2

 𝑝

=
  

2

 + 𝐾 ∙  ∙   
2
; 

[4.19] 

Yaw velocity gain is also derived for     ≠ 0, and then we get Equation [4.20]. 

𝒀𝒂𝒘 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒈𝒂𝒊𝒏 (  𝑡       𝑡 𝑘𝑒𝑛  𝑛𝑡𝑜    𝑜𝑢𝑛𝑡) =  

=
  
  

= (1 +
    

𝐶 
)  

  
 + 𝐾 ∙  ∙   

2
; 

[4.20] 

4.3.5.1 Yaw Velocity Gain 
The yaw velocity gain gives us a way to understand Characteristic Speed. Normally one would expect 
the yaw velocity to increase if one increases the speed along a circular path. However, the vehicle will 
also increase its path radius when speed is increased. At the Characteristic Speed, the increase in ra-
dius cancel out the effect of increased speed, so that yaw velocity in total decrease with increased 
speed. One can find the characteristic speed as the speed where one senses or measures the highest 
value of yaw velocity for a fix steer angle. The curves for     = +0.25 ∙     and     = −0.25 ∙     in 

Figure 4-23 are generated using Eq [4.20]. Note that critical and characteristic speed is independent of 
    . 



LATERAL DYNAMICS 

189 

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

Ku = 2.525e-6 [1/N]

Ku = 0e-6 [1/N]

Ku = -1.794e-6 [1/N]

vx [m/s]

y
a
w

 r
a
te

 g
a
in

, 
w

z
/d

f 
[(

ra
d
/s

)/
ra

d
]

Understeered

Oversteered

Neutral steered

Critical speed (for 
oversteered vehicle)

Characteristic 
speed (for 

understeered
vehicle)

ya
w

 v
el

o
ci

ty
 g

ai
n

,  
 
  
⁄

   
 
𝑎
 
  

 
𝑎
 

 
Figure 4-23: Yaw velocity gain (     ) for Steady State Cornering. Each “cluster of 3 curves”:  

Mid curve       = 0. Upper       = +0.5 ∙    . Lower     = −0.5 ∙    . 

4.3.5.2 Curvature Gain 
If driving on a constant path radius, and slowly increase speed from zero, an understeered vehicle will 
require more and more steer angle (“steer-in”), to stay at the same path radius. For an over-steered 
vehicle, one has to steer less (“open up steering”) when increasing the speed. 
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Figure 4-24: Curvature gain (

 𝑅⁄

𝛿𝑓
) for Steady State Cornering 

4.3.5.3 Lateral Acceleration Gain 
Figure 4-26 shows the lateral acceleration gain as function of vehicle speed. The characteristics speed 
is once again identified in this diagram, and now as the speed when lateral acceleration per longitudi-

nal speed (( 𝑦   ⁄ )   ⁄ ) reaches its highest value. This is an alternative definition of characteristic 

speed, c.f. 4.3.4.1. 
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Figure 4-25: Lateral acceleration gain (

𝑎𝑦

𝛿𝑓
) for Steady State Cornering 

From the previous figures the responsiveness of the vehicle can be identified for different understeer 
gradients. In all cases the vehicle which is understeered is the least responsive of the conditions. Both 
the yaw velocity and lateral acceleration cannot achieve the levels of the neutral steered or over-
steered vehicle. The over-steered vehicle is seen to exhibit instability when the critical speed is 
reached since small changes in the input result in excessive output conditions. In addition, the over-
steered vehicle will have a counter-intuitive response for the driver. To maintain a constant radius 
curve, an increase in speed requires that the driver turns the steering wheel opposite to the direction 
of desired path. The result of these characteristics leads car manufacturers to produce understeered 
vehicles that are close to neutral steering to achieve the best stability and driver feedback. 

4.3.5.4 Side Slip Gain as Function of Speed 
All gains above can be found from solving    from Eq [4.9]. If instead solving the other unknown,  𝑦, 

we can draw “side slip gain” instead. Eq [4.21] shows the formula for this. 

 𝑦

  ∙   
=

𝐶 ∙ 𝐶 ∙ 𝑙 ∙  − 𝐶 ∙ 𝑙 ∙  ∙   
2

𝐶 ∙ 𝐶 ∙  
2 − (𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 ) ∙  ∙   

2
     [4.21] 

It is not solely the understeering gradient that sets the curve shape, but we can still plot for some real-
istic numerical data, which are under-, neutral and over-steered, see Figure 4-26. 

All cases in Figure 4-26 goes from positive side slip to negative when speed increases. This is the same 
as we expected already in Figure 4-17. 

We can also calculate and plot the longitudinal location of the motion centre, i.e. 𝑥𝑀 = − 𝑦   ⁄ , by 

combining Eqs [4.21] and [4.19]. Note that    is independent of   , while the longitudinal location of 

the motion centre,  𝑀 =     ⁄ , is not. 

4.3.5.5 Limitations due to Road Friction 
The formulas with the gains in Eq [4.19] does not include the limitation due to maximum road friction, 
i.e. the peak of the tyres’  𝑖𝑦(𝑠𝑖𝑦) curves. This limitation is a lateral acceleration  𝑦  𝑎  where on of the 

axles reach friction limit. Yaw and lateral equilibrium requires   𝑦 =  ∙  𝑦  𝑙  ⁄ ; and    𝑦 =  ∙  𝑦  

𝑙  ⁄ ;, so the limit due to front axle is  ∙  𝑦  𝑎    𝑙  ⁄ =       =        𝑙  ⁄  ⇒    𝑦  𝑎   =

    ; and corresponding for rear axle. The total limit is  𝑦  𝑎 = min(      )   ; Inserting this in Eq 

[4.19] and eliminate   , one finds: 

    𝑎 = √ 𝑦  𝑎    𝑝 = √min(      )     𝑝; [4.22] 
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For example, if negotiating a curve with  = 100   and   =   = 1 gives     𝑎 ≈ 31  𝑠⁄ ≈

113 𝑘  ⁄  and if either (or both) of    and    are just 0.5,     𝑎 ≈ 22  𝑠⁄ ≈ 80 𝑘  ⁄ . So, we should 

see the curves in Figure 4-22 and in Figure 4-23 to Figure 4-26 as invalid over certain speed     𝑎 , 

which depends on max road friction and curvature. 

Reaching     𝑎  means loss of steerability if   <   , and loss of yaw stability if   <   . So, also an 

under-steered vehicle becomes unstable, if   <    and driving faster than     𝑎 . And, an oversteered 

vehicle might be limited from reaching its critical speed if   <    and driving on a certain radius  . 
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Figure 4-26: Left Side slip gain (

𝑣𝑦

𝑣𝑥∙𝛿𝑓
). Right: Motion centre longitudinal location (𝑥𝑀 =

−𝑣𝑦

𝜔𝑧
). For Steady 

State Cornering. 

4.3.6 How Design Influences Steady State Gains  
The cornering stiffness for each axle are only abstract design parameters which influence steady state 
gains. The cornering stiffness is a combined effect from various, more concrete, design parameters. 
Such more concrete design parameters are presented in 4.3.6. Also, some vehicle operation which af-
fects understeering gradient, such as hard braking in 4.3.6.1, is mentioned. 

4.3.6.1 Tyre Design, Inflation Pressure and Number of Tyres 
The cornering stiffness of each tyre is an obvious parameter which influences the axle cornering stiff-
ness. The cornering stiffness of an axle is influenced by the sum of cornering stiffness for all tyres. 
There are normally two tyres per axle, but there are also vehicles with one tyre (e.g. bicycles) or 4 (e.g. 
2 double mounted tyres on each side in heavy trucks). 

Tyre design influences, which is geometrical dimensions and material selection. Inflation pressure is in 
this context very close to a design parameter. 

In a first approximation, tyre cornering stiffness is approximately proportional to vertical load: 𝐶𝑖𝑦 =

𝐶𝐶𝑖𝑦 ∙  𝑖 . For a vehicle with equally many and same tyres front and rear, this means that it will be neu-

tral steered, neglecting body forces (air and grade). This is because, in steady state cornering, vertical 
loads are distributed over the axles in the same relation as lateral loads. Using definition of understeer 
gradient:  
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𝐾 =
𝑙 

𝐶 ∙  
−

𝑙 

𝐶 ∙  
=

𝑙 
𝐶𝐶 ∙    ∙  

−
𝑙 

𝐶𝐶 ∙    ∙  
= {

𝑙𝑜𝑛  𝑡𝑢  𝑛 𝑙
𝑙𝑜   𝑡𝑟 𝑛𝑠𝑓𝑒𝑟

 ∙   ∙   ⁄
} = 

=
𝑙 

𝐶𝐶 ∙ ( ∙  ∙
𝑙 
 
− ∙   ∙

 
 
) ∙  

−
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𝐶𝐶 ∙ ( ∙  ∙
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 ) ∙  
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=
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𝐶𝐶 ∙ (𝑙 −
  
 
∙  )

−
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𝐶𝐶 ∙ (𝑙 +
  
 
∙  )

) = {
 𝑓 𝐶𝐶 =  

= 𝐶𝐶 = 𝐶𝐶𝑦
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=
1

    𝐶𝐶𝑦
 (

1

(1 −
  
 
∙
 
𝑙 
)
−

1

(1 +
  
 
∙
 
𝑙 
)
) = {

 𝑓
  = 0

} = 0; 

[4.23] 

Longitudinal load transfer (influence of    in the equations) show that braking increases over-steering 

tendency. It is actually so, that the critical speed      𝑖𝑡 = √ (−𝐾 ∙  )⁄  (see Equation [4.18]) can 

come down to quite reachable levels when braking hard; i.e. hard braking at high speed may cause in-
stability. This is especially so for front biased CoG location. See Figure 4-27, inspired by Reference 
(Drenth, 1993). 

However, the cornering stiffness varies degressively, e.g. 𝐶𝑖 = 𝑘𝑖𝑝 ∙  𝑖 − 𝑘𝑖 ∙  𝑖 
2. This is further stud-

ied in Reference (Drenth, 1993). 

If taking the degressiveness of tyre cornering stiffness into account, the weight distribution plays a 
role also without longitudinal load transfer; front biased weight distribution gives under-steered vehi-
cles and vice versa. Also, the number of wheels per axle influence stronger; single wheel front (or dou-
ble-mounted rear) gives under-steered vehicles and vice versa. 

It should be noted that if the longitudinal acceleration is due to wheel torques, as opposed to road 
grade or aerodynamic forces, the tyre combined slip effects will influence the curves which is not con-
sidered in Figure 4-27; the cornering stiffness of an axle will decrease with increased longitudinal 
force. 

𝐶    ⁄ = 𝐶𝐶 = 𝐶    ⁄ = 𝐶𝐶 =

 
Figure 4-27: Left: Under-steering gradient as function of longitudinal acceleration,   , and static load 

distribution,𝑙  ⁄ . Right: Critical and characteristic velocity as function of acceleration and load distribution. 

4.3.6.2 Roll Stiffness Distribution between Axles 
During cornering, the vertical load is shifted towards the outer wheels. Depending on the roll stiffness 
of each axle, the axles take differently much of this lateral load transfer. This also influences the yaw 
balance. The more roll stiff an axle is, the more of the lateral load shift it takes. Tyre cornering stiffness 
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varies degressively with vertical load. Together, this means that increasing the roll stiffness on the 
front axle, leads to less front cornering stiffness, see Figure 2-35, and consequently more understeered 
vehicle. Increasing roll stiffness on rear axle makes the vehicle more oversteered. The total roll stiff-
ness of the vehicle does not influence the understeering gradient. Normally one makes the front axle 
more roll stiff than the rear axle. This means that vehicle becomes more and more understeered for 
increased lateral acceleration, e.g. more steer angle is needed to maintain a certain path radius if speed 
increases. One can change the roll stiffness of an axle by changing roll centre height, wheel stiffness 
rate and anti-roll bar stiffness.  

Both wheels, if no load transfer.
Axle cornering stiffness ≈
≈ 2  3.1 = 6.2  10  𝑁 𝑟  

Left and right wheel, if load transfer ±25 𝑘𝑁.
Axle cornering stiffness ≈ 2.1 + 3.7 = 5.8  10 𝑁 𝑟  

±25 𝑘𝑁 ±25 𝑘𝑁

3.7  10 𝑁 𝑟  

3.1  10 𝑁 𝑟  
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Figure 4-28: The wheels cornering stiffness (𝜕 𝜕𝛼⁄ ( 𝑦)| 𝑦=0

) changes degressively with vertical load. The 

axle cornering stiffness therefore decreases with increased load transfer. 

4.3.6.3 Steering and Suspension Compliances 
4.3.6.3.1 Side-Force Steer Gradient 

Side-force steer gradient,  𝑖𝑆 𝑆, is defined for an axle and it is how much the wheels on an axle steers 
[deg] negatively per lateral force [N]. Negative is chosen since the normal case is that pivot point is 
ahead of wheel, so that wheel steers negative for a positive force. Also, a non-steered axle steers due to 
side force steering, which depends on the compliance of the suspension bushings. 

It can be modelled as an extra compliance, with the constitutional equations:   𝑦 = −  𝑆 𝑆 ∙    ; and 

  𝑦 = −  𝑆 𝑆 ∙    ;, where the   marks additional steer angle due to the lateral force. These extra com-

pliances come into play as series connected with the tyre cornering compliances. If we update Equa-
tion [4.9] with side force steering it becomes: 

  =
 

 
+ 𝐾 ∙

 ∙   
2

 
; 

  𝑒𝑟𝑒 𝐾 =
𝑙 

𝐶  𝑡 𝑡 ∙  
−

𝑙 

𝐶  𝑡 𝑡 ∙  
=
𝐶  𝑡 𝑡 ∙ 𝑙 − 𝐶  𝑡 𝑡 ∙ 𝑙 

𝐶  𝑡 𝑡 ∙ 𝐶  𝑡 𝑡 ∙  
; 

  𝑒𝑟𝑒 𝐶  𝑡 𝑡 =
1

1
𝐶 
+

1
  𝑆 𝑆

    𝑛     𝐶  𝑡 𝑡 =
1

1
𝐶 

+
1

  𝑆 𝑆

; 

[4.24] 

For vehicles with largely varying vertical axle load (such as heavy trucks), one has to consider that the 
contribution from tyre to axle cornering stiffness is rather proportional to vertical axle load, while the 
contribution from side-force steering comes from suspension elasticities and is rather constant. So, 
utilizing side-force steering makes the vehicles lateral manoeuvrability inconsistent with vertical load. 

4.3.6.3.2 Roll Steer Gradient 

Roll steer gradient, 𝑘𝑖𝑅𝑆, is defined for an axle and it is how much the wheels on an axle steers [deg] 
per vehicle roll angle [deg]. Also, a non-steered axle can steer due to roll-steering. Roll-steering de-
pends on the suspension linkage geometry. The added steer angle can be expressed:   𝑖 = 𝑘𝑖𝑅𝑆 ∙   ;. 

We will now derive the influence on steady state cornering. Add steering on rear axle to Eq [4.9]: 
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  −   ≈
𝐿

𝑅𝑝
+ 𝐾  𝑛 𝑅𝑆 ∙

 ∙𝑣𝑥
2

𝑅𝑝
; 𝐾  𝑛 𝑅𝑆 =

 𝑟∙𝑙𝑟− 𝑓∙𝑙𝑓

 𝑓∙ 𝑟∙𝐿
; (subscript “noRS” means “no Roll-Steer”) 

If we see  𝑖  as built up by one angle from the steering system  𝑖0 and one part coming from the suspen-
sion, via roll-steering   𝑖: 

  0 +    − (  0 +    ) ≈
𝐿

𝑅𝑝
+ 𝐾  𝑛 𝑅𝑆 ∙

 ∙𝑣𝑥
2

𝑅𝑝
;  

Then, we can express   𝑖  in   : 
  𝑖 = {  𝑖 = 𝑘𝑖𝑅𝑆    } = 𝑘𝑖𝑅𝑆 ∙   ;    𝑓𝑜𝑟  = 𝑓 𝑟. 

We can also express the relation between  𝑦 and   : 

𝛥 𝑖 = 𝑘𝑖𝑅𝑆 ∙   = {
   𝑦   =
=      

} = 𝑘𝑖𝑅𝑆 ∙
  𝑎𝑦 ℎ

 𝑥
= { 𝑦 =

𝑣𝑥
2

𝑅
} =

ℎ 𝑘𝑖𝑅𝑆

 𝑥
 
  𝑣𝑥

2

𝑅𝑝
;   𝑓𝑜𝑟  = 𝑓 𝑟. 

Insertion identifying an understeering gradient with roll-steering gives: 

  0 −   0 ≈
 

 𝑝
+ 𝐾  𝑅𝑆  

    
2

 𝑝
; 𝐾  𝑅𝑆 = 𝐾  𝑛 𝑅𝑆 +

  (𝑘 𝑅𝑆 − 𝑘 𝑅𝑆)

  
; [4.25] 

4.3.6.3.3 Quantified Combined Effect 

Side force steering and roll-steering are similar but have different time scales. Roll-steering requires 
that sprung body changes roll angle, which takes significantly longer time; typically roll eigen-fre-
quency is 1..2 Hz. Side force steering does not require a roll angle change, so side-force steering has 
much less time delay. Roll-steering also comes into play for one-sided road unevenness, i.e. also with-
out cornering and without body roll. 

The combined effect from steering system (0), side force steering (4.3.6.3.1) and roll-steering 
(4.3.6.3.2) often represent a significant part of the front axle cornering compliance, e.g. reduces com-
pliance with 20..40% compared to tyre cornering compliance only, Reference (Wedlin, o.a., 1992). 
Most of this is due to steering system compliance.  

On rear axles on passenger cars, the influence is typically less and in opposite direction, e.g. increase 
1..5% compared to tyre cornering compliance only. 

Rear axles on heavy vehicles are typically designed without significant side-force steering. However, 
the frame compliance can cause a relevant amount of side-force oversteering due to that the whole 
frame steers curve-outwards rear and curve-inwards front. The frame compliance is especially influ-
ential on a tractor with fifth wheel ahead of rear axle(s); clearly larger than sideforce compliance on a 
single axle and on a rigid truck about the same, depending on the body-build on the frame. 

Patents exist for making the rear axle suspension on heavy vehicle’s trailers sideforce steering so that 
axle becomes less cornering compliant, reducing compliance with typically 1/3 compared to tyre cor-
nering compliance only. This increases yaw stability, which is very much same concept as using side-
force understeering rear at a two-axle vehicle. Using this concept can lead to very yaw stable vehicles. 
The drawback is reduced yaw agility. If really exaggerated, it can take the rear axle to effectively nega-
tive cornering stiffness, which makes vehicle unstable.  

4.3.6.4 Camber Steer 
Negative camber (wheel top leaning inwards) increases the cornering stiffness. One explanation to this 
is that curve outer wheel gets more vertical load than the curve inner wheel. Hence, the inwards di-
rected camber force from outer wheel dominates over outwards directed camber force from the inner 
wheel. Negative camber is often used at rear axle at passenger cars. Drawback with non-zero camber is 
tyre wear. 

4.3.6.5 Toe Angle 
Toe has some, but limited effect on an axle’s cornering stiffness. Non-zero toe increases tyre wear. Toe-
angle: When rolling ahead, tyre side forces pre-tension bushes. 

If toe (=toe-in) is positive there are tyre-lateral forces on each tyre already when driving straight 

ahead, even if left and right cancel out each other:  𝑎𝑦 = (𝐶𝑙𝑒 𝑡 − 𝐶 𝑖𝑔ℎ𝑡) ∙
𝑡 𝑒

2
= 0;. Then, if the axle 
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takes a side force, the vertical loads of the wheels are shifted between left and right wheel, which also 
changes the tyre cornering stiffnesses. The outer wheel will get more cornering stiffness. Due to posi-
tive toe, it will also have the largest steer angle. So, the axle will generate larger lateral force than with 
zero toe. For steady-state cornering vehicle models, this effect comes in as an increased axle cornering 
stiffness, i.e. a linear effect. 

4.3.6.6 Wheel Torque Effects 
Wheel torque give tyre longitudinal force, directed as the wheel is directed. If the wheel is steered, the 
wheel longitudinal forces can influence the yaw balance, see also      in Equation [4.9]. 

Unsymmetrical wheel torques (left/right) will give a direct yaw moment in the yaw equilibrium in 
Equation [4.6]. The actuated yaw moment around CoG is then of the magnitude of wheel longitudinal 
wheel force times half the track width. ESC and Torque vectoring interventions have such effects. 

High longitudinal utilization of friction on an axle leads to that lateral grip is reduced on that axle. The 
changed yaw moment, compared to what one would have without using friction longitudinally, can be 
called an indirect yaw moment. The actuated change in yaw moment around CoG is then of the mag-
nitude of change in wheel lateral wheel force times half the wheel base. It influences the yaw balance. 
That is the reason why a front axle driven vehicle may be more understeered than a rear axle driven 
one. On the other hand, the wheel-longitudinal propulsion force on the front axle does also help the 
turn-in, which acts towards less understeering. 

4.3.6.7 Transient Vehicle Motion Effects on Yaw Balance 
The effects presented here are not so relevant for steady state understeering coefficient. However, 
they affect the yaw balance in a more general sense, why it is relevant to list them in this section. 

• Longitudinal load transfer changes normal forces. E.g. strong deceleration by wheel forces 
helps against under-steering, since front axle gets more normal load. This effect has some de-
lay. Also, it vanishes after the transient. 
(This effect can be compared with the effect described in 4.3.6.2, which is caused by tyre cor-
nering stiffness varying degressively with vertical load, while the longitudinal load transfer ef-
fect can be explained solely with the proportional variation.) 

• Change of longitudinal speed helps later in manoeuvre. E.g. deceleration early in a manoeuvre 
makes the vehicle easier to manoeuvre later in the manoeuvre. It is the effect of the term    
   that is reduced. 

4.3.6.8 Some Other Design Aspects 
High cornering stiffness is generally desired for controllability. 

Longer wheel base (with unchanged yaw inertia and unchanged steering ratio) improves the transient 
manoeuvrability, because the lateral forces have larger levers to generate yaw moment with. 

4.3.7 Manoeuvrability and Stability 
The overall conclusion of previous section is that all gains become higher the more over-steered (or 
less understeered) the vehicle is. Higher gains are generally experienced as a sportier vehicle and they 
also improves safety because they improve the manoeuvrability. A higher manoeuvrability makes it 
easier for the driver to do avoidance manoeuvres. This motivates a design for low understeering gradi-
ent. 

However, there is also the effect that a vehicle with too small understeer gradient becomes very sensi-
tive to the steering wheel angle input. In extreme, the driver would not be able to control the vehicle. 
This limits how small the understeering gradient one can design for. Generally, vehicles are built un-
dersteered. 

It is not impossible for a driver to keep an unstable vehicle (𝐾 < 0 and   >      𝑖𝑡) on an intended 
path, but it requires an active compensation with steering wheel. If adding support systems, such as 
yaw damping by steering support or differentiated propulsion torques, it can be even easier. If one 
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could rely on a very high up time for such support systems, one could move today’s trade-off between 
manoeuvrability and stability. This conceptual design step has been taken for some airplanes, which 
actually are designed so that they would be unstable without active control. See also 4.4.4. 

4.3.8 Handling Diagram 
There are many frequently used graphical tools or diagrams to represent vehicle characteristics. One 
is the “handling diagram”. A handling diagram is useful for comparing yaw stability. A handling dia-
gram is essential a plot of same data as in Lateral Acceleration gain in Figure 4-25, but the curve 
 𝑦(  ) for one    instead of  𝑦   ⁄ (  ). For the linear model it would be a straight line, with 

  𝑦    ⁄ =  𝑜𝑛𝑠𝑡 𝑛𝑡 =   
2 ( + 𝐾 ∙  ∙   

2)⁄ . But for a more advanced model, or a real vehicle test, it 

becomes more interesting. 

A handling diagram is constructed as follows. Same simplifying assumptions are done as in Figure 
4-18, with the exception that we don’t assume linear tyre models. 

Equilibrium: 

{ ∙
  

2

 
=  ∙  𝑦 =   𝑦 +   𝑦;    0 =   𝑦 ∙ 𝑙  −   𝑦 ∙ 𝑙 ; } ⇒   𝑦 =

𝑙 
 
∙  ∙  𝑦;    𝑦 =

𝑙 

 
∙  ∙  𝑦; 

Constitution: 

  𝑦 =   𝑦(𝛼 ) ⇒ 𝛼 =   𝑦
− (  𝑦);      𝑦 =   𝑦(𝛼 ) ⇒ 𝛼 =   𝑦

− (  𝑦); 

Solving for 𝛼 − 𝛼  yields: 

𝛼 − 𝛼 =   𝑦
− (  𝑦) −   𝑦

− (  𝑦) =   𝑦
− (

𝑙 

 
∙  ∙  𝑦) −   𝑦

− (
𝑙 
 
∙  ∙  𝑦) ; 

So, we can plot 𝛼 − 𝛼  as function of  𝑦. This relation is interesting because compatibility (  + 𝛼 −

𝛼 =   ⁄ ;) yields 𝛼 − 𝛼 =   −   ⁄ =   −  𝐴. And   −  𝐴 is connected to one of the understand-

ings of 𝐾  in Equation [4.14], (𝐾 =
𝜕

𝜕𝑎𝑦
(  −  𝐴);). If we plot 𝛼 − 𝛼 =   −  𝐴 on abscissa axis and 

 𝑦 on ordinate axis, we get the most common way of drawing the handling diagram, see Figure 4-29. 

The axle’s constitutive relations can be used as graphical support to construct the diagram, but then 

the constitutive relations should be plotted as:  𝑦𝑖(𝛼𝑖) =
𝐿

𝐿−𝑙𝑖
∙
 

 
∙  𝑖𝑦(𝛼𝑖);. The quantity  𝑦𝑖  can be seen 

as the lateral force scaled with a certain fraction of vehicle mass, where the certain fraction is such that 
both axles’ values correspond to the same vehicle lateral acceleration. 

Figure 4-29 shows the construction of a handling diagram from axle slip characteristics. Figure 4-30 
show examples of handling diagrams constructed via tests with simulation tools. Handling diagrams 
can be designed from real vehicle tests as well. The slope in the handling diagram corresponds to un-
dersteering gradient 𝐾   in Equation [4.13]. 
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Handling diagram

 

rear axle,  𝑦 =  𝑦 =
𝐿

𝑙 
 
 

 
 

  𝑦 𝛼 

front axle,  𝑦 =  𝑦 =
𝐿

𝑙𝑟
 
 

 
   𝑦 𝛼 

𝛼𝑖

 𝑦

 𝑦

  −  𝐴  ≈ 𝛼 − 𝛼 

Linear axle models, 
understeered vehicle

Normal vehicle stays 
understeered

Using the axle 
models above, 
the vehicle 
becomes 
oversteered

 
Figure 4-29: Construction of the “Handling diagram”. The axle’s slip characteristics (upper diagram) are 
chosen so that vehicle transits from understeer to over-steer with increased longitudinal speed,   . The 

dashed shows two other slip characteristics. 

From: Daniel A. Fittanto, et al. “Passenger Vehicle Steady-State Directional Stability Analysis 
Utilizing EDVSM and SIMON”, Copyright 2004 by Engineering Dynamics Corporation

Try to get some 
measured as well.
From VCC, Saab?

(EDVSM and SIMON are two different simulation tools.)

 
Figure 4-30: Example of handling diagram. 
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Lateral_HandlingDiagram_NoneAckermann.m

      

4.3.9 Lateral Load Transfer in Steady State Cornering 
In the chapter about longitudinal dynamics we studied (vertical tyre) load transfer between front and 
rear axle. The corresponding issue for lateral dynamics is load transfer between left and right side of 
the vehicle. Within the steady state lateral dynamics, we will cover some of the simpler effects, but 
save the more complex suspension linkage dependent effects to 4.4.4. 

The relevance to study the load transfer during steady state cornering is to limit the roll during corner-
ing (for comfort) and yaw balance (understeering gradient, see 4.3.6.2). Additionally, the load transfer 
influence the transient handling; see 4.4 and 4.4.4. 

4.3.9.1 Load Transfer between Vehicle Sides 
Without resolving into front and rear, we do not need to involve suspension in model: 

w/2

h

View from rear:

w/2

   𝑦
curve-outer side 
(if  𝑦 > 0, i.e. 

turning left)

curve-inner side 
(if  𝑦 > 0, i.e. 

turning left)

   

 𝑙𝑦

 𝑙 

  𝑦

   

 
Figure 4-31: A cornering vehicle. The    𝑦  is a fictive force. Subscript l and r mean left and right. 

Moment equilibrium, around left contact with ground: ⇒ 

      ⇒  ∙  ∙
 

2
+ ∙  𝑦 ∙  −    ∙  = 0 ⇒    =  ∙ (

 

2
+  𝑦 ∙

 

 
) ; 

Moment equilibrium, around right contact with ground: ⇒  𝑙 =  ∙ (
𝑔

2
−  𝑦 ∙

ℎ

 
) ; 

[4.26] 

These equations confirm what we know from experience, the curve-inner side if off-loaded. 

4.3.9.2 Body Heave and Roll Due to Lateral Wheel Forces 
Now, we shall find out how much the vehicle rolls and heaves during steady state cornering. First, we 
decide to formulate the model in “effective stiffnesses”, in the same manner as for longitudinal load 
transfer in previous chapter. 

There is no damping included in model, because their forces would be zero, since there is no displace-
ment velocity, due to the “quasi-steady-state” assumption. As constitutive equations for the compli-
ances (springs) we assume that displacements are measured from a static condition and that the com-
pliances are linear. The road is assumed to be smooth, i.e.  𝑙 =    = 0 (2nd subscript means road). 
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 𝑙 =  𝑙 0 +   𝑖 𝑒 ∙ ( 𝑙 −  𝑙) +  𝑎  ∙ (( 𝑙 −  𝑙) − (   −   )) =

= { 𝑙 =    = 0} =  𝑙 0 − (  𝑖 𝑒 +  𝑎  ) ∙  𝑙 +  𝑎  ∙   ; 

   = ⋯ =    0 − (  𝑖 𝑒 +  𝑎  ) ∙   +  𝑎  ∙  𝑙; 

  𝑒𝑟𝑒  𝑙 0 +    0 =  ∙  ;     𝑛     𝑙 0 ∙  2⁄ −    0 ∙  2⁄ = 0; 

[4.27] 

The stiffnesses   𝑖 𝑒 and  𝑎   ( 𝑟  means anti-roll bar) are effective stiffnesses as measurable under 
the wheels. The physical springs are mounted inside in some kind of linkage and have different stiff-
ness values, but their effect is captured in the effective stiffnesses. Some examples of different physical 
spring and linkage design are given in 2.3.3.1 and 2.3.4.1. 

We see already in free-body diagram in Figure 4-32 that  𝑦𝑙  and  𝑦  always act together, so we rename 

 𝑦𝑙 +  𝑦 =  𝑦. We see in Figure 2-54 that we have to assume something about how the lateral forces 

are transferred from road to body. The “trivial linkage” from Figure 2-54 is assumed. Equilibrium 
then gives: 

 𝑦 − ∙  𝑦 = 0; 

 ∙  −   𝑙 −    = 0; 
  𝑙 ∙ ( 2⁄ ) −    ∙ ( 2⁄ ) +  𝑦 ∙  + ∙  ∙ (− ) = 0; 

[4.28] 

The term  ∙  ∙ (− ) is taken as  ∙  ∙ ( −  𝑅 ) ∙ sin(  ) ≈  ∙  ∙ ( −  𝑅 ) ∙   . It assumes a height 
for the point where the roll takes place,  𝑅 . We don’t know the value of it, until below where we study 
the suspension design, but it can be mentioned already here that most vehicles have an  𝑅 ≪  . This 
causes a “pendulum effect”, especially significant for heavy commercial vehicles due to their large  .. 

Compatibility, to introduce body displacements,   and   , gives: 

 𝑙 =  + ( 2⁄ ) ∙   ;      𝑛       =  − ( 2⁄ ) ∙   ; [4.29] 

  𝑖 𝑒

z,y,px=  ,zl,zr, are displacements 
from a static stand-still position.

zlr=zrr=0 means that road is smooth.

Steady-state assumed, so that 

lateral acceleration (ay) may be 

non-zero, but vertical and roll 

acceleration are zero.

Fzl

w/2

hRC

Fzr

w/2

m*g

Fyl Fyr

w/2

h

w/2

z
y

zlr=0
zrr=0

ay

zl zr

-y

m*ay

  𝑖 𝑒

 𝑎  , anti-roll bar
torsional spring

(Anti-roll is drawn, only in left 
picture and beside the vehicle, 
for better clarity in drawing.)

 
Figure 4-32: Model for steady state heave and roll due to lateral acceleration. Suspension model is no 

linkage (or “trivial linkage”) and without difference front and rear. 

Combining constitutive relations, equilibrium and compatibility, gives, as Matlab script: 
syms …; sol=solve( ... 

    Flz==Flz0-(cside+carb)*zl+carb*zr, ... 

    Frz==Frz0-(cside+carb)*zr+carb*zl, ... 

    Flz0+Frz0==m*g,  Flz0*w/2-Frz0*w/2==0, ... 

    Fy-m*ay==0, ... 

    m*g-Flz-Frz==0', ... 

    Flz*(w/2)-Frz*(w/2)+Fy*h+m*g*(h-hRC)*px==0, ... 

    zl==z+(w/2)*px,  zr==z-(w/2)*px, ... 

    Fzl1==-1/((Fzl/m-g/2)*w/(ay*h)), ... 

    zl, zr, Flz, Frz, Flz0, Frz0, Fy, z, px); 

[4.30] 

The results from the Matlab script in Equation [4.30]: 
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 𝑦 =  ∙  𝑦;    = 0; 

𝑝 =  
𝑥
= 

2  ∙𝑎𝑦∙ℎ

( 𝑠𝑖𝑑 +2∙ 𝑎𝑟 )∙ 
2−2  ∙𝑔∙(ℎ−ℎ𝑅𝐶)

;  

 𝑙  =  ∙ (
𝑔

2
−

𝑎𝑦∙ℎ

 
(1 − 

2  ∙𝑔

 𝑠𝑖𝑑 +2  𝑎𝑟 
∙
ℎ−ℎ𝑅𝐶

 2 )⁄ ) ;  

   =  ∙ (
𝑔

2
+

𝑎𝑦∙ℎ

 
(1 − 

2  ∙𝑔

 𝑠𝑖𝑑 +2  𝑎𝑟 
∙
ℎ−ℎ𝑅𝐶

 2
)⁄ ) ;  

[4.31] 

In agreement with intuition and experience the body rolls with positive roll when steering to the left 
(positive  𝑦 ). Further, the body centre of gravity is unchanged in heave (vertical motion,  ). The for-

mula uses  𝑅  which we cannot estimate without modelling the suspension. Since front and rear axle 
normally are different, we could expect that  𝑅  is expressed in some similar quantities for each of 
front and rear axle, which also is the case, see Equation [4.38]. 

4.3.9.2.1 Steady-State Roll-Gradient * 
Function definition: Steady state roll-gradient is the body roll angle per lateral acceleration for the vehicle 
during steady state cornering with a certain lateral acceleration and certain path radius on level ground. 

4.3.9.3 Lateral Load Transfer Models of Suspension Linkage 
For longitudinal load transfer, during purely longitudinal dynamic manoeuvres, the symmetry of the 
vehicle makes it reasonable to split vertical load on each axle equally between the left and right wheel 
of the axle. However, for lateral dynamics it is not very realistic to assume symmetry between front 
and rear axle. Hence, the suspension has to be considered separately for front and rear axle. The prop-
erties that are important to model for each axle is not only left and right elasticity (as we modelled the 
whole vehicle in Figure 4-32). It is also how the lateral tyre forces are transmitted from road contact 
patches to the vehicle body. We end up with conceptually the same two possible linkage modelling 
concepts as we found for longitudinal load transfer, see Figure 3-27. Either we can introduce 1 roll 
centre heights for each axle (c.f. pitch centre in 3.4) or we can introduce two pivot points for each axle 
(1 per wheel if individually suspended wheels or 2 per axle if rigid axle) (c.f. axle pivot points in 3.4). A 
difference for lateral load transfer, compared to longitudinal load transfer, is that it is significant also 
at steady state (due to centrifugal force). The two modelling ways to include the suspension in the lat-
eral load transfer are shown in Figure 4-33. Generally speaking, they can be combined, so that one is 
used on front axle and the other on rear axle. In this compendium, we will select the roll-centre model 
when modelling. 

One should differ between roll-centre heights and roll-centres. One can say that roll-centre heights ex-
ists while roll-centres is only a model concept. If a vehicle was actually designed with a roll-centre as 
being a real pivot point between axle and body, that vehicle would be totally rigid in vertical direction.  

4.3.9.3.1 Load Transfer Model with Two Pivot Points per Axle 

This model will not be deeply presented in this compendium. However, it should be mentioned as hav-
ing quite a few advantages: 

• The model has both heave and roll degree of freedom. (Roll centre model is restricted to roll 
around roll centre.) 

• If wheel independent suspension, the distribution of lateral wheel forces between left and right 
side is considered. (Roll centre model only uses the sum of lateral forces per axle and needs 
involvement of tyre model to resolve into individual left and right side forces.) 

Generally spoken, this model is more accurate and not much more computational demanding and 
probably easier to intuitively understand, since it does not constrain heave motion.  

Note that non-individual, rigid axles or beam axles, the pivot-point model does not have one pivot 
point for each wheel, but instead two pivot points for the whole axle: heave and roll. The roll-centre 
height affects as the height where lateral force is transferred between axle and body. 

Cases when this model is recommended as opposed to the model with roll centres are: 

• Steady state and transient manoeuvres where the heave displacement is important. 
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• When large differences between lateral load on left and right wheels are present, such as: 
o Large load transfer, i.e. high CoG and large lateral accelerations. One example is when 

studying wheel lift and roll-over tendencies. 
o Large differences between longitudinal slip, while axle skids sideways. Then one wheel 

might have zero lateral force, due to that friction is used up longitudinally, while the other 
can have a large lateral force. 

o If individual steering within an axle would be studied. One could think of an extreme case 
if actuating a sudden toe-in or toe-out, which would cause large but counter-directed lat-
eral forces on left and right wheel. 

gf

h

w/2

h

w/2

hRCfef

2 Pivot Points per Axle 1 Roll Centre per Axle

w/2 w/2

Transversal sections from rear over front axle:

Transversal sections from rear over rear axle:
Similar, but with subscript “r” instead of “f”. Typically,  𝑅  >  𝑅  

h

ef

wheel individual 
suspension

rigid axle 
suspension

RC 

approximation 
with vertically 

rigid suspension

 
Figure 4-33: Two alternative models for including suspension linkage effects (kinematics) in lateral load 

transfer. Anti-roll bars not drawn. 

4.3.9.3.2 Load Transfer Model with Roll Centre (One Pivot Point) per Axle 

The model with 1 roll centres has some drawback as listen before. To mention some advantages, it is 
somewhat less computational demanding. However, the main reason why the compendium uses this 
model is to cover two different concepts with longitudinal and lateral load transfer. 

Study the free-body diagrams in Figure 4-34.  

The road is assumed to be flat,   𝑙 =     =   𝑙 =     = 0. In free-body diagram for the front axle, 

    and   𝑦 are the reaction force in the rear roll-centre. Corresponding reaction forces are found for 

rear axle. Note that roll centres are free of roll moment, which is the key assumption about roll centres. 
The    𝑙          𝑙  and      are the forces in the compliances, i.e. where potential spring energy is 

stored. One can understand the roll-centres as also unable to take vertical force, as opposed to con-
straining vertical motion (as drawn). Which of vertically force-free or vertically motion-free depends 
on how one understands the concept or roll-centre, and it does not influence the equations. 

Note carefully that the “pendulum effect” is NOT included here, in 4.3.9.3, as it was in 4.3.9.2. The moti-
vation is to get simpler equations for educational reasons. 

There is no damping included in model, because their forces would be zero, since there is no displace-
ment velocity, due to the steady-state assumption. As constitutive equations for the compliances 
(springs) we assume that displacements are measured from a static condition and that the compli-
ances are linear. Note that there are two elasticity types modelled: springs per wheel (    per front 

wheel and     per rear wheel) and anti-roll bars per axle ( 𝑎  front and  𝑎  rear). The road is assumed 

to be smooth, i.e.   𝑙 =     =   𝑙 =     = 0. The stiffnesses          𝑎  and  𝑎  are effective stiff-

nesses per wheel. We see already in free-body diagram that   𝑙𝑦 and    𝑦 always act together, so we 

rename   𝑙𝑦 +    𝑦 =   𝑦  and   𝑙𝑦 +    𝑦 =   𝑦. 
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Figure 4-34: Model for steady state heave and roll due to lateral acceleration, using roll centres, which can 

be different front and rear. 

   𝑙 =    𝑙0 +    ∙ (  𝑙 −   𝑙); 

    =     0 +    ∙ (    −    ); 

   𝑙 =    𝑙0 +    ∙ (  𝑙 −   𝑙); 
    =     0 +    ∙ (    −    ); 

 𝑎 = 0 +  𝑎 ∙ ((  𝑙 −   𝑙) − (    −    )) ; 

 𝑎 = 0 +  𝑎 ∙ ((  𝑙 −   𝑙) − (    −    )); 

  𝑒𝑟𝑒    𝑙0 =     0 =
 ∙  ∙ 𝑙 
2 ∙  

;    𝑛       𝑙0 =     0 =
 ∙  ∙ 𝑙 

2 ∙  
; 

[4.32] 

Equilibrium for whole vehicle (vertical, lateral, yaw, pitch, roll) neglecting body forces (air resistance 
and gravity components in road plane) gives: 

  𝑙 +     +   𝑙 +     =  ∙  ; 

 ∙  𝑦 =   𝑦 +   𝑦; 

0 =   𝑦 ∙ 𝑙 −   𝑦 ∙ 𝑙 ; 

−(  𝑙 +     ) ∙ 𝑙 + (  𝑙 +     ) ∙ 𝑙 = 0; 

(  𝑙 +   𝑙 ) ∙
 

2
− (    +     ) ∙

 

2
+ (  𝑦 +   𝑦) ∙  = 0; 

[4.33] 

Equilibrium for each axle (roll, around roll centre): 

(  𝑙 −    𝑙 +  𝑎 ) ∙
 

2
− (    −     −  𝑎 ) ∙

 

2
+   𝑦 ∙  𝑅  = 0; 

(  𝑙 −    𝑙 +  𝑎 ) ∙
 

2
− (    −     −  𝑎 ) ∙

 

2
+   𝑦 ∙  𝑅  = 0; 

[4.34] 

Compatibility, to introduce body displacements, z,    and  𝑦, gives: 
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  𝑙 =  +
 

2
∙   − 𝑙 ∙  𝑦;     𝑛       =  −

 

2
∙   − 𝑙 ∙  𝑦; 

  𝑙 =  +
 

2
∙   + 𝑙 ∙  𝑦;     𝑛     =  −

 

2
∙   + 𝑙 ∙  𝑦; 

  𝑙 +    = 0;     𝑛      𝑙 +    = 0; 

[4.35] 

The measure h is redundant and can be connected to the other geometry measures as follows. The 
geometrical interpretation is given in Figure 4-35. 

  =  −
𝑙 ∙  𝑅  + 𝑙 ∙  𝑅  

 
; [4.36] 

Combining Equations [4.32] to [4.36] gives, as Matlab script and solution: 
syms …; sol=solve( ... 

    Fsfl==Fsfl0-cfw*zfl,  Fsfr==Fsfr0-cfw*zfr, ... 

    Fsrl==Fsrl0-crw*zrl,  Fsrr==Fsrr0-crw*zrr, ... 

    Faf==0-caf*(-zfl+zfr),  Far==0-car*(-zrl+zrr), ... 

      Fsfl0==(1/2)*m*g*lr/L,  Fsfr0==(1/2)*m*g*lr/L, ... 

      Fsrl0==(1/2)*m*g*lf/L,  Fsrr0==(1/2)*m*g*lf/L, ...     

    Fflz+Ffrz+Frlz+Frrz==m*g, ... 

    m*ay==Ffy+Fry, ... 

    0==Ffy*lf-Fry*lr, ... 

    -(Fflz+Ffrz)*lf+(Frlz+Frrz)*lr==0, ... 

    (Fflz+Frlz)*w/2-(Ffrz+Frrz)*w/2+(Ffy+Fry)*h==0, ... 

      (Fflz-Fsfl+Faf)*w/2-(Ffrz-Fsfr-Faf)*w/2+Ffy*hRCf==0, ... 

      (Frlz-Fsrl+Far)*w/2-(Frrz-Fsrr-Far)*w/2+Fry*hRCr==0, ... 

    zfl==z+(w/2)*px-lf*py,  zfr==z-(w/2)*px-lf*py, ... 

    zrl==z+(w/2)*px+lr*py,  zrr==z-(w/2)*px+lr*py, ... 

      zfl+zfr==0,  zrl+zrr==0, ... 

    dh==h-(lr*hRCf+lf*hRCr)/(lf+lr), ... 

    zfl, zfr, zrl, zrr, Fsfl, Fsfr, Fsrl, Fsrr, ...  

    Faf, Far, Fsfl0, Fsfr0, Fsrl0, Fsrr0, ... 

    Fflz, Ffrz, Frlz, Frrz, Ffy, Fry, z, px, py, h); 

[4.37] 

The result from the Matlab script in Equation [4.37], but in a prettier writing format: 

  𝑦 =  ∙  𝑦 ∙
𝑙𝑟

𝐿
;     𝑛      𝑦 =  ∙  𝑦 ∙

𝑙𝑓

𝐿
;  

 = 0;     𝑛    𝑝 =
 ∙𝑎𝑦∙ ℎ

 𝑣  𝑖𝑐𝑙  𝑟 𝑙𝑙
=

( 𝑓𝑦+ 𝑟𝑦)∙ ℎ

 𝑣  𝑖𝑐𝑙  𝑟 𝑙𝑙
;     𝑛    𝑝𝑦 = 0;  

  𝑙  =   ∙ (
 ∙ 𝑙 
2 ∙  

−  𝑦 ∙ (
 𝑅  ∙ 𝑙 

 ∙  
+
  

 
∙

     𝑙𝑙

 𝑣𝑒ℎ𝑖 𝑙𝑒   𝑙𝑙
)) ; 

     =   ∙ (
 ∙ 𝑙 
2 ∙  

+  𝑦 ∙ (
 𝑅  ∙ 𝑙 

 ∙  
+
  

 
∙

     𝑙𝑙

 𝑣𝑒ℎ𝑖 𝑙𝑒   𝑙𝑙
)) ; 

  𝑙  =   ∙ (
 ∙ 𝑙 

2 ∙  
−  𝑦 ∙ (

 𝑅  ∙ 𝑙 

 ∙  
+
  

 
∙

     𝑙𝑙
 𝑣𝑒ℎ𝑖 𝑙𝑒   𝑙𝑙

)) ; 

     =   ∙ (
 ∙ 𝑙 

2 ∙  
+  𝑦 ∙ (

 𝑅  ∙ 𝑙 

 ∙  
+
  

 
∙

     𝑙𝑙
 𝑣𝑒ℎ𝑖 𝑙𝑒   𝑙𝑙

)) ; 

where, roll stiffnesses are:  

     𝑙𝑙 = 2 ∙ (   + 2 ∙  𝑎 ) ∙ (
 

2
)
2
     [

𝑁 

 𝑎 
] ;  

     𝑙𝑙 = 2 ∙ (   + 2 ∙  𝑎 ) ∙ (
 

2
)
2
     [

𝑁 

 𝑎 
] ;  

 𝑣𝑒ℎ𝑖 𝑙𝑒   𝑙𝑙 =      𝑙𝑙 +      𝑙𝑙      [
𝑁 

 𝑎 
] ;  

[4.38] 

The axle roll stiffnesses,      𝑙𝑙 and      𝑙𝑙  are identified beside vehicle roll stiffness  𝑣𝑒ℎ𝑖 𝑙𝑒   𝑙𝑙. We 

should compare Equation [4.38] with Equation [4.31]. Eq [4.31] considers the “pendulum effect”, but 
not the differentiation between front and rear suspension. Eq [4.38] does the opposite. 
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Assume  =  𝑅  and look at the sum of vertical force on one side,  𝑙  in Eq [4.31]. Compare   𝑙  in Eq 
[4.31] and   𝑙 +   𝑙  in Eq [4.38]; the equations agree if: 

  𝑙 +   𝑙 =   𝑙 ⇒   ∙ (
 

2
−  𝑦 ∙ (

 𝑅  ∙ 𝑙 +  𝑅  ∙ 𝑙 

 ∙  
+
  

 
)) =  ∙ (

 

2
−  𝑦 ∙

 

 
) =   𝑙 ⇒ 

⇒
 𝑅  ∙ 𝑙 +  𝑅  ∙ 𝑙 

 ∙  
+
  

 
=
 

 
⇒  𝑅  ∙ 𝑙 +  𝑅  ∙ 𝑙 = ( −   ) ∙  ; 

This is exactly in agreement with the definition of the redundant geometric parameter h, see Eq 
[4.36]. This means that a consistent geometric model of the whole model is as drawn in Figure 4-35. 
Here the artefact roll axis is also defined. 

The terms of type  𝑅 𝑖 ∙ 𝑙𝑗 (   )⁄  in Eq [4.38] can be seen as the part of the lateral tyre forces that 

goes via the stiff linkage. The terms of type (   ⁄ )  ( 𝑖 ( 𝑖 +  𝑗 )⁄ ) in Eq [4.38] can be seen as the 

part of the lateral tyre forces that goes via the compliance. The latter part is distributed in proportion 
to roll stiffness of the studied axle, as a fraction of the vehicle roll stiffness. This should agree with  in-
tuition and experience from other preloaded mechanical systems (load distributes as stiffness). 

Body rolls with positive roll when steering to the left, as long as CoG is above roll axle. Further, the 
body centre of gravity is unchanged in heave (vertical z) because the model does not allow any vertical 
displacements, which is a drawback already mentioned. 

  =  −
𝑙   𝑅  + 𝑙   𝑅  

 


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Figure 4-35: Roll axis for a two-axle vehicle. (Note that the picture may indicate that the roll  

centres and roll axis are above wheel centre, but this is normally not the case.) 

Eq [4.44] was derived as a steady state out-of-road-plane model, but only the ratio between roll stiff-
nesses influence the lateral load transfer. So, if the roll stiffnesses are large, they can be neglected (con-
sidered infinite), if the ratios are given. Then, Eq [4.44] works also for transient manoeuvres. 

4.3.9.3.3 Steady State Longitudinal and Lateral Distribution 
If the vehicle has a steady state acceleration with combined    and  𝑦, we can combine Eqs [4.38]and 

[3.27] (with ( 𝑓𝑥 +  𝑟𝑥) =     ) to Eq [4.39]. Note that body forces (air resistance and gravity com-

ponents in road plane) are neglected. 

  𝑙  =   ∙ (
𝑔∙𝑙𝑟

2∙𝐿
−    

ℎ

2 𝐿
−  𝑦 ∙ (

ℎ𝑅𝐶𝑓∙𝑙𝑟

𝐿∙ 
+

 ℎ

 
∙

 𝑓 𝑟 𝑙𝑙

 𝑣  𝑖𝑐𝑙  𝑟 𝑙𝑙
)) ;  

     =   ∙ (
𝑔∙𝑙𝑟

2∙𝐿
−    

ℎ

2 𝐿
+  𝑦 ∙ (

ℎ𝑅𝐶𝑓∙𝑙𝑟

𝐿∙ 
+

 ℎ

 
∙

 𝑓 𝑟 𝑙𝑙

 𝑣  𝑖𝑐𝑙  𝑟 𝑙𝑙
)) ;  

[4.39] 
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  𝑙  =   ∙ (
𝑔∙𝑙𝑓

2∙𝐿
+    

ℎ

2 𝐿
−  𝑦 ∙ (

ℎ𝑅𝐶𝑟∙𝑙𝑓

𝐿∙ 
+

 ℎ

 
∙

 𝑟 𝑟 𝑙𝑙

 𝑣  𝑖𝑐𝑙  𝑟 𝑙𝑙
)) ;  

     =   ∙ (
𝑔∙𝑙𝑓

2∙𝐿
+    

ℎ

2 𝐿
+  𝑦 ∙ (

ℎ𝑅𝐶𝑟∙𝑙𝑓

𝐿∙ 
+

 ℎ

 
∙

 𝑟 𝑟 𝑙𝑙

 𝑣  𝑖𝑐𝑙  𝑟 𝑙𝑙
)) ;  

4.3.10 High Speed Steady State Vehicle Functions  
4.3.10.1 Steering Feel * 

Function definition: Steering feel is the steering wheel torque response to steering wheel angle. The function is 
used in a very wide sense; on a high level, it is a measure of steering wheel torque, or its variation, for certain driv-
ing situations. Often, it can only be subjectively assessed. 

At steady state driving at high speed, there are basically three aspects of steering feel: 

• Lateral steering feel feedback at cornering. The steering wheel torque is normally desired to 
increase monotonously with lateral forces on the front axle. This is basically the way the me-
chanics work due to castor trail. Some specifications on steering assistance system is however 
needed to keep the steering wheel torque low enough for comfort. 

• Steering torque drop when cornering at low-friction. It is built into the mechanics of the castor 
trail and the pneumatic trail that steering wheel torque drops slightly when one approaches 
the friction limit on front axle. This is normally a desired behaviour because it gives driver 
feedback that the vehicle is approach the limits. 

• On-centre feel in straight line driving. When the vehicle is driven in straight line, the steering 
wheel is normally desired to return to centre position after small perturbations. This is a com-
fort function, which OEMs works a lot with, and it is often rather subjectively assessed. 

4.3.10.2 High Speed Steady-State Off-tracking * 
Function definition: High speed steady-state off-tracking is the lateral offset between the paths of the 
centre of the front axle and the centre of the most severely off-tracking axle of any unit in a steady turn at a certain 
friction level and a certain constant longitudinal speed. From Reference [ (Kati, 2013)]. 

The function is mainly of interest for long combination vehicles, as illustrated in Figure 4-36. Off-track-
ing was also mentioned in 4.2. It measures the lateral road space required. High speed Off-tracking, 
which is an outboard off-tracking, can be either determined in a steady state turn or in a transient ma-
noeuvre such as lane change; the latter is termed as high speed transient off-tracking, see 4.5.6.2.  

 
Figure 4-36: Illustration of high speed off-tracking. From (Kharrazi , 2012). 

4.3.10.3 Tracking-Ability on Straight Path * 
Function definition: Tracking-ability on straight path is the swept width between outer-most axle centres 
when driving at a road with certain cross-fall and certain road friction at a certain speed. 
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The axles on any vehicle driving at a road with cross-fall will not track exactly in each other’s trajecto-
ries. This is especially pronounced if long vehicles with many articulation points. The driving situation 
is straight steady state low or high speed. 
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Figure 4-37: Tracking ability on straight path for an “A-double” (Tractor-SemiTrailer-Dolly-SemiTrailer). 

An example is seen in Figure 4-37. If we neglect longitudinal forces and combined tyre slip effects, and 
assume same cornering coefficient, 𝐶𝐶, on all axles we can derive these equations: 

•    𝑦 = −𝐶𝐶       (𝛽 −  ); 

•    𝑦 = −𝐶𝐶       𝛽 ; 

•  𝑖𝑦 = −𝐶𝐶   𝑖  𝛽𝑖;    𝑓𝑜𝑟  = 2. .4 

Since the levers for moment equilibria in road x-y-plane and in road x-z-plane are equal, the distribu-
tion of the axles’ vertical forces and lateral forces becomes identical. So, relation between lateral force 

and vertical force becomes 
 𝑖𝑦

 𝑖𝑧
= tan(   ) ≈     for all axles: 

•    = −𝐶𝐶  (𝛽 −  ); 
•    = −𝐶𝐶  𝛽𝑖;    𝑓𝑜𝑟  = 1. .4 

Solving for steer angle and side slip angles: 

• 𝛽𝑖 = −
𝜑𝑟𝑥

  
= 𝛽;    𝑓𝑜𝑟  = 1. .4; 

•  = 𝛽 +
𝜑𝑟𝑥

  
= 2  

𝜑𝑟𝑥

  
; 

The swept width becomes: 𝑆 𝑒𝑝𝑡𝑊  𝑡 = (𝑙  + 𝑙   )  
𝜑𝑟𝑥

  
+ (𝑙2  + 𝑙2  )  2  

𝜑𝑟𝑥

  
+ (𝑙   + 𝑙   )  3  

𝜑𝑟𝑥

  
+ (𝑙4  + 𝑙4  )  4  

𝜑𝑟𝑥

  
; This can be expressed as: 

𝑆 𝑒𝑝𝑡𝑊  𝑡 =
   
𝐶𝐶

 ((𝑙  + 𝑙   ) +∑((𝑙𝑖  + 𝑙𝑖  )   )

4

𝑖=2

) ; [4.40] 

There is no influence of longitudinal speed. There is influence of cornering coefficient 𝐶𝐶. Model as-
sumes that the influence of longitudinal force is small. These will affect via articulation angles and via 
combined tyre slip effects. So, the model will be less valid if low road friction and if strong up- or 
downhill. 

4.3.11 Roll-Over in Steady State Cornering 
When going in curves, the vehicle will have roll angles of typically some degrees. At that level, the roll 
is a comfort issue. However, there are manoeuvres which can cause the vehicle to roll-over, i.e. roll ≥
90  𝑒  so that vehicle body crashes into ground. Roll-over can be seen as a special event, but if sorting 
into the chapters of this compendium it probably fits best in present chapter, about lateral dynamics.  
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One can categorize roll-overs in e.g. 3 different types: 

• Tripped roll-over. This is when the car skids sideways and hits an edge, which causes the roll-
over. It can be an uprising edge, e.g. pavement or refuge. It can be the opposite, a ditch or loose 
gravel outside road. In both these cases, it is strong lateral forces on the wheels on one side of 
the vehicle that causes the roll-over. Tripped roll-over can also be when the vehicle is exposed to 
large one-sided vertical wheel forces, e.g. by running over a one-sided bump. A third variant of 
tripped roll-over is when the vehicle is hit by another vehicle so hard that it rolls over. 

• Un-tripped roll-over or on-road roll-overs. These happen on the road and triggered by high 
tyre lateral forces. This is why they require high road friction. For sedan passenger cars, these 
events are almost impossible, since road friction seldom is higher than approximately 1. For 
SUVs, un-tripped roll-overs can however occur but require dry asphalt roads, where friction is 
around 1. For trucks, un-tripped roll-over, can happen already at very moderate friction, like 0.4, 
due to their high CoG in relation to track width. Within un-tripped roll-overs, one can differ be-
tween: 
o Steady state roll-over. If lateral acceleration is slowly increased, e.g. as running with into a 

hairpin curve or a highway exit, the vehicle can slowly lift off the inner wheels and roll-over. 
This is the only case of roll-over for which a model is given in this compendium. 

o Transient roll-over. This is when complex manoeuvres, like double lane changes or sinus-
oidal steering, are made at high lateral accelerations. This can trigger roll eigen-modes, 
which can be amplified due to unlucky timing between the turns. Models from 4.4.4 can be 
used as a start, but it is required that load transfer is modelled carefully and includes wheel 
lifts, suspension end-stops and bump stops. 

4.3.11.1 Roll-Over Threshold Definitions 
An overall requirement on a vehicle is that the vehicle should not roll-over for certain manoeuvres. 
Heavy trucks will be possible to roll-over on high-mu conditions. The requirement for those is based 
on some manoeuvres which not utilize the full road friction. For passenger cars, it is often the intended 
design that they should be impossible to roll-over, even at high mu. Any requirement needs a defini-
tion of what exactly roll-over is, i.e. a Roll over threshold definition. Candidates for Roll over threshold 
definition are: 

• One wheel lifts from ground 
• All wheels on one side lift from ground 
• Vehicle CoG reaches its highest point (point of no-return towards roll ≥ 90 deg) 

Note that: 

• It is the 3rd threshold which really is the limit, but other can still be useful in requirement set-
ting. To use the 3rd for requirement setting makes the verification much more complex, of 
course in real vehicles but also in simulation. 

• The 1st is not a very serious situation for a conventional vehicle with 4 wheels. However, for a 
3-wheeled vehicle, such as small “Tuctucs” or a 3-wheel moped, it is still a relevant threshold. 

• The 2nd threshold is probably the most useful threshold for two-tracked vehicles, because it 
defines a condition from which real roll-over is an obvious risk, and still it is relatively easy to 
test and simulate. For 3-wheeled vehicle, 2nd and 3rd threshold generally coincide. The 2nd 
threshold will be used in this compendium.  

Figure 4-38 shows how the inner wheels lift off subsequently during a slowly increasing lateral force 
(or lateral acceleration) build-up. Before any wheel is lifted, the load transfer is proportional to roll-
centre heights and roll stiffnesses, as shown in Equation [4.38]. But every time a wheel lifts, the distri-
bution changes, so that a “knee” on the curves appears, see Figure 4-38. So, the relation of type as 
Equation [4.38] is no longer valid. For instance, it is not physically motivated to keep the roll-centre 
model for an axle which has lifted one side. So, the prediction of critical lateral acceleration for roll-
over is not trivial, especially for heavy vehicles which has many axles, and often also a fifth wheel 
which can transfer roll-moment to a certain extent. There are approximate standards for how to 
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calculate steady state roll-over thresholds for such vehicle, e.g. UN ECE 111 
(http://www.unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/r111e.pdf). 

Lateral force
(or lateral acceleration)

Vertical force on 
inner wheels

   

2

fi
rs

t 
in

n
er

 
w

h
ee

l l
if

t

se
co

n
d

 in
n

er
 

w
h

ee
l l

if
t

la
st

 in
n

er
 

w
h

ee
l l

if
t

 
Figure 4-38: Example of 3-axle vehicle steady state roll-over wheel lift diagram. 

4.3.11.2 Static Stability Factor, SSF 
One very simple measure of the vehicles tendency to roll-over is the Static Stability Factor, SSF. It is 
proposed by NHTSA, http://www.nhtsa.gov/cars/rules/rulings/roll_resistance/, and it is simply de-
fined as:  

SS  =
𝐻 𝑙𝑓 𝑇𝑟  𝑘𝑊  𝑡 

𝐻𝑒  𝑡  𝑓𝐶𝑜𝐺
=
 2⁄

 
; [4.41] 

A requirement which requires SSF>number cannot be directly interpreted in terms of certain manoeu-
vre and certain roll-over threshold. It is not a performance-based requirement, but a design-based (or 
prescriptive) requirement. However, one of many possible performance-based interpretations is that 
the vehicle shall not roll-over for steady-state cornering on level ground with an enough friction coeffi-
cient. Another is that it should not roll-over in a tilt-table. Since the requirement is not truly perfor-
mance based, each interpretation will also stipulate a certain verification method; here it would be 
theoretical verification using a rigid suspension model. Such model and threshold are shown in Figure 
4-39.  

The derivation of the SSF based requirement looks as follows: 

𝑀𝑜 𝑒𝑙: {

 𝑖 ∙  +  ∙  𝑦 ∙  =  ∙  ∙
 

2
;

 𝑖 +    =  ∙  ;

 ∙  𝑦 =  𝑦 =  ∙ ( 𝑖 +    );

} ⇒  𝑖 =  ∙  ∙ (
1

2
−
 ∙  

 
) ;

 𝑒𝑞𝑢 𝑟𝑒 𝑒𝑛𝑡:  𝑖 ≥ 0; }
 
 

 
 

⇒ 

 

⇒  𝑒𝑞𝑢 𝑟𝑒 𝑒𝑛𝑡: 
1

2
>
 ∙  

 
⇒

 

2 ∙  
= 𝑆𝑆 >  ; 

[4.42] 

Maximum road friction, , is typically 1, which is why SSF>=1 would be a reasonable. However, typi-
cal values of SSF for passenger vehicles are between 0.95 and 1.5. For heavy trucks, it can be much 
lower, maybe 0.3..0.5, much depending on how the load is placed. There are objections to use SSF as a 
measure, because SSF ignores suspension compliance, handling characteristics, electronic stability 
control, vehicle shape and structure. 

http://www.nhtsa.gov/cars/rules/rulings/roll_resistance/
http://www.nhtsa.gov/cars/rules/rulings/roll_resistance/
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Figure 4-39: Model for verification of requirement based on Static Stability Factor, SSF. 

4.3.11.3 Steady-State Cornering Roll-Over * 
A function defined for requirement setting can be: 

Function definition: Steady state cornering roll-over acceleration is the maximum lateral acceleration 
the vehicle can take in steady state cornering without lifting all inner wheels. On level ground with enough road fric-
tion and certain weight and position of payload. 

For a long combination-vehicle with several articulation points, one often need to drive a long distance 
after a steer angle change before steady state values on articulation angles are reached. Hence, it can 
be more relevant to formulate a corresponding roll-over function in terms of curvature to follow, total 
yaw angle for turn and longitudinal speed. A common way is also the, somewhat artificial, tilt-table 
test, which means that one measure steady-state roll-over with a (real or virtual) tilt-table where the 
maximum road pitch angle before wheel lift on one side is the measure to set requirement on. An even 
simpler way to handle steady-state roll-over is to set requirement on the SSF.   

Consider a roll-stiff vehicle in steady state cornering. Assume lateral acceleration is subsequently in-
creased. If the vehicle is a two-axle vehicle, Eq [4.38] is valid until first axle lifts its inner wheel, since 
for larger lateral accelerations, the constitutive equation Eq [4.32] is invalid for the inner wheel, since 
the lifted inner wheel has zero force from ground. We can identify the terms of one of the inner wheels 
(if  𝑦 > 0) equations in Eq Eq [4.38] as follows: 

  𝑙  =   ∙ (
 ∙ 𝑙 
2 ∙  

−  𝑦 ∙ (
 𝑅  ∙ 𝑙 

 ∙  
+
  

 
∙

     𝑙𝑙

   𝑙𝑙 𝑣𝑒ℎ𝑖 𝑙𝑒
)) = 

=
1

2
 

 ∙  ∙ 𝑙 
2 ∙  ⏟    

𝑉𝑒𝑟𝑡   𝑙 𝑜𝑟 𝑒 𝑛𝐴𝑥𝑙𝑒

−  ∙  𝑦 ∙
𝑙 
 ⏟      

  𝑡𝑒𝑟 𝑙 𝑜𝑟 𝑒 𝑛𝐴𝑥𝑙𝑒

∙
 𝑅  

 
−  ∙  𝑦⏟  

  𝑡𝑒𝑟 𝑙 𝑜𝑟 𝑒 𝑛𝑉𝑒   𝑙𝑒

∙
  

 
∙

     𝑙𝑙

   𝑙𝑙 𝑣𝑒ℎ𝑖 𝑙𝑒⏟      
 𝑜𝑙𝑙𝑆𝑡 𝑓𝑓𝑛𝑒𝑠𝑠 𝑟  𝑡 𝑜𝑛 𝑛𝐴𝑥𝑙𝑒

= 

=
   

2
−    ( 𝑦) ∙

 𝑅 𝑖
 

−   ( 𝑦) ∙
  

 
∙

 𝑖   𝑙𝑙
   𝑙𝑙 𝑣𝑒ℎ𝑖 𝑙𝑒

; 

If the vehicle has more axles, Eq [4.38] is generalized to Eq [4.43], which also is valid until first inner 
wheel lifts from ground.  

For axle   of a roll-stiff vehicle: 

 𝑖𝑙  =  
 𝑖 
2
−  𝑖𝑦( 𝑦) ∙

 𝑅 𝑖
 

−  𝑦( 𝑦) ∙
  𝑖
 

∙
 𝑖   𝑙𝑙

   𝑙𝑙 𝑣𝑒ℎ𝑖 𝑙𝑒
; 

[4.43] 

For a vehicle with >2 axles, the parameter   𝑖 can not be calculated from Eq [4.36], but can still be un-
derstood as the vertical distance between roll axis and the axles roll centre. It should be noted that the 
pendulum effect is not included in Eq [4.43], and this is often a significant approximation if applied on 
high CoG vehicles, like heavy trucks. 
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4.3.11.3.1 Model Assuming All Inner Wheels Lift at the Same Lateral Accelerat-
ion 

An approximation of Steady state cornering roll-over acceleration  𝑦   𝑖𝑡  (lateral acceleration when all 

inner wheels lifted) can be found for vehicles where Eq [4.43] gives   𝑖𝑙  =  0 for all axles at same  𝑦. 

Then, summing the Eq [4.43] for all axles leads to the Eq [4.44] which is the same  𝑦   𝑖𝑡  as the simple 

SSF model in Figure 4-39 and 4.3.11.2 gives.  

   𝑦   𝑖𝑡 =
   

2   
; [4.44] 

In the following, we will elaborate with 4 additional effects, which marked in Figure 4-40. 

• The tyre will take the vertical load on its outer edge in a roll-over situation. This suggests a 

change of performance and requirement to: 
𝑎𝑦

𝑔
<

 +𝒘𝒕𝒚𝒓𝒆

2∙ℎ
 and 

 +𝒘𝒕𝒚𝒓𝒆

2∙ℎ
>  . This effect is accen-

tuated when low tyre profile and/or high inflation pressure. This effect decreases the risk for 
roll-over. 

• Due to suspension and tyre lateral deformation, the body will translate laterally outwards, 

relative to the tyre. This could motivate 
𝑎𝑦

𝑔
<

 −𝑫𝒆𝒇𝒚

2∙ℎ
 and 

 −𝑫𝒆𝒇𝒚

2∙ℎ
>  . This effect increases the 

risk for roll-over. 
• Due to suspension linkage and compliances, the body will roll. Since the CoG height above roll 

axis,   , normally is positive, this could motivate 
𝑎𝑦

𝑔
<

 − 𝒉∙𝝋𝒙

2∙ℎ
 and 

 − 𝒉∙𝝋𝒙

2∙ℎ
>  . This effect in-

creases the risk for roll-over. At heavy vehicle this “pendulum effect” is large. 
• Due to suspension linkage and compliances, the body will also heave. This requires a suspen-

sion model with pivot points per wheel, as opposed to roll-centre per axle. The heave is nor-

mally positive. This could motivate 
 

2∙(ℎ+ )
>   and 

𝑎𝑦

𝑔
<

 

2∙(ℎ+ )
. The effect is sometimes called 

“jacking” and it increases the risk for roll-over. 
• Road leaning left/right (road banking) or driving with one side on a different level (e.g. out-

side road or on pavement) also influence the roll-over performance. 
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Figure 4-40: Steady-state roll-over model, with fore/aft symmetry. The measures  𝑡𝑦 𝑒  𝐷𝑒𝑓𝑦    ∙     𝑛    

mark effects additional to what is covered with a simple SSF approach. 

4.3.11.3.2 Model with Sequential Lifts of Inner Wheels 

A model which does not assume wheel lift at same lateral acceleration will be sketched. For each axle 
that has lifted, the equations have to be changed. Instead of simply the constitutive equation 
( 𝑖𝑙 −  𝑖  )   2⁄ =  𝑖   𝑙𝑙    ; one need to assure  𝑖𝑙 = 0;. The axle will then position itself so that it 
keeps  𝑖𝑙 +  𝑖  =  𝑖   𝑡𝑎𝑡𝑖 ;. That means both roll and vertical translation of the axle centre, why also 
the vertical suspension compliance needs to be modelled. A new position variable has to be declared, 
e.g. the lift distance of the inner wheel, 𝑙 𝑓𝑡𝑖𝑙 . This variable is constrained to 𝑙 𝑓𝑡𝑖𝑙 = 0; before lift, but 
after lift the constraint is  𝑖𝑙 = 0;. So, the model is suitably implemented as a state event model with 
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the event “  𝑒𝑛  𝑖𝑙   𝑒 𝑜 𝑒𝑠 < 0”. If  𝑦 is swept from zero and upwards, the result will be something 

like shown in Figure 4-38.  

4.3.11.3.3 Using a Transient Model for Steady-State Roll-Over 

Another work-around to avoid complex algebra is to run a fully transient model, including suspension, 
and run it until a steady state cornering conditions occur. If then, the lateral acceleration is slowly in-
creased, one can identify when or if the roll-over threshold is reached. Lateral acceleration increase 
can be through either increase of longitudinal speed or steer angle. It should be noted that the model 
should reasonably be able to manage at least lift of one wheel from the ground. This way of verifying 
steady state cornering roll-over requirements has the advantage that, if using tyre models with friction 
saturation, the limitation discussed in 4.3.11.3.2 does not have to be checked separately. 

4.3.11.4 Roll-Over and Understeering/Propulsion 
With the above formulas for roll-over there will always be a certain lateral acceleration that leads to 
roll-over, because neither limitation due to road friction nor propulsion power modelled yet. Since ve-
hicles generally are understeered, they are limited to develop lateral acceleration, see Figure 4-25. For 
propulsion-weak vehicles, there is also the limitation of lateral acceleration due to limited longitudinal 
speed, which in turn is due to driving resistance from the steered wheels (=wheel lateral force * 
sin(steer angle)) and loosing propulsion power due to longitudinal wheel slip. However, one should 
consider that the propulsion limitation is less in down-hill driving, which increases the roll-over risk 
again. Also, if the vehicle goes relatively quickly into steady state cornering, the longitudinal speed will 
not have time to decelerate to its real (longitudinal) steady state value. 

For heavy trucks, the critical lateral acceleration is typically (0.3. .0.4)   , which is quite possible to 
reach during normal road conditions, because road friction is around 1. For passenger cars, the critical 
lateral acceleration is typically in the region of 1, so it is often not possible to reach the roll-over-criti-
cal lateral acceleration. This is also the case for heavy trucks on low road friction. 

4.4 Stationary Oscillating Steering 
In between steady state and transient manoeuvres, one can identify stationary oscillations as an inter-
mediate step. Generally, a mechanical system can be excited with a stationary oscillating excitation. 
The response of the system is, after possible transients are damped out, a stationary oscillation. How 
this response vary with excitation frequency will be called Frequency Response. If staying within the 
linear region for the system and the excitation is harmonic (sinus and cosine), the ratio between the 
response amplitude and the excitation amplitude is only dependent of the frequency. The ratio is 
called transfer function. 

For lateral vehicle dynamics, the excitation is typically steering wheel angle and the response is ampli-
tudes of yaw velocity, curvature or lateral acceleration. The corresponding transfer functions are a fre-
quency version of the gains defined in Equation [4.19]. Also, there will be a delay between excitation 
and response. This is another important measure, beside the amplitude ratio. 

4.4.1 Stationary Oscillating Steering Tests 
When testing stationary oscillating steering functions, one usually drives on a longer part of the test 
track. It might be a high-speed track, see Figure 1-25, because the track rather needs to be long than 
wide, since one is often not too close to lateral grip limits. If the available Vehicle Dynamics Area, see 
Figure 1-25, is long enough this is of course a safer option. A Vehicle Dynamics Area is a flat surface 
with typically 100..300 m diameter. It normally has entrance roads for accelerating up to a certain 
speed. 

Typical tests for Stationary oscillating steering functions: 
• Sweeping frequency (chirp) and/or amplitude 
• Random frequency and amplitude 
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There are ISO standards for sweeping and random tests. The Frequency Response will be very depend-
ent of the vehicle longitudinal speed, why the same tests are typically done at different such speeds. 

4.4.2 Linear 1-Track Model for 2-axle Vehicle for 
Transient Dynamics 

The model needed for stationary oscillation is only a linearization of the model needed for fully transi-
ent handling, in 4.4.4. However, a model will be derived then approximated to linear. The resulting lin-
ear model is in Eq [4.50] and a less general derivation of it is found in Figure 4-44.  

The vehicle model is sketched in Figure 4-42. The model is similar to the model for steady state cor-
nering in Figure 4-15, with the following changes: 

• Longitudinal and lateral accelerations have both components of centripetal acceleration (   
 𝑦 and      ) and the derivatives     and   𝑦: 

   =     −  ∙  𝑦; 

 𝑦  =    𝑦 +  ∙   ; 

(Often,  𝑦 ≪   , why   ∙  𝑦 is more neglectable than   ∙   .) 
[4.45] 

• The yaw acceleration,    , is no longer zero. 
• The speed    is no longer defined as a parameter, but a variable. Then, one more prescription 

is needed to be a consistent model. For this purpose, an equation that sets front axle propul-
sion torque to 1000 Nm is added. 
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 ⃗ 

 ⃗ 

 ⃗ 

 ⃗ 

𝒗

  

  
   𝑣

  
𝑦
𝑣

  

  𝑦

   

𝑙 𝑙 

 

  𝑦

       

𝐽     

   𝑦    𝑣

  

𝛽  𝑦 =   sin 𝛽

   ⃗

 𝑦

  
𝑦
𝑣

 
Figure 4-42: One-track model for transient dynamics. Dashed show fictive forces. Compare to Figure 4-15. 

It is assumed that the longitudinal tyre forces and slips are small, so  𝑖𝑦 (𝑠𝑖𝑦𝑡) ≈  𝑖𝑦 (𝑠𝑖𝑦 ). It is also 

assumed that lateral tyre forces are far below road friction saturation,  𝑖𝑦 (𝑠𝑖𝑦 ) ≈ 𝐶𝑖𝑦  𝑠𝑖𝑦 . 

It can be difficult to understand the difference between acceleration [  ;  𝑦] and derivatives [   ;   𝑦] of 

velocities [  ;  𝑦]. Some explanations are proposed in 4.4.2.3. 

The Mathematical model shown in Eq [4.46] in Modelica format. The subscript   and   refers to vehi-
cle coordinate system and wheel coordinate system, respectively. The model is developed from the 
model for low-speed in Eq [4.6], with the changes marked with yellow and underlined text. 
  //(Dynamic) Equilibrium: 

  m*ax = Ffxv + Frx;   m*ay = Ffyv + Fry;   J*der(wz) = Ffyv*lf - Fry*lr; 

  ax=der(vx)-wz*vy;   ay=der(vy)+wz*vx; 

 

  //Constitutive relation (Lateral tyre force model): 

  Ffyw=-Cf*sfyw;    Fry=-Cr*sryw; 

[4.46] 
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  sfyw=vfyw/vfxw;   sryw=vry/vrx; 

 

  //Compatibility: 

  vfxv = vx;   vfyv = vy + lf*wz; 

  vrx = vx;    vry = vy - lr*wz; 

 

  //Transformation between vehicle and wheel coordinate systems: 

  Ffxv = Ffxw*cos(df) - Ffyw*sin(df); 

  Ffyv = Ffxw*sin(df) + Ffyw*cos(df); 

  vfxv = vfxw*cos(df) - vfyw*sin(df); 

  vfyv = vfxw*sin(df) + vfyw*cos(df); //can be exactly replaced with  

          // atan2(vfyv,vfxv)=df+atan(sfyw); or approximately with vfyv/vfxv=df+sfyw; 

 

  //Path with orientation: 

  der(x) = vx*cos(pz) - vy*sin(pz); 

  der(y) = vy*cos(pz) + vx*sin(pz); 

  der(pz) = wz; 

 

  // Prescription of steer angle: 

  df = if time < 2.5 then (5*pi/180)*sin(0.5*2*pi*time) else 5*pi/180; 

  //Shaft torques: 

  Ffxw = +1000; // Front axle driven. 

  Frx  = -100; // Rolling resistance on rear axle. 

Position variables [𝑥    𝑦=p ] and speed variables [    𝑦   =w ] are selected state variables. The 

input variables are            . The only non-zero initial value is   = 100 𝑘   . Simulation result is 

shown in Figure 4-43. The manoeuvre selected is same steering wheel function of time as in Figure 
4-16, for better comparison of the different characteristics of the models. 
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Figure 4-43: Simulation results of transient one-track models. Solid: Eq [4.46] or [4.47]. Dashed: Eq [4.48], 

which employs the  small angle approximation. Dotted:  Eq [4.46] or [4.47], which is without the       
term. 

Eq [4.46] is a complete model suitable for simulation. Removing [𝑥    𝑦=p ] and the 3 equations for 

“path with orientation”, eliminating some variable and rewrite (no added approximations) gives: 
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Equilibrium:   ∙ (   −  ∙  𝑦) =     ∙ cos(  ) −   𝑦 ∙ sin(  ) +    ; 

 ∙ (  𝑦 +  ∙   ) =     ∙ sin(  ) +   𝑦 ∙ cos(  ) +   𝑦; 

𝐽 ∙    = (    ∙ sin(  ) +   𝑦 ∙ cos(  )) ∙ 𝑙 −   𝑦 ∙ 𝑙 ; 

Constitution:       𝑦 = −𝐶 ∙ 𝑠 𝑦 ;     𝑦 = −𝐶 ∙ 𝑠 𝑦 ; 

Compatibility:   𝑠 𝑦 =   𝑦 |    |⁄ ;∎   and   𝑠 𝑦 = ( 𝑦 − 𝑙 ∙   ) |  |⁄ ; 

Transformation from vehicle to wheel coordinate system on front axle: 
    = ( 𝑦 + 𝑙 ∙   ) ∙ sin(  ) +   ∙ cos(  ) ;  ∎ 

  𝑦 = ( 𝑦 + 𝑙 ∙   ) ∙ cos(  ) −   ∙ sin(  ) ;  ∎ 

[4.47] 

Typically, this model is used for simulation, where   ,      and     are input variables. Suitable state 

variables are   ,  𝑦 and   . It is a non-linear model suitable for arbitrary transient manoeuvres and we 

will come back to this in 4.4.4. 

4.4.2.1 Known Longitudinal Velocity and Small Angles  
Model in Eq [4.47] is not linear, but we will derive a linear model from it now, through some approxi-
mations. The angle sum approach from 1.5.5.3 is used to replace the 3 equations (∎) with 2 new and 
replace the 2 unknowns         𝑦  with one new 𝛽 .  

Equilibrium:   ∙ (   −  ∙  𝑦) =     ∙ cos(  ) −   𝑦 ∙ sin(  ) +    ;   

 ∙ (  𝑦 +  ∙   ) =     ∙ sin(  ) +   𝑦 ∙ cos(  ) +   𝑦; 

𝐽 ∙    = (    ∙ sin(  ) +   𝑦 ∙ cos(  )) ∙ 𝑙 −   𝑦 ∙ 𝑙 ; 

Constitution:       𝑦 = −𝐶 ∙ 𝑠 𝑦 ;        𝑦 = −𝐶 ∙ 𝑠 𝑦 ; 

Compatibility:   arctan(𝛽 ) =   + arctan(𝑠 𝑦 ) ;     arctan(𝛽 ) =
𝑣𝑦+𝑙𝑓 𝜔𝑧

|𝑣𝑥|
;      𝑠 𝑦 =

𝑣𝑦−𝑙𝑟∙𝜔𝑧

|𝑣𝑥|
; 

Now, we assume small angles: steering angle   , wheel side slip angles 𝛼𝑖 ≈ arctan( 𝑦𝑖   𝑖 ⁄ ) =

arctan(𝑠𝑖𝑦 ), and body side slip angle over steered axle 𝛽 ≈ arctan(  𝑦   ⁄ ). These are “trigonometric 

approximations” during the Mathematical modelling stage, motivated if not too sharp turning.  

Equilibrium:   ∙ (   −  ∙  𝑦) =     −   𝑦 ∙   +    ;   

             ∙ (  𝑦 +  ∙   ) =     ∙   +   𝑦 +   𝑦; 

             𝐽 ∙    = (    ∙   +   𝑦 ) ∙ 𝑙 −   𝑦 ∙ 𝑙 ; 

Constitution:       𝑦 = −𝐶 ∙ 𝑠 𝑦 ;     𝑦 = −𝐶 ∙ 𝑠 𝑦 ; 

Compatibility:   𝛽 ≈   + 𝑠 𝑦 ;      𝛽 ≈
𝑣𝑦+𝑙𝑓 𝜔𝑧

|𝑣𝑥|
;      𝑠 𝑦 =

𝑣𝑦−𝑙𝑟∙𝜔𝑧

|𝑣𝑥|
; 

[4.48] 

(Note that  𝑖𝑦 = −𝐶𝑖 ∙ 𝛼𝑖; can be employed as approximation already during tyre modelling. This 

would not change the resulting Eq [4.48].) 

Figure 4-43 shows a simulation with model in Eq [4.48], for comparison with the model without small 
angle approximations, i.e. from Eq [4.47].  

Eliminating   𝑦    𝑦 𝑠 𝑦  𝑠 𝑦 𝛽  gives: 

 ∙ (   −  ∙  𝑦) =     + 𝐶 ∙ (
𝑣𝑦+𝑙𝑓 𝜔𝑧

|𝑣𝑥|
−   ) ∙   +    ;  

 ∙ (  𝑦 +  ∙   ) =     ∙   − 𝐶 ∙ (
𝑣𝑦+𝑙𝑓 𝜔𝑧

|𝑣𝑥|
−   ) − 𝐶 ∙

𝑣𝑦−𝑙𝑟∙𝜔𝑧

|𝑣𝑥|
;  

𝐽 ∙    = (    ∙   − 𝐶 ∙ (
𝑣𝑦+𝑙𝑓 𝜔𝑧

|𝑣𝑥|
−   )) ∙ 𝑙 + 𝐶 ∙

𝑣𝑦−𝑙𝑟∙𝜔𝑧

|𝑣𝑥|
∙ 𝑙 ;   

Yet another approximation which we can do is to assume that centripetal acceleration is directed 
purely lateral in vehicle and hence remove the term   ∙  𝑦. Figure 4-43 shows a simulation of Eq 

[4.47] without the term   ∙  𝑦 for judging the importance of it; it has considerable influence on    

over time. Also, the influence of the force   𝑦 ∙    in longitudinal direction can be neglected. The re-

sulting model then becomes: 
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 ∙    =     +    ; 

 ∙ (  𝑦 +   ∙   ) =     ∙   − 𝐶 ∙ (
 𝑦 + 𝑙    

|  |
−   ) − 𝐶 ∙

 𝑦 − 𝑙 ∙   
|  |

; 

𝐽 ∙    = (    ∙   − 𝐶 ∙ (
 𝑦 + 𝑙    

|  |
−   )) ∙ 𝑙 + 𝐶 ∙

 𝑦 − 𝑙 ∙   
|  |

∙ 𝑙 ; 

[4.49] 

For stationary oscillation steering,    = 0, so    can be seen as a manoeuvre-parameter. This is often a 
good approximation also when turning during mild acceleration and deceleration. But, instead of set-
ting    = 0, we keep it more generic:    is considered as a known function of time   (𝑡), i.e.    and     
are known functions of time, or     is an input and    a state. So, we can continue to select     𝑦    as 

states, but inputs become            : 

The first scalar equation (the longitudinal equilibrium) in Eq [4.49] can be used to calculate what     is 
needed to keep the prescribed   (𝑡):    =  ∙    (𝑡) −     ;. Note that neither aerodynamic, grade nor 

rolling resistance are considered. 
The two latter scalar equations can be written as a linear dynamic model on matrix state-space form, 
with 2 states  𝑦    and 2 inputs           , see Eq [4.50], where the output is chosen as 𝒚𝑻 =

[    𝑦] = [     𝑦 +      ]. The   (𝑡) is often a scalar constant   . 

{
 

 [
  𝑦
   
] = 𝑨 ∙ [

 𝑦
  
] + 𝑩 ∙ [

 𝑓
 𝑓𝑥   𝑓

] ;

[
  

 𝑦
] = 𝑪 ∙ [

 𝑦
  
] + 𝑫 ∙ [

 𝑓
 𝑓𝑥   𝑓

] ;

   or   {
𝒙 = 𝑨 ∙ 𝒙 + 𝑩 ∙ 𝒖;
𝒚 = 𝑪 ∙ 𝒙 + 𝑫 ∙ 𝒖;

 

Where   𝑨 = −[
 0
0 𝐽

]
− 

∙ [

  𝑓+ 𝑟

|𝑣𝑥(𝑡)|

 𝑓∙ 𝑙𝑓− 𝑟∙ 𝑙𝑟

|𝑣𝑥(𝑡)|
+ ∙   (𝑡)

 𝑓∙𝑙𝑓− 𝑟∙𝑙𝑟

|𝑣𝑥(𝑡)|

 𝑓∙ 𝑙𝑓
2+ 𝑟∙ 𝑙𝑟

2

|𝑣𝑥(𝑡)|

] ; 

and   𝑩 = [
 0
0 𝐽

]
− 

∙ [
𝐶 1

𝐶 ∙ 𝑙 𝑙 
]; 

and   𝑪 = [
0 0
1 0

] ∙ 𝑨 + [
0 1
0   (𝑡)

];   and   𝑫 = [
0 0
1 0

]  𝑩; 

[4.50] 

The model above is approximated only for driving situation where tyre forces are far from saturation 
and angles are small. If studying driving conditions which not fulfil this, we can still find approximate 
with linear models if variation from the driving condition is small. A more general method to find lin-
ear models is to use only the first terms in a Taylor series expansion of the model 𝒙 = 𝒇(𝒙 𝒖); around 
[𝒙 𝒖] = [𝒙𝟎 𝒖𝟎]: 

𝒙 = 𝒇(𝒙 𝒖) ≈ 𝒇̃(𝒙 𝒖) = 𝒇(𝒙𝟎 𝒖𝟎) +
𝒅𝒇

𝒅𝒙
|
𝒙𝟎 𝒖𝟎

 (𝒙 − 𝒙𝟎) +
𝒅𝒇

𝒅𝒖
|
𝒙𝟎 𝒖𝟎

 (𝒖 − 𝒖𝟎) ≈ {
if 𝑓 is close
to affine

} ≈

≈
𝒅𝒇

𝒅𝒙
|
𝒙𝟎 𝒖𝟎

 𝒙 +
𝒅𝒇

𝒅𝒖
|
𝒙𝟎 𝒖𝟎

 𝒖; 

Examples of where this can be useful is when studying small steering offsets from a steady state cor-
nering. 

4.4.2.2 Less General Derivation of Linear 1-Track Model 
A less general and less careful derivation of Eq [4.50] is made in Figure 4-44. The approximations are 
introduced earlier, already in the physical model. Therefore, the influence of      is not reflected and 

the longitudinal equilibrium is neglected. It is also assumed that   > 0. 
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df

𝑙 𝑙 

  𝑦  

   𝑦

   

af

br

bf

b

Mathematical model:
Equilibrium:

    𝑦 +      ≈   𝑦 +   𝑦;

𝐽     ≈   𝑦   𝑙 −   𝑦  𝑙 ;

Constitution: 
  𝑦 = −𝐶  𝑠 𝑦;      𝑦 = −𝐶  𝑠 𝑦;

Compatibility:

  + 𝑠 𝑦 ≈   + 𝛼 = 𝛽 ≈
  𝑦

  
=
 𝑦 + 𝑙    

  
;

𝑠 𝑦 ≈ 𝛼 = 𝛽 ≈
  𝑦

  
=
 𝑦 − 𝑙    

  
;

Eliminate   𝑦   𝑦  𝛼  𝛼  𝛽  𝛽 yields:

    𝑦+
𝐶 +𝐶 

  
  𝑦+

𝐶  𝑙 −𝐶  𝑙 

  
+       ≈𝐶    ;

𝐽     +
𝐶  𝑙 −𝐶 𝑙 

  
  𝑦+

𝐶  𝑙 
2+𝐶  𝑙 

2

  
   ≈𝐶  𝑙    ;

Physical model:
• Path radius >> the vehicle. Then, all forces (and centripetal 

acceleration) are approximately co-directed.
• Small tyre and vehicle side slip ⇒ angle=sin(angle)=tan(angle).

(Angles are not drawn small, which is the reason why the forces not 
appear co-linear in figure.)

𝐽     
  𝑦  

 
Figure 4-44: Less general derivation of the Linear 1-Track Model, i.e.  Eq [4.50]. 

One can add more axles to the derivation. E.g., a truck with double rear axle will get an added term 
proportional to    in the moment equilibrium. 

4.4.2.3 Accelerations and Velocity Derivatives 
See Equation [4.45]. This section provides some explanations to the difference between acceleration 

[  ;  𝑦] and derivatives [   ;   𝑦] of velocities [  ;  𝑦]. 

4.4.2.3.1 Theoretical explanation 

First, think of  ⃗ and  ⃗ as geometric vectors (acceleration and velocity are vectors in physics). Accelera-
tion  ⃗ is acceleration in inertial frame, i.e. accelerations over ground. Velocity  ⃗ is velocity in inertial 
frame, i.e. velocity over ground. A driver or accelerometers, attached to the vehicle body, will experi-

ence [  ;  𝑦]. The ground, observed from the vehicle through a whole in the floor, would be experi-

enced as moving with [−  ; − 𝑦]. 

It is suitable to decompose  ⃗ and  ⃗ in vehicle directions, since most equations (tyres, steering, propul-
sion, braking, etc) are expressed in those directions. With 𝑢⃗⃗  and 𝑢⃗⃗𝑦 as unit vectors in vehicle direc-

tions:  ⃗ =    𝑢⃗⃗ +  𝑦  𝑢⃗⃗𝑦 and  ⃗ =    𝑢⃗⃗ +  𝑦  𝑢⃗⃗𝑦, or shorter, [  ;  𝑦] and [  ;  𝑦], which are mathe-

matical vectors. Now, it is important to remember that the vehicle is rotating with   . 

The accelerations are used in equilibrium equations, where the fictive force is    ⃗ =   
 

 𝑡
 ⃗;. Since 

we express  ⃗ in components in vehicle coordinate system directions, the differentiation is not as sim-

ple as differentiation component by component, [   ;   𝑦]. Instead: [  ;  𝑦] = [   ;   𝑦] +

[−  ∙  𝑦;    ∙   ];. The terms proportional to    are centrifugal accelerations.  

This can be mathematically shown as differentiation of the geometrical vector  ⃗: 

 ⃗ =
 

 𝑡
 ⃗ =

 

 𝑡
(   𝑢⃗⃗ +  𝑦  𝑢⃗⃗𝑦) = (    𝑢⃗⃗ +    

 

 𝑡
𝑢⃗⃗ ) + (  𝑦  𝑢⃗⃗𝑦 +  𝑦  

 

 𝑡
𝑢⃗⃗𝑦) =  

= (    𝑢⃗⃗ +       𝑢⃗⃗𝑦) + (  𝑦  𝑢⃗⃗𝑦 −  𝑦     𝑢⃗⃗ ) = (   −  𝑦    )⏟        
𝑎𝑥

 𝑢⃗⃗ + (  𝑦 +      )⏟        
𝑎𝑦

 𝑢⃗⃗𝑦;  

The constitutive and compatibility equations are typically expressed in velocities, not accelerations. 
For high index models, some of the compatibility equations (a.k.a. constraint equations) also needs to 
be differentiated, see example in 4.5.2.2. 

4.4.2.3.2 Practical Explanation 

Another explanation is given in left part of Figure 4-45 and the following reasoning. We can express 
the velocity in direction of the x axis at time t, at two time instants: 
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• Velocity at time = 𝑡:          

• Velocity at time = 𝑡 +  𝑡:      (  +    ) ∙ cos(  ) − ( 𝑦 +   𝑦) ∙ sin(  ) = (  ∙ cos(  ) +

   ∙ cos(  )) − ( 𝑦 ∙ sin(  ) +   𝑦 ∙ sin(  )) ≈ {   𝑠  𝑙𝑙} ≈ (  +    ) −

( 𝑦 ∙   +   𝑦 ∙   ) ≈ {  𝑦 ∙    𝑠  𝑙𝑙} ≈ (  +    ) −  𝑦 ∙    

Using these two expressions, we can express    as the change of that speed per time unit: 

• Acceleration=Velocity change per time =   =
{(𝑣𝑥+ 𝑣𝑥)−𝑣𝑦∙ 𝜓}−𝑣𝑥

 𝑡
=

 𝑣𝑥−𝑣𝑦∙ 𝜓

 𝑡
=

 𝑣𝑥

 𝑡
−  𝑦

 𝜓

 𝑡
≈

   −  𝑦 ∙   =    −  𝑦 ∙    

Corresponding for the lateral direction gives the Equation [4.45]. In Equation [4.45], the term   ∙    is 
generally more important than the term   ∙  𝑦. This is because    is generally much larger than  𝑦. 

𝑥𝑔𝑙  𝑎𝑙

 𝑔𝑙  𝑎𝑙
𝑡  𝑒 = 𝑡 +  𝑡: 

𝑥

 

  

Comparison with mass on 
circular path, with centrifugal 

acceleration      

  𝑒𝑛𝑡 𝑖𝑝𝑒𝑡𝑎𝑙 =
  
2

 
=     

2 =

=   =     =      ;

𝒂𝒄𝒆𝒏𝒕𝒓𝒊𝒑𝒆𝒕𝒂𝒍

  

  

   𝑡  𝑒 = 𝑡: 

  
     

   

 𝑦

  𝑦
   𝑦

  

𝑥
 

 ⃗

 ⃗ +   ⃗

 
Figure 4-45: How to understand the acceleration term       for vehicle motion in ground plane. Left: Two 
consecutive time instants. Right: Comparison with circular motion, to identify the centripetal acceleration. 

4.4.2.3.3 Model with Velocity Components in Ground Fixed Directions 

An alternative mathematical model is to express the velocity in components in ground fix (inertial) di-
rections ( ⃗ =   𝑔  𝑢⃗⃗ 𝑔 +  𝑦𝑔  𝑢⃗⃗𝑦𝑔, subscript   for ground) instead of vehicle fix directions ( ⃗ =   𝑣  

𝑢⃗⃗ 𝑣 +  𝑦𝑣  𝑢⃗⃗𝑦𝑣, subscript   for vehicle). The fictive forces are till   
 

 𝑡
 ⃗, but we should express 

 

 𝑡
 ⃗ in 

[  𝑔   𝑔] instead of [  𝑣  𝑦𝑣], which becomes:  ⃗ =
 

 𝑡
(  𝑔  𝑢⃗⃗ 𝑔 +  𝑦𝑔  𝑢⃗⃗𝑦𝑔) =    𝑔  𝑢⃗⃗ 𝑔 +   𝑦𝑔  𝑢⃗⃗𝑦𝑔;. 

This is a simpler differentiation than using the rotating unit vectors 𝑢⃗⃗ 𝑣 and 𝑢⃗⃗𝑦𝑣. We get  𝑦𝑔 =   𝑦𝑔; 

and   𝑔 =    𝑔; instead of  𝑦𝑣 =   𝑦𝑣 +   𝑣    ; and   𝑣 =    𝑣 −  𝑦𝑣    ;. 

velocities:  ⃗

  

  

  𝑔

 
𝑦
𝑔

accelerations:  ⃗

   

  

  𝑔 =    𝑔

 
𝑦
𝑣
=
 
 𝑦
𝑔

  𝑣 =    𝑣 −  𝑦𝑣    ≠    𝑣;

 𝑦𝑣 =   𝑦𝑣 +   𝑣    ≠   𝑦𝑣;

 
Figure 4-46: Velocity and Acceleration Components in Vehicle fix and Ground Fixed Directions. 

Then, we replace the 2 translation equilibrium equations in Eq [4.47]. We also add 2 transformation 
equations and a compatibility in yaw. The remaining equations can be kept, but it is proposed to add 
subscript   to     𝑦 and    . The two models, side-by-side becomes as: 

Table 4.2: Comparison between modelling with velocities in vehicle fixed and ground fixed directions 
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Model in… …vehicle fix directions, Eq [4.47] … ground fixed directions 

Translation  
Equilibrium 

 ∙ (   𝑣 −  ∙  𝑦𝑣) =    𝑣 +    𝑣; 

 ∙ (  𝑦𝑣 +   ∙   𝑣) =   𝑦𝑣 +   𝑦𝑣; 

     𝑔 = (   𝑣 +    𝑣)  cos(  ) − (  𝑦𝑣 +   𝑦𝑣)  sin(  ) ; 

    𝑦𝑔 = (   𝑣 +    𝑣)  sin(  ) + (  𝑦𝑣 +   𝑦𝑣)  cos(  ) ; 

Velocity  
Transformation, 
ground to vehicle 

<not needed> 
  𝑣 = +  𝑔  cos(  ) +  𝑦𝑔  sin(  ) ; 

 𝑦𝑣 = −  𝑔  sin(  ) +  𝑦𝑔  cos(  ) ; 

Compatibility, yaw <not needed>    =   ; (adds    as state) 

Yaw Equilibrium 𝐽 ∙    =   𝑦𝑣 ∙ 𝑙 −   𝑦𝑣 ∙ 𝑙 ; 

Constitution        𝑦 = −𝐶 ∙ 𝑠 𝑦 ;         𝑦𝑣 = −𝐶 ∙ 𝑠 𝑦; 

Compatibility      + 𝑠 𝑦 ≈ ( 𝑦𝑣 + 𝑙    ) |  𝑣|⁄ ;     𝑠 𝑦 = ( 𝑦𝑣 − 𝑙 ∙   ) |  𝑣|⁄ ; 

Force transfor-
mation, steered 
wheels to vehicle  

   𝑣 =     −   𝑦 ∙   ;         𝑦𝑣 =        +    𝑦 ; 

Path with orienta-
tion: 

From Eq [4.46]: 
𝑥 =   𝑣   𝑜𝑠(  ) −  𝑦𝑣  𝑠 𝑛(  ) ; 

  =  𝑦𝑣  cos(  ) +   𝑣  𝑠 𝑛(  ) ; 

   =   ; 

𝑥 =   𝑔; 

  =  𝑦𝑔; 

   =   ; 

Using the velocity components in inertial directions brings heading angle    into the differential equa-
tions for velocities. So, we have to add    as state: we get 4 states (  𝑔  𝑦𝑔      ) instead of 3 

(  𝑣  𝑦𝑣    ). The need of transformation manifests that vehicle directions is more natural directions 

for the constitutive equations (tyre models). However, the equations for path becomes simpler with 
the ground fixed directions. The two models gives, of course, the same result, e.g.   𝑔(𝑡)    𝑣(𝑡)  

cos(  (𝑡)) −  𝑦𝑣(𝑡)  sin(  (𝑡)), but the model in vehicle fixed directions is more frequently used.  

A similar comparison between model in vehicle and ground fix   and   components can be done for 
pitch rotation in 3.4.5 and 5.7.2 but the difference there is less important since pitch angle is much 
more limited than yaw angle. 

4.4.2.4 Validity of Model 
When only studying the Frequency Response as yaw velocity and curvature response, it is easy to for-
get that one very easily comes into manoeuvres where road friction is limited, i.e. where the linear tyre 
model is not valid. Hence it is good to look at lateral acceleration Frequency Response, because we can 
roughly say that for | 𝑦| in the same magnitude as  ∙  ∙  , it is doubtful if the model is valid. If the 

wheel torques are significant, the validity limit is even lower. For high CoG vehicles, another invalidat-
ing circumstance is wheel lift, which can be approximately checked by checking that | 𝑦| ≪ 𝑆𝑆 =

 ∙  (2   )⁄ . 

If one needs to include nonlinear tyre models in stationary oscillation response, one can simulate using 
time integration (same method as usually used for transient handling) over several excitation cycles, 
until the response shows a clear stationary oscillation. This consumes more computational efforts and 
the solutions become approximate and numerical. 

4.4.3 Using the 1-Track Model 
Use the linear state-space-model in Eq [4.50] to study “stationary oscillating steering”: 

[
  𝑦
   
] = 𝐴 ∙ [

 𝑦
  
] + 𝐵 ∙  (𝑡) = 𝐴 ∙ [

 𝑦
  
] + 𝐵 ∙  ̂ ∙ cos( ∙ 𝑡) 

(Note similar notation for vehicle yaw velocity,   , and steering angular frequency,  .) Knowing  ̂ and 
 , it is possible to calculate the responses  ̂𝑦,  ̂ ,  𝑦 and   : 
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[
 𝑦
  
] = [

 ̂𝑦
 ̂ 
] ∙ cos ( ∙ 𝑡 − [

 𝑣𝑦
 𝜔𝑧

]) ;     𝑛    [
  
 𝑦
] = [

 ̂ 
 ̂𝑦
] ∙ cos ( ∙ 𝑡 − [

 𝜔𝑧

 𝑎𝑦
]) ; 

Different methods are available for calculation of the Frequency Responses: 

• Fourier transform 
• Complex mathematics, using 𝑒𝑗∙𝜔∙𝑡 
• Real trigonometry, using cos( ∙ 𝑡 + 𝑝  𝑠𝑒)  sin( ∙ 𝑡 + 𝑝  𝑠𝑒) or cos( ∙ 𝑡) + sin( ∙ 𝑡). 

Typically, the problem has at least dimension 2, which makes matrix algebra efficient. Matrix formula-
tion and Fourier transform is very convenient with tools as Matlab if numerical solutions are accepted. 

4.4.3.1 Single Frequency Response 
4.4.3.1.1 Solution with Fourier Transform 

Equation [4.50] can be transformed to the frequency domain (ℱ denotes Fourier transform, i.e. 

ℱ(𝜉(𝑡)) = ∫ 𝑒−𝑗∙ ∙𝑡 ∙ 𝜉(𝑡) ∙  𝑡
 

− 
): 

{
𝑗 ∙  ∙ 𝓕 ([

 𝑦
  
]) = 𝑨 ∙ 𝓕 ([

 𝑦
  
]) + 𝑩 ∙ ℱ(  );

𝓕 ([
  
  
]) = 𝑪 ∙ 𝓕 ([

 𝑦
  
]) + 𝑫 ∙ ℱ(  );

 

Solving for states and outputs, using ℱ(  ) = −𝑗 ∙   ℱ( );, gives: 

{
 
 

 
 [
 𝑦
  
] = ℱ−1 (𝓕 ([

 𝑦
  
])) = ℱ−1 ((𝑗 ∙  ∙ 𝐼− 𝑨)− ∙ 𝑩 ∙ ℱ(  )) ;

[
  
  
] = ℱ−1 (𝓕 ([

  
  
])) = ℱ−1 (𝑪 ∙ 𝓕 ([

 𝑦
  
]) + 𝑫 ∙ ℱ(  )) ;

 

Expressed as transfer functions: 

𝑯
𝛿𝑓→[

𝑣𝑦
𝜔𝑧

]
=

1

ℱ(  )
 𝓕 ([

 𝑦
  
]) =

(𝑗 ∙  ∙ 𝑰 − 𝑨)− ∙ 𝑩 ∙ ℱ(  )

ℱ(  )
= (𝑗 ∙  ∙ 𝑰 − 𝑨)− ∙ 𝑩; 

𝑯
𝛿𝑓→[

𝜔𝑧
𝑎𝑦

]
=

1

ℱ(  )
 𝓕 ([

  
 𝑦
]) = 𝑪 ∙ 𝑯

𝛿𝑓→[
𝑣𝑦
𝜔𝑧

]
+𝑫 = 𝑪 ∙ (𝑗 ∙  ∙ 𝑰 − 𝑨)− ∙ 𝑩 + 𝑫; 

[4.51] 

We have derived the transfer functions. The subscript tells that the transfer function is for the vehicle 
operation with excitation=input=    and response=output= [ 𝑦   ]𝑇 and output= [ 𝑦  𝑦]𝑇. The 

transfer function has dimension 2x1 and is complex. It operates as follows: 

Amplitudes:

{
 
 

 
 [
 ̂𝑦
 ̂ 
] = |𝐻

𝛿𝑓→[
𝑣𝑦
𝜔𝑧

]
| ∙  ̂ ;

[
 ̂ 
 ̂𝑦
] = |𝐻

𝛿𝑓→[
𝜔𝑧
𝑎𝑦

]
| ∙  ̂ ;

 

Phase delays:

{
 
 

 
 [
 𝑣𝑦
 𝜔𝑧

] = [
arg( 𝑦)

arg(  )
] − [

1
1
] ∙ arg(  ) = {

arg(  )

= 0
} = arg(𝐻

𝛿𝑓→[
𝑣𝑦
𝜔𝑧

]
) ;

[
 𝜔𝑧

 𝑎𝑦
] = [

arg(  )

arg( 𝑦)
] − [

1
1
] ∙ arg(  ) = {

arg(  )

= 0
} = arg(𝐻

𝛿𝑓→[
𝜔𝑧
𝑎𝑦

]
) ;

 

[4.52] 

4.4.3.1.2 Solution with Complex Mathematics 

This section avoids requiring skills in Fourier transform. This makes the derivation quite long to reach 
the final results Eqs [4.57] and [4.56]. With Fourier Transform, the expression for the Transfer Func-
tion, H, can be reached with less algebra. Knowing H, it can be used in Eq [4.56]. 

The fundamental situation for steering frequency response is that the excitation is:   =  ̂ ∙

cos(2 ∙ 𝜋 ∙ 𝑓 ∙ 𝑡) = {𝑒𝑗∙𝑎 = cos( ) + 𝑗 ∙ sin( )} = Re( ̂ ∙ 𝑒
𝑗∙2∙𝜋∙ ∙𝑡), where f is the (time) frequency in Hz 

and 𝑗 is the imaginary unit. We rewrite 2 ∙ 𝜋 ∙ 𝑓 as   (angular frequency), which has to be carefully 
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distinguished from    (yaw velocity). Insert this in Eq [4.50] and neglecting the longitudinal force 
    . The full (complex) equation is used: 

Re

[
 
 
 
 

[
 0
0 𝐽

] ∙ [
  𝑦 
    

] +

[
 
 
 
 

 𝐶 + 𝐶 

  

𝐶 ∙  𝑙 − 𝐶 ∙  𝑙 

  
+ ∙   

𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 

  

𝐶 ∙  𝑙 
2 + 𝐶 ∙  𝑙 

2

  ]
 
 
 
 

∙ [
 𝑦 
   

] = [
 𝐶 

𝐶 ∙ 𝑙𝑓
] ∙  ̂ ∙ 𝑒

𝑗𝜔∙𝑡

]
 
 
 
 

; [4.53] 

We intend to solve the complex equation, and then find the solutions as real parts:  𝑦 = Re[ 𝑦 ]; and 

  = Re[   ];. (Subscript c means complex.) 

If only interested in the stationary solution, which is valid after possible initial value dependent transi-
ents are damped out, we can assume a general form for the solution. 

[
 𝑦 
   

] = [
 ̂𝑦 
 ̂  

] ∙ 𝑒𝑗∙𝜔∙𝑡    ⇒   [
  𝑦 
    

] = 𝑗 ∙  ∙ [
 ̂𝑦 
 ̂  

] ∙ 𝑒𝑗∙𝜔∙𝑡; [4.54] 

Inserting the assumption in the differential equation gives: 

[
 0
0 𝐽

] ∙ 𝑗 ∙  ∙ [
 ̂𝑦 
 ̂  

] ∙ 𝑒𝑗∙𝜔∙𝑡 + 

   +

[
 
 
 
 

 𝐶 + 𝐶 

  

𝐶 ∙  𝑙 − 𝐶 ∙  𝑙 

  
+ ∙   

𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 

  

𝐶 ∙  𝑙 
2 + 𝐶 ∙  𝑙 

2

  ]
 
 
 
 

∙ [
 ̂𝑦 
 ̂  

] ∙ 𝑒𝑗∙𝜔∙𝑡 = [
 1
𝑙 
] ∙ 𝐶 ∙  ̂ ∙ 𝑒

𝑗∙𝜔∙𝑡 ⇒ 

⇒ [
 ̂𝑦 
 ̂  

] = 

 

   =

(

 
 
[
 0
0 𝐽

] ∙ 𝑗 ∙  +

[
 
 
 
 

 𝐶 + 𝐶 

  

𝐶 ∙  𝑙 − 𝐶 ∙  𝑙 

  
+ ∙   

𝐶 ∙ 𝑙 − 𝐶 ∙ 𝑙 

  

𝐶 ∙  𝑙 
2 + 𝐶 ∙  𝑙 

2

  ]
 
 
 
 

)

 
 

− 

∙ [
 1
𝑙 
] ∙ 𝐶 ∙  ̂ = 

   = 𝐻
𝛿𝑓→[

𝑣𝑦
𝜔𝑧

]
∙  ̂ ; 

[4.55] 

Then, we can assume we know  ̂𝑦  and  ̂   from Equation [4.55], and consequently we know  𝑦  and 

    from Eq [4.54]. We have derived the transfer function, 𝐻
𝛿𝑓→[

𝑣𝑦
𝜔𝑧

]
. The subscript tells that the trans-

fer function is for the vehicle operation with excitation=input=    and response=output= [
 𝑦
  
] case. 

This transfer function has dimension 2x1 and it is complex. It operates as follows: 

Amplitudes: [
 ̂𝑦
 ̂ 
] = [

| 𝑦|

|  |
] = |𝐻

𝛿𝑓→[
𝑣𝑦
𝜔𝑧

]
| ∙ |  |; 

Phase delays: [
arg( 𝑦)

arg(  )
] − [

1
1
] ∙ arg(  ) = {arg(  ) = 0} = arg (𝐻

𝛿𝑓→[
𝑣𝑦
𝜔𝑧

]
) 

[4.56] 

However, we can derive expressions for  𝑦  and     on a real (non-complex) form,   𝑝𝑙 𝑡𝑢 𝑒 ∙

cos( 𝑛 𝑢𝑙 𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛  ∙ 𝑡 − 𝑝  𝑠𝑒  𝑒𝑙  ), without involving transfer function. That is done in the 
following: 

 𝑦 = Re( 𝑦 ) = Re( ̂𝑦 ∙ 𝑒
𝑗∙𝜔∙𝑡) = ⋯ = | ̂𝑦 | ∙ cos( ∙ 𝑡 + arg( ̂𝑦 )) ; 

The same rewriting can be done with   , so that in total: 

[
 𝑦
  
] = [

 ̂𝑦 ∙ cos( ∙ 𝑡 −  𝑣𝑦)

 ̂ ∙ cos( ∙ 𝑡 −  𝜔 )
] = [

| ̂𝑦 | ∙ cos ( ∙ 𝑡 − (−arg( ̂𝑦 )))

| ̂  | ∙ cos( ∙ 𝑡 − (−arg( ̂  )))
] [4.57] 
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Equation [4.55] and Equation [4.57] now gives us the possibility to find vehicle response amplitude 

and phase delay. The ratios between amplitude of responses and amplitude of excitation,  ̂𝑦  ̂ ⁄  and 

 ̂  ̂ ⁄ , are called gains. The difference in argument is the phase delay. 

4.4.3.2 Random Frequency Response 
Solutions to harmonic excitation of linear dynamic systems are superimposable. This is also why the 
response from a mixed frequency excitation can be spliced into separate frequencies, e.g. using Fourier 
transformation. Hence, a common way to measure the frequency response diagrams is to log data from 
a random steering test. The frequency response diagram can then be extracted from this test. 

4.4.3.3 Frequency Responses on Steering * 
Function definition: Frequency Responses on Steering are amplification and delay of steer angle to vehicle 
responses’ measures (yaw velocity, lateral acceleration etc.), for stationary oscillating harmonic steering at certain lon-
gitudinal speed and varying steering frequency. 

4.4.3.3.1 Lateral Velocity and Yaw Velocity Frequency Response * 

The frequency response for the two states, Lateral Velocity and Yaw velocity, can be plotted using Eq 
[4.51] and only one input (𝒖 =   ; instead of 𝒖 = [         ]𝑇), see Figure 4-47. The curves show 

Frequency Response for same vehicle, but different speed. The yaw velocity gain curve has a knee at 
0.5..1 Hz. The decrease after that is a measure of yaw damping. The curve for high speed actually has a 
weak peak just before the knee. This is not desired, because the vehicle might feel a bit nervous. Yaw 
damping can also be how fast yaw velocity decays after a step response, see 4.4.4. 

From Equation [4.18] we can calculate that characteristic speed for the vehicle is 120 km/h. With an-
other understeering coefficient, we could have calculated a critical speed. Studying Figure 4-47 to Fig-
ure 4-50, one can find these special speeds in another appearance: 

• For an understeered vehicle, speeds above the characteristic speed gives a negative yaw veloc-
ity delay for low steering frequencies will be negative. 

• For over-steered vehicles, speeds above the critical speed gives a yaw velocity delay larger 
than 180  𝑒  and yaw velocity amplitudes which are very large for low steering frequencies. 

From Equation [4.18] we can calculate that characteristic speed for the vehicle is 120 km/h.  

In Figure 4-48 the curves are for same speed and constant understeering gradient, but they show the 
Frequency Response for different sums of cornering stiffness 𝐶 + 𝐶 . Increasing the stiffness in-

creases the yaw velocity gain (agility) at high frequencies. 

In Figure 4-49 the curves are for same speed and constant sum of cornering stiffness (𝐶 + 𝐶 ), but 

they show the Frequency Response for different values of understeering gradient (Ku). Increasing un-
dersteer gradient decreases the yaw velocity gain (agility) at low frequencies. But, also note that in-
creased understeering increases the peak in YVFR at around 0.5 Hz, which means low yaw damping. 

4.4.3.3.2 Lateral Acceleration Frequency Response * 

The lateral acceleration Frequency Response is another useful measure to study and set requirements 
on. Actually, yaw velocity and lateral acceleration are the most frequently used measures, since they 
are easily measured, e.g. from ESC sensors in most vehicles. 

The transfer function is found (here using Fourier transform and previous results): 

Amplitude:  ̂𝑦 = | 𝑦 | = {𝑢𝑠𝑒:  𝑦 =
  𝑦 +  ∙   

  
} = |

𝑗 ∙  ∙  𝑦 +    ∙   

  
| = 

= |
1

  
∙ [𝑗 ∙    ] ∙ 𝐻

𝛿𝑓→[
𝑣𝑦
𝜔𝑧

]
∙   | = |[𝑗 ∙    ] ∙ 𝐻

𝛿𝑓→[
𝑣𝑦
𝜔𝑧

]
| ∙
  

  
; 

Phase delay: arg( 𝑦) − arg(  ) = {𝑢𝑠𝑒: arg(  ) = 0} = arg([𝑗 ∙    ] ∙ 𝐻
𝛿𝑓→[

𝑣𝑦
𝜔𝑧

]
) ; 

[4.58] 

Lateral acceleration Frequency Response is plotted for different vehicle speeds in Figure 4-50. 
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Figure 4-47: Frequency response to steer angle. Vehicle data:  = 2000 𝑘 ;  𝐽 = 3000 𝑘   2;  𝑙 =

1.3  ; 𝑙 = 1.5  ; 𝐶 = 81400 𝑁 𝑟  ; 𝐶 = 78000 𝑁 𝑟  ; (𝐾 =  1.26 𝑟   𝑀𝑁). 
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Figure 4-48: Frequency response to steer angle. Same vehicle data as in Figure 4-47, except varying 𝐶  and 

𝐶  but keeping understeering gradient 𝐾  constant. Vehicle speed = 100 km/h. 
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Figure 4-49: Frequency response to steer angle. Same vehicle data as in Figure 4-47, except varying 

understeering gradient Ku but keeping 𝐶 + 𝐶  constant. Vehicle speed = 100 km/h. 
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Figure 4-50: Lateral acceleration frequency response to steer angle. Vehicle data:  = 2000 𝑘 ;  𝐽 =

3000 𝑘   2;  𝑙 = 1.3  ; 𝑙 = 1.5  ; 𝐶 = 81400 𝑁 𝑟  ; 𝐶 = 78000 𝑁 𝑟  ; (𝐾 =  1.26 𝑟   𝑀𝑁). 

4.4.3.4 Other Frequency Responses to Oscillating Steering * 

In principle, it is possible to study a lot of other responses, such as Path Curvature Frequency Re-
sponse, Side slip Frequency Response and Lateral Path Width Frequency Response etc. For combina-
tion-vehicles it is common to plot Rearward amplification (RA) as function of frequency. The compen-
dium identifies some alternative definitions:  𝐴𝜔 = max

𝑖
( ̂𝑖  ̂  ⁄ ) ; where   numbers the vehicle 

units. If the manoeuvre is not stationary oscillations, but e.g. a single lane change, we instead propose 
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 𝐴𝜔 = max
𝑖

(max
𝑡
| 𝑖 | max

𝑡
|   |⁄ ) ;. RA can also be defined for the worst frequency, e.g.  𝐴𝜔 =

max
 

(max
𝑖
( ̂𝑖  ̂  ⁄ )) ;. (Some argue for alternative definitions with  𝑦 instead of   . However, these 

are more difficult to agree on; which point, vertical and longitudinal, one should measure  𝑦 in.) 

4.4.4 Stable and Unstable Conditions 

4.4.4.1 Locking One Axle 
Locking one axle,  , can be modelled by replacing 𝐶𝑖 with    𝑖 ;. This can be proven by linearization of 
Eq [4.47] with the locked axle’s constitution replaced by “ 𝑖𝑦 = −   𝑖 ∙  𝑖𝑦 | 𝑖 |⁄ ;”. Since 𝐶𝑖 ≈ 𝐶𝐶𝑖  

 𝑖  and cornering compliance, 𝐶𝐶𝑖 , is typically 5..10 (trucks) and 10..15 (passenger cars), we can con-
clude that    𝑖  is normally ≪ 𝐶𝑖. Realistic variation of road friction coefficient   is 0.2..1. So, a locked 
axle can be seen as having much (typically 5..75 times) lower cornering stiffness on the locked axle. So, 
locking front gives extreme under-steering and locking rear gives extreme over-steering. 

4.4.4.2 Frequency Responses for Varying Understeering Gradi-
ents 

Eq [4.50] can explain instability. Instability means here that vehicle gets infinitely growing solutions 
although    0. Eq [4.66] shows the explicit solution. We set    0; and a small yaw disturbance as 

initial conditions: [ 𝑦0   0] = [0 𝜀]; and get the following expression for the solution: 

[
 𝑦
  
] = [[

 ̂𝑦 
 ̂  

] [
 ̂𝑦2
 ̂ 2

]] ∙ [𝑒
𝜆1∙𝑡 0
0 𝑒𝜆2∙𝑡

] ∙ [[
 ̂𝑦 
 ̂  

] [
 ̂𝑦2
 ̂ 2

]]
− 

∙ [
 𝑦0
  0

] ; 

  𝑒𝑟𝑒 [[[
 ̂𝑦 
 ̂  

] [
 ̂𝑦2
 ̂ 2

]]  [
𝜆 0
0 𝜆2

]] = eig(𝑨) ; 

In Figure 4-51 we sweep    for normal passenger car data and try the following cornering stiffnesses: 

• Locked front axle: 𝐶  𝑙 ≈ 0.1  𝐶  𝑙 ; (extremely under-steered) 

• Under-steered: 𝐶  𝑙 ≈ 0.9  𝐶  𝑙 ; (moderatly under-steered 

• Neutral-steered: 𝐶  𝑙 ≈ 1  𝐶  𝑙 ; 

• Over-steered: 𝐶  𝑙 ≈ 1.1  𝐶  𝑙 ; (moderatly over-steered 

• Locked rear axle: 𝐶  𝑙 ≈ 10  𝐶  𝑙 ; (extremely over-steered) 

In Figure 4-51 we see that only over-steered (incl. lock rear) gives an unstable vehicle. And that only 
under-steered vehicles (incl. lock front) gives oscillating solutions. Also, we see that all vehicles are 
stable for low enough speed. 

Limit to instability (subscript  𝑟 𝑡) is when  𝑒 𝑙(𝜆  𝑖𝑡) = 0. Since 𝜆 = 𝜆(  ), we can find      𝑖𝑡 =

√𝐶  𝐶   
2 (𝐶  𝑙 − 𝐶  𝑙 )   ⁄ ;. This is the same expression as we found already with the steady 

state model in Eq [4.18]. An advantage with using the transient model in Eq [4.50] is that we can also 
express how fast the solutions grows towards infinity, if they are oscillating or exponential and how 
the eigenmodes look.  

We can express the condition for instability in other quantities. An example is when we want to limit 
regenerative braking with electric motor on rear axle. Then we solve for 𝐶    𝑖𝑡: 𝐶    𝑖𝑡 =

𝑙 ( 2     
2⁄ − 𝑙 𝐶 ⁄ )⁄ ;. Together with a combined slip tyre model (e.g. Eq [2.49]), we can express in-

stability in:      𝑖𝑡 = √(    )
2 − (     𝑙 (( 2     

2⁄ − 𝑙 𝐶 ⁄ )  𝐶 𝑦| 𝑥=0
)⁄ )

2

;. 
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Figure 4-51: Stability analysis of passenger car with varying cornering stiffnesses. 

4.4.4.2.1 Driver Influence on Stability  
A driver can improve or disturb the vehicle. The gains for steady state cornering and the frequency re-
sponses for stationary oscillating steering does not measure the real stability since they do not include 
the dynamics of the driver, neither human nor automated driver. However, studying critical speed 
through a transient model enables to add a dynamic driver model and quantify the influence of driver. 

A driver model can be, e.g.:   = 𝑘  (   𝑅𝑒 −  ) = {
 𝑠𝑠𝑢 𝑒
   𝑅𝑒 = 0} = −𝑘    = [0 −𝑘]  [

  
  

] ; 

Adding this equation to Eq [4.50] gives: [
  𝑦
   
] = 𝑨 ∙ [

 𝑦
  
] + 𝑩 ∙   = (𝑨 + 𝑩 ∙ [0 −𝑘])  [

 𝑦
  
] ; 

Eigenvalue analysis on matrix (𝑨 + 𝑩 ∙ [0 −𝑘]) for varying speed and driver gain gives: 

𝑙 = 1.3  ;

𝑙 = 1.5  ;
 = 2000; 
𝐽 = 3000;

𝐶 = 15      
𝑙 
 
;

𝐶 = 10      
𝑙 

 
;

stable for driver with k=+0.05

stable for 
driver with 

k=-0.05

    𝑖𝑡

 
Figure 4-52: Influence of driver on stability. Driver model used:   = 𝑘  (   𝑅𝑒 −   ) = −𝑘    . 
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4.5 Transient Driving 
This section addresses both transient handling and arbitrary transient driving, where the first is 
mainly lateral, while longitudinal dynamics is added in the latter. Generally, this can be turning and 
braking/accelerating at the same time through a manoeuvre.  

4.5.1 Transient Driving Manoeuvres * 
From the manoeuvres defined in this section, there are a large number of relevant function possible to 
define. Here, only a few is mentioned: 

Function definition: Double Lane Change Capability is the highest entry speed that a certain driver (or 
driver model) can manage without hitting any cones. A certain cone pattern (e.g. as Figure 4-53 or Figure 4-54) 
and a certain road friction has to be defined. A certain operation principle of pedals needs to be specified, e.g. re-
lease both pedals at entry or full brake pedal apply. 

Function definition: Over-speed into Curve Capability is the highest entry speed that a certain driver (or 
driver model) can manage without hitting any cones. A certain cone pattern e.g. as Figure 4-55) and a certain road 
friction has to be defined. A certain operation principle of pedals needs to be specified, e.g. release both pedals at 
entry or full brake pedal apply. 

Function definition: Steer-In and Release Accelerator Pedal stability is a measure (e.g. side slip rear 
axle peak) after a certain simultaneous steer-in and release of accelerator pedal, starting from a steady state corner-
ing at a certain path radius and speed. A certain road friction has to be defined. 

When testing Transient driving manoeuvres, the typical part of the test track is the Vehicle Dynamics 
Area or a Handling Track, see Figure 1-25. A Handling Track is a normal width road, intentionally 
curved and with safety areas beside the curves for safety in case of run-off road during tests. 

Typical transient tests are: 

• Step steer, where one can measure transient versions of  
o Yaw velocity response 
o Lateral acceleration response 
o Curvature response 
o Yaw damping 

• Lateral avoidance manoeuvres: 
o Single Lane Change SLC cone track 
o Double Lane Change DLC cone track, see Figure 4-20, Figure 4-53, and Figure 4-54 
o Lane change while full braking 
o Sine with dwell 
o Steering effort in evasive manoeuvres 

• Tests from steady state cornering 
o Brake or accelerate in curve 
o Lift accelerator pedal and steer-in while cornering 
o Over-speeding into curve, see Figure 4-55 

• Handling type tests 
o Slalom between cones 
o Handling track, general driving experience 

• Roll-over tests 
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Figure 4-53: Passenger cars - Test track for a severe lane-change manoeuvre - Part 1: Double lane-change. 
Reference (ISO 3888). 
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Figure 4-54: Passenger cars - Test track for a severe lane-change  
manoeuvre - Part 2: Obstacle avoidance. Reference (ISO 3888). 

There are many standards for DLC beside ISO, such as Consumer Union. Generally speaking, the DLCs 
with short distance in 2nd lane is often used for ESC-like tests.   

 
Figure 4-55: Cone track for one standardized test of Over-speeding into curve 

Standards which are relevant to these test manoeuvres are, e.g. References (ISO 3888), (ISO 7401), 
(ISO 7975, 2006), (ISO 11026), (ISO 14791), (ISO 14793), (ISO 14794, 2011) and (NHTSA). 



LATERAL DYNAMICS 

 228  

4.5.2 One-Track Models, without Lateral Load 
Transfer 

4.5.2.1 Two-Axle Vehicle 
This section starts from the model derived in 4.4.2 and Figure 4-42 and Equations [4.46] and [4.47]. 
However, in the context of transient dynamics it is more relevant to use the model for more violent 
manoeuvres, and also active control such as ESC interventions. Hence, we extend the model in three 
ways: 

• The constitutive relation is saturated, to reflect that each axle may reach friction limit, friction 
coefficient times normal load on the axle. See max functions in Equation [4.59]. 

• To be able to do mentioned limitation, the longitudinal load transfer is modelled, but only in 
the simplest possible way using stiff suspension models. Basically, it is the same model as given 
in Equation [3.13]. 

• A yaw moment representing (left/right) unsymmetrical braking/propulsion. See the term 
𝑀𝑎 𝑡   in yaw equilibrium in Equation [4.59]. This is much better modelled in a two-track 
model, where 𝑀𝑎 𝑡   does not appear, but we instead can have different longitudinal tyre forces 
on left and right side. 

It should be noted that the model lacks lateral load transfer and the transients in longitudinal load 
transfer and the reduced cornering stiffness and reduced max friction due to load transfer and utiliz-
ing friction for wheel longitudinal forces.  

Equilibrium in road plane (longitudinal, lateral, yaw): 

 ∙ (   −  ∙  𝑦)  =      ∙ cos(  ) −   𝑦 ∙ sin(  ) +    ; 

 ∙ (  𝑦 +  ∙   ) =      ∙ sin(  ) +   𝑦 ∙ cos(  ) +   𝑦; 

𝐽 ∙    = (    ∙ sin(  ) +   𝑦 ∙ cos(  )) ∙ 𝑙  −    𝑦 ∙ 𝑙 +𝑀𝑎 𝑡  ; 

Equilibrium out of road plane (vertical, pitch): 
   +    − ∙  = 0; 

−   ∙ 𝑙 +    ∙ 𝑙 − (    ∙ cos(  ) −   𝑦 ∙ sin(  ) +    ) ∙  = 0; 

Constitution: 
  𝑦 = −sign(𝑠 𝑦) ∙ min(𝐶 ∙ |𝑠 𝑦|;   ∙    ) ; 

  𝑦 = −sign(𝑠 𝑦) ∙ min(𝐶 ∙ |𝑠 𝑦|;   ∙    ) ; 

Compatibility, slip definitions: 

  𝑠 𝑦 =
  𝑦 

    
;     𝑛    𝑠 𝑦 =

 𝑦  − 𝑙 ∙   

  
; 

Compatibility, transformation from vehicle to wheel coordinate system: 
    = ( 𝑦 + 𝑙 ∙   ) ∙ sin(  ) +   ∙ cos(  ) ; 

  𝑦 = ( 𝑦 + 𝑙 ∙   ) ∙ cos(  ) −   ∙ sin(  ) ; 

[4.59] 

A Modelica model is given in Eq [4.60]. Changes compared to Eq [4.46] are marked as underlined code.  
//Equilibrium, in road plane: 

  m*(der(vx)-wz*vy) = Ffxv + Frx; 

  m*(der(vy)+wz*vx) = Ffyv + Fry; 

  J*der(wz) = Ffyv*lf - Fry*lr + Mactz; 

//Equilibrium, out of road plane: 

  Ffz + Frz - m*g = 0; 

  -Ffz*lf + Frz*lr -(Ffxv + Frx)*h = 0; 

//Compatibility: 

  vfxv = vx;    vfyv = vy + lf*wz; 

  vrx = vx;     vry = vy - lr*wz; 

//Lateral tyre force model: 

  Ffyw = -sign(sfy)*min(Cf*abs(sfy), mu*Ffz);   sfy = vfyw/vfxw; 

  Fry  = -sign(sry)*min(Cr*abs(sry), mu*Frz);   sry = vry/vrx; 

//Transformation between vehicle and wheel coordinate systems: 

  Ffxv = Ffxw*cos(df) - Ffyw*sin(df); 

[4.60] 
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  Ffyv = Ffxw*sin(df) + Ffyw*cos(df); 

  vfxv = vfxw*cos(df) - vfyw*sin(df); 

  vfyv = vfxw*sin(df) + vfyw*cos(df); 

//Shaft torques 

  Ffxw = +1000; // Front axle driven. 

  Frx  = -100; // Rolling resistance on rear axle. 

  Mactz=0; 

A simulation of this model is seen in Figure 4-56. Same steering input as used in Figure 4-43. 𝑀𝑎 𝑡   is 
zero. Cornering stiffnesses are chosen so that the vehicle is understeered in steady state. Road friction 
coefficient is 1. We can see that the vehicle now gets unstable and spins out with rear to the right. This 
is mainly because longitudinal load transfer unloads the rear axle, since the kept steer angle deceler-
ates the vehicle. In this manoeuvre, it would have been reasonable to model also that the rear corner-
ing stiffness decreases with the decreased rear normal load, and opposite on front. Such addition to 
the model would make the vehicle spin out even more. On the other hand, the longitudinal load shift is 
modelled to take place immediately. With a suspension model, this load shift would require some 
more time, which would calm down the spin-out. In conclusion, the manoeuvre is violent enough to 
trigger a spin-out, so a further elaboration with how to control 𝑀𝑎 𝑡   could be of interest. However, it 
is beyond the scope of this compendium. 

y
 
[
m
]

x[m]

time [s]

df=df [deg]

wz [deg/s]

x[m]

yz=pz [deg]

 
Figure 4-56: Simulation results of one-track model for transient dynamics. The vehicle drawn in the path 

plot is not in proper scale, but the orientation is approximately correct. 

The vehicle reaches zero speed already after 7 seconds, because the wide side slip decelerates the ve-
hicle a lot. The simulation is then stopped, because the model cannot handle zero speed. That vehicle 
models become singular at zero speed is very usual, since the slip definition becomes singular due to 
zero speed in the denominator. The large difference compared to Figure 4-43 is due to the new consti-
tutive equation used, which shows the importance of checking validity region for any model one uses. 

A simplified version of the mathematical model in Eq [4.59] follows in Eq [4.61]; assuming constant    
and small angles and small propulsion force and no 𝑀𝑎 𝑡  .  
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Equilibrium in road plane (lateral, yaw): 

 ∙ (  𝑦 +  ∙   ) =    𝑦 +   𝑦; 

𝐽 ∙    =   𝑦 ∙ 𝑙  −    𝑦 ∙ 𝑙 ; 

Equilibrium out of road plane (vertical, pitch): 
   +    − ∙  = 0; 

−   ∙ 𝑙 +    ∙ 𝑙 = 0; 

Constitution: 
  𝑦 = −sign(𝑠 𝑦) ∙ min(𝐶 ∙ |𝑠 𝑦|;   ∙    ) ; 

  𝑦 = −sign(𝑠 𝑦) ∙ min(𝐶 ∙ |𝑠 𝑦|;   ∙    ) ; 

Compatibility: 

   + 𝑠 𝑦 =
 𝑦 + 𝑙 ∙   

  
;     𝑛    𝑠 𝑦 =

 𝑦  −  𝑙 ∙   

  
; 

[4.61] 

4.5.2.2 Articulated Vehicles 
A model for an articulated vehicle will now be derived in the same spirit as in 4.4.2. The model can rep-
resent a car with trailer or rigid truck with centre-axle trailer or tractor with semitrailer (if 𝑙  <   ). 

df

𝑙    
  

 1𝑓  
 1𝑟  

     𝑦

    

𝐽      

𝑙  

 

      

part of free body 
diagram of trailer:
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diagram of trailer:

free body diagram 
of coupling:

  𝑦

   

  𝑦
   

    

   𝑦  

 1𝑟𝑥 

   

 𝑖 =   𝑖 −  𝑖   𝑖𝑦;

 𝑖𝑦 =   𝑖𝑦 +  𝑖   𝑖 ;

 
 
𝑦
    𝑣

 
 
 
𝑦
𝑣

 

 ⃗  𝛽2 
𝛽  
 

𝛽2 = arctan  2 𝑦  2 ⁄ ;

𝛽  = arctan    𝑦    ⁄

 
Figure 4-57: Model of two-unit articulated vehicle. 

Model equations for the 1st unit: 
Equilibrium of 1st unit (longitudinal, lateral, yaw around CoG): 
   (    −      𝑦) = cos(  )       − sin(  )     𝑦 +     +    ; 

   (   𝑦 +       ) = sin(  )       + cos(  )     𝑦 +    𝑦 +   𝑦; 

𝐽      = (sin(  )       + cos(  )     𝑦 )  𝑙    −    𝑦  (  − 𝑙    ) + 

                  +(−  𝑦)  (𝑙  − 𝑙    ); 

Constitution for axles on 1st unit: 
   𝑦 = −𝐶   𝑠  𝑦;         𝑦 = −𝐶   𝑠  𝑦;    

Compatibility, within 1st unit: 

𝑠  𝑦 =    𝑦 |     |⁄ ;     𝑠  𝑦 =    𝑦 |   |⁄ ;   

     = +cos(  )     + sin(  )     𝑦𝑣; 

   𝑦 = −sin(  )     + cos(  )     𝑦𝑣;  

[4.62] 
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   𝑦𝑣 =   𝑦 +    𝑙    ; 

   𝑦 =   𝑦 −    (  − 𝑙    ); 

   𝑦 =   𝑦 −    (𝑙  − 𝑙    );    ∎ 

Model equations for the 2nd unit: 

Equilibrium of 2nd unit (longitudinal, lateral, yaw around CoG): 
 2  (  2 − 2   2𝑦) =  2 +  2 ; 

 2  (  2𝑦 + 2   2 ) =  2𝑦 +  2𝑦; 

𝐽2    2 = − 2𝑦  𝑙2   +  2𝑦  (𝑙2 − 𝑙2   ); 

Constitution for axles on 2nd unit: 
 2𝑦 = −𝐶2  𝑠2𝑦;    

Compatibility, within 2nd unit: 
𝑠2𝑦 =  2𝑎𝑦 | 2 |⁄ ; 

 2𝑎𝑦 =  2𝑦 − 2  𝑙2   ; 

 2 𝑦 =  2𝑦 + 2  (𝑙2 − 𝑙2   );    ∎ 

 

[4.63] 

Model equations for the coupling:   

Equilibrium of coupling (x, y in 1st unit’s coordinates): 
   + cos(θ)   2 + sin(θ)   2𝑦 = 0; 

  𝑦 − sin(θ)   2 + cos(θ)   2𝑦 = 0; 

Compatibility of coupling: 
   = +cos(θ)   2 + sin(θ)   2 𝑦;    ∎ 

   𝑦 = −sin(θ)   2 + cos(θ)   2 𝑦;    ∎ 

θ =    −  2 ; 

[4.64] 

Let us assume 𝒖 = [  ;      ;     ;  2 ]
𝑇

 are known inputs. Eqs [4.62].. [4.64] is a DAE system in with 

24 equations and 24 unknowns:       𝑦       2   2𝑦  2  θ     𝑦     𝑦  2𝑦  𝑠  𝑦 𝑠  𝑦 𝑠2𝑦  

      𝑦  2   2𝑦          𝑦     𝑦𝑣     𝑦  2𝑎𝑦    𝑦  2 𝑦. The equations can be written as they are into 

a Modelica tool, which can find a possible state selection (such as       𝑦      2   ), an explicit form 

and perform simulations. The use of a Modelica tool is very motivated for articulated vehicles, since 
the articulation points makes the DAE system of equation to be of “high index”, meaning that the Mod-
elica tool identifies the constraints equations, i.e. the equations which have to be differentiated, cf. 
3.3.2. In this case, it is the equations marked with ∎ in Eqs [4.62]..[4.64]. 

4.5.2.2.1 Explicit Form Model without DAE Tool 

It will now be explained how the explicit form model can be found using manual equation manipula-
tions or simpler symbolic tools, unable to handle DAEs (e.g. Matlab Symbolic Toolbox). We have to dif-
ferentiate the equations marked with ∎ in Eqs [4.62]..[4.64]. It leads to: 

    𝑦 =    𝑦 −      (𝑙  − 𝑙    ); 

  2 𝑦 =   2𝑦 +   2  (𝑙2 − 𝑙2   ); 

    = (−sin(θ)  θ   2 + cos(θ)    2 ) + (cos(θ)  θ   2 𝑦 + sin(θ)    2 𝑦); 

    𝑦 = (−cos(θ)  θ   2 − sin(θ)    2 ) + (− sin(θ)  θ   2 𝑦 + cos(θ)    2 𝑦); 

So, we regard it as an ODE with 24+4=28 equations. States and inputs as above DAE. The states are re-
garded as known and we can count to 28 unknown variables:         𝑦         2  θ      𝑦   2 𝑦     2𝑦   2   

 2   2𝑦     𝑦      𝑦  2𝑦  𝑠  𝑦 𝑠  𝑦 𝑠2𝑦        𝑦  2   2𝑦           𝑦     𝑦𝑣    𝑦  2𝑎𝑦    𝑦   2 𝑦. The 

expressions for state derivatives         𝑦        2  θ  can be found through algebraic manipulations, but 

in this case the symbolic tools will generate huge expressions (hundreds of thousands of tokens) or 
even fail. Therefore, we will reformulate model and introduce approximations in 4.5.2.2.1.1. 

4.5.2.2.1.1 Reformulated Model with Approximations 
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We will derive a model without introducing the constraint forces       𝑦  2   2𝑦. We select intuitively 

the 5 states      𝑦      2    and find the equations to express their derivatives: 4 equilibria and 1 

compatibility relations which involves   . We also introduce approximations as for the two axle one-
track model in 4.4.2: small angles    𝛽𝑖𝑗  𝛼𝑖𝑗 = arctan( 𝑖𝑗𝑦 | 𝑖𝑗  |⁄ ), centrifugal acceleration perpen-

dicular to each unit ( 𝑖   𝑖 = 0) and steered axle lateral tyre force does not influence whole vehicle 
longitudinally (  𝑦 ∙   = 0). Some new, but conceptually same, approximations can be done espe-

cially for articulated vehicles: small articulation angle   and lateral tyre force on axles on 2nd unit does 
not influence whole vehicle longitudinally ( 2𝑦 ∙ θ = 0).  

Equilibrium of whole vehicle (longitudinal to 1st unit, lateral to 1st unit): 

0 =  −       +       cos(  ) −    𝑦  sin(  ) +      + ( 2 − 2   2 )  cos( )

+ ( 2𝑦 − 2   2𝑦)  sin( )

≈ −       +      − 0 +      + ( 2 − 2   2 ) + (0 − 2   2𝑦)   ; 

0 =  −     𝑦 +       sin(  ) +    𝑦  cos(  ) +    𝑦 − ( 2  −   2   2 )  sin( )

+ ( 2𝑦 − 2   2𝑦)  cos( )

≈  −     𝑦 +         +    𝑦 +    𝑦 − ( 2  −   2   2 )   

+ ( 2𝑦 − 2   2𝑦); 

  𝑒𝑟𝑒     =     −       𝑦 ≈     ;      2  =   2 − 2   2𝑦 ≈   2 ;   

                𝑦 =    𝑦 +        ;      2𝑦 =   2𝑦 + 2   2 ; 

Equilibrium of 1st unit (yaw around coupling): 

0 =  + (      sin(  ) +    𝑦  cos(  ))  𝑙   +    𝑦  (𝑙  −   ) −      𝑦  (𝑙  − 𝑙    ) − 𝐽      ≈ 

    ≈ +(        +    𝑦 )  𝑙   +    𝑦  (𝑙  −   ) −     𝑦  (𝑙  − 𝑙    ) − 𝐽      ; 

Equilibrium of 2nd unit (yaw around coupling): 

0 =  −  2𝑦  𝑙2    + 2   2𝑦  (𝑙2 − 𝑙2   ) − 𝐽2    2 ; 

Compatibility in coupling: 

   =      − 2 ; 

(Note: The same concept works for a vehicle with 𝑁 units: 2 translational equilibria for the whole vehi-
cle and 2 rotational equilibria (fore and aft part) per coupling point: 2 + 2  𝑁 equilibria.) 

Now, we realize that we have to find 2 compatibility relations that eliminate   2    2𝑦. These may not 

involve any new derivatives, only   2    2𝑦 and the state derivatives: 

Differentiated Compatibility (to eliminate   2    2𝑦): 

  2𝑥 =
 

 𝑡
(    cos( ) −    𝑦  sin( )) =

 

 𝑡
(    cos( ) − (  𝑦 −     (𝑙  − 𝑙    ))  sin( ))

= +     cos( ) −     sin( )    − (   𝑦 −     (𝑙  − 𝑙    ))  sin( )

− (  𝑦 −     (𝑙  − 𝑙    ))  cos( )    ≈

≈ +    −         − (   𝑦 −      (𝑙  − 𝑙    ))   − (  𝑦 −     (𝑙  − 𝑙    ))    ; 

  2𝑦 =
 

 𝑡
( 2 𝑦 −  2  (𝑙2 − 𝑙2   )) =

 

 𝑡
(   𝑦  cos( ) +     sin( ) −  2  (𝑙2 − 𝑙2   )) =

=
 

 𝑡
((  𝑦 −    (𝑙  − 𝑙    ))  cos( ) +     sin( ) −  2  (𝑙2 − 𝑙2   )) =

= (   𝑦 −      (𝑙  − 𝑙    ))  cos( ) − (  𝑦 −     (𝑙  − 𝑙    ))  sin( )    +     

 sin( ) +     cos( )    −   2  (𝑙2 − 𝑙2   ) ≈ 

     ≈ (   𝑦 −     (𝑙  − 𝑙    )) − (  𝑦 −    (𝑙  − 𝑙    ))      + 

         +      +       −   2  (𝑙2 − 𝑙2   ); 

Now the constitution can be involved:  

Constitution for axles (to eliminate lateral forces    𝑦     𝑦  2𝑦): 
   𝑦  =  − 𝐶   𝑠  𝑦 ; 
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   𝑦 =  − 𝐶   𝑠  𝑦 ; 

 2𝑦 =  − 𝐶2  𝑠2𝑦; 

We now eliminate the slips 𝑠  𝑦  𝑠  𝑦  𝑠2𝑦 and express them in state variables: 

Compatibility (to eliminate 𝑠 𝑦 ): 

arctan2(   𝑦𝑣  |   |) =   + arctan(𝑠  𝑦 ) ⇒ 𝑠  𝑦 ≈    𝑦𝑣 |   |⁄ −   ;  

   where    𝑦𝑣 =    𝑦 +    𝑙    ; 

Compatibility (to eliminate 𝑠  𝑦 ): 

𝑠  𝑦 =    𝑦 |   |⁄ ; 

   where    𝑦 =    𝑦 −    (  − 𝑙    ); 

Compatibility (to eliminate 𝑠2𝑦): 

𝑠2𝑦 =  2𝑎𝑦 | 2 |⁄ ; 
   where  2𝑎𝑦 =   2 𝑦 − 2  𝑙2 ; 

      where  2 𝑦 =    𝑦  cos( ) +     sin( ) ≈    𝑦 +      ; 

         where    𝑦 =   𝑦 −    (𝑙  − 𝑙    ); 

   and  2 = +    cos( ) −    𝑦  sin( ) ≈ +   −    𝑦   ; 

If we perform the eliminations we get 5 equations: 
𝒇𝑫𝑨𝑬(𝒙  𝒙 𝒖) = 𝟎;       𝑒𝑟𝑒 𝒙 = [ 1𝑥;  1 ;  1 ; 2 ;  ]    𝒖 = [ 𝑓;  1𝑓𝑥 ;  1𝑟𝑥;  2𝑥];  

Using the exact (grey text) expressions, this is exactly same model as in Eqs [4.62]..[4.64]. 

4.5.2.2.1.2 Explicit Form Model and Linear Explicit Form Model 

We can reformulate to explicit form: 𝒙 = 𝒇𝑶𝑫𝑬(𝒙 𝒖); but this is the same huge expression, mentioned 
above. Using the approximate (black text) expressions, the solution will be somewhat smaller, but 

still very large. However, we can linearize around an operation point (𝒙𝟎 𝒖𝟎): 
𝒙 ≈ 𝒇𝑶𝑫𝑬(𝒙𝟎 𝒖𝟎) + 𝑨(𝒙𝟎 𝒖𝟎)  (𝒙 − 𝒙𝟎) + 𝑩(𝒙𝟎 𝒖𝟎)  (𝒖 − 𝒖𝟎) =

= 𝒇𝟎 +𝑨𝟎  (𝒙 − 𝒙𝟎) + 𝑩𝟎  (𝒖 − 𝒖𝟎); 

The elements of the matrices 𝑨𝟎 𝑩𝟎 is: 𝐴0 𝑖𝑗 =
𝜕𝒇𝑶𝑫𝑬 𝒊

𝜕𝒙𝒋
|
𝒙𝟎 𝒖𝟎

;     𝑛    𝐵0 𝑖𝑗 =
𝜕𝒇𝑶𝑫𝑬 𝒊

𝜕𝒖𝒋
|
𝒙𝟎 𝒖𝟎

; 

As example of relevant operating condition to linearize around, we take straight-line without signifi-
cant longitudinal tyre forces: 𝒙𝟎 = [ 1𝑥0; 0; 0; 0; 0]

𝑇  𝒖𝟎 = [0; 0; 0; 0]𝑇 . Note that we do not assume 
constant speed, i.e. we do not set     = 0, but     is still a state variable. 
Then we get symbolic expressions of only 𝑨𝟎 𝑩𝟎 of around 15 thousand tokens, which is manageable, 
but not worth writing out in this compendium, except on this overviewing way: 

𝑨𝟎 =

[
 
 
 
 
0 0 0 0 0
0 0 ≠ 0 ≠ 0 ≠ 0
0 0 ≠ 0 ≠ 0 ≠ 0
0 0 ≠ 0 ≠ 0 ≠ 0
0 0 1 −1 0 ]

 
 
 
 

;    𝑩𝟎 =

[
 
 
 
 
0 ≠ 0 ≠ 0 ≠ 0
≠ 0 0 0 0
≠ 0 0 0 0
≠ 0 0 0 0
0 0 0 0 ]

 
 
 
 

; 

Now, we can simulate to compare the different models: 
• “Exact” (“Modular” Eqs [4.62]..[4.64], which is identical to the equations with black text above) 
• “Small Angles” (the equations above, with a mixture of black and grey text so that only using the 

small angle approximations, but not using the “zeros”) 
• “With All Physical Approximations, except linearized” (the equations with black text above) 
• “Linearized” (𝒙 = 𝑨𝟎  𝒙 + 𝑩𝟎  𝒖; as described above) 

A simulation with these 4 models is shown in Figure 4-58. 
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Figure 4-58: Tractor and semitrailer. Comparison of simulations with the 4 models (thick solid: ”Exact”, 

thick dotted: “Small Angles”, thin dashed: “All physical approximations”, thin solid: “Linearized”).  

A similar linearization is done for a longer combination vehicle (A-double, i.e. Tractor+Semi-
trailer+Fulltrailer) in https://research.chalmers.se/publication/192958. 

4.5.2.2.2 Model Library for Articulated Vehicles 

The first model (Eqs [4.62].. [4.64]) for articulated vehicle is written so that each equation belongs to 
either a unit or a coupling. This opens up for systematic treatment of combination vehicles with more 
than one articulation point. There are basically two conceptual ways: 

• Vectorised formulation, see Reference (Sundström, o.a., 2014). 
• Modular library from which parts can be graphically dragged, dropped and connected. This is 

briefly visualized as implemented in the Modelica-tool Dymola in Figure 4-59. 

4.5.2.2.2.1 Modular Library 

A modular library is shown in Figure 4-59. Eq [4.62] is declared in “Unit” and Eq [4.64] in “Coupling”. 

https://research.chalmers.se/publication/192958
https://research.chalmers.se/publication/192958
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drag and drop

connect

 
Figure 4-59: Drag, drop and connect library for heavy combination vehicles. The model  

example shows a so-called A-double, Tractor+SemiTrailer+Dolly+SemiTrailer. 

An example of lane change manoeuvre, defined as lateral acceleration on 1st axle follows a single sine-
wave, is shown in Figure 4-60. The natural input is prescribed steer angle (  = sin(𝑡  𝑒);), but since 

modelled in Modelica, it is as easy to prescribe something else, e.g. lateral acceleration on first axle 
(   𝑦 = sin(𝑡  𝑒);). 

 
Figure 4-60: One period sinus test of a Tractor+SemiTrailer. 

4.5.2.3 Cambering Vehicle Model 
The model below shows how a cambering vehicle can be modelled. The model is mainly made for lat-
eral dynamics, but it allows also longitudinal acceleration. The drawing shows a two-wheeler, but any 
or both of the axles could have two wheels, as long as the suspension linkage is such that the axle does 
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not take any roll moment. The model is shown in Eq [4.65] in Modelica format. It is not modelled that 
driver moves within the vehicle, which is why the inertial data is constant. Also, the chassis (frame) is 
modelled as stiff and steering system as massless. The model lacks two equations, which is logical 
since a driver model can add prescribed steer angle and prescribed    . 

𝐽     

   𝑦
    

   

    

  =    −     𝑦;

 𝑦 =   𝑦 +      ;

  =    ;

 

  

   𝑦

𝐽     

    

   

  𝑦

  
𝑦
𝑣

−   𝑣

 

  𝑦  𝑦𝑣

   

   

      

   

view from above

view from side view from rear

𝑙 𝑙 
   

−   𝑣

 
Figure 4-61: Model of cambering vehicle. (The stars marks point of moment equilibria in the “mathematical 

model” derived from this “physical model”.) 

//Equilibrium in road plane (x,y,rotz): 

  m*ax = Ffxv + Frx; 

  m*ay = Ffyv + Fry; 

  Jz*der(wz) = Ffyv*lf - Fry*lr - m*ax*h*px; 

  ax = der(vx) - wz*vy; 

  ay = der(vy) + wz*vx; 

//Equilibrium out of road plane (z, rotx, roty): 

  m*g = Ffz + Frz; 

  Jx*der(wx) = m*g*h*px + m*ay*h; 

  0 = -Ffz*lf + Frz*lr - m*ax*h; 

  wx = der(px); 

//Constitution: 

  Ffyw = -CC*Ffz*sfy;   Fry = -CC*Frz*sry; 

//Compatibility, slip definition: 

  atan(sfy) = atan2(vy + lf*wz + h*wx, vx - h*px*wz) - d; 

  atan(sry) = atan2(vy - lr*wz + h*wx, vx - h*px*wz) - 0; 

//Force coordinate transformation: 

  Ffxv = -Ffyw*sin(d); 

  Ffyv = +Ffyw*cos(d); 

[4.65] 

When entering a constant radius curve from straight driving one has to first steer out of the curve to 
tilt the vehicle a suitable amount for the coming path curvature,  𝑝. The suitable amount is hence 

     𝑖𝑡𝑎 𝑙𝑒 = − 𝑦  ⁄ = −      ⁄ = −  
2 ( 𝑝   )⁄ ;. Then one steers with the turn and balances 

(closed loop controls) to the desired roll angle. Systems like this, which has to be operated in opposite 
direction initially is called “Non-minimum phase systems”. It is generally difficult to design a controller 
for such systems. The two simulations shown in Figure 4-75 are done with the above model. Initial 
speed is   = 10   𝑠 and    = 0. Path radius,  𝑝(𝑡) = 𝑠𝑡𝑒𝑝 𝑓𝑢𝑛 𝑡 𝑜𝑛  𝑡 𝑡 = 0.1, representing a sud-

denly curving road or path.  

• One simulation (veh_driver) uses a closed loop driver model which first steers outwards 

( < 0) and then continuously calculates the steer angle as a closed loop controller:  = 𝐺  𝑛  

(    𝑒 −   );. It is not claimed that the driver model is representative for real drivers. 
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• In the other simulation (veh_inverse), the roll angle is prescribed as   = −  
2 ( 𝑝   )⁄ ;. 

To prescribe the roll angle, instead of steer angle, is a way to avoid the “Non-minimum phase” 
difficulties. The system becomes a normal Minimum phase system if actuated with roll angle 
instead of steer angle. A price one has to pay for this is that the model equations has to go 
through a more advanced symbolic manipulation, e.g. differentiation, to solve for all variables, 
including the steer angle  . However, with a Modelica tool the symbolic manipulation is done 
automatically. One can see this as a way to avoid a controller design and instead use an optimal 
driver; optimal in the sense that it follows the path curvature with optimal yaw agility. The 
road path curvature is a step function but has to be filtered twice (time constant 0.1 s is used in 
Figure 4-75) to become differentiable.  

The latter, optimal driver, negotiates the turn without overshot in yaw velocity, so it follows a sud-
denly curving path better.  
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Figure 4-62: Simulations of entering a curve with a cambering vehicle. Blue solid curves without dot-marker 

show a closed-loop driver model which actuates  . Red curves with dot-marker shows an optimal/inverse 
driver model which actuates   . 

Both driver models above only exemplify the low-level, roll-balancing, part of a driver. To run the 
model in an environment with obstacles, one would also need a high-level, path selecting, part which 
outputs desired, e.g.,   or   . Additional driver model for longitudinal actuation is also needed. 

It can be noted that the roll influences in two ways, compared to the non-cambering (roll-stiff) vehicles 
previously modelled in the compendium: 

• The roll motion itself is a dynamic motion, where the roll velocity becomes a state variable car-
rying kinetic energy. 

• The roll influences the tyre slip, e.g. rear: 𝑠 𝑦 = ( 𝑦 − 𝑙    +     ) (  −        );⁄ . The 

term      can generally be neglected for non-cambering vehicles, but for a cambering vehicle, 
such as a bike, it is essential. The term         is only important at large roll angles, it is for 
instance used as lever for longitudinal wheel forces in ESC-like control systems for motorbikes. 

4.5.3 Two-Track Models, with Lateral Load Transfer 
The models in this section model both transients longitudinal load transfer (as in 3.4.5.2) and transient 
lateral load transfer (extension from 4.3.9.3, with transients and wheel-individual suspension).  

4.5.3.1 Example of Explicit Form Model; Two-Axle Vehicle, 
Driver and Environment 

The implementation of the model in 4.5.2.3 was done in Modelica. A Modelica tool automatically trans-
forms the model to explicit form which can be simulated, which is very efficient. But, as mentioned in 
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1.5.4.10, explicit form models can sometimes facilitate the understanding of the vehicle’s dynamics. 
This is why the following model is presented. It is implemented in the data flow diagram tool Simulink. 
This section explains how the states (or state variables) together with inputs (or input variables), in-
fluence the derivatives (or state derivatives). 

The example model in this section is similar, but not identical, to the model in 4.5.2.3. The aim is to 
model in-road-plane motion, due to transient actuation (wheel torques and wheel steer angles). Limi-
tations in this example model are: 

• Influence from vertically uneven road is NOT modelled.  
• Neither wheel lift nor suspension bump stop are modelled 
• Control functions (such as ABS, TC and ESC) are NOT modelled 
• The pendulum effect is NOT modelled, see 4.3.9.2 
• Wheel camber and steer angle change with suspension travel is NOT modelled. 

The model is a typical passenger vehicle, with driver and environment, see Figure 4-63. The driver in-
terface is the normal, 2 pedals, 1 steering wheel and a boolean request for direction of propulsion, 
LongDir (=-1 or +1). The interface to environment is motion (variable position) in surrounding 

world. To try out the vehicle model, driver and environment is also modelled. This includes also the 
interface between them, which is motion of obstacles in environment, relative to subject vehicle. The 
suspension is exemplified with wheel-individual suspension on both axles. 

Driver VehicleEnvironment

 
Figure 4-63: Top level of model with model tree structure. The Environment is a track test with cone walls to 

go left and right around. Notation “irp” and “oorp” refers to in-road-plane and out-of-road-plane, 
respectively. 

As an initial overview, the states are presented. There are 21 states in total, and distributed: 

• Driver: 0 states 
• Vehicle: 

o Vehicle Control & Actuation: 0 states 
o Wheels, Tyres & Suspension: 12 states (4 wheels’ rotational speed, 4 Elastic parts of 

vertical wheel forces, 4 Longitudinal tyre forces, 4 Lateral tyre forces) 
o Vehicle Motion: 9 states (6 velocities and 3 positions) 

• Environment: 0 states 

The 4+4 tyre force states arise from modelled tyre relaxation, see 2.2.5.4. 

4.5.3.1.1 Submodel Environment 

Generally, the environment model is where the surrounding to the driver and the vehicle should be 
defined: road/road network, obstacles, other road users and the “driving task”/”driving instructions”. 
In this example, it is very small and simple; it only captures stand-still point obstacles, each with in-
structions whether to be passed as obstacle left or right of the vehicle. Inputs to environment model is 
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the (subject) vehicles position, including orientation in global coordinates. Outputs are the relative po-
sition (𝑥  ) to each obstacle, in (subject) vehicle coordinate system. 

4.5.3.1.2 Submodel Driver  

In this example, the driver model is very small and simple. Briefly described, it treats the longitudinal 
dynamics very simple, as closed loop control towards a constant desired speed forward. The lateral 
dynamics is divided into two parts: 

• Driver planning: Based on how driver perceives the obstacles relative to the vehicle, one of the 
objects is selected to mind for, which leads to where to be aim. Basically, the nearest obstacle 
ahead of vehicle is selected as mind for and aim is, in principle, either half a vehicle width left 
(or right) of this obstacle. 

• Driver operation: Based on the driver’s motorics, the steering wheel angle is calculated. In the 
example, it is simply an inverse model of an ideally tracking two-axle vehicle which calculates 
which constant steering wheel angle that would be needed to make front axle run over the aim 
obstacle. 

It can be noted that a Driver model would also be a logical model part where to include calculation of 
driver’s perception, such as steering effort and perceived safety during manoeuvre, etc. It can also be 
noted that the border between Environment and Driver is sometimes not obvious, especially when it 
comes to modelling the “driving task” in the Environment model, which can also be seen as a “driver 
high-level decision” and then be a logical part of the Driver model. If Environment model includes sur-
rounding vehicles (object vehicles), it also includes driver models for those. For automatic functional-
ity, anything from cruise control to automated driving, there should also be a “button HMI output” 
from Driver model, not only pedals and steering wheel. Such interface would turn on/off such func-
tionality in the Vehicle model. 

4.5.3.1.3 Submodel Vehicle 

12 states
9 states

 
Figure 4-64: Vehicle submodel. 

The figure shows the decomposition of the vehicle into 3 parts: 

• Submodel “Vehicle Control & Actuation” models the actuators (Propulsion system, Brake 
system and Steering system, including “control functions”) that respond on requests from the 
driver with wheel torques (T_s and T_us) and wheel steer angles (delta_w). The notation 
ending “4” refers to that the quantities are vectors with 4 components, one per wheel. T_s is 
shaft torque and T_us is torque applied from unsprung parts, e.g. friction brake torque from 
brake calliper. One can think of very advanced models of these actuator systems, including e.g. 
propulsion system dynamics and control functions (ABS, ESC, TC, …). However, in this example 
model it is only modelled very simple: 

o Propulsion system outputs a fraction (determined by APed) of a certain maximum 
power, distributed equally on front left and front right wheel. If brake pedal is applied, 
the propulsion system outputs zero torque. 
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o Brake system outputs a fraction (determined by BPed) of a maximum brake torque (  

      ), distributed in a certain fix fraction between front and rear axle (70/30). The 
distribution within each axle is equal on left and right wheel. 

o There are no states modelled in the vehicle Control & Actuator submodel. 
• Submodel “Wheels, Tyre & Suspension” models the part which pushes the tyres towards the 

ground and consequently transforms the wheel torques and wheel steer angles, via the tyre, to 
forces on the whole vehicle. F_xyv8 is the x and y forces in each of the 4 wheels, 2x4=8. F_z4 
is the 4 vertical forces under each wheel. Submodel “Wheels, Tyre & Suspension” is further 
explained in 4.5.3.1.5. 

• Submodel “Vehicle Motion” models motion of whole vehicle in-road-plane and motion of 
sprung body out-of-road-plane. The inertial effects (mass∙acceleration) of the unsprung parts 
are considered for in-road-plane but not for out-of-road-plane. This submodel includes inte-
grators for the 3+3+3=9 states: 

o Velocities in-road-plane,     𝑦   : v_irp3 (which is transformed to x- and y-veloci-

ties of each wheel and then fed back as v_irpv8) 
o Position in-road-plane, 𝑥     : pos_irp3 (which is only fed forward to “Environ-

ment”) 
o Velocities out-of-road-plane,        𝑦: v_oorp3 (which is transformed to z-velocities 

of sprung body over each wheel and then fed back as v_z4) 

4.5.3.1.4 Submodel Vehicle Control and Actuators 

 
Figure 4-65: Vehicle Control & Actuators sub-model. 

The example content of this sub-model is very minimalistic but can still be explained as two parts: 

• Interpret pedals (including arbitrate between accelerator and brake pedal) to a sum over 
wheels longitudinal force request (    𝑒 ) and steering wheel angle to a front road wheel angle 

request (    𝑒 ). 

• Coordinate and actuate propulsion and brake, i.e. allocate     𝑒  to 4 wheels’ propulsion tor-

ques and brake torques. Also allocate     𝑒  to each of left and right front wheels. 

Vehicle variables used for the control are wheel rotational speeds. Since front axle propulsion is as-
sumed, the front rotational speeds are also input to the propulsion actuator modelling. No state varia-
bles are present in this minimalistic example, but in a more advanced actuation model there could typ-
ically be states such as: engine speed, gear (discrete state), delay states for brake system and elastic 
forces in steering system. 

4.5.3.1.5 Submodel Wheels, Tyres and Suspension 

This submodel is shown in Figure 4-66. 
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• The 2 sub-models “Coord Transf to Vehicle” and “Coord Transf to Wheels” are straight-for-
ward coordinate transformations, see Eq [1.1]. 

• The sub-model “Wheels” is also relatively straight-forward. For each wheel, the rotational equi-
librium is used as model: 𝐽 ∙   = 𝑇  + 𝑇 −   ∙   − sign( ) ∙   𝐶 ∙   ∙   ; where    is wheel 
radius and   𝐶 is rolling resistance coeeficient. The submodel will hence contain the 4 states: 
Rotational speeds of each wheel: w_w4. 

• The sub-model “Springs, Dampers & Linkage” models the springs (incl. anti-roll-bars) and 
dampers and the linkage. For each wheel: 
o Four states: Elastic part of vertical tyre force under each wheel: F_s4 
o The derivatives are governed by the differentiated constitution of the springs: Conceptually 

   = −    ; but involving both wheel spring and anti-roll-bar. 
o The force in damper is governed by the damper’s constitutive relation:   = −    ; 
o The contact forces    are calculated in submodel “Suspension Equilibrium” in Figure 4-67. 

They are calculated from moment equilibrium of unsprung parts around a 3-dimensional 
pivot axis. The pivot axis is defined by two points, the pivot point in longitudinal load trans-
fer (see Figure 3-27) and the pivot point in longitudinal load transfer (see Figure 4-33). The 
scalar equilibrium equation for one wheel can be expressed, with vector (cross) and scalar 
(dot) products, in   𝑣   𝑦𝑣        𝑇     and point coordinates. From this,    can be solved. It 

should be noted that the general relation should use a screw joint along the pivot axis, see 
https://en.wikipedia.org/wiki/Screw_theory, which is why the 𝑙𝑒   of the screw appears in 
equations. 

marks one scalar state

 
Figure 4-66: Wheels, Tyres & Suspension sub-model. 

• The sub-model “Tyres” models the tyre mechanics, very much like the combined slip model in 
Equation [2.47] and the relaxation model in Eq [2.51]. For each wheel: 
o Four states: Magnitudes of tyre forces in ground plane (  𝑦) for each wheel: F_xyw4 

o Unfortunately, the tyre forces    and  𝑦 depend on   . This could easily create algebraic 

loops. However, since we also model relaxation, the tyre forces become state variables 
which breaks such algebraic loops. Another way of getting rid of the algebraic loops could 
have been to use “memory blocks”. “Memories” are such that value from last time instant is 
used to calculate derivatives in present time instant. This is generally NOT a recommended 
way of modelling. 

https://en.wikipedia.org/wiki/Screw_theory


LATERAL DYNAMICS 

 242  

There is one rotational equilibrium around pivot axis for the un-
sprung part for each wheel  (× means cross product, • means 
scalar product):

𝑀𝑝𝑖𝑣 𝑡 =
−𝑙𝑒  

2  𝜋
   𝑣  𝑦𝑣   −    • 𝑢𝑝𝑖𝑣 𝑡;

where 𝑀𝑝𝑖𝑣 𝑡 =
𝑟𝑙𝑒𝑣𝑒 ×   𝑣  𝑦𝑣   −    +

+𝑇  − sin  cos  0
• 𝑢𝑝𝑖𝑣 𝑡;

where  𝑟𝑙𝑒𝑣𝑒 = 𝑟𝑙  𝑟𝑙 𝑦 𝑟𝑙  ;   
and  𝑢𝑝𝑖𝑣 𝑡 = 1 𝑟𝑝𝑖𝑣 𝑡⁄  𝑟𝑝𝑖𝑣 𝑡; 𝑟𝑝𝑖𝑣 𝑡 = 𝑟𝑝  𝑟𝑝 𝑦 𝑟𝑝  ;

If a linkage without screw effect on pivot axis, the 𝑙𝑒  is zero.

𝑢 ℎ𝑎 𝑡 =
= −sin   cos   0 ;

  𝑣

𝑇 

 𝑦𝑣

  −    =   −   +   

shaft 
axis

 
Figure 4-67: Sub-model “Springs, Dampers & Linkage”. 

 
Figure 4-68: Sub-model “Tyres”. 

4.5.3.1.6 Sub-model Vehicle Motion 

The sub-model is shown in Figure 4-69. It is divided in upper part in-road-plane (irp) and lower part 
out-of-road-plane (oorp). The velocities in road plane (v_irp3= [    𝑦   ]) is needed also in Sprung 

body OORP because of the centripetal term,  𝑦      identified in 3.3.5.1 and used in 3.4.8.1.  
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• state

 
Figure 4-69: Vehicle Motion. 

4.5.3.1.7 Simulation Example Double Lane Change 

A double lane change between cones is used as simulation example, see Figure 4-70. The cones are run 
over and even passed on the wrong side because the driver model is very simple.  

150 160 170 180 190 200 210 220
-30

-20

-10

0

10

20

30

186 187 188 189 190 191

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

cone
cone

cone

tyre force in ground plane
(vertical tyre force is radius 
of circle)

wheel hub translational 
velocity

 
Figure 4-70: Simulation results of a double lane change between cones. 

4.5.3.2 Additional Phenomena 
It is relevant to point out the following, which are not modelled in this compendium: 

• Same as pointed out as missing for longitudinal load transfer, see 3.4.5.2.3. 
• Additionally, anti-roll arrangements (elastic connections between left and right wheel on one 

axle, often built as torsion bar) are not modelled in this compendium. With same modelling 
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concept as used above, each such would be treated as a separate spring with one state variable, 
e.g.  𝑎  (Force-antiroll-front). This force will act in parallel with     and     on each side. Note 

that it will be added on one side and subtracted on the other. 

4.5.3.3 Transient Roll-Over * 
Function definition: Transient roll-over resistance is the most severe measure of a certain transient ma-
noeuvre that the vehicle can manage without lifting all wheels on inner side. The manoeuvre is typically on level 
ground with high road friction and certain payload, loaded high. 

The manoeuvre can typically be a double lane change, since the double triggers roll oscillations. The 
severity measure of the manoeuvre can be the peak lateral acceleration, or a lane change width or lon-
gitudinal speed for given lane width. 

If applying the function on articulated vehicles, it is often relevant to define the threshold as lifting all 
inner wheels on a roll-stiff unit. Two units connected by a fifth wheel constitutes one roll-stiff unit, 
since the fifth wheel is conceptually roll rigid. 

The function is not relevant for cambering vehicles. These could rather roll-over inward in curve, trig-
gered by tyre loses lateral grip, which would be a completely different situation. 

4.5.4 Step Steering Response * 
Function definition: Step steering response is the response to a step in steering wheel angle measured in cer-
tain vehicle measures. The step is made from a certain steady state cornering condition to a certain steering wheel 
angle. The response can be the time history or certain measures on the time history, such as delay time and over-
shoot. 

4.5.4.1 Mild Step Steering Response 
This section is to be compared with 4.5.4.2, which uses a more advanced model. In present section a less 
advanced model will be used, which is enough for small steering steps. 

The model used for single frequency stationary oscillating steering can also be used for other pur-
poses, as long as limited lateral accelerations. Most common interpretation is to make the steering step 
from an initial straight-line driving. In reality, the step will be a quick ramp. Equation [4.50] allows an 
explicit solution prediction of stationary oscillating steering, but also for step response: 

Start from Equation [4.50]: [
  𝑦
   
] = 𝐀 ∙ [

 𝑦
  
] + 𝐁 ∙   ; 

With initial conditions: [
 𝑦(0)

  (0)
] = [

 𝑦0
  0

] ; or [
 𝑦0
  0

] = −𝐀− ∙ 𝐁 ∙   0; where   0 is before step. 

Assume: [
 𝑦
  
] = [

 𝑦∞
  ∞

] + [[
 ̂𝑦 
 ̂  

] [
 ̂𝑦2
 ̂ 2

]] ∙ [𝑒
𝜆1∙𝑡 0
0 𝑒𝜆2∙𝑡

] ∙ [
  
 2
] ;    ⇒ 

⇒   [
  𝑦
   
] = [[

 ̂𝑦 
 ̂  

] [
 ̂𝑦2
 ̂ 2

]] ∙ [
𝜆 ∙ 𝑒

𝜆1∙𝑡 0

0 𝜆2 ∙ 𝑒
𝜆2∙𝑡

] ∙ [
  
 2
] ; 

Insert: [[
 ̂𝑦 
 ̂  

] [
 ̂𝑦2
 ̂ 2

]] ∙ [
𝜆 ∙ 𝑒

𝜆1∙𝑡 0

0 𝜆2 ∙ 𝑒
𝜆2∙𝑡

] ∙ [
  
 2
] = 

= 𝐀 ∙ ([
 𝑦∞
  ∞

] + [[
 ̂𝑦 
 ̂  

] [
 ̂𝑦2
 ̂ 2

]] ∙ [𝑒
𝜆1∙𝑡 0
0 𝑒𝜆2∙𝑡

] ∙ [
  
 2
]) + 𝐁 ∙   ; 

Solve for each time function term (constant, 𝑒𝜆1∙𝑡 and 𝑒𝜆2∙𝑡 terms):  

[
 𝑦∞
  ∞

] = −𝐀− ∙ 𝐁 ∙   ;    𝑛   [[[
 ̂𝑦 
 ̂  

] [
 ̂𝑦2
 ̂ 2

]]  [
𝜆 0
0 𝜆2

]] = eig(𝐀) ; 

The function ”eig” is identical to function ”eig” in Matlab. It is defined as eigenvalues and eigenvectors 
for the matrix input argument. 
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Initial conditions: [
 𝑦0
  0

] = [
 𝑦∞
  ∞

] + [[
 ̂𝑦 
 ̂  

] [
 ̂𝑦2
 ̂ 2

]] ∙ [
  
 2
] ;  ⇒ 

⇒ [
  
 2
] = [[

 ̂𝑦 
 ̂  

] [
 ̂𝑦2
 ̂ 2

]]
− 

∙ ([
 𝑦0
  0

] − [
 𝑦∞
  ∞

]) ; 

The solution in summary: 

{
[
 𝑦
  
] = [

 𝑦∞
  ∞

] + [[
 ̂𝑦 
 ̂  

] [
 ̂𝑦2
 ̂ 2

]] ∙ [𝑒
𝜆1∙𝑡 0
0 𝑒𝜆2∙𝑡

] ∙ [
  
 2
] ;

 𝑦 =   𝑦 +   ∙   = 𝜆 ∙  ̂𝑦 ∙ 𝑒
𝜆1∙𝑡 ∙   + 𝜆2 ∙  ̂𝑦2 ∙ 𝑒

𝜆2∙𝑡 ∙  2 +   ∙   ;

 

where: [
 𝑦∞
  ∞

] = −𝑨− ∙ 𝑩 ∙   ;   and   [[[
 ̂𝑦 
 ̂  

] [
 ̂𝑦2
 ̂ 2

]]  [
𝜆 0
0 𝜆2

]] = eig(𝑨) ; 

and [
  
 2
] = [[

 ̂𝑦 
 ̂  

] [
 ̂𝑦2
 ̂ 2

]]
− 

∙ ([
 𝑦0
  0

] − [
 𝑦∞
  ∞

]) ; 

[4.66] 

Another way to express or compute this is the “exponential matrix exponential”, mentioned in 
1.5.1.1.5. 

Results from this model for step steer to +3 deg are shown in Figure 4-71. Left diagram shows step 
steer from straight line driving, while right diagram shows a step from steady state cornering with -3 
deg steer angle. It can be noted that, if the steering step is sized so that same steady state path radius, 
i.e. same steady state yaw velocity, the understeered vehicle will require larger steering step, but it 
will respond quicker in yaw velocity and lateral acceleration. 

 
Figure 4-71: Steering step response. Simulation with model from Equation [4.66]. 

4.5.4.2 Violent Step Steering Response 
This section is to be compared with 4.5.4.1 Mild Step Steering Response, which uses a model with lin-
ear tyre models without saturation. In present section, a more advanced model will be used, which 
might be needed when the step steering is more violent. 

Most common interpretation is to make the steering step from an initial straight-line driving. In real-
ity, the step will be a quick ramp. In simulations, an ideal step can be used. 

The transients can easily be that violent that a model as Equations Error! Reference source not f
ound...Error! Reference source not found. is needed. If ESC is to be simulated, even more detailed 
models are needed (full two-track models, which are not presented in this compendium). Anyway, if 
we apply a step steer to the model in Equations Error! Reference source not found...Error! Refer-
ence source not found., we can simulate as in Figure 4-72.  
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Figure 4-72: Step steer with 2  𝑒  on road wheels at   = 100 km/h. Simulation using model from Eq 
Error! Reference source not found...Error! Reference source not found.. 

4.5.4.3 Steering Effort at High Speed * 
Function definition: Steering effort at high speed is the steering wheel torque (or subjectively assessed effort) 
needed to perform a certain avoidance manoeuvre at high road friction. 

At higher vehicle speeds, the steering effort is normally less of a problem since unless really high steer-
ing wheel rate. Hence, steering wheel torque in avoidance manoeuvres in e.g. 70 km/h can be a rele-
vant requirement. In these situations, the subjective assessment of steering effort can also be the 
measure. Then, steering effort is probably assessed based on both steering wheel rate and steering 
wheel torque.  

4.5.5 Phase Portrait 
The transient from one steady state to another is seen after the steps in Figure 4-71 and Figure 4-72. 
Plotting several such transients as trajectories in a 𝛽   -diagram gives a phase portrait, which is a 
graphical representation of how a vehicle stabilize itself or gets unstable. For transients that stays 
within unsaturated tyre slip, the linear one-track model can be used, and the trajectories can then be 
explicit time expressions using Eq[4.66]. This is exemplified in left part of Figure 4-73. Some states can 
be confirmed stable already from this simple model. Simulations with higher fidelity model is exempli-
fied in right part of Figure 4-73. With that one can confirm some more stable areas. 

4.5.6 Long Heavy Combination Vehicles High 
Speed Functions 

It is sometimes irrelevant to apply functions/measures from two axle vehicles on combinations of 
units. This can be the case for passenger cars with a trailer, but it is even more obvious for long combi-
nations of heavy vehicles. Some typical measures for multi-unit combination vehicle are given in this 
section. 

4.5.6.1 Rearward Amplification, RA * 
Function definition: Rearward Amplification for long heavy combination vehicles is the ratio of 
the maximum value of the motion variable of interest (e.g. yaw velocity or lateral acceleration of the centre of grav-
ity) of the worst excited following vehicle unit to that of the first vehicle unit during a specified manoeuvre at a cer-
tain friction level and constant speed. From Reference [ (Kati, 2013)]. 

Figure 4-74 illustrates Rearward Amplification, RWA. RWA is defined for a special manoeuvre, e.g. a 
certain lane change or step steer. RWA is the ratio of the peak value of yaw velocity or lateral accelera-
tion for the rearmost unit to that of the lead unit. This performance measure indicates the increased 



LATERAL DYNAMICS 

247 

risk for a swing out or rollover of the last unit compared to what the driver is experiencing in the lead 
unit. 

model valid w.r.t.   𝑦 <      ;

model valid w.r.t.   𝑦 <      ;
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Figure 4-73: Phase portrait for constant    and constant steer angle   . Bottom: Using simple model in Eq 

[4.50]. Only black solid trajectories credible, since they are completely within model validity. Upper: Using a 
model with larger validity. From Mats Jonasson, VCC. 

4.5.6.2 High Speed Transient Off-tracking, HSTO * 
Function definition: High speed transient off-tracking for long heavy combination vehicles is 
the overshoot in the lateral distance between the paths of the centre of the front axle and the centre of the most se-
verely off-tracking axle of any unit in a specified manoeuvre at a certain friction level and a certain constant longi-
tudinal speed. From Reference [ (Kati, 2013)]. 

Figure 4-36 illustrates a manoeuvre where this Off-tracking can be defined. Off-tracking can be either 
determined in a steady state turn or in a transient manoeuvre such as lane change. The steady state 
version is described in 4.3.10.2. 
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Figure 4-74: Rearward amplification, P is peak value of motion variable of interest. From (Kharrazi , 2012). 

An alternative definition of RA is via the frequency response:  𝐴 = |𝐻𝛿 →   𝐻𝛿 →  𝑙𝑎 𝑡⁄ |. 

4.5.6.3 Yaw Damping, YD * 
Function definition: Yaw Damping for long heavy combination vehicles is the ratio of decay of the least damped 
articulation joint’s angle of the combination vehicle during free oscillations excited by actuating the steering wheel in 
a certain transient way, e.g. a step or single sine wave at a certain friction level. From Reference [ (Kati, 2013)]. 

Figure 4-75 illustrates Yaw Damping. It is the ratio of two subsequent peaks,  𝐷 = | ̂𝑖 𝑗  ̂𝑖 𝑗+ ⁄ |; where 

 =ordinal of coupling and 𝑗=ordinal of “half period” after steering disturbance has ended. Assuming 
linear model, it should not matter which two half periods one uses and, then it can give less sensitive 

definition to use several peaks, e.g.  𝐷 = | ̂𝑖 𝑗  ̂𝑖 𝑗+ ⁄ | 5;. Sometimes other qualtities than articulation 

angle in coupling points, such as yaw velocity of units, can be used. 

 𝐷  

 𝐷 2

 
Figure 4-75: Yaw damping,  𝐷𝑖  denotes damping ratio of the articulation joint. From (Kharrazi , 2012). 

4.5.6.4 Zero-Damping Speed * 
Function definition: Zero-damping speed for long heavy combination vehicles is the longitudinal speed at which a 
yaw disturbance leads to undamped response. 

The measure can be calculated from a linear model as the longitudinal speed when the damping coeffi-
cient, for any mode involving yaw velocity, equals zero. If the measure is applied on a two-axle vehicle 
it is same as critical speed. 

4.6 Lateral Control Functions 
Some control functions involving lateral vehicle dynamics will be presented briefly. There are more, 
but the following are among the most well-established ones. But initially, some general aspects of lat-
eral control are given. 
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4.6.1 Lateral Control 
Sensors available in production vehicles and used for lateral control are, generally those mentioned as 
available for Longitudinal Control, see 3.5 plus some more: 

Steering wheel sensors gives at least steering wheel angle, if the vehicle is equipped with ESC (which is 
a legal requirement on many markets). Additionally, if the steering assistance is electrical, the steering 
wheel torque can be sensed. 

High specification modern vehicles also have environment sensors (camera, radar, etc) that can give 
laterally interesting information, such as: Subject vehicle lateral position versus lane markers ahead 
and other vehicles to the side or rear of subject vehicle. 

As general considerations for actuators, one can mention that interventions with friction brake nor-
mally have to have thresholds, because interventions are noticed by driver and also generate energy 
loss. Interventions with steering are less sensitive and can be designed without thresholds. 

4.6.2 Lateral Control Functions 
4.6.2.1 Electronic Stability Control, ESC * 

Function definition: Electronic Stability Control directs the vehicle to match a desired yaw behaviour, when 
the deviation from desired behaviour becomes above certain thresholds. ESC typically monitors vehicle speed, steer 
angle and yaw velocity to calculate a yaw velocity error and uses friction brakes as actuator to reduce it.  

There are 3 parts of ESC: Over-steer control, Under-steer control, Over-speed control. The actual con-
trol error that the vehicle reacts on is typically the yaw velocity error between a desired yaw velocity 
and the sensed yaw velocity. Desired yaw velocity is calculated from a so-called reference model. Some 
of today’s advanced ESC also intervenes on difference between desired and estimated side slip. 

Desired yaw velocity and side-slip is calculated using a reference model and a closed loop control on 
the reference, see Figure 4-76. The reference model requires at least steer angle and longitudinal ve-
locity as input. The reference model can be either of steady state type (approximately as Eq [4.19] or 
the [4.15]) or transient (approximately as Eq [4.50]). The vehicle modelled by the reference model 
should rather be a desired vehicle than the controlled vehicle. Figure 4-76 does NOT show: Slide slip 
control, Reduction of 𝐶  due to low friction detection, Coordination with Engine/Steering interven-

tions, Arbitration with Pedal/ACC/ABS braking. (For single unit vehicles,      𝑒  can be seen as a yaw 

moment.) 

ReferenceModel, e.g. steady state:

  =   
    𝑒 
  

+𝐾  𝑡 𝑛        𝑒    ;

or transient:

    𝑦  𝑒 −        𝑒 =   𝑦 +  𝑦;

𝐽       𝑒 =   𝑦  𝑙 −   𝑦  𝑙 ;

  𝑦 = −𝐶   𝑡 𝑛  𝑠 𝑦;

  𝑦 = −𝐶 𝑦 𝑡 𝑛  𝑠 𝑦 ;

𝑠 𝑦 =  𝑦  𝑒 + 𝑙      𝑒   ⁄ −   ;

𝑠 𝑦 =  𝑦  𝑒 − 𝑙      𝑒   ⁄ ;

ClosedLoop
Controller, 
conceptually:

     𝑒 =
    𝑒 −    

𝑡𝑡 𝑛
;

  

    𝑒 

  

Controlled 
Vehicle

Coordinator
(select wheel)

     𝑒 

Brake
Actuator𝑇 𝑠  𝑒 Brake

Actuator
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Figure 4-76: Concept for ESC. 

The manoeuvre in Figure 4-20 shows an example of ESC interventions. But, in order to avoid too much 
friction brake interventions; the reference model cannot be too different. Also, in order to avoid that 
vehicle yaws more than its path curvature; the reference model cannot be much less understeered 
than the controlled vehicle, which typically can be arranged by saturating lateral tyre forces on the 
front axle in the reference model. This requires some kind of friction estimation, especially for low-mu 
driving. 

When controlling yaw via wheel torques, one can identify some different concepts such as direct and 
in-direct yaw moment, see 4.3.6.6. For ESC there is also a “pre-cautious yaw control” which aims at re-
ducing speed, see 4.6.2.1.3. The coordination of wheel torques handles these aspects, which are far 
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from trivial. Often, a dual-request concept for each wheel is used, see Figure 4-76 and 4.6.2.1.4. A sim-
plest possible coordinator can be to request braking only on one wheel at the time: 

4.6.2.1.1 Over-Steer Control 

Over-steer control was the first and most efficient concept in ESC. When a vehicle over-steers, ESC will 
typically coordinate wheel torques so that outer front wheel is braked. It can brake to deep slip levels 
(typically -50%) since losing side grip on front axle is desired in an over-steer situation. More ad-
vanced ESC variants also brake outer rear, but less and not to same deep slip level, see Figure . 

For combination vehicles with trailers that have controllable brakes, also the trailer is braked to avoid 
jack-knife effect, see upper part of Figure 4-77, or swing-out of the towed units. 

4.6.2.1.2 Under-Steer Control 

Under-steer control means that inner rear is braked when vehicle under-steers. This helps the vehicle 
turn-in. This intervention is most efficient on low mu, because on high mu the inner rear wheel nor-
mally has very little normal load. Also, the slip levels are not usually as deep as corresponding over-
steer intervention, but rather -10%. This is because there is always a danger in braking too much on 
rear axle, since it can cause over-steering. More advanced ESC variants also brake inner front, see Fig-
ure . The more wheels that are braked, the more similar the understeer intervention becomes with the 
function in 4.6.2.1.3. 

Reduce Oversteer Reduce Understeer
dominating 

side slip

dominating 
side slip

 
Figure 4-77: ESC brake interventions when oversteer and understeer, on a tractor with trailer. 

4.6.2.1.3 Over-Speed Control 

Over-speed control is not always recognised as a separate concept, but as a part of under-steer control. 
The actuation is that propulsion is reduced, or more than just inner rear wheels are braked. In this 
text, we identify this as done to decrease speed, which has a positive effect later in the curve. 

4.6.2.1.4 Wheel-Level Control 

A pre-requisite for all controls mentioned above in 4.6.2.1 is that the wheel torque actuator primarily 
responds to a torque request. However, one need to have another request channel to adjust the lateral 
force margin; normally one uses a longitudinal slip request, 𝑠   𝑒  in Figure 4-76. The slip request is 

generally used as a “safety net” to avoid lock-up the wheel too much; so, it is a “max |𝑠 | request”. Typi-
cally, 𝑠  is −0.2. . −0.1, for braking, but at RSC interventions (see 4.6.2.2) the lateral grip should be 
braked away, so a deeper slip request is then used, typically 50-70%. 

4.6.2.1.5 Other Intervention than Individual Wheel Brakes 

4.6.2.1.5.1 Balancing with Propulsion per Axle 

For vehicles with controllable distribution of propulsion torque between the axles, ESC can intervene 
also with a request for redistribution of the propulsion torque. If over-steering, the propulsion should 
be redistributed towards front and opposite for understeering. 

4.6.2.1.5.2 Torque Vectoring 

For vehicles with controllable distribution of propulsion torque between the left and right, ESC can in-
tervene also with a request for redistribution of the propulsion torque. If over-steering, the propulsion 
should be redistributed towards inner side and opposite for understeering. 

4.6.2.1.5.3 Steering Guidance 

For vehicles with controllable steering wheel torque, ESC can intervene also with a request for addi-
tional steering wheel torque. The most obvious function is to guide driver to open up steering 
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(counter-steer) when the vehicle over-steers. Such functions are on market in passenger cars today. 
Less obvious is how to guide the driver when vehicle is under-steering. 

−  

−𝑠 
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Figure 4-78: Individual wheel control by friction brakes for ESC-type functions. What is a “smart actuator” 

can depend on which function architecture that vehicle manufacturer and brake supplier has agreed. 

4.6.2.1.6 ESC using Environment Information / ESC for the Virtual Driver 

A prognosis of the future development of ESC like functions is that environment sensors can be used to 
better predict what driver tries to do; presently ESC can only look at steering wheel angle. 

Related to this, but still somewhat different, would be to utilize the automated driving development by 
utilizing that a “virtual driver” can be much better predicted than a “manual driver”. So, a predictive 
ESC control is more possible. 

4.6.2.2 Roll Stability Control, RSC * 
Function definition: Roll Stability Control, RSC, prohibits vehicle to roll-over due to lateral wheel forces from 
road friction. RSC uses friction brake as actuator. 

The purpose of RSC is to avoid un-tripped roll-overs. The actuator used is the friction brake system. 
When roll-over risk is detected, via lateral acceleration sensor (or in some advanced RSC implementa-
tions, also roll velocity sensor), the outer front wheel is braked. RSC can brake to deep slip levels (typi-
cally -70%..-50%) since losing side grip on front axle is positive in this situation. To lock the wheels 
(slip= − ) is undesired since wheel rotational inertia makes it difficult to quickly regain lateral grip 
when needed after the intervention. 

On heavy vehicles, RSC intervenes earlier and similar to function described in 4.6.2.1.3 Over-Speed 
Control. Future RSC might be developed towards also using steering, and potentially counteract also 
some tripped roll-overs. 

4.6.2.3 Lane Keeping Aid, LKA * 
Function definition: Lane Keeping Aid steers the vehicle without driver having to steer, when probability for 
lane departure is predicted as high. It is normally actuated as an additional steering wheel torque. Conceptually, it 
can also be actuated as a steering wheel angle offset. 

Lane Keeping Aid (or Lane Departure Prevention) has the purpose to guide the driver to keep in the 
lane. Given the lane position from a camera, the function detects whether vehicle tends to leave the 
lane. If so, the function requests a mild steering wheel torque (typically 1..2 Nm) in appropriate direc-
tion. Driver can easily overcome the additional torque. Function does not intervene if too low speed or 
turning indicator (blinker) is used. There are different concepts whether the function continuously 
should aim at keeping the vehicle in centre of lane, or just intervene when close to leaving the lane, see 
Figure 4-79. 
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Figure 4-79: Two concepts for Lane Keeping Aid. 

4.6.2.4 Lateral Collision Avoidance/Automatic Emergency 
Steering, LCA/AES  * 

Function definition: Lateral Collision Avoidance/Automatic Emergency Steering, supports the 
driver when he has to do late lateral obstacle avoidance, when probability for forward collision is predicted as high. 

There are systems on the market for Automatic Emergency Brake, see 3.5. These do Longitudinal Colli-
sion Avoidance. Automotive industry also aims at AES/LCA functions, which would automatically steer 
away laterally from an obstacle ahead of subject vehicle. The market introduction is cautious, since 
many things can go wrong with such functions. However, the first systems on market triggers only if 
driver initiates steering. Another would be to trigger on a first collision impact, see Reference (Yang, 
2013), when driver is less capable of steering by himself. A future similar situation could be AES/LCA 
functions active only during automated driving, when driver also is less likely to steer. 

4.6.2.5 Automated Driving (AD) 
Combining longitudinal control (such as ACC, in 3.5.2.2) with a lateral control (such as LKA, see 
4.6.2.1) results in functionality which clearly approaches automated driving (AD). AD is a very general 
expression but are sometimes interpreted as more specific, but specific in different ways depending on 
context. In a way, AD is already reality since there are vehicles on the road which can have ACC and 
LKA active at the same time. On the other hand, AD can be seen as very futuristic, since completely 
driverless vehicle which can operate in all situations is far from mass-production. 

It is not obvious if AD will mean higher or lower requirements on vehicle dynamics. Some (of many 
more!) examples of changes, relevant for vehicle dynamics are: 

• The vehicle control can better predict the next few seconds of a virtual driver (AD algorithms) 
than of a (human) driver. This can facilitate loss-of-grip functions, such as ABS & ESC. 

• There will be new requirements on vehicle response on requests from the virtual driver, in 
parallel with requirements on response on human drivers pedal and steering wheel operation. 

• There will be new requirements on vehicle relative motion, relative to surrounding road and 
traffic, such as lane edges and other road users. These will be in synergy or conflict to corre-
sponding requirement for absolute motion response. 

• The motion actuation will have to be more redundant, since driver is less likely to take back 
control quickly. Emergency functions to reach safe stop will need to work with partly faulty 
sensors and actuators. Failures needs to be designed according to (ISO 26262, 2011-2012) 

• The maximum speed for which the vehicle is designed can possibly be lower, since reduced 
transport efficiency could be accepted if driver can do something else or is not needed at all. 

• Estimation of Road friction, Controlling to Safe stop, Self-Diagnose, etc. 
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5 VERTICAL DYNAMICS 
5.1 Introduction 
The vertical dynamics are needed since vehicles are operated on real roads, and real roads are not per-
fectly smooth. Also, vehicle can be operated off-road, where the ground unevenness is even larger. 

The irregularities of the road can be categorized. A transient disturbance, such as a pothole or bump, 
can be represented as a step input or ramp. Undulating surfaces like grooves across the road may be a 
type of sinusoidal or other stationary oscillating (or periodic) input. More natural input like the ran-
dom surface texture of the road may be a random noise distribution. In all cases, the same mechanical 
system must react when the vehicle travels over the road at varying speeds including doing manoeu-
vres in longitudinal and lateral directions. 

The chapter is organised around the 3 complete vehicle functions: 5.5.1 Ride Comfort *, 5.5.2 Fatigue 
Life *, and 5.5.3 Road Grip *. It is, to a larger extent than Chapters 3 and 4, organised with mathemati-
cal theory first followed by the vehicle functions. In Figure 5-1 shows the 3 main functions. It explains 
the importance of the vehicle’s dynamic structure. The vehicle’s dynamic structure calls for a pretty 
extensive theory base, described mainly in 5.2. 
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Figure 5-1: Different types of knowledge and functions in the area of vertical vehicle dynamics, organised 

around the vehicle’s dynamic structure. 

Models in this chapter focus the disturbance from vertical irregularities from the road, i.e. only the ver-
tical forces on the tyre from the road and not the forces in road plane. This enables the use of simple 
models which are independent of exact wheel and axle suspension, such as pivot axes and roll centres. 
Only the wheel stiffness rate (effective stiffness) and wheel damping rate (effective damping), see Fig-
ure 2-54, influence. This has the benefit that the chapter becomes relatively independent of previous 
chapters, but it has the drawback that the presented models are not really suitable for studies of steep 
road irregularities (which have longitudinal components) and sudden changes in wheel torque or tyre 
side forces. Also, noise (>≈ 25𝐻 ) is not covered in this compendium. 

Furthermore, there is no section about Control functions for vertical dynamics in this compendium. 
Such do exist, e.g. levelling control and active damper control. However, they are less common and 
generally influence less than the stronger propulsion, brake and steering control functions. 

5.1.1 References for this Chapter  
• 2.3 Suspension System and  “Chapter 21 Suspension Systems” in Ref (Ploechl, 2013) 
• “Chapter 29 Ride Comfort and Road Holding” in Ref (Ploechl, 2013) 

5.2 Stationary Oscillations Theory 
Many vehicle functions in this chapter will be studied using stationary oscillations (cyclic repeating), 
as opposed to transiently varying. An example of transiently varying quantity is a single step function 
or single square pulse. A stationary oscillation can be as a sum of several harmonic terms, a multiple 
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frequency harmonic stationary oscillation. The special case with only one frequency is called a single 
frequency harmonic stationary oscillation. See Figure 5-2 and Equation [5.1]. 

𝑯𝒂𝒓𝒎𝒐𝒏𝒊𝒄 𝒔𝒕𝒂𝒕𝒊𝒐𝒏𝒂𝒓𝒚 𝒐𝒔𝒄𝒊𝒍𝒍𝒂𝒕𝒊𝒐𝒏𝒔: 
𝑆 𝑛 𝑙𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛  ∶   (𝜉) =  ̂ ∙ cos( ∙ 𝜉 +  ) ; 

𝑀𝑢𝑙𝑡 𝑝𝑙𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛  𝑒𝑠 ∶   (𝜉) =∑  ̂𝑖 ∙ cos( 𝑖 ∙ 𝜉 +  𝑖)
𝑁

𝑖= 
; 

  𝑒𝑟𝑒 𝜉  𝑠 𝑡 𝑒  𝑛 𝑒𝑝𝑒𝑛 𝑒𝑛𝑡   𝑟   𝑙𝑒. 

[5.1] 
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Figure 5-2: Different types of variables, both transient and stationary oscillating. The independent variable 𝜉 

can, typically, be either time or distance. 

The most intuitive is probably to think of time as the independent variable, i.e. that the variation takes 
place as function of time and that 𝜉 = 𝑡 in Equation [5.1]. However, for one specific road, the vertical 
displacement varies with longitudinal position, rather than with time. This is why we can either do 
analysis in time domain (𝜉 = 𝑡) and space domain (𝜉 = 𝑥). 

Since the same oscillation can be described either as a function of 𝜉 ( =  (𝜉)) or as a function of fre-
quency   ( ̂ =  ̂( )), we can do analysis either in the independent variable domain (𝜉) or in fre-
quency domain ( ). 

The four combinations of domains are shown in Figure 5-3. 

time 
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𝒇𝒔 = 𝒇 𝒗𝒙⁄ ;
𝝎𝒔 = 𝝎 𝒗𝒙⁄ ;

 
Figure 5-3: Four domains and transformations between them. 

Time and space domains are treated in 5.2.1 and 5.2.2. In addition to the domains, we also need to dif-
fer between discrete and continuous representations in both domains. 

5.2.1 Time as Independent Variable 
With time as independent variable, the frequency has the meaning of “how often per time”. Even so, 
there are two relevant ways to measure frequency: angular (time) frequency, and (time) frequency. 
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 = 2 ∙ 𝜋 ∙ 𝑓; 
  𝑒𝑟𝑒      [𝑟  𝑠⁄ ] =  𝑛 𝑢𝑙 𝑟 (𝑡  𝑒) 𝑓𝑟𝑒𝑞𝑢𝑒𝑛  ; 
 𝑛     𝑓 [1 𝑠⁄ = 𝑜𝑠  𝑙𝑙 𝑡 𝑜𝑛𝑠 𝑠⁄ ] = (𝑡  𝑒) 𝑓𝑟𝑒𝑞𝑢𝑒𝑛  ; 

[5.2] 

The time for one oscillation is called the period time. It is denoted 𝑇: 

𝑇 = 1 𝑓⁄ = 2 ∙ 𝜋  ⁄ ; [5.3] 

5.2.1.1 Mean Square (MS) and Root Mean Square (RMS) 
For a variable, z, we can define MS and RMS values as follows: 

𝑉 𝑟   𝑙𝑒:                                        =  (𝑡); 

𝑀𝑒 𝑛𝑆𝑞𝑢 𝑟𝑒:                𝑀𝑆( )    =
∫  2 ∙  𝑡
𝑡  𝑑
0

𝑡𝑒𝑛 
; 

 𝑜𝑜𝑡𝑀𝑒 𝑛𝑆𝑞𝑢 𝑟𝑒:       𝑀𝑆( ) = √
∫  2 ∙  𝑡
𝑡  𝑑
0

𝑡𝑒𝑛 
; 

[5.4] 

If the variable is written as a single frequency harmonic stationary oscillation: 

𝑉 𝑟   𝑙𝑒:                                        =  ̂ ∙ cos( ∙ 𝑡 +  ) ; 

𝑀𝑒 𝑛𝑆𝑞𝑢 𝑟𝑒:                𝑀𝑆( )    =
∫  2 ∙  𝑡
𝑡  𝑑
0

𝑡𝑒𝑛 
=
∫ ( ̂ ∙ cos( ∙ 𝑡 +  ))2 ∙  𝑡
𝑡  𝑑
0

𝑡𝑒𝑛 
= 

      =
 ̂2 ∙ [

𝑡
2
+
sin(2 ∙  ∙ 𝑡)

4 ∙  ] 𝑡=𝑡  𝑑
𝑡=0

𝑡𝑒𝑛 
=
 ̂2 ∙ (

𝑡𝑒𝑛 
2 +

sin(2 ∙  ∙ 𝑡𝑒𝑛 )
4 ∙  )

𝑡𝑒𝑛 𝑡  𝑑→∞
→     

 ̂2

2
; 

 𝑜𝑜𝑡𝑀𝑒 𝑛𝑆𝑞𝑢 𝑟𝑒:       𝑀𝑆( ) = √
∫  2 ∙  𝑡
𝑡  𝑑
0

𝑡𝑒𝑛 
= √𝑀𝑆( ) =

| ̂|

√2
; 

[5.5] 

If the variable is written as a multiple frequency harmonic stationary oscillation:  

𝑉 𝑟   𝑙𝑒:                                        = ∑ 𝑖

𝑁

𝑖= 

=∑ ̂𝑖 ∙ cos( 𝑖 ∙ 𝑡 +  𝑖)

𝑁

𝑖= 

; 

𝑀𝑒 𝑛𝑆𝑞𝑢 𝑟𝑒:                𝑀𝑆( )    =
∫  2 ∙  𝑡
𝑡  𝑑
0

𝑡𝑒𝑛 
=
∫ (∑  𝑖

𝑁
𝑖= )

2
∙  𝑡

𝑡  𝑑
0

𝑡𝑒𝑛 
= 

      =
∫ (∑  ̂𝑖 ∙ cos( 𝑖 ∙ 𝑡 +  𝑖)

𝑁
𝑖= )

2
∙  𝑡

𝑡  𝑑
0

𝑡𝑒𝑛 
  𝑡𝑒𝑛 →  ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑡𝑒𝑛 →  ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   
∫ ∑  ̂𝑖

2 ∙ (cos( 𝑖 ∙ 𝑡 +  𝑖))
2𝑁

𝑖= ∙  𝑡
𝑡  𝑑
0

𝑡𝑒𝑛 
=∑𝑀𝑆( 𝑖)

𝑁

𝑖= 

=∑
 ̂𝑖
2

2

𝑁

𝑖= 

; 

 𝑜𝑜𝑡𝑀𝑒 𝑛𝑆𝑞𝑢 𝑟𝑒:       𝑀𝑆( ) = √𝑀𝑆( ) = √∑
 ̂𝑖
2

2

𝑁

𝑖= 

= √∑𝑀𝑆( 𝑖)

𝑁

𝑖= 

= √∑( 𝑀𝑆( 𝑖))
2

𝑁

𝑖= 

; 

[5.6] 

5.2.1.2 Power Spectral Density and Frequency Bands 
So far, the frequency has been a discrete number of frequencies,     2 ⋯   𝑁. There are reasons to 
treat the frequency as a continuous variable instead. The discrete amplitudes,  ̂   ̂2 ⋯   ̂𝑁, should then 
be thought of as integrals of a “continuous amplitude curve”,  ̂ , where the integration is done over a 
small frequency interval, centred around a mid-frequency,  𝑖: 
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 ̂𝑖 = ∫  ̂ ∙   

𝜔𝑖+𝜔𝑖+1
2

𝜔=
𝜔𝑖−1+𝜔𝑖

2

=  ̂ ( 𝑖) ∙
 𝑖+ − 𝑖− 

2
=  ̂ ( 𝑖) ∙   𝑖;  ⇒   ̂ ( 𝑖) =

 ̂𝑖
  𝑖

; [5.7] 

We realize that the unit of  ̂  has to be same as for  , but per [rad/s]. So, if z is a displacement in [m],  ̂  
has the unit [m/(rad/s)]. Now,  ̂  is a way to understand the concept of a spectral density. A similar 
value, but more used, is the Power Spectral Density, PSD (also called Mean Square Spectral Density). 

 𝑆𝐷( ) is a continuous function, while  ̂𝑖  is a discrete function. That means that  𝑆𝐷( ) is fully deter-
mined by a certain measured or calculated variable  (𝑡), while  ̂𝑖  depends on which discretization 
(which  𝑖 or which   ) that is chosen. 

 𝑆𝐷( (𝑡)     ) =
𝑀𝑆(𝑓 𝑙𝑡𝑒𝑟( (𝑡)     ))

  
= 𝐺( ); 

  𝑒𝑟𝑒 filter 𝑠     𝑛 𝑝 𝑠𝑠 𝑓 𝑙𝑡𝑒𝑟  𝑒𝑛𝑡𝑒𝑟𝑒   𝑟𝑜𝑢𝑛     𝑛    𝑡    𝑛     𝑡    ; 
[5.8] 

PSD can also be defined with band width in time frequency instead of angular frequency. Eq [5.8] is the 
same but replacing    with  𝑓. 

When the variable to study (z) is known and the band width is known, one often writes simply  𝑆𝐷( ) 
or 𝐺( ). G has the same unit as  2, but per [rad/s] or per [oscillations/s]. So, if z is a displacement in 
[m], G has the unit [ 2 (𝑟  𝑠⁄ )⁄ ] or [ 2 (1 𝑠⁄ )⁄ =  2 ∙ 𝑠]. 

RMS is square root of the area under the PSD curve: 

 𝑀𝑆( ) = √∑𝑀𝑆( 𝑖)

𝑁

𝑖= 

= √∑𝐺( 𝑖) ∙   𝑖

𝑁

𝑖= 

= √ ∫ 𝐺( ) ∙   

∞

𝜔=0

; [5.9] 

5.2.1.2.1 Differentiation of PSD 

Knowing the PSD of a variable, we can easily obtain the PSD for the derivative of the same variable: 

𝐺  ( ) =  2 ∙ 𝐺 ( ); [5.10] 

5.2.1.3 Transfer Function 
In a minimum model for vertical dynamics there is at least one excitation, often road vertical displace-
ment,   , and one response, e.g. vertical displacement of sprung mass (=vehicle body),   . A Transfer 
function, 𝐻 = 𝐻(𝑗 ∙  ), is the function which we can use to find the response, given the excitation: 

𝑍 ( ) = 𝐻( ) ∙ 𝑍 ( );    ⟺    ℱ(  (𝑡)) = 𝐻( ) ∙ ℱ(  (𝑡)); 

  𝑒𝑟𝑒 ℱ  𝑠 𝑡 𝑒  𝑜𝑢𝑟 𝑒𝑟 𝑜𝑝𝑒𝑟 𝑡𝑜𝑟: 𝑍( ) = ℱ( (𝑡)) = ∫ 𝑒−𝑗∙𝜔∙𝑡 ∙  (𝑡) ∙  𝑡

∞

0

; 
[5.11] 

𝐻 is complex, with magnitude, |𝐻| = √(Re(𝐻))2 + (Im(𝐻))2, and phase, arg(𝐻( )) =

arctan(Im(𝐻) Re(𝐻)⁄ ). 

𝐴 𝑝𝑙 𝑡𝑢 𝑒:    ̂ ( ) = |𝐻( )| ∙  ̂ ( ); 

   𝑠𝑒:     ( ) −   ( ) = arg(𝐻( )) ; 

  𝑒𝑟𝑒  =∑ ̂( 𝑖)

𝑁

𝑖= 

∙ cos( 𝑖 ∙ 𝑡 +  𝑖) ; 

[5.12] 

Since there can be different excitations and responses in a system, there are several transfer functions. 
To distinguish between those, a subscripting of 𝐻 is often used: 𝐻𝑒  𝑖𝑡𝑎𝑡𝑖 𝑛→ 𝑒 𝑝 𝑛 𝑒 , which would be 
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𝐻 𝑟→ 𝑠 = 𝐻  𝑎   𝑖 𝑝𝑙𝑎 𝑒 𝑒𝑛𝑡→ 𝑝  𝑛𝑔  𝑎    𝑖 𝑝𝑙𝑎 𝑒 𝑒𝑛𝑡 in the example above. Other examples of relevant 

transfer functions in vertical vehicle dynamics are: 

• 𝐻  𝑎   𝑖 𝑝𝑙𝑎 𝑒 𝑒𝑛𝑡→ 𝑝  𝑛𝑔  𝑎   𝑎  𝑒𝑙𝑒 𝑎𝑡𝑖 𝑛 [( 𝑠2⁄ )  ⁄ ], see 5.5 

• 𝐻  𝑎   𝑖 𝑝𝑙𝑎 𝑒 𝑒𝑛𝑡→   𝑝𝑒𝑛 𝑖 𝑛  𝑒    𝑎𝑡𝑖 𝑛 [  ⁄ ] , see 5.5.2 

• 𝐻  𝑎   𝑖 𝑝𝑙𝑎 𝑒 𝑒𝑛𝑡→𝑡𝑦 𝑒     𝑒 [𝑁  ⁄ ] , see 5.5.2 

When transfer function for one derivative is found, it is often easy to convert it to another: 

𝐻 1→  2 = 𝑗 ∙  ∙ 𝐻 1→ 2; 

𝐻 1→ ̈2 = 𝑗 ∙  ∙ 𝑗 ∙  ∙ 𝐻 1→ 2 = − 2 ∙ 𝐻 1→ 2; 

𝐻 1→ 2− 3 = 𝐻 1→ 2 − 𝐻 1→ 3; 

[5.13] 

The usage of the transfer function is, primarily, to easily obtain the response from the excitation, as 
shown in Equation [5.12]. Also, the transfer function can operate on the Power Spectral Density, 
PSD=G, as shown in the following: 

𝐺 𝑠( ) =
𝑀𝑆(  (𝑡)  )

  
=
( ̂ ( ))

2
2⁄

  
=
(|𝐻( )| ∙  ̂ ( ))

2
2⁄

  
= 

= |𝐻 𝑟→ 𝑠( )|
2
∙
( ̂ ( ))

2
2⁄

  
= |𝐻 𝑟→ 𝑠( )|

2
∙ 𝐺 𝑟( ); 

[5.14] 

Using Equation [5.9], we can then express  𝑀𝑆(  ) (sprung mass), from knowing 𝐺 𝑟( ) (road): 

  𝑀𝑆(  ) = √∫ |𝐻 𝑟→ 𝑠( )|
2
∙ 𝐺 𝑟( ) ∙   

∞

𝜔=0
; [5.15] 

5.2.2 Space as Independent Variable 
All transformations, in this compendium, between time domain and space domain requires a constant 
longitudinal speed,   , so that: 

𝑥 =   ∙ 𝑡 + 𝑥0; [5.16] 

The offset (𝑥0) is the phase (spatial) offset (𝑥0) is the correspondence to the phase angle ( ). 

The corresponding formulas as given in Equations [5.2]..[5.13] can be formulated when changing to 
space domain, or spatial domain. It is generally a good idea to use a separate set of notations for the 
spatial domain. Hence the formulas are repeated with new notations, which is basically what will be 
done in present section. 

In space domain, the frequency has the common understanding of “how often per distance”. Even so, 
there are two relevant ways to measure frequency: spatial angular frequency and spatial frequency. 

 = 2 ∙ 𝜋 ∙ 𝑓 ; 
  𝑒𝑟𝑒      [𝑟   ⁄ ] =  𝑛 𝑢𝑙 𝑟 𝑠𝑝 𝑡  𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛  ; 
 𝑛     𝑓  [1  ⁄ = 𝑜𝑠  𝑙𝑙 𝑡 𝑜𝑛𝑠  ⁄ ] = 𝑠𝑝 𝑡  𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛  ; 

[5.17] 

The correspondence to period time is wave length, denoted 𝜆: 

𝜆[ ] = 1 𝑓 ⁄ = 2 ∙ 𝜋  ⁄ ; [5.18] 

Now, the basic assumption in Equation [5.16] and definitions of frequencies gives: 

 =   ∙  ;     𝑛   𝑓 =   ∙ 𝑓 ;  [5.19] 

The relation between the phase (spatial) offset (𝑥0) and the phase angle ( ) is: 

𝑥0 =
𝜆 ∙  

2 ∙ 𝜋
; [5.20] 
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5.2.2.1 Spatial Mean Square and Spatial Root Mean Square 

In space domain, a variable, z, varies 
with distance, x. We can define Mean 
Square and Root Mean Square values 
also in space domain. We subscript 
these with s for space. 

𝑉 𝑟   𝑙𝑒:                                        =  (𝑥); 

𝑀𝑒 𝑛𝑆𝑞𝑢 𝑟𝑒:                𝑀𝑆 ( )    =
∫  2 ∙  𝑥
   𝑑
0

𝑥𝑒𝑛 
; 

 𝑜𝑜𝑡𝑀𝑒 𝑛𝑆𝑞𝑢 𝑟𝑒:       𝑀𝑆 ( ) = √
∫  2 ∙  𝑥
   𝑑
0

𝑥𝑒𝑛 
; 

[5.21] 

Because  𝑥 is constant, the Mean Square and Root Mean Square will be the same in time and space 
domain. If the variable is written as a single frequency harmonic stationary oscillation, these values 
becomes as follows: 

𝑉 𝑟   𝑙𝑒:                                       =  ̂ ∙ cos( ∙ 𝑥 + 𝑥0) ; 

𝑀𝑒 𝑛𝑆𝑞𝑢 𝑟𝑒:                𝑀𝑆 ( )    = ⋯=
 ̂2

2
= 𝑀𝑆( ); 

 𝑜𝑜𝑡𝑀𝑒 𝑛𝑆𝑞𝑢 𝑟𝑒:       𝑀𝑆 ( ) = ⋯ =
| ̂|

√2
=  𝑀𝑆( ); 

[5.22] 

If the variable is written as a multiple frequency harmonic stationary oscillation: 

𝑉 𝑟   𝑙𝑒:                                        = ∑ 𝑖

𝑁

𝑖= 

=∑ ̂𝑖 ∙ cos( 𝑖 ∙ 𝑥 + 𝑥0𝑖)

𝑁

𝑖= 

; 

𝑀𝑒 𝑛𝑆𝑞𝑢 𝑟𝑒:                𝑀𝑆 ( )    = ∑
 ̂𝑖
2

2

𝑁

𝑖= 

= 𝑀𝑆( ); 

 𝑜𝑜𝑡𝑀𝑒 𝑛𝑆𝑞𝑢 𝑟𝑒:       𝑀𝑆 ( ) = √𝑀𝑆 ( ) = √∑( 𝑀𝑆( 𝑖))
2

𝑁

𝑖= 

=  𝑀𝑆( ); 

[5.23] 

5.2.2.2 Spatial Power Spectral Density and Frequency Bands 
A correspondence to Power Spectral Density in space domain is denoted  𝑆𝐷  in the following: 

 𝑆𝐷 ( (𝑥)    𝜆) =
𝑀𝑆( 𝑖𝑙𝑡𝑒 ( ( ) Ω  𝜆))

 𝜆
= Φ( );  

where "filter" is a band pass filter centred around ω and with band width  𝑓; 
[5.24] 

When the variable to study z is known and the band width is known, one often writes simply  𝑆𝐷 ( ) 
or Φ( ). The Φ has the same unit as  2, but per [rad/m] or per [oscillations/m]. So, if z is a displace-

ment in [m], Φ has the unit [
 2

 𝑎  ⁄
=

 3

 𝑎 
] or [

 2

  ⁄
=   ]. 

5.3 Road Models 
In general, a road model can include ground properties such as coefficient of friction, damping/elastic-
ity of ground and vertical position. The independent variable is either one, along an assumed path, or 
generally two, x and y in ground plane. In vertical dynamics in this compendium, we only assume ver-
tical displacement as function of a path. We use x as independent variable along the path, meaning that 
the road model is:   =   (𝑥). The function   (𝑥) can be either of the types in  

Figure 5-2. We will concentrate on stationary oscillations, which by Fourier series, always can be ex-
pressed as multiple (spatial) frequency harmonic stationary oscillation. This can be specialized to ei-
ther single (spatial) frequency or random (spatial) frequency. Hence, the general form of the road 
model is multiple (spatial) frequencies: 
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  =   (𝑥) =  ∑ ̂𝑖 ∙ cos( 𝑖 ∙ 𝑥 + 𝑥0𝑖)

𝑁

𝑖= 

; [5.25] 

5.3.1 One Frequency Road Model 
For certain roads, such as roads built with concrete blocks, a single (spatial) frequency can be a rele-
vant approximation to study a certain single wave length. Also, the single (spatial) frequency road 
model is good for learning the different concepts. A single (spatial) frequency model is the same as a 
single wave length model (𝜆 = 2 ∙ 𝜋  ⁄ , from Equation [5.17]) and it can be described as: 

  =   (𝑥) =   ̂ ∙ cos( ∙ 𝑥 + 𝑥0) ; [5.26] 

5.3.2 Multiple Frequency Road Models 
Based on the general format in Equation [5.25], we will now specialise to models for different road 
qualities. In Figure 5-4, there are 4 types of road types defined. The 3 upper ones of those are also de-
fined as PSD-plots in Figure 5-5. The mathematical formula is given in Equation [5.27] and numerical 
parameter values are given in Equation [5.28]. 

𝛷 = 𝛷(𝛺) = 𝛷0 ∙ (
𝛺

𝛺0
)
− 

 =
𝑀𝑆 (   𝛺)

 𝛺
; 

  𝑒𝑟𝑒  𝛷0  =  road se erity [
m2

rad m⁄
] ; 

w =  road wa iness [1]; 
𝛺 =  spatial angular frequency [rad m⁄ ]; 
𝛺0 =  1 [rad m]; 

[5.27] 

Typical values are: 

Very good road:    𝛷0 = 1 ∙ 10−6  [
m2

rad m⁄
] ; 

Bad road ∶               𝛷0 = 10 ∙ 10−6 [
m2

rad m⁄
] ; 

Very bad road ∶     𝛷0 = 100 ∙ 10−6  [
m2

rad m⁄
] ; 

The waviness is normally in the range of  = 2. .3 [1]    
where smooth roads have larger waviness than bad roads. 

[5.28] 

The decreasing amplitude for higher (spatial) frequencies (i.e. for smaller wave length) can be ex-
plained by that height variation over a short distance requires large gradients. On micro-level, in the 
granular level in the asphalt, there can of course be steep slopes on each small stone in the asphalt. 
These are of less interest in vehicle vertical dynamics, since the wheel dimensions filter out wave 
length << tyre contact length, see Figure 2-51.  Reference (ISO 8608) uses road waviness, w=2 for all 
roads. Figure 5-5 is based on measurements on real roads, which shows that waviness actually varies 
with road severity, 𝛷0. A certain road can be described with: 

• 𝛺   ⋯  𝛺𝑁 
•  ̂   ⋯   ̂𝑁 
• 𝑥0   ⋯  𝑥0𝑁 
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Smooth
The road condition is assessed as Smooth if 
at least 95% of the total distance is covered 
on properly surfaced roads of good quality. 
Shorter distances on poor surfaces may 
arise.

Very Rough
The road condition is assessed as Very 
Rough if more than 5% of the total 
distance is covered on extremely poor 
roads or off-road. 

Rough
The road condition is assessed as Rough if 
the road surface is of poor quality or if the 
road is not properly maintained. Up to 5% of 
the total distance may be covered on 
extremely poor roads or off-road. 

Cross Country
The road condition is assessed as Cross 
Country if a considerable amount of 
driving occurs in severe off-road 
conditions. 

 
Figure 5-4: Four typical road types. From (AB Volvo, 2011). 
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 [
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𝑎
 

 
⁄

]

 in [𝑟   ⁄ ] →

Φ  = Φ0    0⁄ − 

very rough  𝟎 = 𝟏𝟎𝟎  𝟏𝟎−𝟔
 2

   m⁄ ; 𝒘 = 𝟐 𝟏 ;

rough           𝟎 = 𝟏𝟎  𝟏𝟎−𝟔
 2

   m⁄ ;     𝒘 = 𝟐.  𝟏 ;

smooth       𝟎 = 𝟏  𝟏𝟎−𝟔
 2

   m⁄ ;        𝒘 =  𝟏 ;

 𝟎 = 𝟏 rad m⁄ for all;

𝜆  1050 1520 2

 
Figure 5-5: PSD spectra for the three typical roads in Figure 5-4.  

Number of frequency components, N, to select is a matter of accuracy or experience. The offsets, 
𝑥0   ⋯  𝑥0𝑁, can often be assumed to be zero. If phase is to be studied, as in Figure 5-5, a random gen-
eration of offsets is suitable. See also Reference (ISO 8608). 

We can generate   (𝑥) curves for the 3 road types in Figure 5-5 as shown in Figure 5-6. To generate 
those plots, we have assumed different number of harmonic components (N in Equation [5.25]) and 
also randomly generate the phase for each component (each 𝑥0𝑖). 



  VERTICAL DYNAMICS 

261 

0 1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

x/[m]

z
r 

/[
m

]

RoadQuality=1

 

 

N=10

N=20

N=100

0 1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

x/[m]

z
r 

/[
m

]

RoadQuality=2

 

 

N=10

N=20

N=100

0 1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

x/[m]

z
r 

/[
m

]

RoadQuality=3

 

 

N=10

N=20

N=100

very rough

rough

smooth

 
Figure 5-6: Road profiles,   (𝑥), for the three typical roads in Figure 5-4. 

5.3.2.1 Transfer Function from Road Spectrum in Spatial Do-
main to System Response in Time Domain 

Since we assume constant longitudinal velocity,   , the road spectrum can be transformed to the time-
frequency domain: 

𝐺 𝑟( ) =
𝑀𝑆(    )

  
= {𝑢𝑠𝑒:  =   ∙ 𝛺} =

𝑀𝑆 (   𝛺)

  ∙  𝛺
= 

= {𝑢𝑠𝑒: 𝛷0 ∙ (
𝛺

𝛺0
)
− 

=
𝑀𝑆 (   𝛺)

 𝛺
} =

𝛷0 ∙ (
𝛺
𝛺0
)
− 

  
= 

=
𝛷0 ∙ 𝛺

− 

𝛺0
− ∙   

=
𝛷0

𝛺0
− ∙

(
 
  
)
− 

  
=

𝛷0

𝛺0
− ∙   

 − ∙  − ; 

[5.29] 

Then, we can use Equation [5.14] to obtain the response  : 

𝐺 𝑠( ) = |𝐻 𝑟→ 𝑠( )|
2
∙ 𝐺 𝑟( ) = |𝐻 𝑟→ 𝑠( )|

2
∙
𝛷0

𝛺0
− ∙   

 − ∙  − ; [5.30] 

Then we can use Equation [5.9] to obtain the RMS of the response   : 

 𝑀𝑆(  ) = √∑𝐺 𝑠( 𝑖) ∙   

𝑁

𝑖= 

= √
𝛷0

𝛺0
− ∙   

 − ∙∑|𝐻 𝑟→ 𝑠( 𝑖)|
2
∙  𝑖

− ∙   

𝑁

𝑖= 

; 

or 

 𝑀𝑆(  ) = √ ∫ 𝐺 𝑠( ) ∙   

∞

𝜔=0

= √
𝛷0

𝛺0
− ∙   

 − ∙ ∫ |𝐻 𝑟→ 𝑠( )|
2
∙  − ∙   

∞

𝜔=0

; 

[5.31] 
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5.4 1D Vehicle Models 
“One-dimensional” refers to pure vertical motion, i.e. that the vehicle heaves without pitch and without 
roll. The tyre is stiff and massless. 

This can be seen as that the whole vehicle mass, m, is modelled as suspended by the sum of all wheels’ 
vertical forces,   =   𝑙 +     +   𝑙 +     . However, the model can sometimes be referred to as a 

“quarter-car-model”. That is because one can see the model as a quarter of the vehicle mass,   4, 
which is suspended by one of the wheel’s vertical force,  𝑖𝑗 . The exact physical interpolation of a quar-

ter car is less obvious, since one can argue whether the fraction ¼ of the vehicle mass is the proper 
fraction or from which point of view it is proper. Using the fraction ¼ is as least debatable if the vehi-
cle is completely symmetrical, both left/right and front/rear. 

5.4.1 1D Model without Dynamic dofs 
“Without dynamic degree of freedom” refers to that the (axle) suspension is modelled as ideally stiff. 
The model can be visualised as in Figure 5-7. 

model:real vehicle:   

  

 

   ̈ 

   

 

𝑥
 𝑦

   

 =   +  

  

 
Figure 5-7: One-dimensional model without dynamic degree of freedom 

The equations could be set up directly ( ∙  ̈ =    ;    𝑛      =   (𝑡);), but the following equations 
gives a formalism which will be useful for the more complex models in 5.4.2 and 5.4.3. 

𝑬𝒒𝒖𝒊𝒍𝒊𝒃𝒓𝒊𝒖𝒎:       ∙  ̈ + ∙  =    ;                              
𝑪𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒊𝒍𝒊𝒕𝒚:     =   ;     𝑛      =   ; 
𝑬𝒙𝒄𝒊𝒕𝒂𝒕𝒊𝒐𝒏:             =   (𝑡); 

[5.32] 

5.4.1.1 Response to a Single Frequency Excitation 
Assume that the road has only one (spatial) frequency, i.e. one wave length. Then the excitation is as 
follows: 

{
  =   (𝑥) =  ̂ ∙ cos( ∙ 𝑥 + 𝑥0) =  ̂ ∙ cos (

2 ∙ π

𝜆
∙ 𝑥 + 𝑥0) ;

𝑥 =   ∙ 𝑡;
𝐴𝑠𝑠𝑢 𝑒 𝑥0 = 0;

} ⇒ 

⇒   (𝑡) =  ̂ ∙ cos (
2 ∙ π ∙   

𝜆
∙ 𝑡) =  ̂ ∙ cos(ω ∙ 𝑡) ;⇒  

⇒    (𝑡) = −
2 ∙ π ∙   

𝜆
∙  ̂ ∙ sin (

2 ∙ π ∙   
𝜆

∙ 𝑡) = −ω ∙  ̂ ∙ sin(ω ∙ 𝑡) ;⇒ 

⇒  ̈ (𝑡) = −(
2 ∙ π ∙   

𝜆
)
2

∙  ̂ ∙ cos (
2 ∙ π ∙   

𝜆
∙ 𝑡) = −ω2 ∙  ̂ ∙ cos(ω ∙ 𝑡) ; 

[5.33] 

Insertion in the model in Equation [5.32] (with eliminated   ) gives directly the solution: 

{
   (𝑡) =  ∙  +   (𝑡) =  ∙  +   ̂  ∙ cos(ω ∙ 𝑡) ;

  (𝑡) =   (𝑡) =  ̂ ∙ cos (ω ∙ 𝑡);    𝑛     ̈ (𝑡) =  ̈ (𝑡) =  ̂ ∙ cos(ω ∙ 𝑡) ;
   

  𝑒𝑟𝑒    ̂  = − ∙ ω2 ∙  ̂ ;     𝑛     ̂ = −ω2 ∙  ̂ ;  

[5.34] 
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We can identify the magnitude of the transfer functions 𝐻. The negative sign in Equation [5.35] means 
180 degrees phase shift: 

𝐻 𝑟→ 𝑠 = {𝐻 𝑟→ 𝑠 =
ℱ(  )

ℱ(  )
} = {  (𝑡) =   (𝑡)} = 1 + 𝑗 ∙ 0; 

𝐻 𝑟→ 𝑟− 𝑠 = {𝐻 𝑟→ 𝑟− 𝑠 = 𝐻 𝑟→ 𝑠 −𝐻 𝑠→ 𝑠 = 𝐻 𝑟→ 𝑠 − 1} = 0 + 𝑗 ∙ 0; 

𝐻 𝑟→ ̈𝑠 = {𝐻 𝑟→ ̈𝑠 = (𝑗 ∙  )2 ∙ 𝐻 𝑟→ 𝑠 = −ω2 ∙ 𝐻 𝑟→ 𝑠} = −ω2 + 𝑗 ∙ 0; 

𝐻 𝑟→  𝑟𝑧 = {𝐻 𝑟→  𝑟𝑧 =  ∙ 𝐻 𝑟→ ̈𝑠} = − ∙ ω2 + 𝑗 ∙ 0; 

[5.35] 

The motivation to choose exactly those transfer functions is revealed later, in 5.5, 5.5.2 and 5.5.2. For 
now, we simply conclude that various transfer functions can be identified and plotted. The plots are 
found in Figure 5-8. Numerical values for m and 𝜆 are chosen.  

5.4.1.1.1 Example Analysis 

An example of how to use Figure 5-8 is: A certain road has amplitude of 1 cm ( ̂ = 0.01  ). The vehi-
cle drives on it with a longitudinal velocity of 50 km/h (  ≈ 14   𝑠 =̂≈ 2.8𝐻 ): 

• |𝐻 𝑟→ ̈𝑠(  )| ≈ 305;  ⇒ | ̂| = 305 ∙  ̂𝑟 = 305 ∙ 0.01 = 3.05  𝑠2;⁄ . From this we can calcu-

late  𝑀𝑆( ̈𝑠) = |3.05| √2 ≈⁄ 2.16  𝑠2⁄ . The RMS value of acceleration will later be related to 
ride comfort, see 5.5. 

• |𝐻 𝑟→ 𝑢− 𝑠(  )| = 0; is the transfer function to deformation of suspension, which later 

will be related to fatigue life, see 5.5.2. The model in 5.4.1 is not good for measuring fa-
tigue, since the  ̂ −  ̂  is intrinsically zero because of no compliance between un-
sprung and sprung mass. 

• |𝐻 𝑟→  𝑟 (  )| ≈ 487000;  ⇒    ̂𝑟 = 487000 ∙  ̂𝑟 = 487000 ∙ 0.01 = 4870 𝑁;. If   ̂  >  ∙

 ≈ 16000 𝑁, the model is outside its validity region, because it would require pulling forces 

between tyre and road. If changing to  ̂ = 0.1  , this limit is defined by |𝐻 𝑟→  𝑟 (  )| >≈
 6000

0. 
= 1.6  10  [𝑁  ⁄ ], which is used to examplify the validity limit in Figure 5-8; 

model becomes invalid for   >≈ 300  𝑠⁄ . The variation in tyre road contact force will be re-
lated to road grip, see 5.5.2. 

The phases for the studied variables can be found in Equation [5.35]. With this model, the phases be-
come constant and ±90  𝑒 . 

10
0

10
1

10
2

10
3

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

vx [m/s]

a
b
s
(H

)

Driving at road with wave-length, lambda = 5 [m].
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Figure 5-8: Transfer functions from model in Figure 5-7, excited with single frequencies. 
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5.4.1.2 Response to a Multiple Frequency Excitation 
Using Eq [5.31], Eq [5.42] and values for road type “rough” in Figure 5-5, we can conclude: 

 𝑀𝑆(  ) = √
𝛷0

𝛺0
− ∙   

 − ∙ ∫ |𝐻 𝑟→ 𝑠( )|
2
∙  − ∙   

∞

𝜔=0

= 

= √
10 ∙ 10−6

1
∙   

2. − ∙ ∫ |𝐻 𝑟→ 𝑠( )|
2
∙  −2. ∙   

∞

𝜔=0

; 

 

[5.36] 

For now, we simply note that it is possible to calculate this (scalar) RMS value for each vehicle speed 
over the assumed road. In corresponding way, an RMS value can be calculated for any of the oscillating 
variables, such as  ̈ ,   −    and    . We will come back to Equation [5.36] in 5.5.1.2. 

5.4.2 1D Model with 1 Dynamic dof 
“With 1 dynamic dof” refers to that the axle suspension is modelled as a linear spring and linear (vis-
cous) damper in parallel. Compared to the model in 5.4.1, the tyre is still stiff, but the unsprung parts 
are assigned a mass   . The model can be visualised as in Figure 5-9.  

z

modelreal vehicle

𝒎 = 𝒎𝒔 +𝒎𝒖 x

py

      

      

      

  

  

  

  

c d

 
 
 
 ̈  

 
 
 
  
 
 
 ̈  

 
 
 
 

    

 
 
 
 ̈  

 
 
 
 

 
 
 
 ̈  

      

 ̈ =     ;    ̈ =     ;

𝒎𝒔

𝒎𝒖

 
Figure 5-9: One-dimensional model with 1 dynamic degree of freedom 

The mathematical model becomes as follows: 

Equilibrium sprung mass:   −  ∙  ̈ −  ∙  = 0; 
Equilibrium unsprung mass:    −   −  ∙  ̈ −  ∙  = 0; 
Constitution:   =  ∙ (  −   ) +  ∙ (   −    ) +   ∙  ; 
Compatibility:   =   ; 
Excitation:   =   (𝑡); 

[5.37] 

5.4.2.1 Response to a Single Frequency Excitation 
Eliminating   ,    and    gives: 

  ∙  ̈ =  ∙ (  (𝑡) −   ) +  ∙ (   (𝑡) −    ); 
   − (  +  ) ∙  ⏟            

  𝑟𝑧

=  ∙ (  (𝑡) −   ) +  ∙ (   (𝑡) −    ) +   ∙  ̈ (𝑡); [5.38] 

Note that since we measure    and    from the static equilibrium, the static load,   ∙  , disappears 
when constitution is inserted in equilibrium. The      denotes the variation from static contact force 
between road and tyre. 
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Assume that the road has only one (spatial) frequency, i.e. one wave length. Then the excitation is as in 
Equation [5.26], in which we assume 𝑥0 = 0. So, we can insert   (𝑡) =  ̂ ∙ cos(ω ∙ 𝑡) ⇒    (𝑡) = −  
 ̂ ∙ sin(ω ∙ 𝑡) ⇒  ̈ (𝑡) = − 2   ̂ ∙ cos(ω ∙ 𝑡) ; in Equation [5.38] and solve it for   (𝑡) and     (𝑡) with 
trigonometry or Fourier transform. 

In 4.4.3.1.1, we applied Fourier transform on the linear state space form. To show a slightly other way, 
we do not rewrite to linear state space form, but apply Fourier transform on Eq [5.38] directly: 

  ∙ (−ω
2 ∙ ℱ(  )) =  ∙ (ℱ(  ) − ℱ(  )) +  ∙ 𝑗 ∙  ∙ (ℱ(  ) − ℱ(  )); 

ℱ(  𝑟 ) =  ∙ (ℱ( 𝑟)− ℱ( 𝑠))+ ∙ 𝑗 ∙  ∙ (ℱ( 𝑟)− ℱ( 𝑠))− 𝑢  ω
2 ∙ ℱ( 𝑟); 

[5.39] 

From this, we can then solve for the transfer functions: 

𝐻 𝑟→ 𝑠 =
ℱ(  )

ℱ(  )
=

 + 𝑗 ∙  ∙  

 + 𝑗 ∙  ∙  −   ω
2
; 

𝐻 𝑟→  𝑟𝑧 =
ℱ(    )

ℱ(  )
= ( + 𝑗 ∙    −    ω

2) − ( + 𝑗 ∙    ) ∙
ℱ(  )

ℱ(  )
=

= ( + 𝑗 ∙    −    ω
2) − ( + 𝑗 ∙    ) ∙ 𝐻 𝑟→ 𝑠; 

[5.40] 

We can elaborate further with Eq [5.40]: 

Amplitude:  |𝐻 𝑟→ 𝑠| =
 ̂𝑠

 ̂𝑟
= |

 +𝑗∙ ∙ω

( − ∙ω2)+𝑗∙ ∙ω
| = 

= {
𝐻 𝑟→ 𝑠 =

 + 𝑗 ∙  ∙ ω

( −  ∙ ω2) + 𝑗 ∙  ∙ ω
=

=  𝑒𝐻 + 𝑗 ∙ 𝐼 𝐻;  𝑆𝑜𝑙 𝑒 𝑓𝑜𝑟  𝑒𝐻  𝑛  𝐼 𝐻

} = ⋯ = √
 2 +  2 ∙ ω2

( −  ∙ ω2)2 +  2 ∙ ω2
;  

Phase:   ( ) −   ( ) = arg (
 +𝑗∙ ∙ω

− ∙ω2+ +𝑗∙ ∙ω
) = 

= {
tan(arg(𝐻 𝑟→ 𝑠)) = 𝐼 𝐻  𝑒𝐻⁄ ;

𝑆𝑜𝑙 𝑒 𝑓𝑜𝑟  𝑒𝐻  𝑛  𝐼 𝐻;
} = ⋯ = arctan (

 ∙  ∙   

 2 − ∙  ∙  2 +  2 ∙  2
) ; 

[5.41] 

Equation [5.13] now allows us to get the magnitudes of the other transfer functions as well:  

𝐻 𝑟→ 𝑠 = from Equation [5.40]; 

𝐻 𝑟→ 𝑟− 𝑠 = 𝐻 𝑟→ 𝑟 −𝐻 𝑟→ 𝑠 = 1 − 𝐻 𝑟→ 𝑠; 

𝐻 𝑟→ ̈𝑠 = − 2 ∙ 𝐻 𝑟→ 𝑠; 

𝐻 𝑟→  𝑟𝑧 = {
    =     ̈ +   =     ̈ +   =

=     ̈ +  ∙ (  −   ) +  ∙ (   −    )
} = 

=    𝐻 𝑟→ ̈𝑟 +  ∙ (𝐻 𝑟→ 𝑟 −𝐻 𝑟→ 𝑠) +  ∙ (𝐻 𝑟→  𝑟 −𝐻 𝑟→  𝑠) = 

=    (𝑗 ∙  )
2 + ( + 𝑗 ∙  ∙  ) ∙ (𝐻 𝑟→ 𝑟 − 𝐻 𝑟→ 𝑠) = 

= −    
2 + ( + 𝑗 ∙  ∙  ) ∙ (1 − 𝐻 𝑟→ 𝑠); 

[5.42] 

The motivation to choose exactly those transfer functions is revealed later, in 5.5. Some of those mag-
nitudes are easily expressed in reel (non-complex) mathematics using Equation [5.41]: 

|𝐻 𝑟→ 𝑠| = √
 2 +  2 ∙ ω2

( −  ∙ ω2)2 +  2 ∙ ω2
; 

|𝐻 𝑟→ ̈𝑠| =  2 ∙ √
 2 +  2 ∙ ω2

( −  ∙ ω2)2 +  2 ∙ ω2
; 

[5.43] 

5.4.2.1.1 Example Analysis 

The transfer functions in Equation [5.41] are plotted in Figure 5-10 and Figure 5-11. Numerical values 
for m and 𝜆 have been chosen. 

If we use Figure 5-10 as the example in 0: 
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• Ride comfort related: |𝐻 𝑟→ ̈𝑠(  )| ≈ 120;  ⇒ | ̂| = 120 ∙  ̂𝑟 = 120 ∙ 0.01 = 1.20 𝑠2⁄ ;. 

From this we can calculate  𝑀𝑆( ̈𝑠) = |1.20| √2 ≈⁄  0.8485 𝑠2⁄ . 
• Fatigue life related: |𝐻 𝑟→ 𝑟− 𝑠(  )| ≈ 1.11; ⇒ | ̂ −  ̂ | = 1.11 ∙  ̂𝑟 = 1.11 ∙ 0.01 =

0.0111  = 1.11   ;. 
• Road grip related: |𝐻 𝑟→  𝑟 (  )| ≈ 59795; ⇒  |  𝑟 | = 59795 ∙  ̂𝑟 = 59795 ∙ 0.01 =

598 𝑁;. 

     [  𝑠]
1 Hz 10 Hz 100 Hz

 
Figure 5-10: Transfer functions for amplitudes from model in Figure 5-9, excited with single frequencies. 

Thin lines are without damping. Notation: 𝐻𝑎→  is denoted H_a_b. 

     [  𝑠]  
Figure 5-11: Transfer functions for phase delays from model in Figure 5-9, excited with single frequencies. 
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We compare these numbers with the corresponding numbers for the simpler model in 5.4.1. The com-
fort is better. The fatigue life and road grip have become more realistic. 

Figure 5-10 also shows the curves for the undamped system (d=0). The highest peaks appear at ap-
proximately   = 5. .6 m/s. This corresponds to the speed where the natural (=undamped) eigen fre-

quency appears (     𝑖𝑡 = 𝜆 ∙ 𝑓  𝑖𝑡 = 𝜆 ∙    𝑖𝑡 (2 ∙ 𝜋)⁄ = 𝜆 ∙ √  ⁄ (2 ∙ 𝜋)⁄ ≈ 5.5   𝑠). 

Figure 5-11 shows the phase angles for the different responses. 

5.4.3 1D Model with 2 Dynamic dofs 
The expression “2 dynamic dofs” refers to that both elasticity between road and wheel (unsprung 
mass) as well as between wheel (unsprung mass) and sprung mass is modelled. The model can be vis-
ualised as in Figure 5-12. No damping is modelled in tyre (in parallel with elasticity  𝑡) because it is 
generally relatively low. 

z

modelreal vehicle

x

py

zs

zu

Frz

Fsz

Fsz

zu

zs

Fsz

Fsz

cs ds

zr

zuzr
Frz

Frz

ct

    ̈     

        ̈ 
dt

𝒎 = 𝒎𝒔 +𝒎𝒖

𝒎𝒔

𝒎𝒖

 
Figure 5-12: One-dimensional model with two dynamic degrees of freedom 

The corresponding mathematical model becomes as follows: 
Equilibrium: 

  ∙  ̈ =    −  ∙  ; 
  ∙  ̈ =    −    −  ∙  ; 

Constitution (displacements counted from static equilibrium): 
   =   ∙ (  −   ) +   ∙ (   −    ) +   ∙  ; 
   =  𝑡 ∙ (  −   ) +  𝑡 ∙ (   −    ) + (  +  ) ∙  ; 

Excitation:     =   (𝑡); 

[5.44] 

The same can be formulated with matrices and Fourier transforms: 
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[
  0
0   

] ∙ [
 ̈ 
 ̈ 
] + [

  −  
−    +  𝑡

] ∙ [
   
   
] + [

  −  
−    +  𝑡

] ∙ [
  
  
] = [

0
 𝑡
] ∙    + [

0
 𝑡
] ∙   ;⇒ 

   ⇒ 𝑴 ∙ [
 ̈ 
 ̈ 
] + 𝑫 ∙ [

   
   
] + 𝑪 ∙ [

  
  
] = 𝑫𝒓 ∙    + 𝑪𝒓 ∙   ; ⇒ 

   ⇒ 𝑴 ∙ (− 2 ∙ [
ℱ(  )

ℱ(  )
]) + 𝑫 ∙ (𝑗 ∙  ∙ [

ℱ(  )

ℱ(  )
]) + 𝑪 ∙ [

ℱ(  )

ℱ(  )
] =

= 𝑫𝒓 ∙ (𝑗 ∙  ∙ ℱ(  )) + 𝑪𝒓 ∙ ℱ(  );⇒ 

   ⇒ (− 2 ∙ 𝑴 + 𝑗 ∙  ∙ 𝑫 + 𝑪) ∙ [
ℱ(  )

ℱ(  )
] = (𝑗 ∙  ∙ 𝑫𝒓 + 𝑪𝒓) ∙ ℱ(  ); 

[5.45] 

5.4.3.1 Response to a Single Frequency Excitation 
We can find the transfer functions via Fourier transform, starting from Eq [4.56]: 

[
𝐻 𝑟→ 𝑠
𝐻 𝑟→ 𝑢

] =  [
ℱ(  )

ℱ(  )
] ∙

1

ℱ(  )
= (− 2 ∙ 𝑴 + 𝑗 ∙  ∙ 𝑫 + 𝑪)− ∙ (𝑗 ∙  ∙ 𝑫𝒓 + 𝑪𝒓); [5.46] 

This format is very compact, since it includes both transfer functions for amplitude and phase. For nu-
merical analyses, the expression in Eq [5.46] is explicit enough, since there are tools, e.g. Matlab, which 
do numerical matrix inversion and complex mathematics. Symbolic solution is rather lengthy, but one 
can use symbolic tools, e.g. Mathematica or Matlab Symbolic Toolbox.  

Expression in real (without phase information) can be derived, see Eq [5.47]. 

|𝐻 𝑟→ ̈𝑠| =  2 ∙
√(  ∙  𝑡 −   ∙  𝑡 ∙  

2)2 + ( ∙ (  ∙  𝑡 +  𝑡 ∙   ))
2

√𝐴2 + 𝐵2
; 

|𝐻 𝑟→ 𝑢− 𝑠| =
  ∙ √( 𝑡 ∙  

2)2 + ( 𝑡 ∙  
 )2

√𝐴2 +𝐵2
; 

|𝐻 𝑟→ 𝑟− 𝑢| =
√(−  ∙   ∙  

4 + 2 ∙ (  +  ) ∙   )
2 + (  ∙ (  +  ) ∙   )

2

√𝐴2 +𝐵2
; 

𝐴 =  4 ∙   ∙   −  2 ∙ (  ∙  𝑡 +  ∙   +   ∙  𝑡 +   ∙   ) +   ∙  𝑡; 
𝐵 =   ∙ (  ∙  𝑡 +  ∙   +  ∙   ) −  ∙ (  ∙  𝑡 +  𝑡 ∙   ); 

[5.47] 

With  𝑡 = 0, the solutions (with phase information, i.e. complex) becomes as follows: 

𝐻 𝑟→ 𝑠 =
ℱ(  )

ℱ(  )
=

(−  ∙ ω
2 + 𝑗 ∙   ∙ ω +  𝑡 +   ) ∙  𝑡

−  ∙ ω
2 + 𝑗 ∙   ∙ ω +  𝑡 +   −

(  + 𝑗 ∙   ∙ ω)
2

−  ∙ ω
2 + 𝑗 ∙   ∙ ω +   

−  𝑡

  + 𝑗 ∙   ∙ ω
; 

𝐻 𝑟→ 𝑢 =
ℱ(  )

ℱ(  )
=

 𝑡

−  ∙ ω
2 + 𝑗 ∙   ∙ ω +  𝑡 +   −

(  + 𝑗 ∙   ∙ ω)
2

−  ∙ ω2 + 𝑗 ∙   ∙ ω +   

; 

where  =
2∙π∙ 𝑥

𝜆
; 

[5.48] 

Equation [5.13] now allows us to get the magnitudes of the other transfer functions as well:  
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𝐻 𝑟→ 𝑠 = {use Eq [5.48]}; 

𝐻 𝑟→ 𝑢 = {use Eq [5.48]}; 

𝐻 𝑟→ 𝑟− 𝑢 = 𝐻 𝑟→ 𝑟 −𝐻 𝑟→ 𝑢 = 1 −𝐻 𝑟→ 𝑢 ; 

𝐻 𝑟→ 𝑢− 𝑠 = 𝐻 𝑟→ 𝑢 −𝐻 𝑟→ 𝑠; 

𝐻 𝑟→ ̈𝑠 = − 2 ∙ 𝐻 𝑟→ 𝑠; 

𝐻 𝑟→  𝑠𝑧 = {    =   ∙ (  −   ) +   ∙ (   −    )} = 

          =   ∙ (𝐻 𝑟→ 𝑢 −𝐻 𝑟→ 𝑠) +   ∙ 𝑗 ∙  ∙ (𝐻 𝑟→ 𝑢 −𝐻 𝑟→ 𝑠) = 

          = (  + 𝑗 ∙   ∙ ) ∙ (𝐻 𝑟→ 𝑢 −𝐻 𝑟→ 𝑠); 

𝐻 𝑟→  𝑟𝑧 = {    =  𝑡 ∙ (  −   )} =  𝑡 ∙ (𝐻 𝑟→ 𝑟 −𝐻 𝑟→ 𝑢) =  𝑡 ∙ (1−𝐻 𝑟→ 𝑢); 

[5.49] 

The transfer functions in Equation [5.49] are plotted in Figure 5-13.  

5.4.3.1.1 Example Analysis 

If we use Figure 5-13 as the example in 0: 

• Ride comfort related: |𝐻 𝑟→ ̈𝑠(  )| ≈ 123;  ⇒ | ̂| = 123 ∙  ̂𝑟 = 123 ∙ 0.01 = 1.23  𝑠2⁄ ;. 

From this we can calculate  𝑀𝑆( ̈𝑠) = |1.23| √2 ≈ 0.8697⁄   𝑠2⁄ . 
• Fatigue life related: |𝐻 𝑟→ 𝑢− 𝑠(  )| ≈ 1.14; ⇒ | ̂ −  ̂ | = 1.14 ∙  ̂𝑟 = 1.14 ∙ 0.01 =

0.0114  = 1.14   ;. 

• Road grip related: |𝐻 𝑟→  𝑟 (  )| ≈ 177470;  ⇒  |  𝑟 | = 177470 ∙  ̂𝑟 = 177470 ∙ 0.01 =

1775 𝑁;. 
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Figure 5-13: Transfer functions for amplitudes from model in Figure 5-12, excited with single frequencies. 

This analysis can be compared with the analysis in 5.4.2.1.1. Ride comfort and fatigue does not change 
a lot, but road grip does. This indicates that the more advanced model is only needed for road grip 
evaluation.  

Figure 5-14 shows the phase angles for the different responses.  
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Figure 5-14: Transfer functions for phase delays. Same model and data as in Figure 5-13. 

Figure 5-15, shows the amplitude gains for the corresponding un-damped system. Natural frequencies 
are around 5 m/s and 50 m/s. These two speeds correspond to frequencies      𝑖𝑡 𝜆, i.e. approxi-
mately 1 Hz and 10 Hz. The 1Hz frequency is an oscillation mode where the both masses move in 
phase with each other, the so called “heave mode” or “bounce mode”. The 10 Hz frequency comes from 
the mode where the masses are in counter-phase, the so called “wheel hop mode”. In the wheel hop 
mode, the sprung mass is almost not moving at all. We will come back to these modes in 5.4.4. 
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Figure 5-15: Un-damped transfer functions. Same model and data as in Figure 5-13, except   = 0. 

5.4.4 One-Mode Models 
The sprung mass is typically around 10 times larger than the unsprung mass and the suspension 
spring is usually around 10 times lower than the tyre stiffness. Hence, there are the 2 distinguished 
modes, identified in 0. If only interested in a certain frequency range around one of the eigenfrequen-
cies, one can split the model in 2 models, which explains one mode each, see Figure 5-16.  
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Figure 5-16: Modes and approximate models. 

We will now derive the natural frequencies for the two models and compared with the natural fre-
quencies (  = 0) found for the combined model, in Figure 5-15. Both models are one degree of free-

dom models with mass and spring, why the eigenfrequency is √stiffness mass. 

For the heave model, the mass is   . Stiffnesses    and  𝑡 are series connected, which means that the 
total stiffness= 1 ((1   ⁄ ) + (1  𝑡⁄ ))⁄ . 

For the wheel hop model, the mass is   . Stiffnesses    and  𝑡 are parallel connected, which means 
that the total stiffness=   +  𝑡. 

    𝑛 𝑒 =
√
 (

1

𝑐𝑠
+
1

𝑐𝑡
)⁄

 𝑠
= 6.61

   

 
= 1.05 H ;   𝑊ℎ𝑒𝑒𝑙𝐻 𝑝 = √

 𝑠+ 𝑡

 𝑢
= 63.4

   

 
 = 10.1 H ; [5.50] 

Numerical values from 5.4.3 is used (  = 1415 𝑘 ;  = 185 𝑘 ;   = 68 𝑘𝑁  ⁄ ;  𝑡 = 676 𝑘𝑁  ⁄ ;) 
and eigenfrequencies coincide well with Figure 5-15. 

Heave (or Bounce) refers to the mode where the sprung mass has the greatest amplitude and wheel 
hop is related to the case when the unsprung mass exhibits the greatest amplitude. For a passenger 
car, the spring mass has the lowest frequency, typically around 1 Hz while tyre hop is more prevalent 
at frequencies around 10 Hz.  

5.5 Functions for Stationary Oscillations 

5.5.1 Ride Comfort * 
Function definition: (Stationary) Ride comfort is the comfort that vehicle occupants experience from station-
ary oscillations when the vehicle travels over a road with certain vertical irregularity in a certain speed. The measure 
is defined at least including driver (or driver seat) vertical acceleration amplitudes. 

Ride comfort is sometimes divided into: 

• Primary Ride – the vehicle body on its suspension. Heave (Bounce), Pitch and Roll 0..4 Hz 

• Secondary Ride – same but above body natural frequencies, i.e. 4..25 Hz 

5.5.1.1 Single Frequency 
It is generally accepted for stationary vibrations, that humans are sensitive to the RMS value of the ac-
celeration. However, the sensitivity is frequency dependent, so that highest discomfort appears for a 
certain range of frequencies. Some human tolerance curves are shown in Figure 5-17 and Figure 5-18. 

The curves can be considered a threshold for acceptance where everything above the line is unac-
ceptable and points below the curve are acceptable. Discomfort is a subjective measure, and this is 
why the different diagrams cannot be directly compared to each other. The SAE has suggested that 
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frequencies from 4 to 8 Hz are the most sensitive and the accepted accelerations for these are no 
higher than 0.025 g (RMS). 

The curves in Figure 5-17 mostly represent an extended exposure to the vibration. As one can expect, a 
human can endure exposure to more severe conditions for short periods of time. The SAE limits pre-
sented are indicative of 8 hours of continuous exposure. Curves for different exposure times can also 
be obtained from ISO, (ISO 2631). The ISO curves are from the first version of ISO 2631 and were later 
modified, see Figure 5-18. 

How to use the diagram

4 Hz 8 Hz

OK

not 

OK

RMS 
accele-
ration

Frequency

 
Figure 5-17: Various Human Tolerance Curves to Vertical Vibration, (Gillespie, 1992) 

 
Figure 5-18: ISO 2631 Human Tolerance Curves 
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5.5.1.2 Multiple Frequencies 
The curves in Figure 5-17 and Figure 5-18 can be interpreted as a filter, where the response of the hu-
man is influenced by the frequencies they are exposed to. This leads to the concept of a Human Filter 
Function 𝑊𝑘(𝑓). (𝑊𝑘 refers to vertical whole human body vibration sensitivity, while there are other 
for sensitivities for other directions and human parts.) This can be seen as a transfer function from 
driver seat to somewhere inside the driver’s body or brain, where discomfort is perceived. 
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Figure 5-19: Human Sensitivity Filter Function. From (ISO 2631). Right: Asymptotic approximation 

 
Figure 5-20: Human Filter Function for vertical vibrations. Table from (ISO 2631). 

With formulas from earlier in this chapter we can calculate an RMS value of a signal with multiple fre-
quencies, see Equation [5.6]. Consequently, we can calculate RMS of multiple frequency acceleration. 
Since humans are sensitive to acceleration, it would give one measure of human discomfort. However, 
to get a measure which is useful for comparing accelerations with different frequency content, the 
measure has to take the human filter function into account. The Weighted RMS Acceleration, aw, in the 
following formula is such measure: 
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  =   ( ̈(𝑡)) =

{
 

 
𝑢𝑠𝑒:  𝑀𝑆( ̈(𝑡)) = √∑

 ̂̈𝑖
2

2

𝑁

𝑖= 
}
 

 
= √∑

(𝑊𝑘( 𝑖) ∙  ̂̈𝑖)
2

2

𝑁

𝑖= 

;    or 

  =   ( ̈(𝑡)) = {𝑢𝑠𝑒:  𝑀𝑆( ̈(𝑡)) = √ ∫ 𝐺 ̈( ) ∙   

∞

𝜔=0

 } = √ ∫ (𝑊𝑘( ))
2
∙ 𝐺 ̈( ) ∙   

∞

𝜔=0

; 

[5.51] 

Equation [5.51] is written for a case with only vertical vibrations, hence 𝑊𝑘 and 𝐺 ̈. If vibrations in sev-
eral directions, a total    can still be calculated, see (ISO 2631). 

In (ISO 2631) one can also find the following equation, which 
weights together several time periods, with different vibrations 
spectra. Time averaged whole-body vibration exposure value is 
denoted    𝑎𝑣. 

   𝑎𝑣 = √
∑   𝑖

2 ∙ 𝑇𝑖𝑖

∑ 𝑇𝑖𝑖
; [5.52] 

The    in Eq [5.52] is used both for vehicle customer requirement setting at OEMs and governmental 
legislation. One example of legislation is (DIRECTIVE 2002/44/EC, 2002). This directive stipulates that 
   in Eq [5.52] in any direction, normalized to 8 hours, may not exceed 1.15 m/s2, and if the value ex-
ceeds 0.5 m/s2 action must be taken.  

5.5.1.2.1 Certain Combination of Road, Vehicle and Speed 

Now we can use Equation [5.36] without assuming road type. However, we have to identify  ̂̈  and 
multiply it with 𝑊𝑘( ), according to Equation [5.51]. Then we get [5.53]. 

Using Equation [5.53], we can calculate the weighted RMS value for the different models in 5.4.1, 5.4.2 
and 5.4.3. For each model, it will vary with speed,   . A plot, assuming a certain road type (“Rough” 
from Figure 5-5) is shown in Figure 5-28. We can see that the simplest model “stiff tyre, no unsprung 
mass” gives much different comfort value than the two others, so the simplest is not goof to estimate 
comfort. However, the two other models give approximately same result, which indicates that the me-
dium model, “stiff tyre, no unsprung mass”, is enough for comfort evaluation. This is no general truth 
but an indication that the most advanced model, “two masses, elastic tyre”, is not needed for comfort on 
normal roads. The advanced model is more needed for road grip. 

We can also see that the comfort decreases, the faster the vehicle drives. If we read out at which speed 
we reach   = 1  𝑠2⁄  (which is a reasonable value for long time exposure) we get around   ≈
70  𝑠⁄ ≈ 250 𝑘    on this road type (“Rough”) with the medium (and advanced) model. With the 
simplest model, we get   ≈ 1  𝑠⁄ ≈ 3. .4 𝑘   . 

 𝑀𝑆( ̈ ) = {
Eq 

[5.31]
} = √

𝛷0

𝛺0
− ∙   

 − ∙ ∫ |𝐻 𝑟→ ̈𝑠( )|
2
∙  − ∙   

∞

𝜔=0

= {
𝐻 𝑟→ ̈𝑠 =

= − 2 ∙ 𝐻 𝑟→ 𝑠
}

= √
𝛷0

𝛺0
− ∙   

 − ∙ ∫  | 2 ∙ 𝐻 𝑟→ 𝑠( )|
2
∙  − ∙   

∞

𝜔=0

=   

= √
𝛷0

𝛺0
− ∙   

 − ∙ ∫ |𝐻 𝑟→ 𝑠( )|
2
∙  4− ∙   

∞

𝜔=0

;⇒ {
Eq 

[5.51]
} ⇒ 

⇒   = √
𝛷0

𝛺0
− ∙   

 − ∙ ∫ (𝑊𝑘( ))
2
∙ |𝐻 𝑟→ 𝑠( )|

2
∙  4− ∙   

∞

𝜔=0

; 

 

[5.53] 
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5.5.1.3 Other Excitation Sources  
Present chapter focuses on the influence of excitation from vertical displacement of the road. Exam-
ples of other, but often co-operating, excitation sources are: 

• Powertrain vibrations, non-uniform rotation in engine. Frequencies will be proportional to en-
gine speed 

• Wheel vibrations, e.g. due to non-round wheels or otherwise unbalanced wheels. Frequencies 
will be proportional to vehicle speed. 

• Special machineries mounted on vehicles (e.g. climate systems or concrete mixers) 
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Figure 5-21: Weighted RMS values for road type “Smooth” from Figure 5-5. The 3 curves show 3 different 

models: Simplest (from 1.5.1), Medium (from 1.5.2) and Most advanced (from 1.5.3). 

5.5.2 Fatigue Life * 
Function definition: (Vehicle) Fatigue life is the life that the vehicle, mainly suspension, can reach due to sta-
tionary oscillations when vehicle travels over a road with certain vertical irregularity in a certain speed. One meas-
ure is the suspension vertical deformation amplitude. 

Beside human comfort, the fatigue of the vehicle structure itself is one issue to consider in vertical ve-
hicle dynamics. 

5.5.2.1 Single Frequency 

5.5.2.1.1 Loads on Suspension Spring 

In particular, the suspension spring may be subject to fatigue. The variation in spring material stress is 
dimensioning, which is why the force variation or amplitude in the springs should be under observa-
tion. Since spring force is proportional to deformation, the suspension deformation amplitude is pro-
posed as a good measure (at least if spring design is not varied). This is the explanation to why the am-
plitude of   −    is plotted in Figure 5-10. 

Beside fatigue loads,   −    is also relevant for judging whether suspension bump-stops become en-
gaged or not. At normal driving, that limit should be far from reached, except possibly at high loads 
(many persons/much payload). 

It can be noted that   −    represents the variation in material stress only if spring is not changed. So, 
if different spring designs are compared, it is not sufficient to study only   −   . 

5.5.2.1.2 Fatigue of Other Components 

Fatigue of other parts may require other amplitudes.  
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One other example can be the damper fatigue. Damper fatigue would be more relevant to judge from 
amplitude of    −    , which determines the force level and hence the stress level. 

Another example is to judge the force amplitude in parts that carry both spring and damper forces. For 
those it is motivated to consider     =   ∙ (  −   ) +   ∙ (   −    ); as in Eq [5.49]. 

Yet another example is the load of the road itself. For heavy trucks, it is relevant to consider how much 
they wear the road. At some roads with legislated maximum (static) axle load, one can be allowed to 
exceed that limit if the vehicle has especially road friendly suspensions. For these judgements, it is the 
contact force between tyre and road,  ̂  , which is important. These considerations are primarily for 
road authorities but becomes aspects for vehicle developers as legal requirements. 

5.5.2.2 Multiple Frequencies 
If the excitation is of one single frequency, the stress amplitude can be used when comparing two de-
signs. However, for spectra of multiple frequencies, one cannot look at amplitudes solely, 
[ ̂   ̂2 ⋯   ̂𝑁], because the amplitudes will depend on how the discretization is done, i.e. the number N. 
Some kind of integral of a spectral density is more reasonable. In this compendium, it is proposed that 
a very approximate measure of fatigue load is calculated as follows, exemplified for the case of fatigue 
of the spring: 

𝑀𝑒 𝑠𝑢𝑟𝑒 𝑓𝑜𝑟 𝑠𝑝𝑟 𝑛  𝑓 𝑡  𝑢𝑒 𝑙 𝑓𝑒 =  𝑀𝑆( 𝑢(𝑡) −  𝑠(𝑡)) =  

   = √
𝛷0
𝛺0

−𝑤 ∙  𝑥 −1 ∙ ∫ |𝐻 𝑟→ 𝑢− 𝑠( )|
2
∙ − ∙   

 

 =0
= {

𝑢𝑠𝑒: 𝐻 𝑟→ 𝑢− 𝑠 =

= 𝐻 𝑟→ 𝑢 − 𝐻 𝑟→ 𝑠
} =  

   = √
𝛷0
𝛺0

−𝑤 ∙  𝑥 −1 ∙ ∫ |𝐻 𝑟→ 𝑢( ) − 𝐻 𝑟→ 𝑠( )|
2
∙ − ∙   

 

 =0
;  

[5.54] 

Equation is written for application to a known road spectra (𝛷0  ) and vehicle dynamic structure 

(𝐻 𝑟→ 𝑢  𝐻 𝑟→ 𝑠), but the first expression ( 𝑀𝑆( 𝑢(𝑡) −  𝑠(𝑡))) is applicable on a measured or simu-

lated time domain solution. 

5.5.3 Road Grip * 
Function definition: Road grip (on undulated roads) is how well the longitudinal and lateral grip between 
tyres and road is retained due to stationary oscillations when the vehicle travels over a road with certain vertical ir-
regularity in a certain speed. 

In 3.3 and 3.4, the brush model explain how the tyre forces in the ground plane appears. It is a physi-
cal model where the contact length influences how stiff the tyre is for longitudinal and lateral slip. 
There is also a brief description of relaxation models for tyres. This together motivates that a tyre has 
more difficult to build up forces in ground plane if the vertical force varies. We can understand it as 
when contact length varies, the shear stress builds up has to start all over again. As an average effect, 
the tyre will lose more and more grip, the more the vertical force varies. 

5.5.3.1 Multiple Frequencies 
If the excitation is of one single frequency, the stress amplitude can be used when comparing two de-
signs. However, for spectra of multiple frequencies, one cannot look at amplitudes solely, 
[ ̂   ̂2 ⋯   ̂𝑁], because the amplitudes will depend on how the discretization is done, i.e. the number N. 
Some kind of integral of a spectral density is more reasonable. In this compendium, it is proposed that 
a very approximate measure of road grip is calculated as follows: 
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𝑀𝑒 𝑠𝑢𝑟𝑒 𝑓𝑜𝑟 (   )𝑟𝑜    𝑟 𝑝 =  𝑀𝑆(  𝑟 (𝑡)) =  

= √
𝛷0
𝛺0

−𝑤 ∙  𝑥 −1 ∙ ∫ |𝐻 𝑟→  𝑟 ( )|
2
∙ − ∙   

 

 =0
=  

= {𝑢𝑠𝑒: 𝐻 𝑟→ 𝑢− 𝑠 =  𝑡 ∙ (1 − 𝐻 𝑟→ 𝑢)} = 

= √
𝛷0
𝛺0

−𝑤 ∙  𝑥 −1 ∙ ∫ | 𝑡 ∙ (1 −𝐻 𝑟→ 𝑢)|
2
∙ − ∙   

 

 =0
;  

[5.55] 

Equation is written for application to a known road spectrum (𝛷0  ) and vehicle dynamic structure 

(𝐻 𝑟→ 𝑢), but the first expression ( 𝑀𝑆(  𝑟 (𝑡))) is applicable on a measured or simulated time do-

main solution. 

5.5.4 Other Functions 
Present chapter focuses on the functions, (vertical) ride comfort, fatigue and road grip. Examples of 
other functions are: 

• An area of functions that encompasses the vertical dynamics is Noise, Vibration, and Harsh-
ness – NVH. It is similar to ride comfort, but the frequencies are higher, stretching up to sound 
which is heard by humans. 

• Ground clearance (static and dynamic) between vehicle body and ground. Typically, im-
portant for off-road situations. 

• Longitudinal comfort, due to drive line oscillations and/or vertical road displacements. Espe-
cially critical when driver cabin is separately suspended to the body. This is the case for heavy 
trucks. 

• Disturbances in steering wheel feel, due to one-sided bumps. Especially critical for rigid 
steered axles. This is often the design of the front axle in heavy trucks. 

• There are of course an infinite number of combined manoeuvres, in which functions with re-
quirements can be found. Examples can be bump during strong cornering (possibly destabi-
lizing vehicle) or one-sided bump (exciting both heave=bounce, pitch and roll modes). When 
studying such transients, the vertical dynamics is not enough to capture the comfort, but one 
often need to involve also longitudinal dynamics; the linkage with ant-dive/anti-squat geome-
try from Chapter 3 becomes important as well as tyre vertical (radial) deflection characteris-
tics. 

• Energy is dissipated in suspension dampers, which influence energy consumption for the ve-
hicle. This energy loss is much related, but not same as, to (tyre) rolling resistance. Suspension 
characteristics do influence this energy loss, but it is normally negligible, unless driving very 
fast on very uneven road. 

5.6 Variation of Suspension Design 
The influence of design parameters on vehicle functions Ride comfort, Suspension fatigue and Road 
grip can now be made. E.g., it is important to not only use the transfer function, but also take the road 
and human sensitivity into account, which calls for different weighting for different frequencies. 

Transfer function for the model in 5.4.3 is shown as dashed lines in  

Figure 5-22. Same figure also shows the Road- and Human-weighted versions. Studying how these 
curves change with design parameters gives a quantitative understanding of how different suspension 
design parameters influence. Such variations will be done in 5.6.1 to 5.6.4. 

There are two particular frequency intervals of the graphs to observe. These are the 2 peaks around 
the two the natural frequencies of the sprung and unsprung masses, the peak at lower frequency is 
mainly a resonance in heave mode, while the higher one is in wheel hop mode. 
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Figure 5-22: For a passenger car with   =  1600 [𝑘 ]   =  200 [𝑘 ]   = 76 [𝑘𝑁  ⁄ ]   =

9 [𝑘𝑁 ( 𝑠⁄ )⁄ ]  𝑡 = 764 [𝑘𝑁  ⁄ ]  𝑡 = 0. Left is vertical acceleration (amplitude) of sprung mass for Ride 
Comfort. Middle is relative displacement (amplitude) between sprung and unsprung mass for Suspension 

Fatigue. Right is deformation (amplitude) of tyre spring for Road Grip. Weightings for typical road and for 
human sensitivity is shown. 

5.6.1 Varying Suspension Stiffness 
In Figure 5-23 the benefits of the low suspension stiffness (1 Hz) is seen for suspension travel and 
comfort without much change in the road grip performance. 
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smaller cs = 38 [kN/m]

reference cs = 76 [kN/m]

larger cs = 153 [kN/m]

 
Figure 5-23: Result from varying suspension stiffness,    
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Regarding Figure 5-23 and Figure 5-24 we see that there is a large influence of the acceleration gain at 
low frequencies with little change at the wheel hop and higher frequencies. The suspension stiffness 
and damping were seen to have little influence on the ride comfort / road grip response around 10 Hz. 

5.6.2 Varying Suspension Damping 
In Figure 5-24, we see that the changes in suspension damping have opposite effects for the heave and 
wheel hop frequency responses. High damping is good for reducing heave, but not so effective for 
wheel hop. 
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smaller ds = 4 [kN/m]

reference ds = 9 [kN/m]

larger ds = 18 [kN/m]

 
Figure 5-24: Result from varying suspension damping,    

5.6.3 Varying Unsprung Mass 
In Figure 5-25, we see that if the response around the wheel hop frequency is to be changed, the un-
sprung mass is one of the most influential parameters. The unsprung mass is usually in the range of 
10% of the sprung mass. Opposite to the suspension parameters, the unsprung mass influences fre-
quencies around the wheel hop frequency with little influence around the heave frequency. 

In Figure 5-25, the case with   = 0 is added. This is to demonstrate what a model with neglected 
mass gives and can be nearly compared with the model in 5.4.2. 

5.6.4 Varying Tyre Stiffness 
In Figure 5-26 a general observation is that low sprung mass natural frequencies are preferred for 
comfort considerations. Another parameter that has a strong affect near the wheel hop frequency is 
the tyre stiffness. The strongest response is noticed for the road grip function. (Note that, since  𝑡 is 
now varying, we have to express road grip as  𝑡 ∙ (  −   ); only   −    does not give a fair compari-
son.)  
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smaller mu = 100 [kg]

reference mu = 200 [kg]

larger mu = 400 [kg]

zero mu = 0 [kg]

 
Figure 5-25: Result from varying unsprung mass,    
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smaller ct = 382 [kN/m]

reference ct = 764 [kN/m]

larger ct = 1529 [kN/m]

 
Figure 5-26: Result from varying Tyre Stiffness,  𝑡  

5.7 Two Dimensional Oscillations 
The one-dimensional model is useful for analysing the response of one wheel/suspension assembly. 
Some phenomena do connect other vehicle body motions than the vertical translation, especially pitch 
and roll. Here, other models are needed, such as Figure 5-28 and Figure 5-27. 
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5.7.1 Heave and Roll 
A model like in Figure 5-27 is proposed. We have been studying Heave (bounce) and pitch before, in 
4.3.9 and 4.5.2.3. Hence compare with corresponding model in Figur. In Chapter 4, the excitation was 
lateral tyre/axle forces, while the vertical displacement of the road was assumed to be zero. In vertical 
vehicle dynamics, it is the opposite. That means that the linkage geometry (roll centre or wheel pivot 
points) is not so relevant here. So, the model can be somewhat simpler. 

Flz

m*g
z

px

zl zr

Frrz
zrl zrr

zrl

x x 

zrr

J*der(wx)

m*az

 
Figure 5-27: Heave and roll model. Anti-roll bar not drawn but can be included in equations in matrix 𝑪. 

No equations are formulated for this model in this compendium, but a model will typically show two 
different modes, the heave and roll. Heave Eigen frequency is typically 1-1.5 Hz for a passenger car, as 
mentioned before. The roll frequency is similar or somewhat higher. 

If modelling unsprung masses without inertia, we still get 2 state variables, heave   and roll   . Using 
same mathematical form of equations as in Eq [5.45] we get this model (subscripts 𝑟𝑙 for “road left” 
and 𝑟𝑟 for “road right”): 

𝑴 ∙ 𝒛̈ + 𝑫 ∙ 𝒛 + 𝑪 ∙ 𝒛 = 𝑫𝒓 ∙ 𝒛 𝒓 + 𝑪𝒓 ∙ 𝒛𝒓; 

  𝑒𝑟𝑒 𝒛 = [
 
  
]   𝑛  𝒛𝒓 = [

  𝑙
   

] ; 

The disturbances from the road are two independent ones, so 
the transfer functions will be a 2 × 2 matrix: 

[
ℱ( )

ℱ(  )
] = 𝑯  [

ℱ(  𝑙)

ℱ(   )
] = [

𝐻 𝑟𝑙→ 𝐻 𝑟𝑟→ 
𝐻 𝑟𝑙→𝜑𝑥

𝐻 𝑟𝑟→𝜑𝑥

]  [
ℱ(  𝑙)

ℱ(   )
] ; 

[5.56] 

Note that the restoring matrix 𝐶 might need to include both elastic restoring (wheel springs and anti-
roll-bars) and pendulum effects, see 4.3.9.2 and Reference (Mägi, 1988). For high-loaded trucks, the 
pendulum effect is really relevant, while it often can be omitted for a low sportscar. 

5.7.2 Heave and Pitch 
A model like in Figure 5-28 is proposed. We have been studying heave (or bounce) and pitch before, in 
3.4.5.2. Hence compare with corresponding model in Figure 3-28. In Chapter 3, the excitation was lon-
gitudinal tyre forces, while the vertical displacement of the road was assumed to be zero. In vertical 
vehicle dynamics, it is the opposite. The importance of model with linkage geometry (pitch centre or 
axle pivot points above ground level) is that tyre forces are transferred correctly to the body. That 
means that the linkage geometry is not so relevant for vertical vehicle dynamics in Chapter 5. So, the 
model can be somewhat simpler. 

A mathematical model would typically show two different modes, see Figure 5-29. The heave eigen-
frequency is typically 1-1.5 Hz for a passenger car. The pitch frequency is somewhat higher. 

We should reflect on that the models in 5.4 and 5.7.1 refer to the same bounce mode. But the models 
will most likely give different numbers of, e.g., Eigen frequency. A total model, with all degrees of free-
dom, would align those values, but the larger a model is the more data it produces which often leads to 
less easy design decisions. 
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Figure 5-28: Heave and pitch physical model. 
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Figure 5-29: Oscillation modes of a Heave 

and Pitch model. 

5.7.2.1 Wheel Base Filtering 
See Figure 5-30. If the wheel base is an integer multiple of the wave length, only heave (bounce) will 
be excited. If wave length is in the middle between those, only pitch will be excited. This phenomenon 
is called “wheel base filtering”. 

Low heave 
excitation

Low pitch 
excitation 

 
Figure 5-30: Wheel Base Filtering, as compared to “uncorrelated”. Response |𝐻   →𝑣 𝑔| and |𝐻   →𝜔 𝑦|. Two 

frequencies, 0.5 and 5 Hz. Varying Road Wavelengths, so also    has to vary. 

5.7.2.2 Mathematical Model 
From Figure 5-28 we can derive the following mathematical models: 

Equilibrium:    +    −   −    = 0;     𝑛   −     𝑙 +     𝑙 − 𝐽𝑦    𝑦 = 0; 

Compatibility:    =   − 𝑙   𝑦;     𝑛       =   + 𝑙   𝑦; 

Constitution:     =    +    (    −    );     𝑛        =    (    −    );     𝑛  

                                    =    +    (    −    );      𝑛        =    (    −    ); 
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Above model is formulated on first order form (    ⋯ ; and    =   (⋯ );) to show an alternative to 
second order differential equation form (   ̈⋯ ;) used in 5.4. 

We need to express    in differentiated variables. Then we can either assume [     ] = [  𝑔   𝑔]; (ve-

locity components in ground fixed directions) or [     ] = [  𝑣    𝑣]; (vehicle fixed directions). Both 

are correct, in similar way as for the yaw rotation, see 4.4.2.3.3. If ground fix: [  𝑔   𝑔] = [   𝑔    𝑔];. If 

ground fix: [  𝑣   𝑣] = [   𝑣 +   𝑣   𝑦 ≈    𝑣    𝑣 −   𝑣   𝑦];. The intention for 5.7.2 is to study con-

stant speed over ground, so we know    𝑔 = 0;. Therefore it is easiest to use ground fix directions. We 

can compare with the pitching model in 3.4.5, which is typically used for longitudinal acceleration and 
braking. Then it is most natural to use vehicle fix and solve   𝑣 and   𝑣 as state variables in an ode.  

We formulate the matrix form of the model in ground fix direction: 

[
 
 
 
 0 0 0
0 𝐽𝑦 0 0

0 0 1   ⁄ 0

0 0 0 1   ⁄ ]
 
 
 

⏟              
𝑴𝑪

 

[
 
 
 
 
   𝑔
  𝑦

    

    ]
 
 
 
 

= 

=

[
 
 
 
 

−  −      𝑙 −    𝑙 1 1

   𝑙 −    𝑙 −   𝑙 
2 −    𝑙 

2 −𝑙 +𝑙 
−1 +𝑙 0 0

−1 −𝑙 0 0 ]
 
 
 
 

⏟                              
𝑫

 [

  𝑔
 𝑦

   
   

]

⏟  
𝒛𝒗𝑭

+ [

−   
0
0
0

]

⏟      
𝒈

+ [

    
−   𝑙    𝑙 
1 0
0 1

]

⏟            
𝑫𝒓

 [
    
    

]
⏟  
𝒛𝒗𝒓

; 

Variable substitution 𝒛𝒗𝑭 = 𝒛𝒗𝑭𝟎 −𝑫−𝟏  𝒈; gives: 𝑴𝑪  𝒛 𝒗𝑭𝟎 = 𝑫  𝒛𝒗𝑭𝟎 +𝑫𝒓  𝒛𝒗𝒓𝒛;. 

Fourier transform gives: 𝑗    𝑴𝑪  𝓕(𝒛𝒗𝑭𝟎) = 𝑫  𝓕(𝒛𝒗𝑭𝟎) + 𝑫𝒓  𝓕(𝒛𝒗𝒓𝒛);The Transfer functions in 
Figure 5-30 can now be plotted. Note that the driver comfort, earlier measured in vertical accelera-

tion amplitude  ̂ = amplitude(   ) ;, now has two possibilities:   ̂ 𝑔 = amplitude(   𝑔) =   ̂ 𝑔; or  ̂ 𝑣 =

amplitude(   𝑣 −   𝑣   𝑦) ;. The latter one makes most sense, since seat and driver rotates with the 

vehicle. With this measure of driver comfort, the transfer function for    in Figure 5-30, |𝐻   →𝑣  | =

|𝐻   →𝑣  𝑔|, should be adjusted to |𝐻   →𝑣  𝑣|, for driver comfort measure.  

If eliminating the forces, in the model in vehicle directions, we get the 2nd order differential equation: 

[
 0
0 𝐽𝑦

]  [
 ̈ 𝑔
 ̈𝑦

] = [
−  −      𝑙 −    𝑙 

   𝑙 −    𝑙 −   𝑙 
2 −    𝑙 

2]  [
   𝑔
  𝑦

] + [
1 1
−𝑙 𝑙 

]  [
  0

0   
]

 ([
−1 𝑙 
−1 −𝑙 

]  [
  𝑔
 𝑦

] + [
    𝑔
    𝑔

]) + [
    
−   𝑙    𝑙 

]  [
     𝑔
     𝑔

] ; 

5.7.2.2.1 Correlated or Wheel Base Filtered 

Front and rear are excited with same frequencies, but delayed at the rear: 

𝓕(𝒛𝒗𝒓𝒛) = [
ℱ(    )

ℱ(    )
] = 𝓕(

 

 𝑡
[
   
   

]) = 𝓕(
 

 𝑡
[

 ̂  cos(  𝑡)

 ̂  cos(  𝑡 − 2  𝜋  𝜆  ⁄ )
]) =

= [
1

cos(2  𝜋  𝜆  ⁄ ) − 𝑗  sin(2  𝜋  𝜆  ⁄ )]  ℱ
( ̂  cos(  𝑡)) =

= [
1

cos(2  𝜋  𝜆  ⁄ ) − 𝑗  sin(2  𝜋  𝜆  ⁄ )]  ℱ(    ) =

= 𝑗    [
1

cos(2  𝜋  𝜆  ⁄ ) − 𝑗  sin(2  𝜋  𝜆  ⁄ )]  ℱ(   ) = 𝑗    𝒅𝝀  ℱ(   ); 

Insertion gives: 𝑗    𝑴𝑪  𝓕(𝒛𝒗𝑭𝟎) = 𝑫  𝓕(𝒛𝒗𝑭𝟎) + 𝑫𝒓  𝑗    𝒅𝝀  ℱ(   );  ⇒ 

⇒  𝓕(𝒛𝒗𝑭𝟎) = (𝑗    𝑴𝑪 − 𝑫)−  𝑫𝒓  𝑗    𝒅𝝀  ℱ(   ) =

[
 
 
 
 
𝐻 𝑟𝑓→𝑣𝑧
𝐻 𝑟𝑓→𝜔𝑦

𝐻 𝑟𝑓→ 𝑓𝑠
𝐻 𝑟𝑓→ 𝑟𝑠 ]

 
 
 
 

 ℱ(   ) = 𝑯𝒛𝒓𝒇→𝒗𝒛 𝒄𝒐𝒓𝒓  ℱ(   ); 

All 𝐻 depend on   (or 𝜆) and   . 
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5.7.2.2.2 Uncorrelated 

We now assume that front and rear are excited “uncorrelated”. This is wrong if driving on a road 
where rear axle follows front axle, but it is correct for a vehicle with independent excitation under 
each axle, which can be achieved e.g. in a shake rig. 

𝓕(𝒛𝒗𝒓) = [
ℱ(    )

ℱ(    )
] = [

ℱ(    )

ℱ(    )
] = 𝑗    [

ℱ(   )

ℱ(   )
] ; 

𝓕(𝒛𝒗𝑭𝟎) = (𝑗    𝑴𝑪 − 𝑫)−  𝑫𝒓  𝑗    [
ℱ(   )

ℱ(   )
] =

[
 
 
 
 
𝐻 𝑟𝑓→𝑣𝑧  𝑛    𝐻 𝑟𝑟→𝑣𝑧  𝑛    

𝐻 𝑟𝑓→𝜔𝑦  𝑛    𝐻 𝑟𝑟→𝜔𝑦  𝑛    

𝐻 𝑟𝑓→ 𝑓𝑠  𝑛    𝐻 𝑟𝑟→ 𝑓𝑠  𝑛    
𝐻 𝑟𝑓→ 𝑟𝑠  𝑛    𝐻 𝑟𝑟→ 𝑟𝑠  𝑛    ]

 
 
 
 

 [
ℱ(   )

ℱ(   )
] ; 

If     and     have the same amplitude(frequency) content, and is called   , we can write: 

𝓕(𝒛𝒗𝑭𝟎) =

[
 
 
 
 
𝐻 𝑟𝑓→𝑣𝑧  𝑛    𝐻 𝑟𝑟→𝑣𝑧  𝑛    
𝐻 𝑟𝑓→𝜔𝑦  𝑛    𝐻 𝑟𝑟→𝜔𝑦  𝑛    

𝐻 𝑟𝑓→ 𝑓𝑠  𝑛    𝐻 𝑟𝑟→ 𝑓𝑠  𝑛    
𝐻 𝑟𝑓→ 𝑟𝑠  𝑛    𝐻 𝑟𝑟→ 𝑟𝑠  𝑛    ]

 
 
 
 

 [
1
1
]  ℱ(  ) = 𝑯𝒛𝒓→𝒗𝒛 𝒖𝒏𝒄𝒐𝒓𝒓  ℱ(  ); 

The elements in 𝐻 depend on   (or 𝜆) and   . 

5.8 Three Dimensional Oscillations 
A real road generates motion in all out-of-road-plane dimensions: heave  , roll    and pitch  𝑦. One 

can, for instance, use [5.27] to generate a vertical profile for each side of the vehicle, but then ran-
domly generate different phases for each side. Another way is to record a certain piece of a road where 
one does testing, typically at the vehicle manufacturer’s test track. One then gets wheel base filtering 
one each side and a roll influence due to that left and right side are not in phase with each other. 

If modelling unsprung masses without inertia, we still get 3 state variables: heave  , pitch  𝑦 and roll 

 𝑦 . Using same form of equations as in Eq [5.45] we get this model (subscripts 𝑟𝑓𝑙 for “road front left” 

and so on): 

𝑴 ∙ 𝒛̈ + 𝑫 ∙ 𝒛 + 𝑪 ∙ 𝒛 = 𝑫𝒓 ∙ 𝒛 𝒓 + 𝑪𝒓 ∙ 𝒛𝒓; 

  𝑒𝑟𝑒 𝒛 = [

 
  
 𝑦
] ;  

 𝑛  𝒛𝒓 = [

   𝑙
    
   𝑙
    

] = [

1 0
0 1

cos( ) + 𝑗  sin( ) 0

0 cos( ) + 𝑗  sin( )

]  [
   𝑙
    

] ;  

  𝑒𝑟𝑒  = 2  𝜋     ⁄ ; 

The disturbances from the road are two independent ones, so the transfer 
functions will be a 3 × 2 matrix: 

[

ℱ( )

ℱ(  )

ℱ( 𝑦)
] = 𝑯  [

ℱ(   𝑙)

ℱ(    )
] = [

𝐻 𝑟𝑓𝑙→ 𝐻 𝑟𝑓𝑟→ 
𝐻 𝑟𝑓𝑙→𝜑𝑥

𝐻 𝑟𝑓𝑟→𝜑𝑥

𝐻 𝑟𝑓𝑙→𝜑𝑦 𝐻 𝑟𝑓𝑟→𝜑𝑦

]  [
ℱ(  𝑙)

ℱ(   )
] ; 

[5.57] 

5.9 Transient Vertical Dynamics 
The majority of the chapter you read now, considers driving for during long time periods on roads 
with repetitive unevenness. This is one relevant use case and the functions are then suitably analysed 
using frequency analysis, since the quantities vary as stationary oscillations. 
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However, vertical vehicle dynamics also have transient disturbances to consider. Test cases can be 
one-sided or two sides road bumps or pot-holes. Two-sided bump is envisioned in Figure 5-31. It can 
represent driving over a speed bump or a low obstacle. 

Models from earlier in this chapter are all relevant for two-sided bumps or holes, but one might need 
to consider non-linearities such as bump stops or wheel lift as well as different damping in compres-
sion and rebound. For one-sided bumps/holes, the models from earlier in this chapter are generally 
not enough. The computation is rather time simulation than frequency analysis. The function 
measures (and requirements) should be shifted somewhat: 

• Human comfort for transients is often better described as time derivative of acceleration 
(called “jerk”). Peak-to-peak values of the variables can be used. 

• The material loads are more of maximum load type than fatigue life dimensioning, i.e. higher 
material stress but fewer load cycles during vehicle life time. 

• Road grip studies over road bumps and pot-holes are challenging. Qualitatively, the tyre mod-
els often must include relaxation, because that is the mechanism which reduces road grip when 
vertical load shifts. To get quantitatively correct tyre models is beyond the goal of the compen-
dium you presently read. 

• Roll-over can be tripped by large one-sided bumps. This kind of roll-overs is unusual and re-
quires complex models. 

 
Figure 5-31: Response of Vehicle for Front and Rear Axle Impulses, (Gillespie, 1992) 

Models for studying transient vertical dynamics can, in general be categorized as the stationary oscilla-
tion models, 1D, 2D and 3D. But they cannot generally be linear, so they require simulation, not fre-
quency analysis. One typically need to add inertia of unsprung parts and vertical elasticities in each 
tyre. And “trivial linkage” suspension is generally not enough if sharp road unevenness, but instead 
one might identify the pivot axis in space for each wheel linkage.  

A 3D model according to these concepts gets the states 𝒛 containing       𝑦    𝑙        𝑙   𝑛      if 

modelled with a second order differential equation (𝒇(𝒛̈ 𝒛  𝒛 𝒖 𝑡) = 0;). If modelled with first order 
differential equations (𝒇(𝒛  𝒛 𝒖 𝑡) = 0;) and the concept of using forces in elasticities as states, see 
1.5.2.2, the states   will instead contain       𝑦   𝑙         𝑙          𝑙          𝑙   𝑛      , 

where  𝑖𝑗  is vertical velocity of unsprung mass in wheel  𝑗 and   𝑖𝑗  is elastic part of vertical force un-

der wheel  𝑗. The inputs (disturbance) 𝒖 = 𝒛𝒓 will contain    𝑙          𝑙   𝑛      . 
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