
Multiple pattern matching for network security applications: Acceleration
through vectorization (pre-print version)

Downloaded from: https://research.chalmers.se, 2025-06-18 02:39 UTC

Citation for the original published paper (version of record):
Stylianopoulos, C., Almgren, M., Landsiedel, O. et al (2020). Multiple pattern matching for network
security applications: Acceleration through vectorization
(pre-print version). Journal of Parallel and Distributed Computing, 137: 34-52.
http://dx.doi.org/10.1016/j.jpdc.2019.10.011

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Multiple Pattern Matching for Network Security

Applications: Acceleration through Vectorization I

Charalampos Stylianopoulosa,∗, Magnus Almgrena, Olaf Landsiedelb,a,
Marina Papatriantafiloua

aChalmers University of Technology, Sweden
bKiel University, Germany

Abstract

As both new network attacks emerge and network traffic increases in vol-
ume, the need to perform network traffic inspection at high rates is ever
increasing. The core of many security applications that inspect network traf-
fic (such as Network Intrusion Detection) is pattern matching. At the same
time, pattern matching is a major performance bottleneck for those applica-
tions: indeed, it is shown to contribute to more than 70% of the total running
time of Intrusion Detection Systems. Although numerous efficient approaches
to this problem have been proposed on custom hardware, it is challenging for
pattern matching algorithms to gain benefit from the advances in commodity
hardware. This becomes even more relevant with the adoption of Network
Function Virtualization, that moves network services, such as Network In-
trusion Detection, to the cloud where scaling on commodity hardware is key
for performance.

In this paper, we tackle the problem of pattern matching and show how to
leverage the architecture features found in commodity platforms. We present
efficient algorithmic designs that achieve good cache locality and make use of
modern vectorization techniques to utilize data parallelism within each core.
We first identify properties of pattern matching that make it fit for vector-

IPreliminary results of this work were presented the 46th International Conference on
Parallel Processing (ICPP) 2017 [1].

∗Corresponding author
Email addresses: chasty@chalmers.se (Charalampos Stylianopoulos ),

magnus.almgren@chalmers.se (Magnus Almgren), ol@informatik.uni-kiel.de (Olaf
Landsiedel), ptrianta@chalmers.se (Marina Papatriantafilou)

Preprint submitted to Journal of Parallel and Distributed Computing April 3, 2020



ization and show how to use them in the algorithmic design. Second, we
build on an earlier, cache-aware algorithmic design and show how we apply
cache-locality combined with SIMD gather instructions to pattern matching.
Third, we complement our algorithms with an analytical model that pre-
dicts their performance and use it to easily evaluate alternative designs. We
evaluate our algorithmic design with open data sets of real-world network
traffic: Our results on two different platforms, Haswell and Xeon-Phi, show
a speedup of 1.8x and 3.6x, respectively, over Direct Filter Classification
(DFC), a recently proposed algorithm by Choi et al. for pattern matching
exploiting cache locality, and a speedup of more than 2.3x over Aho-Corasick,
a widely used algorithm in today’s Intrusion Detection Systems. Finally, we
utilize highly parallel hardware platforms and evaluate the scalability of our
algorithms, achieving processing throughput of up to 45Gbps.

Keywords: pattern matching, SIMD, vectorization, gather

1. Introduction

Pattern matching is an essential building block for many security appli-
cations, such as antivirus programs or Network Intrusion Detection Systems
(NIDS). In its core, pattern matching algorithms operate on two sets of in-
put: (i) a predefined set of patterns and (ii) an incoming stream of data and
attempt to detect if any of the patterns exist in the stream. In this work, we
focus on the problem of fixed-string, multiple pattern matching, i.e. the pat-
terns are string literals and, differently from single pattern matching [2, 3],
we are simultaneously tracking the presence of many patterns. In the context
of Network Intrusion Detection Systems, the set of patterns are signatures
of known malicious attacks (usually in the order of thousands) that the sys-
tem aims to detect and the data stream is the reassembled stream of packets
captured from the network interface.

Motivation and Challenges. Pattern matching represents a major
performance bottleneck in many security mechanisms, especially when there
is a need to employ analysis on the full packet’s payload (Deep Packet In-
spection). In intrusion detection, for example, more than 70% of the total
running time in spent on pattern matching [4, 5]. Moreover, with the increas-
ing interest in Network Function Virtualization (NFV) [6, 7], applications like
firewalls and Network Intrusion Detection are now expected to be placed in
the application layer of the control plane [8], where they need to rely on

2



commodity hardware features for performance, like multi-core parallelism
and vector processing pipelines.

In this paper, we introduce a vectorizable design of an exact pattern
matching algorithm which nearly doubles the performance when compared
to the state of the art, on SIMD-capable commodity hardware, such as Intel’s
Haswell processors or Xeon Phi [9]. Vectorization as a technique to increase
throughput is gradually taking a more central role [10]. For example, ar-
chitectures with SIMD instruction-sets now provide wider vector registers
(256 bits with AVX) and introduce new instructions, such as gathers, that
make vectorization applicable to a wider range of applications. Moreover,
modern processor designs are shifting towards new architectures, like Intel’s
Xeon Phi [9], that, for example, supports 512 bit vector registers. On those
platforms, vectorization is not just an option but a must, in order to achieve
high performance [11]. In this work we introduce algorithmic designs to
utilize these capabilities.

Approach and Contributions. The introduction of gathers and other
advanced SIMD instructions (cf. section 3) allows even applications with
irregular data patterns to gain performance from data parallelism. For ex-
ample, SIMD can speed up regular expression matching [12, 13, 14]. Here,
the input is matched against a single regular expression at a time, represented
by a finite state machine that can fit in L1 or L2 cache. Working close to the
CPU is crucial for these approaches, otherwise the long latency of memory
accesses would hide any computation speedup through vectorization.

The domain of multiple pattern matching for Network Intrusion Detection
has challenging constraints that limit the effectiveness of these approaches:
applications need to simultaneously evaluate thousands of patterns and tra-
ditional state-machine-based algorithms, such as Aho-Corasick [15], use big
data structures that by far exceed the size of the cache of today’s CPUs. The
size of the patterns varies greatly (from 1-byte to several hundred byte pat-
terns) and can appear anywhere in the input. That is why SIMD techniques
have not been previously considered for exact multiple pattern matching –
with a few exceptions discussed in Section 7 – for Network Intrusion Detec-
tion.

Building upon recent work [16, 17] that take steps in addressing the cache-
locality issues for this problem, our approach fills this gap: we propose al-
gorithmic designs for multiple pattern matching that bring together cache
locality and modern SIMD instructions, to achieve significant speedups when
compared to the state of the art. Combining cache locality and vectorization

3



introduces new trade-offs on existing algorithms. Compared to traditional
approaches that perform the minimum required number of instructions, but
on data that is away from the processor, our approach, instead, performs
more instructions, but these instructions find data close to the processor and
can process them in parallel using vectorization.

Our work builds on a family of recent algorithms that take steps towards
providing good cache locality for multiple exact pattern matching [16, 17].
They filter parts of the input streams using small, cache efficient data struc-
tures. We argue that, as a result, memory latencies are no longer the domi-
nant bottleneck for this family of algorithms while their computational part
becomes more significant. In this work, we follow a two-step approach. First,
we propose a refined and extended method, which is able to benefit from
vectorization while ensuring cache locality. Second, we design its vector-
ized version by utilizing SIMD hardware gather operations. To evaluate our
approach, we apply our techniques to the DFC algorithm [16], as a repre-
sentative example that outperforms existing techniques in Network Intrusion
Detection applications, including [17], on which our proposed approach can
be applied as well. We also include an analytical model that predicts the cost
of both our scalar and vectorized algorithms, taking into account the num-
ber of malicious patterns given at startup. Finally, we deploy our algorithms
on multi-core architectures and utilize all the available hardware parallelism,
both within each core (with vectorization) and across many cores. A high-
level illustration of our approach is shown in Figure 1.

In particular, we target the computational part of pattern matching for
performance optimization and make the following contributions:

• We propose algorithmic designs for multiple pattern matching which
(a) ensure cache locality and (b) utilize modern SIMD instructions.

• We devise a new pattern matching algorithm, based on these designs,
that utilizes SIMD instructions to outperform the state of the art, while
staying flexible with respect to pattern sizes.

• We introduce an analytical model to predict the performance of both
our scalar and vectorized algorithms, based on the number of patterns.
We evaluate the model with real-world data and find that it closely
follows the observed trends.

• We (implement the algorithm and) thoroughly evaluate it under both
real-world traces and synthetic data sets. We outperform the state of

4



… H J U K G L G L G L F P F J F Y K F G …

Input	Stream

Data	parallel	
evaluation	with	a	
vectorized pattern	
matching	engine

… H J U K G L G L G L F P F J F Y K F G …

Pattern	matching	
engine

Input	Stream

H J J J A …

A V V C C …

J R L 9 H …

F 7 J G J …

Pattern	Database

Tr
ad
iti
on

al
	

Ap
pr
oa
ch

Ve
ct
or
iza

tio
n	

in
	V
-P
AT
CH

Evaluating	the	input	
iteratively

Pattern	matching	
engine

Figure 1: A general example of pattern matching at the top, and our proposed vectorized
pattern matching approach at the bottom.

the art by up to 1.8x on commodity hardware and up to 3.6x on the
Xeon-Phi platform.

• We evaluate the scalability of our algorithms when using all the par-
allelism offered by the platform and achieve up to 40 Gbps processing
throughput on the Haswell platform and 45Gbps on the Xeon-Phi.

The remainder of the paper is organized as follows: Section 2 gives an
overview of important pattern matching algorithms and background on vec-
torization. Section 3 describes our system model. In Section 4, we present
our approach leading to a new, vectorized design. In Section 5 we introduce
an analytical model to predict the performance of our scalar and vectorized
algorithms. Section 6 presents our experimental evaluation on the perfor-
mance of our algorithms under a variety of evaluations scenarios. In Section
7, we give an overview of other related work and we conclude in Section 8.

2. Background

In this section we present traditional approaches to pattern matching,
followed by a brief description of the DFC algorithm (Choi et al. [16]) to
which we apply our approach. Next, we introduce the required background
on vectorization techniques.

5



2.1. Traditional Approach to Multiple-Pattern Matching

The most commonly used pattern matching algorithm for network-based
intrusion detection is by Aho-Corasick [15]. It creates a finite-state automa-
ton from the set of patterns and reads the input byte by byte to traverse the
automaton and match multiple patterns. Even though it performs a small
number of operations for every input byte, it implies– in practice and on
commodity hardware – a low instruction throughput due to frequent memory
accesses with poor cache locality [16]: As the number of patterns increases,
the size of the state automaton increases exponentially and does not fit in
the cache. Nevertheless, the method is heavily used in practice; e.g., both
Snort [18], one of the best known intrusion detection systems, as well as
CloudFlare’s web application firewall [19], use it for string matching.

2.2. Filtering Approaches and Cache Locality in Multiple Pattern Matching

Besides state-machine based approaches, there is a family of algorithms
that rely on filtering to separate the innocuous input from the matches.
Recent work focuses on alleviating the problem of long latency lookups on
large data structures. Choi et al. [16] present a novel algorithmic design called
DFC (Direct Filter Classification), that replaces the state machine approach
of Aho-Corasick with a series of small, succinct summaries called filters. Such
a filter is a bit-array that summarizes only a specific part of each pattern,
e.g. its first two bytes, having one bit for every possible combination of two
characters that can be found in the patterns. The algorithm is structured in
two phases, the filtering and verification:

• In the filtering phase, a sliding window of two bytes over the input goes
through an initial filter, as described above, to quickly evaluate whether
the current position is a possible starting point of a match. The two-
byte windows that passed the initial filter are fed to other, similar filters,
each specializing on a family of patterns depending on their length. Since
the filters are small (8KB each), they usually fit in L1 cache. Thus, the
main part of the algorithm differs from Aho-Corasick and uses only cache-
resident data structures, resulting in up to 3.8 times less cache misses [16].

• If a window of two characters passed all filters, there is a strong indication
that it is a starting point of a match. For this reason, in the next verifi-
cation phase, the DFC algorithm performs lookups on specially designed
hash tables, containing the actual patterns and performs exact matching
on the input and the pattern, to verify the match.

6



Other algorithms in this family, like [17] as well as this work, operate on
the same idea: the input is filtered using cache resident data structures, and
only the “interesting” parts of the input is forwarded for further evaluation.

2.3. Vectorization

Single Instruction Multiple Data (SIMD) is an execution model for data
parallel applications, which utilizes processing units that operate on a vector
of elements simultaneously, instead of separate elements at a time. SIMD
instructions utilize the vector execution units, a separate pipeline found
in modern processors that operates on multiple registers with almost the
same cost as the equivalent scalar instructions. SIMD vectorization is a
desirable goal in computationally intensive, number-crunching applications,
where computation is performed on independent data, sequentially stored in
memory. However, until recently, most algorithms that did not follow this
sequential access patterns were difficult to vectorize.

Vector instruction sets have evolved over time, introducing bigger regis-
ters and support for more complex instructions. Originally offering support
for up to 128 bits, vector instruction sets are now extended to 256 bit-long
vector registers and new generation platforms, such as the Xeon-Phi [9], sup-
port up to 512 bit-long vector registers, which indicates the vendor effort
to accelerate applications that utilize data parallelism. Recently, vector in-
struction sets on commodity hardware have been enriched with the gather
instruction [20] that enables accessing data from non-contiguous memory lo-
cations (described in detail in Section 3). Polychroniou et al. [21] study the
effect of vectorization with the gather instruction on a series of data struc-
tures, such as Bloom-Filters, hash-table lookups, joins and selection scans,
among others. We are building on these works with SIMD instructions and
extend their design to pattern matching with the applications we focus on.

3. System model

In this section we introduce the assumptions and requirements that our
approach makes on the hardware. We focus on mainstream CPUs, with
vector processing units (VPUs) that support gather instructions. The latter
make it possible to fetch memory from non-contiguous locations using only

7



SIMD instructions1

The semantics of gather are as follows: let W be the vector length, which
is the maximum number of elements that each vector register can hold. The
parameters to the instruction are a vector register (I) that holds W indexes
and an array pointer (A). As output, gather returns a vector register (O) with
the W values of the array at the respective indexes. It is important to note
that gather does not parallelize the memory accesses; the memory system
can only serve a few requests at a time. Instead, its usefulness lies in the fact
that it can be used to obtain values from non-contiguous memory locations
using only SIMD code. This increases the flexibility of the SIMD model and
allows to efficiency employ it for workloads previously not considered, i.e.,
where the memory access patterns are irregular. The alternative is to load
the values using scalar code, then transfer them one by one from the scalar
registers into vector registers. Generally, switching between scalar and vector
code is not efficient [22, 21].

Apart from gather, the rest of the instructions we use can be found across
almost all the vector instruction sets available. Worth mentioning is the
shuffle instruction, that makes it possible to permute individual elements
within the vector register in any desired order. For example, we employ it
for handling the input and output of the algorithm (cf. Section 4.2).

The size of the cache, especially the L1 and L2, is very important for
the algorithmic design, as we describe later in Section 4. Common sizes in
modern architectures is 32 KB of L1 data cache with 256 KB of L2 cache
and we will use this as a running example. Our design is applicable to other
cache sizes as well.

4. Algorithmic Design

In this section, we begin by introducing S-PATCH, an efficient algorithmic
design for multiple pattern matching. It is designed with both cache locality
and vectorizability in mind. Next, we propose our vectorization approach
V-PATCH, Vectorized PATTern matCHing.

1In Intel processors, the gather instruction was introduced with the AVX2 instruction
set and is included in the latest family of mainstream processors; gather also exists in
other architectures, such as the Xeon Phi co-processor [9].

8



4.1. S-PATCH: a vectorizable version of DFC

To enable efficient vectorization, we introduce significant modifications
to the original DFC design. The key insight for the modifications, explained
later in detail, is that small patterns will be found frequently in real traffic,
so they should be identified quickly without adding too much overhead. On
the other hand, long patterns are found less frequently, but detecting them
takes longer and requires more characters from the input to pinpoint them
accurately.

As in the original DFC, our approach has two parts, but it is organized
as two separate rounds. In the filtering round, we examine the whole input
and feed it through a series of filters that bear some similarities to DFC,
but adapted to consider properties of realistic traffic, as motivated above.
The verification round is as in DFC and performs exact matching on the
full patterns that are stored in hash tables. Compared with DFC, S-PATCH
focuses on efficient filtering in the first round, because this is the computa-
tionally intensive part of the algorithm that, as we show, can be efficiently
vectorized. Splitting the two parts in separate rounds improves cache local-
ity, since the data structures used in each round do not evict each other and,
as shown in Section 4.2, makes vectorization more practical.

4.1.1. Filtering

In this first phase the goals are to (i) quickly eliminate the parts of the
input that cannot generate a match and (ii) store the input positions where
there is indication for a match. In general, key properties of the filtering
phase include:

• Good filtering rate. A big fraction of the input is filtered out at this
stage. This is important, in order to avoid performing verification
frequently, as it has higher cost than filtering. The achieved filtering
rate is directly dependant on the number of patterns inserted in each
filter (see also the cost and hit rate predicted by the model described
in Section 5).

• Low overhead. Every filter introduces additional computations and
memory accesses, so there needs to be a balance between its overhead
and the amount of input that is filtered out. Later in Section 5, our
model quantifies the filtering overhead and the filtering rate, to help us
maintain that balance.

9



Filter	
  3	
  
(>	
  3	
  B)	
  
	
  
	
  

	
  
	
  
	
  

Index:	
  Hash,	
  4	
  char	
  

Hash	
  
tables	
  

Filter	
  1	
  	
  
(1	
  –	
  3	
  B)	
  

	
  
	
  
	
  
	
  

Index:	
  2	
  char	
  

… …	
  

Input	
  

Filter	
  2	
  
(>	
  3	
  B)	
  

	
  
	
  
	
  
	
  

Index:	
  	
  2	
  char	
  

… …	
  

…	
  A	
   E	
   J	
   K	
   T	
   T	
   6	
   J	
  W	
   J	
   O	
  …	
  

HT	
   HT	
  

PaGern	
  length	
  
specific	
  filters	
  … …	
  

Figure 2: Filter Design of S-PATCH. HT stands for the Hash Tables that contain the full
patterns.

• Size-efficiency. All the filters need to fit in L1 or L2 cache, while also
leaving room for the input and the array for the intermediate results in
cache. This is very important, because it ensures that the lookups on
the filters will be fast and, as explained later, vectorization using the
gather instruction will be feasible.

Our proposed filter design (cf. Figure 2) consists of three filters, each
with a specific purpose. The first one stores information about the short
patterns (less than 4 characters). It has one bit for every possible combina-
tion of two characters, and if a particular combination is the beginning of
a pattern, the corresponding bit is set. Similarly, the second filter uses the
same indexing and accounts for the longer patterns together with the third
filter. An example of how filters are populated (in this example, Filter 2)
is shown in Figure 3. In more detail on how we scan the input against the
filters (cf. also Algorithm 1):

First filter: In the first part of the filtering, we examine two bytes of the
input at a time and use them to calculate an index for filters 1 and 2. If the
corresponding bit in the first filter is set, we directly store the current input
position in an array for further processing (lines 5-7).

Second filter: We also perform a lookup on the second filter using the
same index, at line 8. A hit may indicate that we have a match with a
longer pattern, but it may also be a false positive (e.g. compare the strings
“attribute” and “attack”). Thus, before storing the current input position
after a match with the second filter, the algorithm uses more bytes (in our
case four) from the input stream with a third filter to gain stronger indications

10



…
a c t i v a t e
a d m i n . d l l
b a c k d o o r
g e t . a s p

… Pattern	set

… 0 0 0 0 0 0 0 0 0 0 0 0 0 Filter	2	(8	KB)
ac adab ... ba bb ... ge ...

… 0 1 0 0 0 0 0 0 0 0 0 0 0… 0 1 1 0 0 0 0 0 0 0 0 0 0… 0 1 1 0 0 0 1 0 0 0 1 0 0

Figure 3: An example showing how Filter 2 is created, based on the patterns found in the
pattern set.

whether there is actually a match. Only when the match in the second filter
is corroborated with a match from the third filter is the current position in
the input stream stored for further processing (line 11).

Third filter: For the third filter, the index is calculated differently; we
cannot have a filter with all combinations of four bytes, due to cache-size
limitations. Instead, we use a multiplicative hash function for the four bytes
of input to compute the index in the filter, at line 9. There is a trade-off
between having a large enough filter to avoid collisions (thus providing a
good filtering rate) and having it small enough to fit in cache. The reason
why we choose four bytes as input will become clear in the next section (4
bytes fit in each one of the 32-bit vector register values).

Note that the performance of the filtering phase is intrinsically tied to the
filter designs and the type of input. The reason why our proposed design is
more effective is twofold. Short patterns, although few,2 are likely to generate
many matches. As an example, if strings like GET and HTTP are part of the
pattern set, they will frequently be found in real network traffic. Treating
them separately in a dedicated filter allows us to focus on the longer patterns
in other filters. Long patterns, found more rarely, require more information
to be distinguished from innocuous traffic.

221% of Snort’s v2.9.7 patterns are 1-4 bytes long [16].

11



Data: D: data to inspect
1 # A short : temporary array for short patterns
2 # A long : temporary array for long patterns
3 for i=0, i <D.length, i++ do
4 index = Read two bytes from pos i in D
5 if (Filter1[index] is set) then
6 Store i in A short
7 end
8 if (Filter2[index] is set) then
9 new index = hash 4 bytes from input

10 if Filter3[new index] is set) then
11 Store i in A long
12 end

13 end

14 end
15 for i=0, i <A short.length, i++ do
16 Verification for small patterns
17 end
18 for i=0, i <A long.length, i++ do
19 Verification for big patterns
20 end

Algorithm 1: Pseudocode for S-PATCH.

4.1.2. Verification

After the filtering, all the possible match positions in the input have been
stored in a temporary array. At this point, we need to compare the input at
these positions with the actual patterns, before we can safely report a match.
As mentioned before, the verification phase is as described by Choi et al. [16],
except that it is now done in a separate round, after the current chunk of
input has been processed by the filtering phase. For ease of reference we
paraphrase here.

Among several optimizations, Choi et al. [16] use specially designed com-
pact hash tables that are different for different pattern lengths. Translated
to our improved filtering design, if the input at some position i passed the
filtering, in the verification phase the algorithm will perform a match on the
compact hash table that stores references to all the patterns of appropriate
size. For example, if i passed the third filter that stores information on pat-
terns that are four bytes or longer, in the verification phase, the algorithm

12



performs a match on the compact hash table that stores patterns of four
bytes or longer (lines 18-20). Each hash table is indexed with as many bytes
as the shortest pattern that the hash table contains (in this case, four bytes
of the input will be used as an index to the hash table). Each bucket in
the hash table contains references to the full patterns and the algorithm has
to compare each one of them individually with the input, before reporting
a match. Eventually, the algorithm identifies all the occurrences of all the
patterns, producing the same output as Aho-Corasick.

In general, the compact hash tables as we use them in this phase, do not
fit L1 or L2 cache (but they might fit L3 cache) and accessing them incurs
high latency misses. However, the success of the approach lies in the fact
that the filtering phase will reject most of the input, so the algorithm resorts
to verification only when it is needed (when there is a high probability for a
match). That is why our efforts focus on the filtering part, where the data
structures are close to the processor and can benefit from vectorization.

4.2. V-PATCH: Vectorized algorithmic design

A basic issue when vectorizing S-PATCH is its non-contiguous memory
accesses. The sequential version accesses the filters at nonadjacent locations
for every window of two characters, whereas in a vectorized design W indexes
are stored in a vector register (of length W ), each pointing to a separate part
of the data structure. For this reason, we use the SIMD gather instruction
that allows us to fetch values from W separate places in memory and pack
them in a vector register.

Algorithm 2 gives a high level summary of the filtering phase of V-
PATCH. The first step towards vectorizing the algorithm is loading the con-
secutive input characters from memory and storing them in the appropriate
vector registers. Figure 4 shows the initial layout of the input and the desired
transformation to W elements, each holding a sliding window of two char-
acters. The transformation is efficiently achieved with the use of the shuffle
instruction, allowing to manually reposition bytes in the vector registers (Al-
gorithm 2, line 8).

13



Data: D: input data to inspect
1 # W : the vector register length
2 # A short : temporary array for short patterns
3 # A long : temporary array for long patterns

4 #
−−→
M1 : constant mask used to convert the input to 2 byte sliding window

format
5 #

−−→
M2 : constant mask used to convert the input to 4 byte sliding window

format
6 for i=0, i <D.length, i += W do

7
−→
R = Fill register with raw input from D

8
−−−−−→
Indexes = shuffle(

−→
R ,
−−→
M1)

9
−→
V 1 = gather(filter1 address,

−−−−−→
Indexes)

10 if at least one element in
−→
V 1 is set then

11 Store positions of matches in A short
12 end

13
−→
V 2 = gather(filter2 address,

−−−−−→
Indexes)

14 if at least one element in
−→
V 2 is set then

15
−−−−−−−−−→
NewIndexes = shuffle(

−→
R ,
−−→
M2)

16
−−−→
Keys = hash(

−−−−−−−−−→
NewIndexes)

17
−→
V 3 = gather(filter3 address,

−−−→
Keys)

18 if at least one element in
−→
V 3 is set then

19 Store positions of matches in A long
20 end

21 end

22 end
Algorithm 2: Pseudocode for the V-PATCH filtering phase.

Once the vector registers are filled, the next step is to calculate the set of
indexes for the filters. Note that every 2-byte input value maps to a specific
bit in the filter, but the memory locations in the filter are addressable in
bytes. A standard technique used in the literature [23, 16] is to perform
a bit-wise right shift of the input value to the corresponding index in the
filter. The remainder of the shift indicates which bit to choose from the ones
returned. Having computed the indexes, we use them as arguments to the
gather instruction that fetches the filter values at those locations (Algorithm
2, lines 9 and 13).

Regarding the number of gather instructions used, to optimize in latency,

14



Shuffling	
  mask:	
  M	
  

	
  	
  	
  	
  AB	
   	
  	
  	
  	
  BC	
   	
  	
  	
  	
  CD	
   	
  	
  	
  	
  DE	
   EF	
   FG	
   GH	
   HI	
  

Output	
  Vector	
  Register:	
  O	
  

Raw	
  Input	
  Vector	
  Register:	
  R	
  

O = shuffle(R, M) 

ABCD	
   EFGH	
   IJKL	
   MNOP	
   QRST	
   UVWX	
   YZAB	
   CDEF	
  

Figure 4: Input Transformation from consecutive characters to sliding windows of two
characters.

note that the first two filters (lines 9 and 13) are specifically designed to
use the same indexes for a given input value in gather but different base
addresses for the filters. Thus, with the filter merging optimization where
the filters are interleaved in memory (at the same base address), we can merge
lines 9 and 13 into a single gather, to bring the information from both filters
from memory simultaneously. This optimization is not shown in the pseudo-
code but depicted in Figure 5, giving an example in which a single gather
instruction fetches information from both filters. Using bit-wise operations
we can choose one filter or the other, once the data is in the vector register.

If at least one of the W values has passed the second filter, they need
to be further processed through the third filter. Remember that the third
filter uses a window of four input characters as an index. Thus, we load a
sliding window of four input characters in each vector element in the register
(line 15) and create the hash values that we use as indexes in the third filter
(lines 16-17).

Not all of the values in the vector register are useful; only the ones that
passed the second filter need to be processed further by the third filter. This
is a common challenge when vectorizing algorithms with conditional state-
ments, since for different input we need to run different instructions. There
are approaches [23] that manipulate the elements in the vector registers, so
that they only operate on useful elements. For this particular algorithm,
experiments with preliminary implementations showed that the cost of mov-
ing the elements in the registers out-weighted the benefits. Thus, we choose
to speculatively perform the filtering on all the values and then mask out
the ones that do not pass the second filter. In our evaluation (Section 6),

15



…	
   H	
   J	
   U	
   K	
   G	
   L	
   …	
  3	
   1	
   4	
   4	
   2	
   6	
   7	
   1	
  

F1[3]	
  F1[1]	
  F1[4]	
  F1[4]	
  F1[2]	
  F1[6]	
  F1[7]	
  F1[1]	
  

Input	
  Vector	
  Register:	
  I	
  
Filter	
  2	
  in	
  memory:	
  F2	
  

O2 = gather(&F2, I) 

F2[3]	
  F2[1]	
  F2[4]	
  F2[4]	
  F2[2]	
  F2[6]	
  F2[7]	
  F2[1]	
  

O = gather(&F1-2, I) 

…	
   G	
   D	
   V	
   A	
   X	
   K	
   …	
  

O1 = gather(&F1, I) 

Filter	
  1	
  in	
  memory:	
  F1	
  

3	
   1	
   4	
   4	
   2	
   6	
   7	
   1	
  

Input	
  Vector	
  Register:	
  I	
  

…	
   G	
  H	
  D	
   J	
   V	
  U	
  A	
  K	
  X	
  G	
  K	
   L	
   …	
  

Merged	
  Filters	
  1	
  and	
  2	
  
in	
  memory:	
  F1-­‐2	
  

F1[3]	
  F2[3]	
  F1[1]	
  F2[1]	
  F1[4]	
  F2[4]	
  F1[2]	
  F2[2]	
   …	
  

Figure 5: Figure describing the filter merging optimization. In the upper half, lookups
on two filters require two gather invocations. Once the filters are merged in memory in
the lower half, one gather brings information from both filters to the registers.

we observe that operating speculatively on all the elements is actually not a
wasteful approach, especially with a large number of patterns to match.

As with the scalar algorithm, after a hit in the first or third filter we need
to store the position of the input where a potential match occurred. We store
the positions of the input that passed the filter from the set of W values in
the register (lines 11 and 19). Here, we postpone the actual verification to
avoid a potential costly mix of vectorized and scalar code, where the values
from the vector registers need to be written to the stack and from there read
into the scalar registers. Such a conversion can be costly and can negate any
benefits we gain from vectorization [22].

Furthermore, to fully exploit the available instruction-level parallelism,
we manually unroll the main loop of the algorithm by operating on two
vectors (Rj) of W values instead of one, a technique that has proven to be
efficient especially for SIMD code [23]. This has the benefit that, while the
results of a gather on one set of W values are fetched from memory (line 9),

16



the pipeline can execute computations on the other set of values in parallel.
Scaling across multiple threads: The description of V-PATCH so far fo-

cuses on how to utilize data parallelism within each core using vector instruc-
tions, but we can easily extended them to use multiple threads. With respect
to that, we inherit the easily parallelizable property from DFC. Contrary to,
e.g. Aho-Corasick, that is inherently sequential, DFC (as well as S-PATCH
and V-PATCH) can start processing from any point in the input stream.
Based on that, the algorithms presented in this section can be parallelized
by splitting the received input into equal chunks and distributing it across
the available threads. Then, each thread processes its own chunk indepen-
dently. The only corner case is when malicious patterns spawn across two
different chunks: to remedy this we allow each thread to continue processing
each neighbouring thread’s chunk, for as along as the largest pattern in the
pattern set. Usually, the size of the largest pattern is very small (323 bytes
in our evaluation), compared to the size of the each chunk (several MB).
In Section 6.7 we show that our algorithms can scale with the number of
threads.

5. Performance Model

In order to better understand the runtime performance of the filter design
we describe above, in this section, we introduce a simple model of the ex-
pected performance of the algorithm with respect to the number of patterns
taken into account. We provide a model for both the scalar (S-PATCH) and
the vectorized version (V-PATCH).

5.1. Usefulness

Our performance model is a useful tool to design and evaluate alternative
filter architectures. As an example, for a given number of patterns, the model
estimates the expected hit rate of the filters and the expected cost associated
with filtering. Based on that, one can decide to add more filters in the design,
or remove filters if their filtering ratio is low compared to the cost of accessing
them. The model description that follows in this section refers to the filter
design presented in Figure 2, but a similar analysis can be used for any other
type of design.

5.2. Filter hit rates

We start by estimating the hit rate of the filters, then use these rates
to derive the overall performance model. We assume, for now, that both

17



the input stream and the patterns are random. Then, if x is the number of
patterns that are added to a filter, the probability that a bit in the filter is
still zero is

p = (1− 1

m
)x (1)

where m is the size of the filter in bits (in the evaluation we use m = 64K
for all filters). This probability is derived by just considering the filter as a
Bloom filter with a single hash function. In turn, the expected hit rate of a
filter in the scalar case, i.e. the probability of accessing a single bit in the
filter and finding it set to 1, is the complementary probability:

h(x) = 1− p = 1− (1− 1

m
)x (2)

Filter 1 in Figure 2 has a hit rate h1 = h(x1) where x1 is the number of
patterns that are less than 4 bytes long. Note that, because filter 1 uses the
first 2 bytes of the pattern as index, single-byte patterns need to be extended
to 2 bytes. In order to do this, we create every possible combination of 2
byte characters starting with that single-byte pattern. For example, given
the strings BC and A, we will set one bit at the index that corresponds to
the position of BC and 256 bits on all indexes that start with A (AA, AB,
AC etc.). As a result, x1 accounts for all the patterns that are less than 4
bytes long and the number of extra patterns generated due to the presence
of single-byte patterns.

Similarly, filter 2 in Figure 2 has a hit rate h2 = h(x2), where x2 is
the number of patterns that are greater or equal to 4 bytes long. For filter
3, notice that: (i) it has the same size and number of patterns as filter 2,
(ii) accessing filter 3 requires a hit in filter 2 (see Figure 2) and (iii) it uses
a different hash function from filter 2, so a hit in filter 2 tells nothing about
the probability of a hit in filter 3. Based on that, the overall probability of
having a hit in filter 3 is h3 = (h2)

2.
Turning to the vectorized case, remember that we have a hit in the filter

if at least one of the W elements in the register hits the filter. Thus, the hit
rate h′ of a filter in the vectorized case is:

h′ = 1− (1− h)W (3)

since (1− h)W is the probability of having W consecutive misses.
Figure 6 shows the expected hit rates of the filters in the scalar and

vectorized case for a varying number of random patterns. Here we assume
that the size of each pattern is uniformly distributed between 1 and 50 bytes.

18



Figure 6: Expected hit rate for each filter in the scalar case (left) and the vectorized case
(right).

5.3. Overall cost

Knowing the hit rates of the filters allows us to model the overall per-
byte cost of the algorithm. We model the filtering and the verification phases
separately.

For each byte of input processed by S-PATCH, we identify the following
main operations that need to be performed in the filtering phase: (i) compute
the indexes to filters 1 and 2 and access them, (ii) if there is a hit in filter 1,
store the hit, (iii) if there is a hit in filter 2, compute the index for filter 3 and
access it and (iv) if there is a hit in filter 3, store the hit. Those operations
are the main factors in our model of the per-byte cost for the filtering phase
of S-PATCH, which can be broken down as follows:

cf = c1,2 + s1 ∗ h1 + c3 ∗ h2 + s3 ∗ h3 (4)

where c1,2 and c3 are the cost of computing the indexes and accessing for
the first two (c1,2) and the third filter (c3) and s1, s3 are the cost of storing
the indexes that produced a hit at filters 1 and 3, respectively. The cost of
storing the hits is relatively small and we will exclude it from the model (but

19



Table 1: Estimated values (in cycles) for the constants involved in the model, for the
Haswell platform, c.f. Section 6.

c1,2 c3 c′1,2 c′3 Vsmall Vlarge

Estimated value (cycles) 3.8 26.0 3.1 4.3 7.7 110.7

we will return to it in Section 6.4). Thus,

cf = c1,2 + c3 ∗ h2 (5)

That leaves us with two constants that need to be computed, c1,2 and c3.
We approximate these constants by measuring the cost for two numbers of
patterns.

Similarly, the filtering cost for the vectorized case is

c′f = c′1,2 + c′3 ∗ h′2 (6)

The cost of the verification phase is the same for both the scalar and the
vectorized case. Remember that the algorithm reaches the verification phase
when there is a hit on the first or the third filter. Verifying a hit involves a
lookup in a hash table, the cost of which can be considered constant. Thus,
the per-byte cost of verification can be modeled as follows:

cv = c′v = h1 ∗ Vsmall + h3 ∗ Vlarge (7)

where Vsmall, Vlarge are the cost of the hash table lookups for verification
of small and large patterns, respectively. Again, we approximate these two
constants by measuring the cost of verification for two numbers of patterns.

In summary, the per-byte cost for S-PATCH is

c = cf + cv = c1,2 + c3 ∗ h2 + h1 ∗ Vsmall + h3 ∗ Vlarge (8)

and for V-PATCH:

c′ = c′f + c′v = c′1,2 + c′3 ∗ h′2 + h1 ∗ Vsmall + h3 ∗ Vlarge (9)

The values we use for the constants are given in Table 1 (measured for the
Haswell platform, c.f. Section 6). In Section 6 we evaluate the cost predicted
by the model and show that it is accurate with respect to the one observed
in practice.

20



6. Evaluation

In this section, we evaluate the benefits that our vectorization techniques
bring to pattern matching algorithms. Our evaluation criteria are the pro-
cessing throughput and the performance under varying number of patterns.
We show the improvements of V-PATCH with both realistic and synthetic
datasets, as well as with changing number of patterns. For a comprehensive
evaluation, we compare the results from five different algorithms: the origi-
nal Aho-Corasick ([15]; implementation directly taken from the Snort source
code [18]), DFC (Choi et al. [16], summarized in Section 2.2), Vector-DFC
(a direct vectorization of DFC done by us), S-PATCH (the scalar version of
our algorithm, described in Section 4.1, that facilitates vectorization and
addresses properties of realistic traffic that were not addressed before), and
V-PATCH (the final vectorized algorithm described in Section 4.2).

6.1. Experimental setup

Systems: For the evaluation we use both Intel Haswell and Xeon-Phi.
More specfically, the first system is an Intel Xeon E5-2695 (Haswell) CPU
with 32KB of L1 data cache, 256KB of L2 cache and 35MB of L3 cache. The
platform has 14 cores on a single socket, with up to 2 threads per core, using
hyperthreading. We use the ICC compiler (version 16.0.3) with -O3 opti-
mization under the operating system CentOS. Unless otherwise noted, the
experiments in this section are run on this platform. The second system is the
Intel Xeon-Phi 3120 co-processor platform. Xeon-Phi has 57 simple, in-order
cores at 1.1 GHz each, with 512-bit vector processing units. Each core sup-
ports up to 4 threads with hyperthreading. The memory subsystem includes
a L1 data cache and a L2 cache (32KB and 512KB respectively) private to
each core, as well as a 6GB GDDR5 memory, but no L3 cache. We compile
with ICC -O3 (version 16.0.3) under embedded Linux 2.6. We are only using
Xeon-Phi in native mode as a co-processor. The next versions of Xeon-Phi
are standalone processors, so the problem of processor-to-co-processor com-
munication is alleviated. In the following experiments, we first focus on the
speedup achieved by a single hardware thread, through vectorization, then
we discuss experiments with multiple threads.

Patterns: We use two sets of patterns: a smaller one, named S1, consist-
ing of approximately 2, 500 patterns that comes with the standard distribu-

21



tion of Snort3 [24] – the de-facto standard for network intrusion detection
systems – and a larger one, named S2, with approximately 20, 000 patterns,
that is distributed by emergingthreats.net The patterns affect the perfor-
mance of the algorithm and this is analyzed in detail in Section 6.3.

Data sets: In our evaluation, we use both real-world traces and synthetic
data-sets. The real-world traces are the ICSX dataset [25, 26] (created to
evaluate intrusion detection systems) and the DARPA intrusion detection
dataset [27]. From ICSX, we randomly take 1GB of data from each of days
2 and 6 (thereafter named ICSX day 2 and ICSX day 6, respectively) and
we also use 300MB of data from the DARPA 2000 capture. We are aware of
the artifacts in the latter set, and the discussions in the community about its
suitability for measuring the detection capability of intrusion detection sys-
tems [28]. In our experiments, we use it only for the purpose of comparing
throughput between algorithms, allowing for future comparisons on a known
dataset. The synthetic data set consists of 1GB of randomly generated char-
acters.

An important point, considering the evaluation validity, is that, typically,
not all the patterns are evaluated at the same time. In a Network Intrusion
Detection System such as Snort, patterns are organized in groups, depending
on the type of traffic they refer to. When traffic arrives in the system, the
reassembled payload is matched only against patterns that are relevant (e.g.
if the stream has HTTP traffic, it is checked against HTTP related patterns,
as well as more general patterns that do not refer to a specific protocol
or service). To evaluate our algorithm in a realistic setting, we also pair
traffic with relevant patterns. Since, in our datasets, most of the traffic is
HTTP [25], we focus on HTTP traffic and match it against the patterns that
are applicable based on the rule definitions. A similar approach can be used
for other protocols (e.g. DNS, FTP), but we focus on HTTP traffic as it
typically dominates the traffic mix and many attacks use HTTP as a vector
of infection.

6.2. Overall Throughput

In this section we compare the overall performance between the differ-
ent algorithms. Using the HTTP-related patterns of each set gives us 2K
patterns from pattern set S1 and 9K patterns from pattern set S2. All al-

3We used version 2.9.7 for our experiments.

22



ISCX day2 ISCX day6 DARPA 2000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
h
ro

u
g
h
p
u
t 

(G
b
p
s)

0.99 0.90 0.77
1.00 1.00 1.001.23 1.03

1.12
1.31

1.25 1.17

1.84
1.68

1.36

Aho-Corasick DFC Vector-DFC S-PATCH V-PATCH

random
0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p
u
t 

(G
b
p
s)

0.24

1.00

1.14

0.79

0.93

(a) Snort web traffic patterns (2K).

ISCX day2 ISCX day6 DARPA 2000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
h
ro

u
g
h
p
u
t 

(G
b
p
s)

0.79 0.81 0.62
1.00 1.00 1.001.14 1.06

1.081.33
1.47 1.25

1.78
1.86

1.44

random
0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p
u
t 

(G
b
p
s)

0.14

1.00
1.12

0.76
0.83

(b) ET open 2.9.0 web traffic patterns (9K).

Figure 7: Performance comparison between the different algorithms for public and random
data sets, on the Xeon platform.

gorithms count the number of matches. We use 10 independent runs of each
experiment. We report the average throughput values, as well as standard
deviation as error bars.

Figure 7a shows the throughput of all algorithms under realistic traffic
traces and synthetic traces, when matched against the small pattern set (S1 ).
In Figure 7b we use the bigger pattern set (S2 ). The numbers above the bars
indicate the relative speedup compared to the original DFC algorithm.

We first discuss the results by only considering each pattern set and each
traffic set separately. For realistic traffic traces, our vectorized implementa-
tion consistently outperforms the DFC algorithm by up to 1.86x (left parts
of Figure 7), due to the parallelization we introduce in the filtering phase.
The direct vectorization of the original DFC algorithm (Vector-DFC) has
limited performance gain, because much of the running time of DFC is spent
on verification and not filtering. This is the main motivation for introducing

23



a modified version of DFC, in Section 4.1, focused on improving the filter-
ing phase. By treating small, frequently occurring patterns separately and
by examining more information in the case of long patterns, S-PATCH out-
performs the original by up to 1.47x. More importantly, it allows for much
greater vectorization potential, since the biggest portion of the algorithm’s
running time is shifted to efficient filtering of the input, and verification is
done much more seldom.

Next, we evaluate the impact of the size of the ruleset on the overall
throughput (comparing Figure 7a with Figure 7b). The overall throughput
of the algorithms decreases, since the input is more likely to match and identi-
fying every match consumes extra cycles. The performance of Aho-Corasick,
in particular, decreases by more than 40%, because the extra patterns greatly
increase the size of the state machine. The rest of the algorithms experience
a 23-34% drop in performance.

It is important to note that the performance gain of the algorithms (DFC
versus Aho-Corasick, V-PATCH versus DFC) is influenced by the input as
follows: when feeding the algorithms a data set that contains random strings,
DFC significantly outperforms AC (right part of Figure 7). In this case, we
do not expect to find many matches in the input and the filtering phase will
quickly filter out up to 95% of the input. This is also the reason why the
modified versions of the algorithm (S-PATCH and V-PATCH) perform less
efficiently compared to what they do in the different input scenarios; the
design of the two separate filters as described in Section 4 shows its benefits
in more realistic traffic mixes. In turn, this poses interesting questions for
the future in how to best design the filters based on the expected traffic mix.
Still, the vectorized versions provides speedups over the scalar ones.

6.3. The effects of the number of patterns

As shown in Section 6.2, it is important to account for the actual traffic
mix the algorithms are expected to run upon when designing the filtering
stage, as it has a large impact on the performance. As new threats emerge,
more malicious patterns are introduced and the performance of the algorithm
must adapt to that change.

We measure the effects of the number of patterns on the two best per-
forming algorithms and summarize the results in Figure 8a, also including
the overall speedup of V-PATCH compared to S-PATCH. In this experi-
ment, we randomly select the number of patterns from the complete set
S2 (20, 000 patterns) in order to test our algorithms with as many patterns

24



0 2500 5000 7500 10000 12500 15000 17500 20000
Number of patterns

0

1

2

3

4

5

6

7

8
Th

ro
ug

hp
ut

 (G
bp

s)

S-PATCH
V-PATCH

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Sp
ee

du
p 

fro
m

 v
ec

to
riz

at
io

n

Speedup

(a) Throughput as the number of patterns increases.

0 5000 10000 15000 20000
Number of patterns

30

40

50

60

70

80

90

fi
lt

e
ri

n
g
 t

im
e
/t

o
ta

l 
ti

m
e
 (

%
)

20

30

40

50

60

70

80

u
se

fu
l 
e
le

m
e
n
ts

 i
n
 v

e
ct

o
r 

re
g
is

te
r 

(%
)

(b) Filtering to verification ratio and vec-
torization efficiency.

0% 20% 40% 60% 80% 100%

Fraction of the input that matches

0

1

2

3

4

5

6
Th

ro
ug

hp
ut

 (G
bp

s)
S-PATCH
V-PATCH

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1.15
1.27 1.29

1.35 1.38

Speedup

(c) Speedup from vectorization, as the
numbers of matches in the input increases.

Figure 8: Figure a) compares the scalar and vectorized versions of our approach, as the
number of patterns increases. Figure b) shows the filtering-to-verification ratio (left axis),
as well as the average number of useful elements in the vector registers after filter 2 (right
axis), as the number of patterns increases. Figure c) compares the scalar and vectorized
approach, as the fraction of matches in the input increases.

25



as possible. V-PATCH consistently performs better compared to S-PATCH,
regardless of the number of patterns considered. Observe that:

• As the number of patterns increases, so does the input fraction that
passes the filters. This causes the verification part, which is not vec-
torized, to take up more of the running time, essentially reducing the
parallel portion and, by Amdahl’s law [29], the benefit of vectoriza-
tion. The portion of the running time spent in filtering, over the total
running time is shown in Figure 8b (blue line).

• As the number of patterns increases, the vectorization of the filter-
ing becomes more efficient. Remember that V-PATCH will proceed
with the third filter if at least one of the values in the vector register
block passes the second filter. With a small number of patterns, we
will seldom pass the second filter. When we do, it is likely we only
have a single match, meaning that the rest of the values in the register
are disabled and any computation performed for those values is waste-
ful work. Increasing the number of patterns results in more potential
matches in the second filter and, as a consequence, less disabled values
for the third filter and thus more useful work. In Figure 8b (red line)
we measure this effect and show the average number of useful items
inside the vector register every time we reach the third filter. Clearly,
with an increasing number of patterns, the vectorization is performed
mainly on useful data and therefore becomes more efficient.

• The two trends essentially cancel each other out, keeping the overall
performance benefit of V-PATCH compared to S-PATCH constant af-
ter a point (Figure 8a), even though the optimized filtering gradually
becomes a smaller part of the total running time. Eventually, the vec-
tor registers will always be full and we will not benefit from having
more patterns. At this point the relative performance will stay con-
stant. Our results indicate that this point is far beyond the number of
patterns that current intrusion detection systems utilize.

• A similar effect is observed when we keep the number of patterns con-
stant, but increase the amount of matches in the dataset (Figure 8c).
For this experiment, we created a synthetic input that contains increas-
ingly more patterns, randomly selected from a ruleset of 2, 000 pat-
terns. As more matching strings are inserted into the input, our vec-

26



ISCX day2 ISCX day6 DARPA 2000
0

1

2

3

4

5

6
T
h
ro

u
g
h
p
u
t 

(G
b
p
s)

1.00 1.00
1.00

1.84 1.81
1.692.15 2.14

1.97

S-PATCH-filtering V-PATCH-filtering+stores V-PATCH-filtering

(a) Snort web traffic patterns (2K).

ISCX day2 ISCX day6 DARPA 2000
0

1

2

3

4

5

6

T
h
ro

u
g
h
p
u
t 

(G
b
p
s)

1.00 1.00 1.00

1.62 1.46
1.471.94 1.78

1.80

(b) ET open 2.9.0 web traffic patterns (9K).

ISCX day2 ISCX day6 DARPA 2000
0

1

2

3

4

5

6

T
h
ro

u
g
h
p
u
t 

(G
b
p
s)

1.00 1.00 1.00

2.08 1.81 2.03

2.79 2.54 2.80

(c) Full pattern-set (20K).

Figure 9: Measuring the performance of the filtering part only. V-PATCH-filtering+stores
includes the cost of storing the results of the filtering phase to temporary arrays.

torized portion of the algorithm becomes more efficient and the relative
speedup compared to the scalar version slowly increases.

6.4. Filtering Parallelism

In this section, in order to gain better insights about the benefits of
vectorization, we measure the speedup gained in the filtering part in isolation.
Figure 9 compares the filtering throughput of the scalar S-PATCH and V-
PATCH, for pattern sets S1, S2, as well as the full pattern set (20K patterns).
In the same figure, we also report the performance of the vectorized filtering,
where we exclude the cost of storing the matches in the filtering phase in
the temporary arrays. As we can see from the graph, the throughput of the
filtering part is increased by up to a factor of 1.84x, on the small pattern set.

27



ISCX day2 ISCX day6 DARPA 2000
0.0

0.1

0.2

0.3

0.4

0.5

T
h
ro

u
g
h
p
u
t 

(G
b
p
s)

1.14 1.30 1.061.00 1.00 1.00

1.63 1.69 1.52

1.18 1.23 1.11

3.16
3.61

2.51

Aho-Corasick

DFC

Vector-DFC

S-PATCH

V-PATCH

random
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
h
ro

u
g
h
p
u
t 

(G
b
p
s)

0.49

1.00

1.43

0.89

3.48

(a) Snort web traffic patterns (2K).

ISCX day2 ISCX day6 DARPA 2000
0.0

0.1

0.2

0.3

0.4

0.5

T
h
ro

u
g
h
p
u
t 

(G
b
p
s)

0.97 1.16 0.871.00 1.00 1.00
1.47 1.58 1.441.40 1.52 1.28

2.77
3.25

2.22

random
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
h
ro

u
g
h
p
u
t 

(G
b
p
s)

0.22

1.00
1.33

0.86

2.96

(b) ET open 2.9.0 web traffic patterns (9K).

Figure 10: Performance comparison between the different algorithms for public and ran-
dom data sets on the Xeon-Phi platform.

Storing the matches of the filtering part in arrays comes with a cost; when it
is removed, performance increases up to 2.15x for small pattern sets and up
to 2.80x for the full pattern set. Even though there is a small decrease at the
pattern set with 9K patterns (Figure 9b), the relative speedups of vectorized
filtering increase with the number of patterns (Figure 9c).

6.5. Changing the vector length: Results from Xeon-Phi

We have also evaluated the effectiveness of our approach on an architec-
ture with a wider vector processing pipeline. The Xeon-Phi [9] co-processor
from Intel supports vector instructions that operate on 512-bit registers, thus
able to perform two times more operations in parallel, in the filtering phase.

Figure 10 summarizes the results from Xeon Phi, where the experiments
are identical with those described in Section 6.2. Note that we report the
throughput of a single Xeon-Phi thread. V-PATCH takes advantage of the

28



wider vector registers and outperforms the original scalar DFC algorithm, up
to a factor of 3.6x on real data and 3.5x on synthetic random data.

As Xeon-Phi threads have much slower clock (1.1 GHz) and the pipeline is
less sophisticated (e.g. there is no out-of-order execution), it is not surprising
that the absolute throughput sustained by a single Phi thread is smaller
than that of the single thread performance of the Xeon platform used in
the previous experiments. When dealing with multiple streams in parallel,
due to the higher degree of parallelism, the aggregated gain will naturally be
higher, as indicated later in Section 6.7.

An interesting observation is that the DFC algorithm is sometimes slightly
slower than AC on real data, where the number of matches in the input is
significantly higher. In the original DFC algorithm, the filters are small and
can easily fit L1 or L2 cache, and the hash tables containing the patterns are
bigger, but still expected to fit L3 cache. In Xeon-Phi there is no L3 cache,
so accesses to the hash tables in the verification phase are typically served
by the device memory, negating the benefits of cache locality that is part of
the main idea of the algorithm. Nonetheless, our improved filtering design
reduces the number of times we resort to verification and access the device
memory, thus resulting in 1.1x-1.5x increased throughput on realistic traffic,
compared to the original DFC design.

6.6. Model evaluation

In this section, we evaluate the accuracy of our analytical model presented
in Section 5. In the following experiments, we randomly generate up to 40K
patterns and use different data sets, both real and synthetic. We show the
normalized execution time for S-PATCH and V-PATCH, along with the cost
predicted by the model.

Figures 11a and 11b show the cost of filtering for S-PATCH and V-
PATCH, respectively. The figures show both the cost predicted by the model
(given by Equations 5 and 6) as well as the cost measured using real and syn-
thetic data. As predicted by the model, the cost of filtering for both versions
is mostly affected by the hit rate of filter 2 (see also Figure 6). The cost of
S-PATCH increases with the number of patterns, while the cost of V-PATCH
flattens quickly (in this case, the hit rate of filter 2 is already close to 90% for
more than 20K patterns and the vector registers are filed with mostly useful
elements). Notice the different range in the vertical axis between S-PATCH
and V-PATCH and the fact that, as the model predicts, the filtering part

29



0 5000 10000 15000 20000 25000 30000 35000 40000
Number of patterns

1000

2000

3000

4000

5000

6000

7000

Ex
ec

ut
io

n 
tim

e 
(m

s)

model
random data
ISCX day 2
DARPA 2000

(a) S-PATCH filtering only.

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of patterns

1000

1500

2000

2500

3000

3500

Ex
ec

ut
io

n 
tim

e 
(m

s)

model
random data
ISCX day 2
DARPA 2000

(b) V-PATCH filtering only

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of patterns

0

5000

10000

15000

20000

Ex
ec

ut
io

n 
tim

e 
(m

s)

model
random data
ISCX day 2
DARPA 2000

(c) S-PATCH filtering and verification.

0 5000 10000 15000 20000 25000 30000 35000 40000
Number of patterns

0
2000
4000
6000
8000

10000
12000
14000
16000

Ex
ec

ut
io

n 
tim

e 
(m

s)
model
random data
ISCX day 2
DARPA 2000

(d) V-PATCH filtering and verification

Figure 11: Real and predicted performance of S-PATCH and V-PATCH for different
number of patterns.

of V-PATCH is much faster than that of S-PATCH across any number of
patterns.

Similar to the above, Figures 11c and 11d show the total cost (in terms
of execution time), including the cost of verification. The total cost for
both follows an almost linear curve and is mostly dominated by the cost of
verification, as predicted by the model (given by Equations 8 and 9). Since
the model is fitted to random data, it predicts the cost of processing random
data more closely compared to using realistic data (ISCX and DARPA data
sets) where the traffic distribution is different. In this case of realistic data
there is deviation from the model at around ten thousands patterns for the
case of S-PATCH. Surprisingly, such deviation is not present for the case of
V-PATCH. Also notice that, in most cases, processing real traffic is slightly
faster than what is predicted by the model, most likely due to the different
distribution of traffic.

Alternative filter designs: Having an accurate model to predict the overall
performance of our algorithms allows us to easily evaluate different filtering

30



0 20000 40000 60000 80000 100000 120000 140000 160000
Number of patterns

0

10000

20000

30000

40000

50000

60000

Es
tim

at
ed

 e
xe

cu
tio

n 
tim

e 
(m

s)
no filters
no filter 1
no filter 3
S-PATCH

Figure 12: Prediction of the execution time of different filtering designs for S-PATCH,
including designs where one or several of the filters are removed. Note the increased
maximum number of patterns used in the horizontal axis.

architectures than the one we use for S-PATCH and V-PATCH (see Figure 2).
We alter the model from Section 5 to predict a series of alternative designs,
namely designs where we remove: (i) the filter for small patterns (Filter 1),
(ii) one of the filters for long patterns (e.g. Filter 3) or (iii) all filtering
whatsoever. By altering the model to cover these alternative designs, we can
predict if, and at what number of patterns, it is beneficial to change our
filtering design.

In Figure 12 we include the expected total execution time for 1GB of
random data as predicted by the original model for S-PATCH, as well as the
predictions for the alternative filtering designs discussed above. Note that
we have extended the x-axis (number of patterns) to capture the trends at
very large numbers of patterns, much larger than what is typically used in
NIDS. Compared to our design (S-PATCH), removing Filter 1 has a small
impact which is noticeable when less than twenty thousand patterns are
used. Removing Filter 3 has initially a negative effect on performance, but
the model predicts that it is a preferable choice when more than one hundred
thousand patterns are used. This is reasonable since, when using so many
patterns, filters are likely to be fully populated and have high hit-rates. In
this case, the overhead of accessing the filter is not compensated by reducing
the times we reach verification. If we remove all filters, we go to expensive
verification for every input byte and the cost is prohibitively high, expect for
the case of using more than one hundred and forty thousand patterns and
all the filters are saturated. The trends also indicate that, for the number
of patterns that are typically used in NIDS (one to ten thousand patterns)

31



1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Threads

0

5

10

15

20

25

30

35

40
To

ta
l t

hr
ou

gh
pu

t (
Gb

ps
)

DFC
S-PATCH
V-PATCH

(a) Parallel execution on the Haswell plat-
form.

1 20 40 60 80 100 120 140 160 180 200 220
Threads

0

10

20

30

40

50

To
ta

l t
hr

ou
gh

pu
t (

Gb
ps

)

DFC
S-PATCH
V-PATCH

(b) Parallel execution on the Xeon-Phi
platform.

Figure 13: Parallel execution on the Haswell and Xeon-Phi platforms.

our original filtering design is a good choice, validating the design choices
explained in Section 4.1. The respective alternative designs for V-PATCH
follow trends similar to the ones in Figure 12.

6.7. Parallel execution

The experiments presented so far focus on the data parallelism achieved
within a single thread, i.e. using vectorization and data parallelism within
each core. In this section, we present experiments from a multi-threaded
execution and demonstrate the scalability of our approach. As already men-
tioned in Section 4.2, we can easily parallelize DFC, S-PATCH and V-PATCH
by splitting the available input in equal chunks. Nonetheless, it is impor-
tant to evaluate the scalability of algorithms using multiple threads to show
the effect of the underlying architecture, e.g., resource sharing under hyper-
threading.

For the following experiments, we used the ISCX day 2 data set and the
S1 pattern set of 2K patterns. We split the input evenly across the available
threads and report the total achieved throughput. We do not include the
Aho-Corasick algorithm because it is inherently sequential. We experiment
on both the Haswell platform (14 cores, 28 threads) and the Xeon-Phi plat-
form (57 cores, 228 threads). In all cases, our thread placement policy is to
spread threads as much as possible, i.e. we first place each thread in each
own core, then start placing up to two threads per core, etc.

Figures 13a and 13b show the results from the Haswell and the Xeon-
Phi platforms respectively. In both platforms, all algorithms scale linearly

32



while there is only one thread per core (up to 14 threads for Haswell and
57 threads for Xeon-Phi). After that, the scaling factor decreases, since
threads that reside on the same core must share resources, such as parts of
the execution units and the caches. For the case of the Haswell platform,
we have also included tests where we spawn more software threads than the
available hardware threads (over-subscription) and validate that we cannot
get any more performance benefit. Nonetheless, all algorithms benefit from
using the available thread-level parallelism in the system. V-PATCH achieves
up to 40 and 45 Gbps on the Haswell and Xeon-Phi platforms respectively.

7. Other related Work

7.1. Pattern matching algorithms

Pattern matching has been an active field of research for many years and
there are numerous proposed approaches. Aho-Corasick, explained before in
Section 2.1 is one of the fundamental algorithms in the fields. There are vari-
ants of Aho-Corasick that decrease the size of the state transition table (for
example [30]) by changing the way it is mapped in memory, but they come at
an increased search cost, compared to the standard version of Aho-Corasick
used in our evaluation. Other approaches apply heuristics that enable the al-
gorithm to skip some of the input bytes without examining them at all, such
as Wu-Manber [31] where a table is used to store information of how many
bytes one can skip in the input. The main issue with these approaches is that
they perform poorly with short patterns. For the problem domain investi-
gated here, the patterns can be of any length and the algorithm must handle
all of them gracefully. Moreover, in both Aho-Corasick and Wu-Manber algo-
rithms, there is no data parallelism because there are dependencies between
different iterations of the main loop over the input.

Recent algorithms [16, 17] follow a different idea: Using small data struc-
tures that hold information from the patterns (directly addressable bitmaps
in the case of [16], Bloom filters in the case of [17]), they quickly filter out
the biggest parts of the input that will not match any patterns and fallback
to expensive verification when there is an indication for a match. Our work
is inspired by this family of algorithms, showing how they can be modified
to perform better under realistic traffic and gain significant benefit from vec-
torization.

33



7.2. Regular expression matching

Apart from exact signature matching, intrusion detection systems also
employ regular expression matching to detect attacks, because they offer
more flexibility when describing the patterns. Regular expression matching
usually utilizes finite automata, either deterministic (DFA) or non-deterministic
(NFA). DFA’s are fast, because every byte of input leads to only one state
and their search complexity is O(n). However, the size of the state machine
can grow exponentially with the number of regular expressions [32]. NFA’s,
on the other hand, construct a significantly smaller state in memory, but the
search time is increased, because the state machine needs to evaluate sev-
eral paths before finding a match. There has been significant work trying to
find a compromise between search time and memory use (for example [33]).
Because regular expression matching is generally slow, Snort, a widely used
NIDS, first applies exact pattern matching on the sub-strings that a regu-
lar expression contains, so most of the regular expressions do not have to be
considered. The same approach is also followed in many proposed algorithms
that target antivirus systems [34]. Thus, by improving the performance of ex-
act pattern matching, we increase also the effectiveness of regular expression
matching.

7.3. SIMD approaches to pattern matching

Even though pattern matching algorithms are characterized by random
access patterns, SIMD approaches have been used before for pattern match-
ing, especially in the field of regular expression matching. HyperScan [35] is
a mature pattern matching framework that heavily relies on vector instruc-
tions for regular expression and fixed string pattern matching. Mytkowicz
et al. [12] enumerate all the possible state transitions for a given byte of
input to break data dependencies when traversing the DFA. Then they use
the shuffle instruction to implement gathers and to compute the next set of
states in the DFA. The algorithm is applied on the case where the input is
matched against a single regular expression with a few hundreds of states
and does not scale for the case of multiple pattern matching where we need
to access thousands of states for every byte of input. Sitaridi et al. [13] use
the same hardware gathers as we do, but apply them on database applica-
tions where the multiple, independent strings need to be matched against a
single regular expression. There have been approaches that use other SIMD
instructions for multiple exact pattern matching, but have constraints that
make them impractical for the case of Network Intrusion Detection. Faro

34



et al. [36] create fingerprints from patterns and hash them, but they require
that the patterns are long, which is not always true for the typical set of
patterns found e.g. in Snort.

7.4. Other architectures

Outside the range of approaches that target commodity hardware, there
is rich literature on network intrusion detections systems that are customised
for specific hardware. For example, SIMD approaches that target DFA-
based algorithms have been applied on the Cell processor [37], as well as
FPGAs [38, 39, 40]. Most notably, Graphics Processing Units (GPUs) are a
popular target platform for pattern matching applications. GPUs are highly
parallel architectures and are typically a good match for algorithms that are
easily parallelizable, such as pattern matching. Lin et al. [41] present a par-
allelizable version of Aho-Corasick that removes the failure transitions (tran-
sitions taken in the state machine when a pattern is only partially matched).
The algorithms begins the state-machine traversal at every input byte, in par-
allel. Bellekens et al. [42] compress the size of Aho-Corasick’s state machine
to reduce the communication cost between the CPU and the GPU. Aragon
et al. [43] experiment with pattern matching on embedded GPUs that share
the same physical memory as the CPU. Kouzinopoulos and Margaritis also
experiment with pattern matching algorithms on GPUs and apply them on
genome sequence analysis [39].

There is also significant work on GPUs that addresses pattern matching
as part of a Network Intrusion Detection System. Vasiliadis et al. [38]
build a GPU-based intrusion detection system that uses Aho-Corasick as
the core pattern matching engine. Go et al. [44] use integrated GPUs and
show that they are successful platforms for packet processing and Network
Intrusion Detection. Jahmsed et al. [45] present Kargus, a custom NIDS
that uses multiple GPUs and CPU cores. Papadogiannaki et al. [46] present
a similar system and enhance it with a scheduler that dynamically decides
the placement of packet processing tasks.

GPU parallelization has many similarities with vectorization; in fact
GPUs offer more parallelism that can hide memory latencies. At the same
time, it introduces additional challenges e.g. long latencies when transferring
data between the host and the GPU. In this work we utilize vector pipelines
that are already part of modern commodity architectures. Moreover, vec-
torization with CPUs requires careful algorithmic design that makes use of

35



caches and advanced SIMD instructions. A main part of our work is showing
how this problem can be tackled for the case of intrusion detection.

8. Conclusion

In this paper, we address the problem of multiple pattern matching and
present an efficient algorithm that utilizes the architectural features of com-
modity hardware to improve the processing throughput of Network Intrusion
Detection Systems or other similar applications that employ pattern match-
ing, e.g. antivirus systems. Specifically we introduce V-PATCH, a cache
efficient filtering design, coupled with modern vectorization techniques that
allow data parallelism within each processing core. We also provide an ana-
lytical model for our algorithm that predicts the expected performance and
can be used to create and evaluate new designs on-the-fly.

We thoroughly evaluate V-PATCH and its algorithmic design with both
open data sets of real-world network traffic and synthetic ones in the context
of network intrusion detection. Our results on Haswell and Xeon-Phi show a
speedup of 1.8x and 3.6x, respectively compared to the state of the art and
a speedup of more than 2.3x over Aho-Corasick, a widely used algorithm in
today’s Intrusion Detection Systems. We also show that our approach can
scale across many cores, achieving up to 40 and 45 Gbps processing through-
put on the Haswell and Xeon-Phi platforms, respectively. Our experimental
study provides fine-grained insights on different scenarios, including stress-
tests under malicious traffic and thousands of malicious patterns. Finally, we
show that our analytical model closely follows the experimental results and
can thus be used as a valuable tool to create new filtering designs.

Acknowledgements

The research leading to these results has been partially supported by
the Swedish Energy Agency under the program Energy, IT and Design, the
Swedish Civil Contingencies Agency (MSB) through the projects RICS and
RIOT, by the Swedish Foundation for Strategic Research (SSF) through the
framework project FiC and the project LoWi, by the Swedish Research Coun-
cil (VR) through the project ChaosNet, and from the European Community’s
Horizon 2020 Framework Programme under grant agreement 773717.

36



References

[1] C. Stylianopoulos, M. Almgren, O. Landsiedel, M. Papatriantafilou,
Multiple pattern matching for network security applications: Accel-
eration through vectorization, in: 2017 46th International Confer-
ence on Parallel Processing (ICPP), 2017, pp. 472–482 (Aug 2017).
doi:10.1109/ICPP.2017.56.

[2] D. Knuth, J. Morris, Jr., V. Pratt, Fast pattern matching in
strings, SIAM Journal on Computing 6 (2) (1977) 323–350 (1977).
arXiv:https://doi.org/10.1137/0206024, doi:10.1137/0206024.
URL https://doi.org/10.1137/0206024

[3] R. S. Boyer, J. S. Moore, A fast string searching algorithm, Commun.
ACM 20 (10) (1977) 762–772 (Oct. 1977). doi:10.1145/359842.359859.
URL http://doi.acm.org/10.1145/359842.359859

[4] S. Antonatos, K. G. Anagnostakis, E. P. Markatos, Generating
realistic workloads for network intrusion detection systems, SIG-
SOFT Softw. Eng. Notes 29 (1) (2004) 207–215 (Jan. 2004).
doi:10.1145/974043.974078.
URL http://doi.acm.org/10.1145/974043.974078

[5] J. B. D. Cabrera, J. Gosar, W. Lee, R. K. Mehra, On the statistical
distribution of processing times in network intrusion detection, in: 2004
43rd IEEE Conf. on Decision and Control (CDC), Vol. 1, 2004, pp. 75–80
Vol.1 (Dec 2004). doi:10.1109/CDC.2004.1428609.

[6] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,
R. Boutaba, Network function virtualization: State-of-the-art and re-
search challenges, IEEE Communications Surveys & Tutorials 18 (1)
(2015) 236–262 (2015).

[7] Y. Li, M. Chen, Software-defined network function virtualization: a
survey, IEEE Access 3 (2015) 2542–2553 (2015).

[8] J. Kurose, K. Ross, Computer networks: A top down approach featuring
the internet, Peorsoim Addison Wesley (2010).

[9] Intel Xeon Phi product family, http://www.intel.com/content/www/
us/en/processors/xeon/xeon-phi-detail.html, accessed: 2016-12-
10 (2016).

37



[10] Intel vectorization tools, https://software.intel.com/en-

us/articles/intel-vectorization-tools, accessed: 2016-12-10
(2015).

[11] The importance of vectorization for Intel Many Integrated Core Archi-
tecture (Intel MIC architecture), https://software.intel.com/en-

us/articles/the-importance-of-vectorization-for-intel-

many-integrated-core-architecture-intel-mic, accessed: 2016-
12-10 (2013).

[12] T. Mytkowicz, M. Musuvathi, W. Schulte, Data-parallel finite-state
machines, in: Proc. of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’14, ACM, New York, NY, USA, 2014, pp. 529–542 (2014).
doi:10.1145/2541940.2541988.
URL http://doi.acm.org/10.1145/2541940.2541988

[13] E. Sitaridi, O. Polychroniou, K. A. Ross, SIMD-accelerated regular ex-
pression matching, in: Proc. of the 12th Int. Workshop on Data Man-
agement on New Hardware, DaMoN ’16, ACM, 2016, pp. 8:1–8:7 (2016).
doi:10.1145/2933349.2933357.
URL http://doi.acm.org/10.1145/2933349.2933357

[14] P. Jiang, G. Agrawal, Combining SIMD and Many/Multi-core paral-
lelism for finite state machines with enumerative speculation, in: Pro-
ceedings of the 22Nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’17, ACM, New York, NY,
USA, 2017, pp. 179–191 (2017). doi:10.1145/3018743.3018760.
URL http://doi.acm.org/10.1145/3018743.3018760

[15] A. V. Aho, M. J. Corasick, Efficient string matching: An aid to bib-
liographic search, Commun. ACM 18 (6) (1975) 333–340 (Jun. 1975).
doi:10.1145/360825.360855.
URL http://doi.acm.org/10.1145/360825.360855

[16] B. Choi, J. Chae, M. Jamshed, K. Park, D. Han, DFC: Accelerating
string pattern matching for network applications, in: 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16), USENIX Association, Santa Clara, CA, 2016, pp. 551–565 (2016).

38



URL https://www.usenix.org/conference/nsdi16/technical-

sessions/presentation/choi

[17] I. Moraru, D. G. Andersen, Exact pattern matching with feed-forward
bloom filters, J. Exp. Algorithmics 17 (2012) 3.4:3.1–3.4:3.18 (Sep.
2012). doi:10.1145/2133803.2330085.
URL http://doi.acm.org/10.1145/2133803.2330085

[18] Snort rules and IDS software download, https://www.snort.org/

downloads, accessed: 2016-12-10 (2016).

[19] Scaling CloudFlare’s massive WAF, https://www.scalescale.com/

scaling-cloudflares-massive-waf/, accessed: 2016-12-10 (2014).

[20] Gather Scatter operations, http://insidehpc.com/2015/05/gather-
scatter-operations/, accessed: 2016-12-10 (2015).

[21] O. Polychroniou, A. Raghavan, K. A. Ross, Rethinking SIMD vector-
ization for in-memory databases, in: Proc. of the 2015 ACM SIGMOD
Int. Conf. on Management of Data, SIGMOD ’15, ACM, 2015, pp. 1493–
1508 (2015). doi:10.1145/2723372.2747645.
URL http://doi.acm.org/10.1145/2723372.2747645

[22] J. Hofmann, J. Treibig, G. Hager, G. Wellein, Comparing the perfor-
mance of different x86 SIMD instruction sets for a medical imaging
application on modern multi- and manycore chips, in: Proc. of the
2014 Workshop on Programming Models for SIMD/Vector Processing,
WPMVP ’14, ACM, New York, NY, USA, 2014, pp. 57–64 (2014).
doi:10.1145/2568058.2568068.
URL http://doi.acm.org/10.1145/2568058.2568068

[23] O. Polychroniou, K. A. Ross, Vectorized Bloom filters for advanced
SIMD processors, in: Proc. of the Tenth Int. Workshop on Data Man-
agement on New Hardware, DaMoN ’14, ACM, New York, NY, USA,
2014, pp. 6:1–6:6 (2014). doi:10.1145/2619228.2619234.
URL http://doi.acm.org/10.1145/2619228.2619234

[24] M. Roesch, Snort - lightweight intrusion detection for networks, in:
Proc. of the 13th USENIX Conf. on System Administration, LISA ’99,
USENIX Association, Berkeley, CA, USA, 1999, pp. 229–238 (1999).
URL http://dl.acm.org/citation.cfm?id=1039834.1039864

39



[25] A. Shiravi, H. Shiravi, M. Tavallaee, A. A. Ghorbani, Toward developing
a systematic approach to generate benchmark datasets for intrusion
detection, Computers & Security 31 (3) (2012) 357 – 374 (2012).
doi:http://dx.doi.org/10.1016/j.cose.2011.12.012.
URL http://www.sciencedirect.com/science/article/pii/

S0167404811001672

[26] UNB ISCX intrusion detection evaluation dataset, https://www.unb.
ca/cic/datasets/ids.html, accessed: 2016-12-10 (2012).

[27] DARPA intrusion detection data sets, https://www.ll.mit.edu/r-

d/datasets/2000-darpa-intrusion-detection-scenario-

specific-datasets, accessed: 2016-12-10 (2012).

[28] M. V. Mahoney, P. K. Chan, An analysis of the 1999 DARPA/Lincoln
Laboratory evaluation data for network anomaly detection, in:
Int. Workshop on Recent Advances in Intrusion Detection, Springer,
2003, pp. 220–237 (2003).

[29] G. M. Amdahl, Validity of the single processor approach to
achieving large scale computing capabilities, in: Proc. of the
April 18-20, 1967, Spring Joint Computer Conference, AFIPS ’67
(Spring), ACM, New York, NY, USA, 1967, pp. 483–485 (1967).
doi:10.1145/1465482.1465560.
URL http://doi.acm.org/10.1145/1465482.1465560

[30] M. Norton, Optimizing pattern matching for intrusion detection, Source-
fire, Inc., Columbia, MD (2004).

[31] S. Wu, U. Manber, A fast algorithm for multi-pattern searching, Tech.
Rep. TR-94-17, University of Arizona. Department of Computer Science
(1994).

[32] G. Berry, R. Sethi, From regular expressions to deterministic automata,
Theoretical computer science 48 (1986) 117–126 (1986).

[33] R. Smith, C. Estan, S. Jha, S. Kong, Deflating the big bang: fast and
scalable deep packet inspection with extended finite automata, in: ACM
SIGCOMM Computer Communication Review, Vol. 38, ACM, 2008, pp.
207–218 (2008).

40



[34] S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley, D. G. Andersen,
SplitScreen: Enabling efficient, distributed malware detection, Journal
of Communications and Networks 13 (2) (2011) 187–200 (Apr. 2011).
doi:10.1109/JCN.2011.6157418.

[35] X. Wang, Y. Hong, H. Chang, K. Park, G. Langdale, J. Hu, H. Zhu,
Hyperscan: A Fast Multi-pattern Regex Matcher for Modern CPUs,
in: 16th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 19), USENIX Association, Boston, MA, 2019, pp.
631–648 (2019).
URL https://www.usenix.org/conference/nsdi19/presentation/

wang-xiang

[36] S. Faro, M. O. Külekci, Fast Multiple String Matching Using Streaming
SIMD Extensions Technology, Springer, Berlin, Heidelberg, 2012, pp.
217–228 (2012). doi:10.1007/978-3-642-34109-0 23.
URL http://dx.doi.org/10.1007/978-3-642-34109-0_23

[37] D. P. Scarpazza, O. Villa, F. Petrini, Peak-performance DFA-based
string matching on the Cell processor, in: 2007 IEEE International
Parallel and Distributed Processing Symposium, 2007, pp. 1–8 (March
2007). doi:10.1109/IPDPS.2007.370634.

[38] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, S. Ioan-
nidis, Gnort: High Performance Network Intrusion Detection Using
Graphics Processors, Springer, Berlin, Heidelberg, 2008, pp. 116–134
(2008). doi:10.1007/978-3-540-87403-4 7.
URL http://dx.doi.org/10.1007/978-3-540-87403-4_7

[39] C. S. Kouzinopoulos, K. G. Margaritis, String matching on a multicore
GPU using CUDA, in: Informatics, PCI’09. 13th Panhellenic Con. on,
IEEE, 2009, pp. 14–18 (2009).

[40] I. Sourdis, D. Pnevmatikatos, Pre-decoded CAMs for efficient and high-
speed nids pattern matching, in: Field-Programmable Custom Comput-
ing Machines, FCCM 2004. 12th Annual IEEE Symposium on, IEEE,
2004, pp. 258–267 (2004).

[41] C. H. Lin, C. H. Liu, L. S. Chien, S. C. Chang, Accelerating Pat-
tern Matching Using a Novel Parallel Algorithm on GPUs, IEEE

41



Transactions on Computers 62 (10) (2013) 1906–1916 (Oct 2013).
doi:10.1109/TC.2012.254.

[42] X. J. Bellekens, C. Tachtatzis, R. C. Atkinson, C. Renfrew, T. Kirkham,
A highly-efficient memory-compression scheme for gpu-accelerated in-
trusion detection systems, in: Proceedings of the 7th International Con-
ference on Security of Information and Networks, ACM, arXiv, 2014, p.
302 (2014).

[43] E. Aragon, J. M. Jiménez, A. Maghazeh, J. Rasmusson, U. D. Bor-
doloi, Pattern matching in opencl: Gpu vs cpu energy consumption on
two mobile chipsets, in: Proceedings of the International Workshop on
OpenCL 2013 &#38; 2014, IWOCL ’14, ACM, New York, NY, USA,
2014, pp. 5:1–5:7 (2014). doi:10.1145/2664666.2664671.
URL http://doi.acm.org/10.1145/2664666.2664671

[44] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, K. Park, APUNet:
Revitalizing GPU as Packet Processing Accelerator, in: 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17), USENIX Association, Boston, MA, 2017, pp. 83–96 (2017).
URL https://www.usenix.org/conference/nsdi17/technical-

sessions/presentation/go

[45] M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi,
K. Park, Kargus: A Highly-scalable Software-based Intrusion Detection
System, in: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, ACM, New York, NY, USA,
2012, pp. 317–328 (2012). doi:10.1145/2382196.2382232.
URL http://doi.acm.org.proxy.lib.chalmers.se/10.1145/

2382196.2382232

[46] E. Papadogiannaki, L. Koromilas, G. Vasiliadis, S. Ioannidis, Efficient
software packet processing on heterogeneous and asymmetric hardware
architectures, IEEE/ACM Transactions on Networking 25 (3) (2017)
1593–1606 (June 2017). doi:10.1109/TNET.2016.2642338.

42


