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Abstract—A novel ultra-wideband (UWB) antenna system is 
proposed for fault inspection and online diagnoses on high voltage 
polymeric insulators. This technique makes use of the multimode 
transferring theory on dielectric waveguides, where the 
transmission signal level difference can be employed to detect 
internal defects in the core rod. An investigation by simulation is 
performed with regard to the interfacial mm-ordered cracks in 
transverse and longitudinal orientations, and roughly 30~50 dB 
and 20~40 dB differences have been observed over the same band 
3~10 GHz, respectively.  

Keywords—online diagnosis; ultra-wideband (UWB) antenna; 
polymeric insulators; internal defects  

I. INTRODUCTION 
Nowadays, polymeric insulators are widely applied in power 

systems due to their superior anti-pollution properties, excellent 
high-dielectric strength, low volume and light weight [1]. Tens 
of million pieces of polymeric insulators have currently been 
operating over the world, making up a huge portion of power 
grid insulators that consist of three categories by materials, i.e., 
porcelain, glass and polymeric insulators. As time goes by, some 
internal defects such as interfacial air voids, micro-crack, 
erosion defect and chemical degradation could gradually appear 
in polymeric insulators due to various complex circumstances, 
which will result in severe deterioration on insulation 
performance [2]-[6]. However, it is of great difficulty to make 
real time monitoring and diagnoses on the internal defects of 
polymeric insulators in operation, particularly of outdoor types. 
An efficient online detection technique is thus called in order to 
secure reliable operation of polymeric insulators in a smart 
power grid.  

II. MULTIMODE TRANSFERRING THEORY 
A piece of polymeric insulator is generally composed of a 

polymeric core rod (mainly fiber glass plus epoxy resin), a 
polymeric (mainly silicon rubber) housing and a number of 
polymeric (mainly silicon rubber) sheds.  

The core rod can be considered as a cylindrical dielectric 
waveguide. According to the guided wave theory, as illustrated 
in Fig.1, when a microwave at a proper frequency propagates 
end-to-end through a normal core rod without any internal 
defects, the dominant mode TM01 (mode 1) and other higher 
ordered mode, for example, mode HE11 (mode 2), can be excited 
within the cylinder, without mutual couplings between the 

orthogonal modes. However, if there exist some defects inside 
or on the surface of the core rod, the mutual couplings between 
the dominate mode and the higher ordered modes will appear 
with significant values. This is basically the physical principle 
of the proposed online diagnosis technique. 

      
(a)                                          (b) 

Fig. 1. Transverse E-field distribution of (a) mode 1 (b) mode 2 in core rod.  

III. SYSTEM DESIGN AND ANALYSES 

Fig. 2. Geometry and parameters of online diagnostic UWB antenna system. 

As shown in Fig. 2, the proposed online diagnostic system 
mainly consists of two identical antennas that can respectively 
be integrated in metal (typically aluminum) fittings at the cable 
end and the ground end, as a transmitter (port 1) and a receiver 
(port 2), or vice versa. A single antenna is composed of four 
monopole probes inside the core rod covered by an outer 
cylindrical conductor that is analogous to a metal cavity with 
one open aperture.  
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Fig. 3 shows how to excite mode 1 and mode 2 microwaves 
at both ports. Mode 1 can be generated by simultaneously 
exciting all the four feed probes with equal amplitude and same 
phase, while mode 2 by exciting two probes for one polarization 
with equal amplitude but opposite phase 

 
Fig. 3. Port excitations of mode 1 and mode 2 signals within core rod. 

IV. SIMULATION RESULTS 
Detection of internal defects in the core rod is investigated 

by simulation in CST MWS. As depicted in Fig. 4, both 
transverse (perpendicular to z-axis) and longitudinal (parallel to 
z-axis) conformal cracks on the interface between the core rod 
and the polymer housing are modelled by air slots, whose 
volume dimensions are 5.878mm*1.0mm*1.0mm, and 
0.5mm*1.0mm*10.0mm, respectively.  

 
Fig. 4. Transverse and longitudinal cracks on insulator inter-surface. 

The simulated transmission S-parameters are exhibited in Fig. 
5. As for the transverse cracks, significant difference up to 
30~50 dB can be observed on the transmission curves (S2(1),1(2) 
and S2(2),1(1)) between the reference model and the defect model 
over 3~10 GHz. As for the longitudinal cracks, 20~40 dB 
difference can be observed on the transmission curves between 
the reference model and the defect model over the same band. 

 

 

  

 
Fig. 5. Simulated S-parameters of reference model and defect model. 

V. CONCLUSION 
A novel online diagnostic UWB antenna system for 

polymeric insulators is presented in this paper. Detection of 
interfacial cracks in a dielectric core rod is investigated by 
simulations. The simulation results show that air cracks in the 
order of millimeters could successfully be detected by the 
proposed technique, which may open up a grand new path to 
fault inspection and online diagnoses on high voltage polymeric 
outdoor insulators. By the way, an intensive experimental study 
will be carried out on a manufactured prototype in the near 
future. 
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