Wideband Sub-6 GHz Self-Grounded Bow-Tie Antenna with New Feeding Mechanism for 5G Communication Systems

Downloaded from: https://research.chalmers.se, 2019-12-25 00:36 UTC

Citation for the original published paper (version of record):
Wideband Sub-6 GHz Self-Grounded Bow-Tie Antenna with New Feeding Mechanism for 5G Communication Systems
13th European Conference on Antennas and Propagation, EuCAP 2019, March 2019

N.B. When citing this work, cite the original published paper.
Wideband Sub-6 GHz Self-Grounded Bow-Tie Antenna with New Feeding Mechanism for 5G Communication Systems

Mohammad Alibakhshikenari¹, Sadegh Mansouri Moghaddam², Ashraf Uz Zaman², Jian Yang², Bal Singh Virdee³ and Ernesto Limiti¹

¹Electronic Engineering Department, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Roma, ITALY
²Electrical Engineering Department, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
³London Metropolitan University, Center for Communications Technology, School of Computing and Digital Media, London N7 8DB, UK
alibakhshikenari@ing.uniroma2.it

Abstract—This paper presents a self-grounded directional Bow-Tie antenna with a novel feed structure for sub-6 GHz applications in 5G communication systems covering 3.35-4.4 GHz. The antenna consists of two petal shaped metal structures that are fed by a bend microstrip line with an out-of-phase excitation. The petals are anchored on a common ground-plane. The feed mechanism used to excite the petals is by EM coupling from a single open-circuited microstrip line implemented behind the ground-plane. The coupling of EM energy from the input microstrip line to the feed microstrip line is controlled via an I-shaped slot printed on the ground-plane. The proposed antenna offers good impedance matching across its operating frequency range with VSWR <2 and exhibits an average gain of 20 dBi for an 8×8 element antenna array.

Keywords—Bowtie antenna, feeding mechanism, self-grounded, single-polarized, 5G communication systems.

I. INTRODUCTION

Wideband antennas are essential for emerging communication applications, MIMO and radar (or sensor) systems. Such antennas support a large frequency range which makes them popular for developing compact multiband and multi-standard wireless systems. Wideband antennas enable multiple applications to be integrated on a single device. Although there are numerous types of wideband antennas available today, the self-grounded bow-tie antenna offers the advantages of structural simplicity and compactness [1], [2]. Normally the wideband types of antennas are excited using a wideband balun [3], [4] which, however, can be a challenge to be implemented in practice due to the space limitation of a compact antenna array.

In this paper a simple solution has been proposed to circumvent the big-size balun encountered in the design of compact wideband antenna array, based on microstrip line coupling to the bow-tie’s petals through an I-shaped slot etched in the ground-plane. The proposed technique reduces the complexity of the feed structure design and simplifies the manufacturing process. Radiation characteristics of the antenna was optimized by adjusting the geometry of two identical petals which are electrically connected to a common ground plane. The conceptual realization presented here is of a single-port single-polarized bow-tie antenna fed by the proposed feed mechanism which is optimized for a normal directive beam. It is shown that the antenna has an excellent impedance match and a directive beam with a fractional bandwidth of 27%. The results presented reveal that each petal of the bowtie antenna has a directivity similar to that of the theoretical Huygens source, which makes it an interesting candidate achieving the best available MIMO coverage of small antennas [5].

II. ANTENNA GEOMETRY

To realise directional radiation from a bow-tie antenna, its radiating structure needs to resemble the shape of an eagle’s wings, as illustrated in Fig.1, where the radiating elements are connected to the ground at the outer end of the antenna. This type of configuration reduces the size of wideband antenna with minimal degradation in the operating frequency band. Fig.2 shows how the bow-tie dipole is translated to a self-grounded bow-tie antenna.

The geometry of the single-port single-polarized self-grounded bowtie antenna is shown in Fig.3. The structure is based on the designs presented in [3], [4]. The antenna is essentially constructed from two petal shaped metal structures that are interconnected to each other with a bend microstrip line. The petals are anchored on a common ground-plane. The feed
mechanism proposed here to excite the petals is realised using an open-ended microstrip line implemented on the opposite side of the ground-plane. There are two substrates having a common ground plane with a slot and each of these substrates support two microstrip lines. The bottom microstrip line serves as the input line for the antenna. The slot in the ground plane works as the coupling mechanism between the two microstrip lines. The top microstrip line excites the petals with 180 phase difference. In this way, both petals are excited differentially by the single-microstrip fed line. The proposed technique gets rid of the bulky balun. The profile of the petals and I-shaped slot were modified to match them to the feed line to achieve optimum wideband antenna performance. The antenna is simulated on FR4 lossy dielectric substrate with thickness of 0.8 mm, dielectric constant of $\varepsilon_r = 4.3$, and $\tan\delta = 0.025$. The antenna design was analysed using CST Microwave Studio, which is a commercially available full-wave 3D EM software [5].

![Fig. 1. Eagle configuration of bow-tie.](image)

![Fig. 2. Conversion from bow-tie antenna to self-grounded bow-tie antenna.](image)

Design parameters that describe the proposed bow-tie antenna are: angle θ, the location, length (L_1) and width (W_1) of the microstrip line on bottom of ground-plane, the width of the ground-plane (W_g), the location, length (L_2) and width (W_2) of the microstrip line on top of the ground-plane connecting the two petals, the radius of curvature of the bowed section of the petal, the profile of the petals, the configuration, dimensions and location of the slot on the ground-plane. The dimensions and configuration of the two petals are identical.

We have applied the optimizer facility available in CST Microwave Studio to optimize the geometry of the antenna through the above defined parameters. The optimized structural parameters are listed in Table I. The optimization criterion set in CST Microwave Studio was reflection-coefficient of less than -12 dB between 3.35 and 4.4 GHz. Fig.4 shows the reflection-coefficient for the proposed self-grounded bow-tie antenna with single-port. In this case the input port impedance is 50 ohm. It can be observed that in this preliminary investigation, the antenna has the excellent reflection coefficient performance, which is almost below -10 dB over the band of 3.35 GHz to 4.4 GHz, which corresponds a fractional bandwidth of 27%.
antenna is highly directive in both the planes over 3.35–4.4 GHz. It is also noticed that, the radiation patterns are symmetrical. The radiation gain is about 20 dBi over the frequency band. The maximum beam directions are along the normal of the antenna ground-plane at all frequency points.

III. CONCLUSION

The feasibility of a new and simple feed mechanism is conceptually validated in the realization of a low-profile and directional wideband self-grounded Bow-Tie antenna. The proposed feed mechanism is implemented with a single open-circuited microstrip line that couples EM energy to the Bow-tie structure through a slot etched in the ground-plane. This technique gets rid of baluns and therefore reduces the complexity of the feed structure design and simplifies the manufacturing process. The resulting antenna offers good impedance matching across its operating frequency range with VSWR<2 and exhibits an average gain of 20 dBi.
REFERENCES

