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ABSTRACT
Consolidation chemotherapy in acute myeloid leukemia (AML) aims at eradicating residual
leukemic cells and mostly comprises high-dose cytarabine with or without the addition of
anthracyclines, including daunorubicin. Immunogenic cell death (ICD) may contribute to the effi-
cacy of anthracyclines in solid cancer, but the impact of ICD in AML is only partly explored. We
assessed aspects of ICD, as reflected by calreticulin expression, in primary human AML blasts
and observed induction of surface calreticulin upon exposure to daunorubicin but not to cytara-
bine. We next assessed immune phenotypes in AML patients in complete remission (CR), follow-
ing consolidation chemotherapy with or without anthracyclines. These patients subsequently
received immunotherapy with histamine dihydrochloride (HDC) and IL-2. Patients who had
received anthracyclines for consolidation showed enhanced frequencies of CD8þ TEM cells in
blood along with improved survival. We propose that the choice of consolidation therapy prior
to AML immunotherapy may determine clinical outcome.
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Introduction

Acute myeloid leukemia (AML) is characterized by
rapid accumulation of immature myeloid cells in the
bone marrow and other organs. At diagnosis, patients
typically receive induction chemotherapy aiming at
attaining the microscopic disappearance of leukemic
cells and the re-appearance of normal hematopoiesis
(complete remission (CR)). The ensuing phase of con-
solidation chemotherapy aims at eradicating undetect-
able leukemic cells to maintain CR [1–3]. Leukemic
relapses, which are assumed to result from the expan-
sion of leukemic cells that have escaped chemother-
apy, are common in the post-consolidation phase and
herald poor long-term survival [4,5].

The sensitivity of AML cells to the anti-leukemic
activity of cytotoxic lymphocytes such as T cells and
NK cells [6–10] along with the purported role of these
immune effector cells in the surveillance of leukemic
cells [11,12] have inspired the development of

strategies to boost cellular immunity in the post-con-
solidation phase for relapse prevention [13–16]. The
NOX2 inhibitor histamine dihydrochloride (HDC) in
conjunction with the T and NK cell activating cyto-
kine interleukin-2 (HDC/IL-2) is approved in AML for
relapse prevention in Europe, and recent studies
imply that aspects of T and NK cell immunity are rele-
vant to the clinical efficiency of this combinatorial
immunotherapy [16–19].

The standard treatment for newly diagnosed AML
patients comprises cytarabine combined with an
anthracycline during induction therapy and high-
dose cytarabine, alone or combined with other cyto-
static drugs, including anthracyclines, in the ensuing
consolidation phase [3,20,21]. In recent years it has
become recognized that chemotherapies are import-
ant not only to directly eliminate tumor cells but
also to induce or reinforce immune responses that
may be crucial for the eradication of malignant cells.
This phenomenon is referred to as immunogenic cell
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death (ICD) [22,23] and comprises cell surface
expression or release of damage-associated molecu-
lar pattern molecules (DAMPs), including calreticulin,
ATP, and HMGB1 [24]. Surface-exposed calreticulin func-
tions as an ‘eat me’ signal via binding to LDL-receptor-
related protein (LRP) on the engulfing cells, while ATP
and HMGB1 recruit and activate antigen-presenting cells
(APCs). This stimulates antigen uptake and presentation
for priming of antigen-specific T cells [24,25]. Several
chemotherapeutics have been reported to induce ICD
including anthracyclines, oxaliplatin, and bortezo-
mib [26].

Here, we report that the anthracycline daunorubi-
cin, but not the non-anthracycline cytarabine, triggers
a robust upregulation of calreticulin on the surface of
primary human CD34þ AML blasts. Furthermore, our
results suggest that AML patients receiving consolida-
tion chemotherapy that includes an anthracycline
show increased levels of cytotoxic T cells with a TEM
phenotype in peripheral blood. A high frequency of
cytotoxic TEM cells after consolidation was associated
with a favorable clinical outcome in a clinical phase IV
trial where AML patients in CR were treated by
immunotherapy with HDC/IL-2.

Patients, materials, and methods

Primary AML blasts

Peripheral blood was collected from newly diagnosed
AML patients at the Department of Hematology at
Sahlgrenska University Hospital, after informed con-
sent was obtained. The peripheral blood was diluted
1:1 in sterile PBS, carefully layered on top of Ficoll-
Paque and thereafter centrifuged (820 g, 20min in
room temperature). Peripheral blood mononuclear
cells (PBMCs) were collected from the interface and
subsequently frozen in liquid nitrogen.

The cryopreserved AML cells from newly diagnosed
patients were thawed quickly and resuspended in
IMDM (Iscove’s modified Dulbeccos Medium) supple-
mented with 10% human AB serum. Four hundred
thousand PBMCs from the newly diagnosed AML
patients were seeded in each well and exposed to
either cytarabine or daunorubicin. After incubation
overnight, the cells were stained for calreticulin, CD34,
CD14 and CD3, a live/dead marker and were then ana-
lyzed on a 4-laser BD LSRFortessa SORP flow cytome-
ter (405, 488, 532, and 640 nm; BD Biosciences,
Stockholm, Sweden).

Clinical trial patients, study design, and objectives

Eighty-four adult patients (age 18–79) with confirmed
AML in first CR who were not eligible for allogeneic
stem cell transplantation were enrolled in the
Re:Mission trial (NCT01347996, registered at www.clini-
caltrials.gov). Table 1 provides information about the
prior induction and consolidation chemotherapy.
Further patient characteristics are accounted for in
previous publications [17,18,27]. In this single-armed
multicenter phase IV study, patients received 10 con-
secutive 21-d cycles of HDC and low-dose IL-2 for 18
months or until relapse or death using a regime iden-
tical to that employed in a previous phase III trial [28].
Patients were enrolled at a median of 46 d after the
completion of consolidation (19–172 d after the last
day of consolidation) and were followed-up for at least
until 24 months after the onset of immunotherapy.
Patients who discontinued prematurely from the study
(n¼ 14) were censored at the last captured follow-up
date. The primary trial endpoints included the quanti-
tative and qualitative effects of HDC/IL-2 on T and NK
cell populations in peripheral blood during treatment
cycles. The present analyses of effects of induction
and consolidation regimes and T cell subpopulations
on clinical outcome (leukemia free survival (LFS)
and overall survival (OS)) were performed post-hoc.
Individual induction and consolidation regimens were
based on local guidelines at each recruiting center.
Relapse was defined as at least 5% blast cells in the
bone marrow or presence of extramedullary leukemia.

Table 1. Induction and consolidation chemotherapy.
No. of induction courses n¼ 84
1 63 (75)
2 21 (25)

Drug included in induction n¼ 84
Cytarabine 84 (100)
Daunorubicin 73 (87)
Idarubicin 15 (18)
Fludarabine 6 (7)
Etoposide 8 (10)
Amsacrine 1 (1)
Gemtuzumab ozogamicin 1 (1)

No. of consolidation courses n¼ 84
0 6 (7)
1 15 (18)
2 20 (24)
3 37 (44)
4 5 (6)
5 1 (1)

Drug included in consolidation (n¼ 78)
Cytarabine 78 (100)
Daunorubicin 48 (62)
Idarubicin 10 (13)
Mitoxantrone 2 (3)
Gemtuzumab ozogamicin 1 (1)
Fludarabine 5 (6)
Etoposide 3 (4)
Amsacrine 1 (1)
Methotrexate 1 (1)
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Isolation of PBMCs, staining, and flow cytometry

Peripheral blood was collected immediately before the
first HDC/IL-2 treatment cycle from patients in the
Re:Mission clinical trial. PBMCs were isolated and cryo-
preserved at local sites and shipped on dry ice to the
central laboratory at the TIMM Laboratory, University
of Gothenburg for analysis. Cryopreserved samples
were quickly thawed, washed, and stained with LIVE/
DEAD fixable yellow stain (Life Technologies, Grand
Island, NY). Thereafter, cells were washed and incu-
bated with an antibody cocktail for surface markers in
PBS containing 0.5% BSA and 0.1% EDTA or in Brilliant
stain buffer (BD Biosciences, Stockholm, Sweden).
The following anti-human monoclonal antibodies
were used for phenotyping of PBMCs: CD4-APC-H7
(RPA-T4), CD8-PerCP-Cy5.5 (RPA-T8/SK1) CD45RA-APC
(HI100), CD45RO-PE (UCHL1) (all from BD Biosciences,
Stockholm, Sweden). CCR7-PE-Cy7 (G043H7) from
Biolegend, San Diego, CA and CD3-Pacific Blue (S4.1)
from Life Technologies, Carlsbad, CA. A 4-laser BD
LSRFortessa SORP flow cytometer (405, 488, 532, and
640 nm; BD Biosciences, Stockholm, Sweden) was
employed to analyze samples. Data analysis was per-
formed by using FlowJo Software version 7.6.5 or later
(TreeStar, Ashland, OR). Blood samples were available
from 81 out of 84 patients. Phenotype analysis of T
cell subsets was performed on PBMC from 44 patients
who were selected based on the availability of frozen
PBMCs with sufficient viability.

Statistical analyses

The impact of the choice of previous chemotherapy
on the distribution of CD8þ T cell phenotypes at the
onset of immunotherapy was performed using
Student’s t-test. The logrank test was utilized to deter-
mine the impact of the number of induction and con-
solidation courses, the type of consolidation therapy
or the frequency of CD8þ T cell subsets on LFS and
OS at the trial closing date (13 October 2014). The
impact of the inclusion of anthracyclines in the con-
solidation phase and the distribution of cytotoxic T
cell phenotypes in blood on LFS and OS were further
assessed using Cox univariable and multivariable
regression analyses. To select factors to include in the
multivariable Cox regression model, univariable ana-
lysis was utilized to determine the impact of age, risk
group classification according to recommendations by
the European LeukemiaNet [29] along with the num-
ber of induction courses required to achieve CR, the
number of consolidation courses given and dose of
cytarabine used in consolidation on LFS and OS.

Prognostic factors achieving a p value below .1 in uni-
variable analysis for LFS, i.e. age and number of induc-
tion courses, were included as potential confounders
in the multivariable analysis.

All indicated p values are 2-sided. This study was
conducted according to principles outlined in the
Declaration of Helsinki and was approved by the Ethics
Committees of each participating institution. All patients
gave written informed consent before enrollment.

Results

Daunorubicin triggers robust calreticulin
expression on primary CD34þ AML blasts

Cell surface expression of CRT is regarded as a hall-
mark of ICD [24]. To elucidate if cell surface levels of
CRT differed on primary AML cells after exposure to
anthracyclines as compared to cytarabine, primary
AML cells were treated with varying concentrations
of either the anthracycline daunorubicin or the non-
anthracycline cytarabine. Over a wide concentration
range, daunorubicin, but not cytarabine, triggered an
upregulated expression of surface calreticulin on the
primary AML blasts (Figure 1). We also assessed the
expression of the associated DAMP HSP70 (Heat Shock
Protein-70.) In line with the CRT data, we observed a
significant upregulation of HSP70 upon exposure to
daunorubicin but not to cytarabine (Figure 1(C)).

Impact of induction chemotherapy on clinical
outcome in HDC/IL-2 AML trial

Information about the induction and consolidation
strategies were available for 84 AML patients partici-
pating in a clinical phase IV trial using post-consolida-
tion immunotherapy with HDC/IL-2. The induction
strategies were similar for the vast majority of patients
and included cytarabine in all cases. For all but two
patients, cytarabine was combined with anthracyclines
(daunorubicin, n¼ 67; idarubicin, n¼ 11; or both,
n¼ 4). Fourteen patients received cytarabine and
anthracyclines with additional chemotherapy (Table 1).
The two patients who did not receive anthracyclines
for induction both experienced relapse. Sixty-three
patients attained CR after the first induction cycle and
two induction cycles were required in 21 patients. In
agreement with previous studies [30], patients who
had attained CR after one course of induction showed
significantly superior outcome (Figure 2(A)).
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Use of anthracyclines in consolidation therapy
predicts favorable outcome in the HDC/IL-2 AML trial

Seventy-eight patients received consolidation chemo-
therapy comprising 1 (n¼ 15), 2 (n¼ 20), 3 (n¼ 37), 4
(n¼ 5), or 5 (n¼ 1) courses. Five out of the six patients
who did not receive post-remission chemotherapy
relapsed within 7 months (Figure 2(B)); for five of
these patients two rounds of induction therapy had
been required to attain CR. Among the 78 patients
who had received consolidation chemotherapy, there
was a non-significant trend toward improved LFS for
patients given 2 vs. 1 round of consolidation, but no
further improvement of LFS was apparent for those
receiving 3–5 rounds of consolidation (Figure 2(C)).
In patients receiving cytarabine for consolidation, 56
out of 78 patients received higher doses (1.7–6.6g/d for
3–7 d), with a total dose (all cycles counted) of >20g.
Low to intermediate doses were given to 22 patients
(0.18–2g/d for 3–7 d, with a total dose of <20g). There
was a non-significant trend toward improved outcome
for patients receiving a total dose of >20g (Figure
2(D)), but no further improvement was noted for
patients receiving >40g (Supplementary Figure 1(A)).
Furthermore, patients receiving gram doses of cytara-
bine (at least 1 g/m2 for at least one dose; n¼ 62 vs.
patients receiving <1g/m2 in all doses; n¼ 16) did not
show superior outcome (Supplementary Figure 1(B)).

The majority of patients received anthracyclines i.e.
daunorubicin (n¼ 48), idarubicin (n¼ 10), or mitoxantrone
(n¼ 2), together with cytarabine also during consolidation
(n¼ 60). In addition to receiving cytarabine and anthracy-
clines in consolidation, one patient was also given

gemtuzumab ozogamicin and two patients received flu-
darabine (Table 1). The clinical outcome was similar for
the patients receiving daunorubicin or idarubicin, while
both patients treated with mitoxantrone relapsed.

Eighteen patients received cytarabine in consolidation
in the absence of anthracyclines. Among these, 13
patients received cytarabine as the single drug, while five
patients received cytarabine combined with etoposi-
deþ amsacrine (n¼ 1), methotrexate (n¼ 1), or fludara-
bine (n¼ 3) (Table 1). The addition of these non-
anthracycline chemotherapies to cytarabine did not result
in improved LFS or OS (data not shown). However, when
comparing clinical outcomes in patients receiving consoli-
dation with cytarabine, used alone or together with non-
anthracyclines, with those receiving cytarabine together
with an anthracycline, the inclusion of anthracyclines was
associated with significantly improved OS (Figure 3(A)).
Potential confounders such as age, risk group classifica-
tion, FAB classification, number of induction courses, and
number of consolidation courses did not differ signifi-
cantly between patients receiving cytarabine in combin-
ation with anthracycline and those receiving only
cytarabine in consolidation (Table 2). The use of anthracy-
clines during consolidation independently predicted OS
in multivariable analysis (Table 3).

Use of anthracyclines in consolidation alters the
distribution of cytotoxic T cell phenotypes

A high frequency of effector memory T cells (TEM) after
consolidation, but prior to HDC/IL-2 immunotherapy,
prognosticated LFS, and OS (Figure 3(B)), which is in
agreement with an earlier report [17]. The survival
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Figure 1. Daunorubicine upregulate calreticulin in vitro on primary AML blasts. (A) Primary AML PBMCs were cultured overnight
with increasing concentrations of either daunorubicin or cytarabine (n¼ 5). Daunorubicin induced a robust upregulation of CRT
on live CD34þ AML blasts, defined as Live/dead-CD34þCD3�CD14� cells. (B) Comparison of CRT levels on live cells AML blasts
after exposure to 0.5 mM daunorubicin or 5 mM cytarabine which yielded similar levels of cell death (29.8 ± 11.5% vs. 26.9 ± 7.5%
dead cells, respectively (mean± SEM)). (C) HSP70 up-regulation on live CD34þ AML blasts after exposure to 1.0 mM daunorubicin
or 10 mM cytarabine. Paired t-test. �p< .05, ���p< .001.
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benefit of a high frequency of TEM cells at onset of
immunotherapy remained significant in multivariable
analysis (Table 3). As shown in Figure 3(C), a low per-
centage of T effector cells (Teff) in blood at onset of
immunotherapy also prognosticated OS.

When analyzing the immune phenotypes of mono-
nuclear cells of patients before the start of immuno-
therapy, a skewed distribution of CD8þ cytotoxic T
cell phenotypes toward a higher ratio of TEM to Teff
cells was observed among patients who had received
anthracyclines for consolidation (Figure 3(D)). The
administration of cytarabine at high or low doses, or
not at all (for the six patients not receiving consolida-
tion therapy), did not impact on the distribution of T
cells (Figure 3(D) and data not shown).

Discussion

Certain chemotherapeutic agents, in particular anthracy-
clines, have been shown to trigger cell death by inducing
ER stress leading to a distinct phenotype of the apoptotic
cells, such as surface expression of calreticulin [31]. These
apoptotic cells stimulate APCs and enhance subsequent T
cell responses in a process denoted ICD [32]. It was previ-
ously shown that high expression of CRT on the cell sur-
face of malignant cells may herald favorable prognosis in
AML [31]. It has also been shown that ICD-inducing che-
motherapeutic agents generate CRT upregulation on can-
cer cells in animal models [33]. In this study we show
that primary AML cells exposed to the anthracycline
daunorubicin, but not to the non-anthracycline cytarabine,
expressed high levels of cell surface CRT and HSP70, sug-
gesting that the choice of chemotherapy impacts on the
phenotype of dying AML cells.

Induction chemotherapy in AML using a combin-
ation of cytarabine and anthracyclines is the standard-
of-care worldwide. However, while numerous studies
support that consolidation is critical to prevent relapse
in CR [34], there is currently no consensus regarding
the optimal consolidation strategy. When used as a
single agent, high-dose cytarabine for consolidation
reduces the relapse risk in the post-remission phase,
in particular in core-binding factor leukemias and in
patients carrying NPM1 or CERPa mutations in leu-
kemic cells [35,36]. However, it remains uncertain
whether or not the addition of anthracyclines during
consolidation improves outcome [37–39].

We analyzed a cohort of AML patients treated with
HDC/IL-2 immunotherapy for relapse prevention aiming
at determining whether or not the inclusion of anthra-
cyclines during consolidation chemotherapy impacted
on clinical outcome. In this trial, patients received
cycles of induction and consolidation according to local
guidelines at the participating centers. All patients
were in CR at study entry and all received HDC/IL-2
immunotherapy as remission maintenance therapy.

As expected, patients who did not receive consoli-
dation therapy did poorly (5/6 relapses and 4/6
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Figure 2. Impact of induction and consolidation therapy on
clinical outcome. Patients were separated into groups depend-
ing on (A) the number of induction courses, (B) the presence
or absence of consolidation chemotherapy, (C) the number of
consolidation courses or (D) a total dose of cytarabine in con-
solidation of> or <20 g. LFS and OS were analyzed by the
logrank test (A, B and D) or logrank test for trend (C).
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deaths). Notably, these patients were all >60 years
old, and 5/6 had required 2 cycles of induction ther-
apy to attain CR. Although cytarabine formed part of
the consolidation regimen for all patients there was
considerable variation in dose, number of doses and
number of cycles between patients. When patients
were dichotomized based on the total cytarabine
dose, there was a non-significant trend toward
improved outcome for those receiving higher doses
(>20 g), but outcome was not further improved for
patients receiving a total dose of >40 g cytarabine.
This is in accordance with previous results showing
that the outcome is similar for patients receiving cytar-
abine in 1 g/m2/dose and 2–3 g/m2/dose during con-
solidation [40]. Patients receiving anthracyclines in
combination with >20 g cytarabine showed the most
favorable survival outcome, followed by those receiv-
ing anthracyclines combined with <20 g cytarabine,
>20 g cytarabine without anthracyclines and <20 g
cytarabine without anthracyclines (Supplementary
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Table 2. Patient characteristics.
Anthracyclines
in consolidation

(n¼ 60)

No anthracyclines
in consolidation

(n¼ 18)

Sex
Male 30 (50%) 8 (44%)
Female 30 (50%) 10 (56%)

Age
Average 57.2 (19–77) 60.4 (35–79)
<60 28 (47%) 9 (50%)
>60 32 (53%) 9 (50%)

Risk
Low 20 (33%) 11 (61%)
Intermediate 26 (43%) 6 (33%)
High 14 (23%) 1 (6%)

Treatment
No. of inductions 1.21 1.16
No. of consolidations 2.48 2.33
Total dose cytarabine

in consolidation (g)
43.6 47.6

FAB
M0 3 (5%) 1 (6%)
M1 15 (25%) 3 (17%)
M2 19 (32%) 5 (28%)
M4 10 (17%) 3 (17%)
M5 5 (8%) 1 (6%)
Other/N.D 8 (13%) 5 (28%)
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Figure 1(C)). However, a multivariable analysis did not
confirm significantly improved OS for patients receiv-
ing high total doses of cytarabine, even when taking
the presence of anthracyclines in consolidation into
account (HR¼ 0.83, CI 0.54–1.26, p¼ .38).

In contrast to the weak association between out-
come and the dose of cytarabine used for consolidation
in this study, there was a significant relationship
between a favorable outcome and inclusion of anthra-
cyclines during consolidation. In addition, patients who
had received anthracyclines showed a high percentage
of cytotoxic TEM cells and a low percentage of Teff cells
in the peripheral blood after the completion of consoli-
dation. When separating patients based on the fre-
quency of TEM and Teff cells into three groups, patients
with the highest amount of cytotoxic TEM and lowest
amount of Teff cells showed significantly superior out-
come in terms of LFS and OS (Supplementary Figure 2
(A,B)). A high frequency of CD8þ TEM cells at onset of
immunotherapy heralded significantly improved out-
come also in multivariable analysis (Table 3). Despite
that previous studies have shown that calreticulin levels
may be elevated in AML patients compared to healthy
donors regardless of chemotherapy exposure [22,25],
it may be speculated that the altered distribution of T
cell subsets in the post-consolidation phase presented
in this study reflects anthracycline-induced ICD and
enhanced T cell activation [22,25].

In conclusion, we show that anthracyclines trigger
upregulation of CRT on primary AML blasts. In addition,
our results imply that AML patients receiving consolida-
tion chemotherapy with anthracyclines show an altered
distribution of cytotoxic T cells subset in peripheral
blood toward a higher frequency of CD8þ TEM cells. A
high frequency of CD8þ TEM impacted favorably on the
outcome of AML patients receiving post-consolidation
immunotherapy, but our study does not exclude other
contributing effects of anthracyclines that may favor
survival. Our findings merit further studies to clarify
whether the choice of chemotherapy in the consolida-
tion phase of AML may determine the anti-leukemic
efficiency of T cell immunity.
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