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The density of rational points and invariants of
genus one curves

Manh Hung Tran

Department of Mathematical Sciences

Chalmers University of Technology and University of Gothenburg

ABSTRACT

The present thesis contains three papers dealing with two arithmetic problems on

curves of genus one, which are closely related to elliptic curves.

The first problem is to study the density of rational points presented in Papers I and

II. We give uniform upper bounds for the number of rational points of bounded height

on smooth curves of genus one given by ternary cubics or complete intersections of two

quadratic surfaces. The main tools used in these two papers are descent on elliptic

curves and determinant methods. While working with the rational points counting

problem, one need to deal with the smoothness of geometric objects and the bad

reduction of polynomials. To characterize these properties, there is a classical object

called the discriminant which naturally appears.

The above discriminant gives an inspiration to the study of the next problem in

the thesis concerning invariants of models of genus one curves presented in Paper III.

Here an invariant of a genus one curve is a polynomial in the coefficients of the model

defining the curve that is stable under certain linear transformations. The discriminant

is a classical example of an invariant. Besides that, there are two more important

invariants which generate the ring of invariants of genus one models over a field. Fisher

considered these invariants over the field of rational numbers and normalized them such

that they are moreover defined over the integers. We provide an alternative way to

express these normalized invariants using a natural connection to modular forms. In

the case of the discriminant of ternary cubics over the complex numbers, we also present

another approach using determinantal representations. This latter approach produces

a natural connection to theta functions.

The common idea in the thesis is to link a smooth genus one curve to a Weierstrass

form, which is a more well-understood object.

Keywords: Elliptic curve, genus one, rational point, height, descent, determinant

method, discriminant, invariant, modular form, determinantal representation, theta

function.

i





List of appended papers

The following papers are included in this thesis:

Paper I. Manh Hung Tran. Counting rational points on smooth cubic curves, Journal

of Number Theory 189, 2018, 138-146.

Paper II. Manh Hung Tran. Uniform bounds for rational points on complete inter-

sections of two quadric surfaces, Acta Arithmetica 186, No. 4, 2018, 301-318.

Paper III. Manh Hung Tran. Invariants of models of genus one curves via and

modular forms and determinantal representations, Submitted, arXiv:1911.01350.

iii





Acknowledgments

First of all, I would like to thank my supervisor Dennis Eriksson for his guidance

during the last five years in every aspect of my studies: introducing research topics,

suggesting ideas and materials, providing corrections and comments, explaining theo-

ries, supporting me in many ways. I really appreciate his patience when I was slow or

made mistakes. Thank you, Dennis, for always being kind to me.

I am grateful to my co-supervisor Martin Raum for many of his useful discussions,

feedback as well as his explanation to important theories and materials. I would like

to thank Per Salberger for his crucial help in writing my first two articles.

I am very thankful to the Department of Mathematical Sciences for providing me

a wonderful working environment. Especially, I would like to thank H̊akan Samuelsson

for his great support in many situations.

During my last five years, I have been talking to excellent members of the algebraic

geometry and number theory research group. I wish to thank them, especially Julia
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Chapter 1

Introduction

In this thesis, we study algebraic equations of the form

y2 = x3 + ax+ b (1.1)

and its various generalizations. Here a, b are elements in a field. The equation (1.1)

is called a Weierstrass equation. The solution set of (1.1) defines a curve which is

called an elliptic curve if it is smooth. This type of curve appears in many important

problems in number theory. The most famous one among them is probably the Birch-

Swinnerton-Dyer conjecture, which is one of the seven Millennium Prize Problems.

Elliptic curves are central objects in many other areas of mathematics such as alge-

braic geometry, complex analysis, representation theory, etc. Outside of mathematics,

elliptic curves also have applications in physics, cryptography, banking security and

computer science.

Geometric objects can be studied through algebraic equations. This is one of the

fundamental ways to think of algebraic geometry. In this thesis, we study problems

in number theory with tools coming from algebraic geometry. The solution set of a

system of polynomial equations defines an object called an algebraic variety. We are

interested in the case of algebraic curves, which are algebraic varieties of dimension one.

Furthermore, we focus on genus one curves, which are defined by natural generalized

equations of (1.1). The concept genus one will be discussed later in this chapter.

The present thesis discusses two arithmetic problems on curves of genus one. The

first problem arises from Diophantine geometry in which we study the density of integral

solutions of Diophantine equations, i.e., equations given by polynomials with integer

coefficients. The second problem concerns invariants, which are stable algebraic forms

under certain transformations.

1



1.1. DENSITY OF RATIONAL POINTS ON CURVES OF GENUS ONE 2

1.1 Density of rational points on curves of genus

one

The set of integral solutions of an equation might be empty, finite or infinite. To

quantify the infinite case, it is interesting to estimate the number of solutions inside

a large box and study the density of solutions when the box size goes to infinity.

To measure the boxes, we introduce a height function which characterizes the size of

integral solutions of algebraic equations, which can be understood as integral points

on algebraic varieties. More concretely, the naive height function H is defined as

H(P ) = max{|x1|, |x2|, ..., |xn|}

for an integral point P = (x1, x2, ..., xn) ∈ Zn.

Let us start with a simple example of a planar line which is defined by the equation

x+ y = z. This line contains infinitely many integral points. It can be proven that in

the box IB = {P ∈ Z3 : H(P ) ≤ B} for some B > 0, this line approximately contains

4B integral points. This should be compared with the number ]IB ≈ (2B)3 of integral

points in that box to get an intuition about the density of integral points on this line.

We are interested in equations defined by homogeneous polynomials. If x is an

integral solution of a homogeneous polynomial F , then so is λx for any λ ∈ Q. It is

then natural to consider primitive integral solutions of {F = 0} which correspond, up

to sign, to rational points on the variety defined by F . We then study the density of

rational points. Equations defined by homogeneous polynomials of degree 1 or 2 are

well-understood. The first non-trivial case is a plane curve defined by a cubic form

F (x, y, z). It is hard to describe its set of rational points.

Heath-Brown [19] proved that inside the box {P ∈ Z3
primitive : H(P ) ≤ B}, the num-

ber of rational points on a plane curve defined by an irreducible cubic form F (x, y, z)

is bounded, up to some constant, by B2/3. Furthermore, he constructed an example

(see (3.7)) showing that the bound B2/3 is essentially optimal for cubic curves having

infinitely many rational points. Thus, the set of rational points on a line is more dense

than a cubic curve.

If the cubic form F defines a smooth curve then this curve is of genus one, which

is a natural generalization of the elliptic curve defined by (1.1). The name genus one

comes from the fact that if we consider this type of curve over the complex numbers,

then it looks like an one-hole torus as in Figure 1.1.

In Papers I and II, we study the density of rational points of bounded height on

smooth curves of genus one given in two typical forms:
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Figure 1.1: A curve of genus one over C

• Ternary cubics:

ax3 + by3 + cz3 + a2x
2y + a3x

2x+ b1xy
2 + b3y

2z + c1xz
2 + c2yz

2 +mxyz. (1.2)

• Complete intersections of two quadratic surfaces:
{
a0x

2
0 + a1x

2
1 + a2x

2
2 + a3x

2
3 + a4x0x1 + a5x0x2 + ...+ a9x2x3 = 0.

b0x
2
0 + b1x

2
1 + b2x

2
2 + b3x

2
3 + b4x0x1 + b5x0x2 + ...+ b9x2x3 = 0.

(1.3)

The main tools to study this problem are descent and the determinant method. The

former tool is based on the fact that one can partition the group of rational points on a

genus one curve into a finite number of subsets of points of smaller heights. The latter

tool is a strong method for counting points on varieties of low dimensions, especially

for curves.

1.2 Invariants of genus one curves

When considering working with heights of rational points on a genus one curve, there

is a classical invariant which naturally appears and is called the discriminant. Its

vanishing corresponds to the smoothness of the curve. For instance, the discriminant
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of the curve defined by (1.1) is

∆ = −16(4a3 + 27b2).

One can think about an invariant of an algebraic variety as a polynomial in the coeffi-

cients of the polynomials defining that variety, that remains unchanged under certain

linear transformations of the coordinates. These transformations preserve the solu-

tions of the polynomials. For example, the linear transformation which preserves the

solutions of (1.1) is of the form (see [13, Section 3.1])

x = u2x′ + r, y = u3y′ + u2sx′ + t for any u 6= 0. (1.4)

The discriminant ∆ of (1.1) and ∆′ of the one obtained by the transformation (1.4) are

related by ∆′ = u12∆, where the extra power of u comes from the determinant of this

transformation. This discriminant inspired the author to work on the second problem

in this thesis which concerns invariants of models of genus one curves. These models

are different ways of representing a curve of genus one.

Ternary cubics and intersections of two quadrics given in (1.2) and (1.3) are two

typical models of genus one, which are models of degrees 3 and 4 respectively. The

definition of the degree of a genus one model of degree n is presented in Section 2.3.

In Paper III, we systematically study models of genus one of degrees n ≤ 5 and their

invariants. Besides the discriminant, there are also two important invariants which can

be used to describe all the other invariants of models of genus one of degree n ≤ 5 in

characteristics not 2 or 3 as confirmed in Fisher [13, Theorem 4.4]. In that paper, he

also gives a normalization of these invariants for models of degrees n = 2, 3, 4 such that

they are primitive polynomials with integer coefficients.

By relating invariants to modular forms, we produce an alternative way to express

these normalized invariants. Here a modular form is a function on the upper half plane

H := {τ ∈ C | Im(τ) > 0}, which transforms in a certain way related to some type

of Möbius transformation (see (4.3)). Classical examples of modular forms are theta

functions, for instance, the function θ(τ) = θ(0, τ). Here θ is the Jacobi theta function

defined on C×H as

θ(z, τ) =
∞∑

n=−∞
exp(πin2 + 2πinz).

Over the complex numbers, we present another approach to study invariants of ternary

cubics using determinantal representations. More concretely, one can represent a ho-

mogeneous polynomial of certain types as the determinant of a matrix whose elements
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are linear forms. The study of the polynomial is then reduced to the study of the

corresponding matrix. We will see in Section 4.4 that in the case of Weierstrass forms,

determinantal representations naturally give us theta functions.

This approach is motivated by the classical expression of the discriminant of Weier-

strass forms in terms of theta functions (see (1.6)). More precisely, let C be a smooth

genus one curve defined by the Weierstrass equation

y2 = 4x3 − g2x− g3. (1.5)

As explain in Section 2.2, there exists a natural Weierstrass parametrization which

provides a lattice Λ = ω1Z + ω2Z with some complex numbers ω1, ω2 such that

Im(ω2/ω1) > 0 and C(C) ∼= C/Λ. Let τ := ω2/ω1, the discriminant of the Weier-

strass form corresponding to (1.5) satisfies the following identity

∆ = 16

(
π

ω1

)12

(θ(0, τ)θ(τ/2, τ)θ(1/2, τ))8. (1.6)

One can ask if we also have this phenomena for general cubics or not. This provides

a natural connection between algebraic (discriminants) and analytic (theta functions)

objects.

We will see in both of these two arithmetic problems an important step is that

we can link a smooth curve of genus one to a Weierstrass equation, which is a better

understood object. Together with the group structure of elliptic curves as described in

the next section, this is one of the most important properties of genus one curves.

1.3 Organization of the thesis

The structure of the thesis is as follows: we introduce the theory of elliptic curves and

genus one models in Chapter 2. The first problem in the thesis concerning the density

of rational points will be presented in Chapter 3. Then in Chapter 4, we discuss the

second problem in the thesis about invariants as well as the theory of modular forms

and determinantal representations. All three papers are then summarized in Chapter

5.





Chapter 2

Elliptic curves and genus one

models

The theory of elliptic curves has been studied for centuries. It is a rich area where

many different branches of mathematics come together. Elliptic curves also make an

important role in the present thesis as mentioned in Chapter 1. In this chapter, we

first provide the definition of elliptic curves as well as their crucial properties. Many of

these properties are related to Weierstrass forms, which are the first examples of genus

one models. We will also introduce other models of genus one curves systematically.

2.1 Geometry of elliptic curves

Definition. An elliptic curve over a field K is a pair (E,O) of a smooth projective

curve E of genus one over K with a specified base point O ∈ K.

This curve can be given by a (long) Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (2.1)

Here the base point O, which is called the point at infinity, is understood as the extra

point [0 : 1 : 0] on the projective curve defined by the homogeneous form associ-

ated to (2.1). This equation can be written in one of the following (short) forms if

char(K) 6= 2, 3:

y2 = x3 + ax+ b (2.2)

or

y2 = 4x3 − g2x− g3. (2.3)

7
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When char(K) 6= 2, one can transform (2.2) to (2.3) and vice versa. The equation (2.3)

is useful when for instance working over K = C, since it is connected to the natural

differential equation associated to Weierstrass P-functions (see (2.4)).
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Figure 2.1: Two main shapes of elliptic curves over R

Typically, elliptic curves look like Figure 2.1. The smooth condition in the definition

of an elliptic curve means that the curve has no singular point. If we consider the curve

given by (2.2) for instance, this condition is equivalent to the fact that the discriminant

∆ = −16(4a3 + 27b2) is non-zero as mentioned in Chapter 1.

One of the important properties of elliptic curves concerns the group structure of

the points. More precisely, let (E,O) be an elliptic curve over a field K, then the set

E(K) of points over K on E forms an abelian group with neutral element O. Let us

geometrically describe the addition law of this group. For simplicity, we suppose that

the elliptic curve E is given in the form (2.2). The following addition law is described

as in Figure 2.2:

Let P,Q be two points on the elliptic curve E and l = PQ be the line joining them.

For simplicity we suppose that P 6= Q. If l is not a vertical line, then l intersects

E at a third point R. Since E is symmetric about the x-axis, the point obtained by

reflecting R about the x-axis also lies on E and it is defined to be the point P + Q.

If l is a vertical line, it intersects E at infinity. Therefore, in this case we can define

P + Q = O. If at least one of two points P or Q is the point at infinity, say Q = O,

then the line passing P and Q is a vertical line. This line meets E at the point whose
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reflection about the x-axis is again P . Hence, we can define P +O = P .

P

Q

R

P+Q

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-3

-2

-1

0

1

2

3

Figure 2.2: The addition law

Given a smooth curve C of genus one, we can associate to C the Jacobian Jac(C).

This Jacobian is an elliptic curve and can be given by a Weierstrass equation. Reducing

the study of a genus one curve to a Weierstrass form plays a crucial role in the thesis,

since we then work with a more well-understood object. More details about elliptic

curves will discussed in the next section.

2.2 The structure of points on elliptic curves over

specific fields

In this section, we give more details about elliptic curves over specific fields such as the

field of complex numbers, number fields and finite fields, which are the main focuses

of the thesis.

Over C

An elliptic curve E over the complex numbers can be illustrated as a torus. It can

be written as a quotient C/Λ of the complex plane C by a lattice Λ = ω1Z + ω2Z for

some complex numbers ω1, ω2 satisfying Im(ω1/ω2) > 0. To be precise, we consider the
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Weierstrass P-function associated to the lattice Λ defined for all s /∈ Λ as

P(s) = P(s;ω1, ω2) =
1

s2
+

∑

(m,n)∈Z2\(0,0)

(
1

(s+mω1 + nω2)2
− 1

(mω1 + nω2)2

)
.

It satisfies the differential equation

P ′(s)2 = 4P(s)3 − g2P(s)− g3, (2.4)

where

g2 = 60
∑

(m,n)6=(0,0)

(mω1 + nω2)
−4,

g3 = 140
∑

(m,n) 6=(0,0)

(mω1 + nω2)
−6.

We have the group isomorphism C/Λ → E(C) sending s /∈ Λ → (P(s),P ′(s)) and

0→ O. Elliptic curves over the complex numbers have a crucial role in Paper III.

Over number fields

When K is a number field (K = Q for instance), the group E(K) of K-points on an

elliptic curve E is finitely generated by the Mordell-Weil theorem. In Chapter 3, we

will provide a proof for this theorem in the case K = Q. One of the main ingredients

of the proof is descent method, which is one of the important tools used in Papers I

and II working over the rational numbers.

Over finite fields

Let p is a prime number, let n be a positive integer and let K = Fq be the finite field

with q = pn elements. In this case, one can estimate the number of K-points on an

elliptic curve E by Hasse’s theorem as follows:

|]E(Fq)− (q + 1)| ≤ 2
√
q.

Elliptic curves over finite fields are important in this thesis. On the one hand, it is

critical in Papers I and II when using the p-adic determinant method to estimate the

number of rational points. On the other hand, it is also discussed in Paper III when

working over fields of positive characteristics.
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2.3 Models of genus one

Elliptic curves in Weierstrass forms are the first examples of genus one models. This

type of curve can also be presented in many other ways. Let C be a smooth curve of

genus one over a field K and D be a K-rational divisor on C of degree n. Generally,

the complete linear system associated to D naturally provides a map from C to Pn−1.
The pair (C,D) gives us the natural definition of models of genus one of degrees n ≤ 5

formulated by the authors in [1, Section 2] and [13, Section 3]. More precisely:

Models of degree n = 1

In this case, C has a point over K and thus it can be given by a Weierstrass equation

(2.1). Therefore, we define a genus one model to be a Weierstrass form.

Models of degree n = 2

The map C → P1 is now a double cover. The curve C can be determined by an

equation of the form

y2 + (α0x
2 + α1xz + α2z

2)y = ax4 + bx3z + cx2z2 + dxz3 + ez4. (2.5)

A genus one model is defined to be a pair of a binary quadratic and a binary quartic.

When n ≥ 3, the map C → Pn−1 is an embedding. Therefore, we can identify the

curve C with its image in Pn−1. More precisely:

Models of degree n = 3

In this case, a genus one model φ is a ternary cubic as in (1.2).

Models of degree n = 4

The model φ is given by a pair of quadrics in four variables as in (1.3).

Models of degree n = 5

The model is a 5×5 alternating matrix of linear forms in five variables and the equations

defined by this model are the 4× 4 Pfaffians of the matrix. The definition of Pfaffians



2.3. MODELS OF GENUS ONE 12

can be found in [13, Section 5.2] and [15]. To be precise, if the model φ is the matrix




0 a1 a2 a3 a4

−a1 0 b1 b2 b3

−a2 −b1 0 c1 c2

−a3 −b2 −c1 0 d1

−a4 −b3 −c2 −d1 0



,

then the 5 corresponding Pfaffians are pi = pf(φi) (i = 1, ..., 5) with φi being the

principal sub-matrix of φ which is obtained by removing its i-th row and i-column.

The Pfaffians of an 4× 4 alternating matrix is computed as follows:

pf




0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0




= af − be+ cd.



Chapter 3

Rational points of bounded heights

and the counting problem

This chapter discusses the first problem in the thesis about counting rational points

on smooth curves defined by models of genus one of degree n = 3 and 4. We first give

an overview to the topic and then discuss the methods as well as known results in this

field.

3.1 Rational points counting

Diophantine equations is one of the oldest areas in mathematics and one of the classical

problems in this area is to study the density of solutions of such equations, i.e., the

integral solutions of the equations of the form F (x0, x1, ..., xn) = 0, where F is a

polynomial in Z[x0, x1, ..., xn]. One of the most famous examples is the equation related

to Fermat’s Last Theorem:

xn + yn = zn, (3.1)

where n is a positive integer. Fermat conjectured in 1637 that if n ≥ 3, (3.1) has no

non-trivial integral solution and this was proved by Andrew Wiles in 1995.

This problem can be viewed more geometrically since the equation F = 0 defines a

hypersurface in the affine space An+1. It means that integral solutions to Diophantine

equations can be viewed as integral points on algebraic varieties. Moreover, if F is

homogeneous, it defines a hypersurface in the projective space Pn and the non-zero

primitive integer solutions of F = 0 correspond (up to sign) to rational points on this

hypersurface. We are thus then interested in rational points on projective varieties.

Let us start with the cases in which F is a homogeneous polynomial in Z[x0, x1, x2]

defining a plane curve C in P2. The theory of plane curves has been studied for a

13
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long time by many mathematicians such as Fermat, Euler, Mordell and there are still

many interesting open questions. In the case deg F = 1, i.e., F = a0x0 + a1x1 + a2x2

for some integers a0, a1, a2, then C is just a line in the plane. If say a2 6= 0, then

its rational points can be represented by pairs of rational numbers (x0, x1) 6= (0, 0) as

x2 = −(a0x0+a1x1)/a2. In case deg F = 2, the solutions to F = 0 can also be described

by one parameter. For example, if F = x20 + x21 − x22, then the rational solutions are of

the form

(x0, x1, x2) =

(
1− t2
1 + t2

,
2t

1 + t2
, 1

)
,

where t is an arbitrary rational number.

The first non-trivial case is thus when deg F = 3. Then C is of genus one if it is

non-singular. The solutions to F = 0 can thus not be parametrized in the same way

as before as C is no longer rational. In general, it is hard to know whether there are

finitely or infinitely many rational points on C. It depends on the particular nature of

the equation. But we will in this thesis focus on results which hold for general classes

of curves. We shall therefore count the number of points inside large boxes and give

upper bounds for the number

N(C,B) = ]{P ∈ C(Q) : H(P ) ≤ B}

of rational points of height at most B on C. Here H is the naive height func-

tion H(P ) = max{|x0|, |x1|, |x2|} for P = (x0, x1, x2) with coprime integer values of

x0, x1, x2. The aim is to establish uniform estimates for N(C,B) which do not depend

on the polynomial F defining C.

The first important uniform upper bound for irreducible plane cubic curves was

obtained by Heath-Brown [19] in 2002 as a special case of a more general result. He

showed that for any ε > 0:

N(C,B)�ε B
2/3+ε. (3.2)

Here our notation f � g means f = O(g), i.e., there exists a positive constant M such

that |f | ≤M |g|. The implicit constant in (3.2) depends solely on ε.

The proof of (3.2) was based on his p-adic determinant method which is one of the

few tools available for counting problems on varieties of low dimensions. We will in the

next section give a description of the basic idea of this method by providing a sketch

of the proof of (3.2).

Although the thesis is only devoted to curves of genus one, it is illuminating to

give an overview of the density of rational points on an arbitrary non-singular curve

C of genus g in Pn. We will here use the notation N(C,B) for the number of
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points P ∈ C(Q) with H(P ) ≤ B, where the height function H is then defined by

H(P ) = max{|x0|, ..., |xn|} for P = (x0, ..., xn) with coprime integer values of x0, ..., xn.

There are three cases:

• If g(C) = 0: either C has no rational point or C ∼= P1. In the latter case, C is

called a rational curve and that N(C,B) ∼C B2/d, where d is the degree of C.

Thus the best possible result is N(C,B)�d B
2/d shown by Walsh [33].

• If g(C) = 1: either C has no rational point or C is an elliptic curve and its

rational points form a finitely generated abelian group by Mordell-Weil theorem.

Then by Néron, N(C,B) ∼C (logB)r/2, where r is the rank of the Jacobian

Jac(C).

• If g(C) ≥ 2: according to Mordell’s conjecture, now Faltings’s Theorem, C

has only a finite number of rational points, i.e., N(C,B) = OC(1). The best

known uniform bound is due to Ellenberg-Venkatesh [12]. They showed that

N(C,B)�d B
2/d−δ, where δ is a small constant depending only on d, which they

do not specify.

The asymptotic behaviour is similar over any number field if we normalize the

heights correctly. Here the genus 0 case is easy. So the first non-trivial case is when

g(C) = 1. In this thesis, we focus on two important classes of genus one curves: smooth

plane cubic curves and non-singular complete intersections of two quadrics in P3.

3.2 Determinant methods

We first describe Heath-Brown’s p-adic method by giving a proof to (3.2). We divide

all rational points of height at most B on C into congruence classes modulo some prime

number p and then count points in each class. By the Hasse-Weil bound, there are

p + Od(
√
p) Fp-points on an irreducible plane curve of degree d. Since an irreducible

cubic curve can have at most one singular point, we will only count non-singular points

on C(Q). Moreover, by a version of Siegel’s lemma (see Theorem 4 of [19]), we can

always assume that ||F || � B30 and then any non-singular point on C(Q) will be non-

singular modulo p except for a small number of primes p. Here ||F || is the maximum

modulus of the coefficients of F (x0, x1, x2) ∈ Z[x0, x1, x2].

For a given degree d, we first fix 3d monomials {Fj}, 1 ≤ j ≤ 3d of degree d, which

are linearly independent on C. Our goal is now to prove that det(M) = 0 for any

3d × 3d-matrix M = (Fj(Pi))i,j, where {Pi}, 1 ≤ i ≤ 3d are rational points on C of

height at most B, which reduce to the same non-singular Fp-point for a prime p. The
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vanishing of det(M) for all such sets {Pi} will guarantee the existence of a homogeneous

polynomial G of degree d which does not vanish everywhere on C. However, G vanishes

at all P ∈ C(Q) of height H(P ) ≤ B, which reduce to the given non-singular Fp-point

on the curve defined by F (x0, x1, x2) = 0 (mod p). By the theorem of Bézout, there

are then at most 3d such points in C(Q).

To show that det(M) = 0, we first give an upper bound and then a factor of the

integer det(M) which exceeds the bound. Since all the points are of height at most B,

we get the following upper bound by using Hadamard’s inequality:

| det(M)| ≤ (3d)
3d
2 B3d2 .

But we can also prove that det(M) is divisible by p3d(3d−1)/2 by using the p-adic implicit

function theorem and the fact that all {Pi} reduce to the same non-singular Fp-point.

Hence as long as we only consider integral points which are non-singular (mod p) for a

prime p with p3d(3d−1)/2 > (3d)
3d
2 B3d2 , then we get at most 3d points in each congruence

class. We then obtain (3.2) by summing over all O(p) congruence classes for such p.

In this thesis we use the global version of this p-adic determinant method developed

by Salberger [24] in which he considers congruences modulo all primes p where C is

irreducible over Fp.

3.3 Descent on elliptic curves

We are interested in the case when the curve C is non-singular of genus one. If we

fix a rational point O on C, then we get a bijection between C(Q) and E(Q) for the

Jacobian E of C, where P is sent to P − O in the group E(Q). As E is an elliptic

curve over Q, we get by the Mordell-Weil theorem that E(Q) is a finitely generated

abelian group as mentioned in Chapter 2. More precisely,

E(Q) ∼= T ⊕ Zr, (3.3)

where T is the group of all elements of finite order of E(Q) and r is called the rank of

E.

We will make essential use of the fact that the Jacobian E =Jac(C) of a genus

one curve C is given by a Weierstrass equation. This makes it possible to use descent

with unramified covers to study rational points on cubic curves. It can be proven that

any rational point on the original cubic curve may be lifted to a rational point on one

of these new cubic curves, we can apply the determinant method to the new curves
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instead. This leads to sharper estimates which are not possible to obtain if we only

use the determinant method. This is why we only consider non-singular cubic curves.

The main tools for counting rational points in this thesis are the determinant

method and descent. We have already discussed the determinant method. It thus

remains to discuss descent theory which plays an important role in the thesis. This

theory was first developed to prove the Mordell-Weil theorem. We will therefore now

provide a sketch of the proof of (3.3).

The theorem holds for general abelian varieties over number fields. But in this

section we will only discuss the special case of elliptic curves over the rationals. We

follow closely the discussion in Serre [27]. The proof has two parts. The first part

is the so called weak Mordell-Weil theorem which says that if E is an elliptic curve,

then E(Q)/mE(Q) is a finite abelian group for any positive integer m. To show this

one uses Galois cohomology to find an injection of E(Q)/mE(Q) into a Selmer group

which is known to be finite. This corresponds to a partition

E(Q) =
⋃

α

pα(Cα(Q)) (3.4)

for a finite set of unramified covers pα : Cα → E of degree m2.

The second part of the descent is to use the height function defined in Section 3.1.

It can be seen that if a finite set A of elements of E(Q) can be found, such that they

generate the group E(Q)/mE(Q), then the finite set A∪B will generate E(Q), where

B ⊂ E(Q) is the finite set of elements of a given bounded height. Hence, E(Q) is

finitely generated. The method is called descent since it can be viewed as a modern

more general version of Fermat’s method of infinite descent.

A basic feature of the descent process is that for any rational point P and positive

integer m, we have that H(mP ) ≈ m2H(P ). From (3.4), we thus get that the study

of N(E,B) essentially reduces to the study of
∑

αN(Cα, B/m) for a finite set of un-

ramified covers pα : Cα → E of degree m2. This leads to better estimates since we are

now working with points of smaller height. This method was first used by Ellenberg

and Venkatesh [12] and by Heath-Brown and Testa [20].

3.4 A survey of results

In case of cubic curves, after Heath-Brown’s estimate (3.2), Salberger [24] proved a

slightly better result

N(C,B)� B2/3 logB, (3.5)
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by using his global version of Heath-Brown’s p-adic determinant method. He then

considered congruences modulo all primes p where C is irreducible over Fp.
The best known uniform bound for irreducible plane cubic curves was given by

Walsh [33] using the global determinant method in [24]

N(C,B)� B2/3. (3.6)

We also observe that if F (x0, x1, x2) = x30−x21x2, then the solutions (m2n,m3, n3) show

that

N(C,B)� B2/3. (3.7)

But as this curve is singular, it may still be possible to find a sharper bound than (3.6)

for non-singular plane cubic curves.

Remark 3.4.1. All the bounds (3.2), (3.5) and (3.6) are special cases of more general

results for irreducible curves of arbitrary degree d in a fixed projective space. In that

case the main term B2/3 will then be replaced by B2/d.

Then Ellenberg and Venkatesh [12] proved the following bound for smooth plane

cubic curves

N(C,B)�ε B
2/3−1/450+ε

by combining the p-adic determinant method with descent theory. Their method was

then refined by Heath-Brown and Testa [20] by a clever use of the p-adic determinant

method for biprojective curves. They got in this way the sharper estimate

N(C,B)�ε B
2/3−1/110+ε. (3.8)

The proof of (3.8) is divided into three steps. The first step is to partition C(Q) into

equivalence classes by means of descent where each class is of the form pα(Cα(Q)) for

some unramified cover pα : Cα → C. The second step is to embed each Cα in P2 × P2

and reduce to the counting problem for a biprojective curve in P2×P2 in order to avoid

the comparisons with canonical heights on Jac(C) used in [12]. The last step is to apply

the p-adic determinant method for this biprojective curve. This is more complicated

than for the projective plane curves. But the fundamental idea is the same.

The best known result is the following proved by Salberger in his unpublished work

N(C,B)�ε B
2/3−1/84+ε.

A striking feature of [20] is that Heath-Brown and Testa also proved the following
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bound for any positive integer m

N(C,B)� mr+2
(
B

2
3m2 + logB

)
logB,

with an implied constant independent of m, where r is the rank of Jac(C). Taking

m = 1 + [
√

logB] they obtain that

N(C,B)� (logB)3+r/2.

For curves of arbitrary degree we also have similar discussion. In [19], Heath-Brown

proved that

N(C,B)�ε B
2/d+ε

for arbitrary irreducible space curves over Q of degree d by means of his p-adic deter-

minant method. Salberger [24] showed a slightly better uniform bound by using his

global determinant method

N(C,B)� B2/d logB,

which was then improved by Walsh [33] to N(C,B)� B2/d.





Chapter 4

Invariants of genus one curves

We discuss in this chapter the second problem in the thesis concerning invariants of

genus one curves. Besides the structure of points, the structure of invariants is also

an interesting and important aspect in order to deeply understand this class of curves.

We start with an overview of invariant theory. After that, we discuss the classical

invariants of models of genus one as well as the Jacobians of smooth models. Relating

a smooth curve of genus one to its Jacobian given by a Weierstrass equation makes an

important role in this thesis. We then describe our two main approaches to study this

problem with modular forms and determinantal representations.

4.1 Overview on invariants

Invariant theory is the study of algebraic forms, which are invariant under certain

linear transformations. The origin of invariant theory was opened by Boole via his

works in the 1840s, but this field of study was only systematically developed after

that by Cayley and then Sylvester. The modern view of invariant theory was then

introduced by Mumford in 1965, where he used the language of algebraic geometry to

study invariants. This opened a new subject called geometric invariant theory.

To develop an intuition for invariant theory, let us start with quadratic forms. Let

n be any positive integer, we want to determine polynomials in the coefficients of the

quadratic form

Q =
∑

1≤i,j≤n
aijxixj

that is invariant under the action of SLn(K). One can write Q = xTAx for A = (aij)i,j

and x = (x1, x2, ..., xn)T . We define the discriminant ∆(Q) of Q to be det(A). For any

21



4.1. OVERVIEW ON INVARIANTS 22

M ∈ SLn, we have

Q ◦M = (Mx)TA(Mx) = xT (MTAM)x.

Therefore ∆(Q◦M) = det(MTAM) = det(A) since M ∈ SL2. Thus ∆(Q◦M) = ∆(Q)

for any M ∈ SL2 or ∆ is an invariant of Q.

In the case Q is a binary quadratic form ax2 + 2bxy + cy2, we recover the clas-

sical discriminant ∆ = ac − b2. The invariant property of the discriminant of bi-

nary quadratic forms with integer coefficients was mentioned in 1801 by Gauss in his

Disquititiones Arithmeticae, where he studied the class numbers of quadratic fields.

We can define invariants of any homogeneous polynomial as below:

Definition 4.1.1. Let K[x1, ...xn]d be the space of homogeneous polynomials of degree

d over a field K. An invariant I of K[x1, ...xn]d is a universal polynomial in the coeffi-

cients of elements in K[x1, ...xn]d satisfying I(f ◦M) = I(f) for all M ∈ SLn(K) and

f ∈ K[x1, ...xn]d. The degree of I is the degree of I as a polynomial in the coefficients

of f .

Moreover, I is called an invariant of weight k ∈ Z if I(f ◦M) = (detM)kI(f) for

all M ∈ GLn(K) and f ∈ K[x1, ...xn]d.

The fundamental problem in this field, raised by Cayley, is to formulate the invari-

ants and to determine the set of generators, i.e., the set of invariants which can be used

to describe all the others in the invariant ring. It was known by Salmon [26] that a

ternary cubic over the complex numbers has two invariants, which generate the ring of

invariants. The situation in the quartic case is more complicated. The ring of invari-

ants of ternary quartics is generated by 13 elements called Dixmier-Ohno invariants

(see [11] and [26]).

For more general cases, Gordan [17] proved that the ring of invariants of any system

of binary forms is finitely generated. This famous result is called the finiteness theorem

for binary forms. A more general version of this was proposed by Hilbert, which became

his fourteenth problem, where he aimed to extend the result to any system of forms

in arbitrary number of variables. Hilbert himself established this finiteness property

in some special cases. Unfortunately, this property was proved to be false in general.

However, it is true in many interesting cases and invariant theorists still pay attention

to the Hilbert’s fourteenth problem.

In this thesis, we focus on models of genus one which were defined in Section 2.3.

Starting with a curve C given by the Weierstrass equation (2.1). There are two classical
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invariants defined for instance in [28, p. 42] as

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6, (4.1)

where b2 = a21 + 4a2, b4 = 2a4 + a1a3 and b6 = a23 + 4a6. The above invariants c4 and c6

define the discriminant ∆ = (c34 − c26)/1728 so that its non-vanishing is equivalent to

the non-singularity of the curve. In this case the curve C is of genus one. Moreover,

these c4 and c6 generate the ring of invariants of Weierstrass forms associated to (2.1)

over fields of characteristics not 2 or 3.

Our goal is to expand this problem to other models of genus one curve of degree

n ≤ 5 defined in Section 2.3. It was first discovered by Weil [35] that in the case n = 2,

there are two invariants which can be used to write an equation for the Jacobian of

a smooth curve of genus one over fields of characteristics not 2 or 3. It shows in this

case that the Jacobian of a smooth genus one curve can be defined over the same field

as the curve. The classical invariants of genus one models of degree n = 2, 3, 4 are

summarized in the next section.

4.2 Invariants of genus one models

This section studies the invariants of the affine space Xn of all genus one models

of degree n. Since not all genus one models are defined by a single homogeneous

polynomial as in Definition 4.1.1, we do not use the linear group GLn. Fisher [13,

Section 3] defined the natural linear algebraic groups Gn acting on Xn (n ≤ 5) so that

it preserves the solutions of the models. For instance, G1 is the linear group of the

transformations of the form (1.4). We denote by K[Xn] the coordinate ring of Xn and

Gn the commutator subgroups of Gn.

Definition 4.2.1. The ring of invariants of Xn (n ≤ 5) over K is

K[Xn]Gn := {I ∈ K[Xn] : I ◦ g = I for all g ∈ Gn(K)}.

The vector space of invariants of weight k of Xn over K is defined as

K[Xn]Gnk := {I ∈ K[Xn] : I ◦ g = (det g)kI for all g ∈ Gn(K)}.

The character det on Gn is explicitly described as in [13], which provides appropriate

weights for the invariants in the above definition. Furthermore, it (see [13, Lemma 4.3])
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equips the ring of invariants with the grading structure

K[Xn]Gn =
⊕

k≥0
K[Xn]Gnk .

The following facts about invariants of genus one models of degrees n ≤ 4 are classical

and summarized in [1]. The case n = 5 has recently been treated by Fisher [14] in

characteristic zero. The two invariants introduced in each degree below generate the

ring of invariants and determine the Jacobians of smooth models in characteristic not

2 or 3. These generalize Weil’s result in the case n = 2.

Models of degree n = 1

The invariants c4, c6 of a Weierstrass form corresponding to (2.1) are defined as in (4.1).

Models of degree n = 2

If char(K) 6= 2, we can rewrite (2.5) in the short form y2 = ax4 + bx3z+ cx2z2 +dxz3 +

ez4. This short model φ has two classical invariants (see [1, Section 3.1])

i = (12ae− 3bd+ c2)/12,

j = (72ace− 27ad2 − 27b2e+ 9bcd− 2c3)/432

and a corresponding Weierstrass equation y2 = 4x3 − ix − j. The invariants of the

generalized model (2.5) can be found in [6, p. 766] by completing the square.

Models of degree n = 3

The two classical invariants S, T of the ternary cubic (1.2) are defined in [1, p. 309-310]

and a corresponding Weierstrass equation of this cubic is y2 = 4x3 + 108Sx− 27T.

Models of degree n = 4

The model φ is given by a pair of quadrics q1, q2 ∈ K[x0, x1, x2, x3], we write q1 = xAxT

and q2 = xBxT for the two symmetric 4 × 4 matrices A,B with x = (x0, x1, x2, x3).

The invariants of the model (q1, q2) are then defined by the invariants of the quartic

det(xA+ zB) = ax4 + bx3z + cx2z2 + dxz3 + ez4 (4.2)

as in the case n = 2. A corresponding Weierstrass equation of (q1, q2) is thus given by

the corresponding ones of the model (4.2).
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Invariants in characteristic 2 and 3

We have seen that there are two invariants of weights 4 and 6 generating the ring of

invariants of models of genus one and provide for smooth models their Jacobians in

characteristic not 2 or 3. The situation in characteristic 2 and 3 is more complicated,

since the above invariants are no longer enough to generate the ring of invariants of

genus one models. This problem was studied by Fisher [13], where he prove that the

ring of invariants of genus one models of degree n ≤ 5 is also generated by two elements

in characteristic 2 and 3.

To put things all together, we recall the following structure result from [13, Theo-

rems 4.4, 10.2, Lemma 10.1 ]. Here c4, c6 are the usual invariants defined in the previous

page and a1, b2 are the invariants of weight 1,2 respectively defined as in [13, Theorem

10.2].

Proposition 4.2.2. The ring of invariants K[Xn]Gn of Xn (n ≤ 5) over a field K is





K[c4, c6], if char(K) 6= 2, 3;

K[a1,∆], if char(K) = 2;

K[b2,∆], if char(K) = 3.

Normalized invariants

Multiplying with a non-zero scaler preserves the weight of an invariant of weight k

of a genus one model. One can ask the question: what is a nice normalization of an

invariant? Fisher [13] gave an answer to this question. More precisely, he normalized

the invariants c4, c6 of Xn (n = 2, 3, 4) such that they are primitive polynomials defined

over the integers. Furthermore, these invariants produce the appropriate discriminant

∆ = (c34 − c26)/1728 which characterizes the singularity of genus one models over any

field K as for X1. Note that in the case n = 3, these invariants was normalized before

in [2].

One can compare these normalized invariants with the classical ones mentioned in

the previous section as follows:





c4 = 263i, c6 = 2933j, n = 2;

c4 = −2434S, c6 = 2336T, n = 3;

c4 = 2103i, c6 = 21533j, n = 4.

In this thesis, by relating invariants to modular forms, we provide a different way to

express these normalized invariants. The details are presented in Paper III. The next

section discusses modular forms and their natural connection to invariants.
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4.3 Modular forms and invariants

Modular forms is a broad subject. This field of study plays important roles in different

fields of mathematics and physics. There is a link between modular forms and elliptic

curves via the modularity theorem, also known as the Taniyama-Shimura-Weil conjec-

ture, which is an important result in number theory. In this thesis, we want to study

the natural connection between modular forms and invariant theory. We first recall

some basic knowledge to this topic.

Classical modular forms

Generally speaking, a modular form is a function on the upper half-plane

H = {τ ∈ C | Imτ > 0} which satisfies a certain transformation property. We will give

formal definitions of some types of modular forms, which have important role in the

thesis.

A holomorphic modular form F of weight k ∈ Z is a holomorphic function on H,

which satisfies the following properties:

a)

F

(
aτ + b

cτ + d

)
= (cτ + d)kF (τ) for any τ ∈ H ,

(
a b

c d

)
∈ SL(2,Z). (4.3)

b) F is holomorphic at ∞.

The latter condition means that F has an absolutely convergent Fourier expansion

F (τ) =
∞∑

n=0

anq
n, q = e2πiτ

in {|q| < 1}. If we replace this condition by that F is meromorphic at ∞, then F is

called a weakly holomorphic modular form.

Denote by Mk(C) (resp. M !
k(C)) the space of holomorphic modular forms (resp.

weakly holomorphic modular forms) of weight k and M(C) (resp. M !(C)) the graded

algebra

M(C) =
⊕

k∈Z
Mk(C) (resp. M !(C) =

⊕

k≥0
M !

k(C)).

Among all the others, for us, the Eisenstein series G2k (k ∈ Z≥2) is an important

example of holomorphic modular forms. The function G2k is a holomorphic modular
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form of weight 2k defined by

G2k(τ) =
∑

(m,n)∈Z2\(0,0)

1

(m+ nτ)2k
, (4.4)

which has the following normalized form

E2k(τ) =
G2k(τ)

2ζ(2k)
= 1− 4k

B2k

+∞∑

n=1

σ2k−1(n)qn, (4.5)

where ζ(s), B2k and σ2k−1 are the Riemann zeta function, the Bernoulli numbers and

the divisor sum function respectively.

Another important example of holomorphic modular forms is the modular discrim-

inant, which is the cusp form of weight 12 defined as

∆(τ) = q
∞∏

n=1

(1− qn)24, q = exp(2πiτ).

This cusp form is related to the Eisenstein series E4, E6 by 1728∆ = E3
4 − E2

6 .

Let R be a sub-ring of C, we define for any integer k the R-module

Mk(R) =

{
F ∈Mk(C) | F (τ) =

∞∑

n=0

anq
n with an ∈ R

}

and the R-algebra

M(R) =
⊕

k≥0
Mk(R).

It is natural to consider the case R = Z. We know by Deligne [9, Proposition 6.1] that

the algebra M(Z) is generated by E4, E6 and cusp form ∆. Here E4, E6 are defined

over Z, since in (4.5) we see that 4k/B2k ∈ Z for k = 2, 3. The modular forms E4, E6

and ∆ are thus defined over any field K. Moreover, if char(K) 6= 2 or 3, then 1728 is

invertible over K so that we can express ∆ in terms of E4 and E6. In other words

M(K) = K[E4, E6]. (4.6)

Then one can naturally define modular forms over Fp for a prime number p by taking

reduction modulo p each coefficient in the q-expansion of a modular form with integer

coefficients.

It is natural to relate invariants to modular forms when looking over the com-

plex numbers. For a smooth genus one curve C given by a Weierstrass form φ with
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C(C) ∼= C/(Z + τZ) for some τ ∈ H, then φ is of the form y2 − 4x3 + g2x + g3. One

can write the two coefficients g2, g3 of φ as g2 = 60G4, g3 = 140G6 with G4, G6 defined

in (4.4). By some elementary computations, the normalized invariants of the model φ

are related to the normalized Eisenstein series as follows:

c4(φ) = (4π)4E4(τ), c6(φ) = (4π)6E6(τ). (4.7)

Hence, Proposition 4.2.2 and the formulae (4.6), (4.7) provide a correspondence be-

tween weakly holomorphic modular forms and invariants of smooth Weierstrass equa-

tions in characteristic not 2 or 3. It can also be seen from (4.7) that the discriminant

∆φ of φ is related to the modular discriminant by

∆φ = (4π)12∆(τ).

The situation is more complicated in characteristic 2 and 3. In this case, a modular

form of weight 1 or 2 over Fp (p = 2, 3) can not be lifted to a modular form over Z
since there are no non-zero modular forms of weight 1 and 2 over Z. Thus, we do

not have the correspondence with the invariants a1, b2 of weight 1,2 respectively in

Proposition 4.2.2. To see the connection with invariants in this case, we extend the

notion of modular forms in the next section.

Geometric modular forms

The formal definition of geometric modular forms can be found in Paper III (see Def-

inition 4.1). Generally speaking, a geometric modular form F of weight k ∈ Z over

a ring R is a rule, which assigns to every pair (C/R, ω) of an elliptic curve C over R

and a regular 1-form ω on C an element F(C, ω) ∈ R. It should satisfy the following

transformation for any λ ∈ R∗:

F(C, λω) = λ−kF(C, ω). (4.8)

One can extend this definition by replacing an elliptic curve by a smooth curve of genus

one. To get an intuition about geometric modular forms, one can see the correspon-

dence to weakly holomorphic modular forms over C by looking at the discussion in

Katz [21, p. 91] as follows. Let F be a geometric modular form over C of weight k and

Cτ := C/(Z + τZ) for any τ ∈ H. We define the corresponding weakly holomorphic

modular form F of weight k defined by F (τ) = F(Cτ , 2πi dz). Here dz is the canonical

differential on C. Katz [21, pp. 91-93] also proved the meromorphicity of F at ∞.
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By this construction, we are able to define modular forms of small weights. More

concretely, let p be any prime, there is a geometric modular form Ap over Fp called the

Hasse invariants defined for instance in [21] (p. 29). This is a geometric modular form

over Fp of weight p− 1.

The crucial point is that, a geometric modular form F of weight k over a field K

determine an invariant of the same weight IF of X0
n for any n ≤ 4 and also for n = 5

if char(K) 6= 2. Here X0
n is the subset of smooth genus one models of degree n in Xn.

The invariant IF is defined by

IF(φ) = F(Cφ, ωφ), (4.9)

where (Cφ, ωφ) is the pair of a smooth curve of genus one Cφ and a natural regular

1-form defined by φ ∈ X0
n. The detail about this regular 1-form is described in [13,

Section 5.4]. For instance, the natural regular 1-form of the Weierstrass model φ

corresponding to (2.1) is ωφ = dx/(2y + a1x+ a3).

This correspondence works in any characteristic. It makes an important role in

Paper III to study invariants, where we construct formulae relating invariants of smooth

models of genus one of degree n ≤ 4 and their Jacobians. To be precise, in that paper

we define an explicit map ϕn : Xn → W from the affine space Xn of genus one models

of degree n to the affine space W of Weierstrass forms based on the classical explicit

map fn in [1]. The map fn : Cφ → Eφ (n = 2, 3, 4) from a smooth curve defined by

φ ∈ X0
n to its corresponding Jacobian Eφ is defined by a divisor D of degree n on Cφ

as fn(P ) = nP −D. Here the Jacobian Eφ is given by a Weierstrass equation and the

divisor D is chosen to be the intersection of Cφ with the hyperplane at infinity (see [1,

p. 305]).

There exists αn = αn(φ) ∈ K∗ such that ϕ∗n(ωϕn(φ)) = αnωφ for any φ ∈ X0
n(K).

The transformation property (4.8) gives us the following identity for a geometric mod-

ular form F of weight k

IF(φ) = αknIF(ϕn(φ)). (4.10)

The formula (4.10) provides us then the invariants of smooth genus one models through

the corresponding ones of a Weierstrass form. This is the crucial idea in Paper III since

Weierstrass forms are more well-understood.
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4.4 Determinantal representation and discriminant

This section discusses the second approach to study invariants of genus one models

over the complex numbers focusing on discriminants of ternary cubics. To be precise,

we use determinantal representations to relate the coefficients of a ternary cubic to

theta functions. Theta functions are fundamental examples of which can be used to

construct modular forms.

Discriminants and theta functions

As a motivating example, we consider the discriminant of a plane cubic curve which is

a polynomial of degree 12 in the coefficients of the cubic with 2040 monomials. This

is inconvenient to work with. But in the case of complex number, we have shorter

expressions for the discriminants in terms of theta constants. Consider the smooth

genus one curve C defined by the Weierstrass equation y2 = 4x3 − g2x − g3. Using

the Weierstrass parametrization, there exists a lattice Λ = ω1Z + ω2Z with some

complex numbers ω1, ω2 such that Im(ω2/ω1) > 0 and C(C) ∼= C/Λ. Let τ := ω2/ω1

and define the theta constants a = θ2(0, τ) = e
πiτ
4 θ(1

2
τ, τ), b = θ3(0, τ) = θ(0, τ),

c = θ4(0, τ) = θ(1
2
, τ) with the Jacobi theta function

θ(z, τ) :=
∞∑

n=−∞
exp(πin2τ + 2πinz).

The discriminant formula ∆ = 212(g32 − 27g23) yields

∆ = 216

(
π

ω1

)12

(abc)8. (4.11)

This discriminant formula comes from [2, p. 367-368] with the normalized invariants

c4 = 263g2, c6 = 2933g3.

This algebraic-analytic connection between discriminants and theta functions is re-

markable. One can ask if we also have similar phenomena in more general cases? We

will try to answer this question with a new approach using determinantal representa-

tions.

Determinantal representations

Let φ be a homogeneous polynomial of degree d, we construct a d× d matrix U whose

elements are linear forms such that φ = λ det(U) for some constant λ 6= 0. The study

of φ has thus been moved to the study of the matrix U . Let us start with a simple



4.4. DETERMINANTAL REPRESENTATION AND DISCRIMINANT 31

example in which we consider the binary quadratic form φ = ax2 + bxy + cy2. Then

φ = det(U) with

U =

(
ax+ cy (a+ c− b)x

y x+ y

)
.

To construct a less trivial example we move to the case of ternary cubic. For instance,

consider the cubic form φ = y2z− 4x3− xz2 + 4z3, then φ = det(U) with U is equal to




2x+ z y + z 4z

0 x− z y − z
z 0 −2x− z


 .

Dickson [10] proved that in general, only plane curves, quadratic and cubic surfaces,

quadratic three-folds admit a determinantal representation. The reader can have a

look at [5] for a general overview to this topic. We continue with a smooth curve Cφ

given in Weierstrass form

φ(x, y, z) = y2z − 4x3 + g2xz
2 + g3z

3, (4.12)

where g2 and g3 are elements in a field K. Determinantal representations of Weierstrass

forms has been established by Vinnikov [32, Section 2], where he provided the represen-

tations for another type of Weierstrass equations of the form y2z = x(x+ϑ1z)(x+ϑ2z)

for some constants ϑ1, ϑ2 ∈ K. Following Vinnikov’s method, we obtain for φ the

determinantal representations




2x+ tz y + dz (3t2 − g2)z
0 x− tz y − dz
z 0 −2x− tz


 , (4.13)

with t, d ∈ K be such that d2 = 4t3 − g2t− g3. One can check that the determinant of

the matrix (4.13) is equal to φ.

When K = C, as mentioned in Chapter 1, Cφ(C) ∼= C/Λ for the lattice Λ com-

ing from the Weierstrass parametrization. One can write Λ = ω1Z + ω2Z for some

ω1, ω2 ∈ C with τ = ω2/ω1 ∈ H. The two coefficients g2 and g3 of the curve given by

(4.12) is determined by (see [34, p. 509])

g2 =
2

3

(
π

ω1

)4

(a8 + b8 + c8),
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g3 =
4

27

(
π

ω1

)6

(a4 + b4)(b4 + c4)(c4 − a4),

where a, b, c are even theta constants defined in the previous section. Since (t, d) is a

point on the affine curve associated to Cφ defined by {z 6= 0}, it is determined by theta

constants and so are all the elements of the matrix (4.13). To be precise, we consider

the Weierstrass P-function associated to the lattice Λ. The point (t, d) on the curve

can be parametrized as t = P(s) and d = P ′(s) for some s /∈ Λ. In addition, the choice

of the 2-torsion point, s = ω2/2 say, will give us the following representation of φ




2x− π2

3ω2
1
(a4 + b4)z y −( π

ω1
)4c8z

0 x+ π2

3ω2
1
(a4 + b4)z y

z 0 −2x+ π2

3ω2
1
(a4 + b4)z


 . (4.14)

Since the discriminant of a polynomial can be computed by the resultant of its partial

derivatives (see [16, p. 434]), the discriminant ∆φ of the curve Cφ is equal to

∆φ = 216

(
π

ω1

)12

(abc)8.

The classical formula (4.11) has thus been recovered. We want to study this phenomena

in more general cases, i.e., to see if one can representation a certain polynomial as the

determinant of some matrix whose elements are written in theta constants as in (4.14).

In this direction, Ball and Vinnikov [4, Theorem 5.1] provide an important result,

which is the key point in Paper III to expand this study to general cubic forms.

Plane quartics and Klein’s formula

Although this thesis focus on curves of genus one, but it is also interesting to mention

a beautiful formula of Klein on plane quartics, which are non-hyperelliptic curves of

genus three. More concretely, let Cφ be a smooth plane curve over C given by a quartic

φ, let α1, α2, α3, β1, β2, β3 be a symplectic basis of H1(Cφ,Z) and let η1, η2, η3 be the

classical basis of holomorphic 1-forms of Ω1
C(Cφ) defined in [23, p. 329]. We construct

from these the period matrix [Ω1 Ω2] whose entries are

(Ω1)ij =

∫

αi

ηj and (Ω2)ij =

∫

βi

ηj, for i, j = 1, 2, 3.
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De note by τ = Ω−12 Ω1, the discriminant ∆φ of φ satisfies the following formula (see

[22, p. 72]):

∆2
φ =

∏

δ even

θδ(0, τ). (4.15)

Here θδ is the Riemann theta function with characteristic δ = (δ1, δ2), where

δ1, δ2 ∈ {0, 1}3, defined for any z ∈ C3 as:

θδ(z, τ) =
∑

n∈Z3

exp 2πi

(
1

2
(n+ δ1)

tτ(n+ δ1) + (n+ δ1)
t(z + δ2)

)
.

The product in (4.15) runs over all 36 even theta characteristics of genus three. The

characteristic δ is called even if the corresponding theta function θδ is an even function

in z. This formula should be compared with (4.11) in Weierstrass case. One can ask

if it is possible to use determinantal representations to establish the formula (4.15) or

not? For this, the authors in [18] and [25] have obtained determinantal representations

for plane quartics described by theta constants. Thus it might be possible to explore

this problem in this case.





Chapter 5

Summary of papers

5.1 Paper I

In this paper, we work on the uniform bounds for the number

N(C,B) = ]{P ∈ C(Q) : H(P ) ≤ B}

of Q-points of height at most B on a non-singular plane curve C, which is defined by a

cubic form F . We follow the approach of [20] closely except that the p-adic determinant

method is replaced by the global determinant method of Salberger [24]. This gives the

following improvements of Theorem 1.2 and Corollary 1.3 in [20].

Theorem 5.1.1. Let C be a smooth plane cubic curve and r be the rank of Jac(C).

Then for any positive integer m and any B ≥ 3, we have

N(C,B)� mr
(
B

2
3m2 +m2

)
logB

and

N(C,B)� (logB)2+r/2.

The bounds are uniform in the sense that the implicit constants only depend on

the rank r of the corresponding Jacobian.

In the appendix, we also include an even better estimate (see [29, Theorem 9]),

which is obtained by a re-examination of the argument in [20]. This is based on a deep

result of David [8] about successive minima for the quadratic form corresponding to

the canonical height on Jac(C). The estimates in Theorem 5.1.1 and [29, Theorem 9]

should be compared with the classical result of Néron:

N(C,B) ∼ cF (logB)r/2,

35
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where cF is a constant depending on F . But the proof of that result gives very little

information about the error terms and no uniform bounds for N(C,B).

5.2 Paper II

In this paper (see [30]), we study the rational points counting problem on non-singular

quartic curves C over Q given by complete intersections of two quadrics in P3. As C

is of genus one, the Jacobian Jac(C) is again an elliptic curve given by a Weierstrass

equation and one can apply descent theory.

We first use descent and the global determinant method to prove the following

bound for the number N(C,B) of rational points of height at most B on C.

Theorem 5.2.1. Let C be a smooth complete intersection of two quadric surfaces and

r be the rank of Jac(C). Then for any positive integer m and any B ≥ 3, we have

N(C,B)� mr
(
B

1
2m2 +m2

)
logB.

Taking m = 1 + [
√

logB] we obtain N(C,B)� (logB)2+r/2.

This result should be compared with Theorem 5.1.1 for cubic curves. The second

goal of this paper is to moreover improve the uniformity by establishing the estimate

which does not depend on the rank r of Jac(C). The following result is established:

Theorem 5.2.2. Let C be a non-singular complete intersection of two simultaneously

diagonal quadrics in P3. Then

N(C,B)�ε B
1/2−3/392+ε. (5.1)

The proof bases on the same basic dichotomy as in two articles [12] of Ellenberg

and Venkatesh and [20] of Heath-Brown and Testa:

• For curves of small height we use descent and the determinant method for un-

ramified covers of C. To sum over the descent classes, we will also need upper

estimates for the rank of Jac(C) in terms of its discriminant.

• For curves of large height, we use a refinement of the determinant method where

we find extra factors in the determinant which come from the coefficients of the

quadratic forms defining C.

One difficulty is that we first need to define a height function on a parameter variety

of such quartic curves. This is much easier for cubic curves, where the height function
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can be defined by the maximum modulus of coefficients of the polynomial F defining

the curve. Unfortunately, the author has not been able to prove the main estimate (5.1)

for general non-singular complete intersections of two quadrics in P3. So we will only

consider the case where C is given by a complete intersection of two simultaneously

diagonal quadratic forms.

Suppose that C is given by a complete intersection of two simultaneously diagonal

quadratic forms q = a0x
2
0 + a1x

2
1 + a2x

2
2 + a3x

2
3 and r = b0x

2
0 + b1x

2
1 + b2x

2
2 + b3x

2
3

with integral coefficients. One can check that C is smooth if and only if all six minors

dij = aibj − ajbi 6= 0, 0 ≤ i < j ≤ 3. These six minors will satisfy a quadratic Plücker

relation. So C is parametrized by a rational point P on a quadric in P5 with coordinates

given by those six minors. The height H(C) of C is then defined to be the height of P

in P5. We have thus

H(C) = max
0≤i<j≤3

(|dij|)/ gcd
0≤i<j≤3

(dij).

Then we use a refinement of Heath-Brown’s p-adic determinant method to prove that

N(C,B)�ε B
1/2+ε/H(C)1/8 +Bε. (5.2)

This bound is an analog of the bound

N(C,B)�ε B
2/3+ε/H(C)1/9 +Bε

in [12] for plane cubic curves.

Next step is to use a standard 2-descent argument as in Brumer and Kramer [3] to

bound the rank r of Jac(C) in terms of its discriminant ∆. This discriminant measures

the singularity of the curve Jac(C). One can prove that for any c > 1/(2 log 2) we have

r < c log|∆|+ Oε(1).

This is discussed by Ellenberg and Venkatesh [12, p. 2177]. In Theorem 5.2.1, if we

take m = 2 then

N(C,B)� 2rB1/8 logB �ε |∆|1/2+εB1/8 logB. (5.3)

The discriminant ∆ of Jac(C) can be computed by means of the formulas in [1, Sections

3.1 and 3.3]. This gives

∆ = 2−8
∏

0≤i 6=j≤3
(aibj − ajbi).
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One can reduce to the case where (q, r) is a pair with gcd0≤i<j≤3(aibj − ajbi) = 1, in

which case we prove that

|∆| ≤ H(C)12. (5.4)

From (5.3) and (5.4) we obtain that

N(C,B)�ε H(C)6+εB1/8 logB. (5.5)

Comparing (5.2) with (5.5) we see that the worst case is when H(C) = B3/49. Theorem

5.2.2 is then obtained.

5.3 Paper III

In the previous two papers, there is an object called the discriminant which naturally

appears in the rational points counting problem. This object characterizes the bad

reduction of polynomials and thus has an important role in the determinant method.

The discriminant is a classical example of an invariant. It provides an inspiration to

this paper, where we study invariants of models of genus one. Here a model of genus

one is a set of polynomials, which generically defines a genus one curve (see Section

2.3). An invariant of a genus one model is a polynomial in the coefficients of the model

that is unchanged under certain linear transformations.

The aim of this paper is to give a different way to express the normalized invariants,

which are the ones defined over the integers, of a genus one model of degree n = 2, 3, 4

over a field K. To do this, we construct an explicit map ϕn from the affine space Xn

of genus one models of degree n to the space of Weierstrass equations. This gives a

formula relating invariants of a smooth genus one model to the corresponding ones of

a Weierstrass form of the model. The map ϕn is constructed at the end of Section

4.3. As a first step, we compute the discriminant directly using the singularities of the

models. The first result of the paper is the following:

Theorem 5.3.1. Let Cφ be a curve defined by a genus one model φ of degree n (n =

2, 3, 4) over a field K and ∆φ,∆ϕn(φ) be the discriminants of φ and its corresponding

Weierstrass form ϕn(φ). We have (up so sign)

∆φ = α12
n ∆ϕn(φ),

where α2 = 1, α3 = 1/2, α4 = 2.

One can obtain a generalization of Theorem 5.3.1 by replacing the discriminant by
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any invariant coming from a (geometric) modular form, which was defined in Section

4.3. To be precise, in this paper we naturally associate to a geometric modular form

F an invariant IF of X0
n of the same weight (see (4.9)). Here X0

n is the subset of Xn

consisting of all smooth genus one models of degree n.

As an example, let E4, E6 be the corresponding (geometric) modular forms of the

normalized Eisenstein series E4, E6 respectively and let D be the cusp form of weight

12 satisfying 1728D = E34 − E26 . Let c4, c6 be the normalized invariants of weights 4,6

respectively of Xn and ∆ = (c34− c26)/1728 be the discriminant. We prove in the paper

that IE4 = c4, IE6 = −c6 and ID = ∆ on X0
n. Here we use the notation D for the cusp

form in order to avoid the confusion with the discriminant ∆. The next result in the

paper is the following:

Theorem 5.3.2. Let Cφ be a smooth curve of genus one defined by a model φ of degree

n (n = 2, 3, 4) over a field K with the corresponding Jacobian Eφ defined by ϕn(φ). Let

k be an integer and IF be the invariant of weight k associated to a geometric modular

form F of weight k. We then have

IF(φ) = αknIF(ϕn(φ)),

where α2 = 1, α3 = 1/2, α4 = 2.

The second part of the paper uses determinantal representations to study invariants

over the complex numbers focusing mainly on discriminants of ternary cubics. A first

result represents Weierstrass cubics as determinants (see [31, Proposition 1.5]). This

is then extended to general complex plane curves as below by following closely the

method in [4]:

Theorem 5.3.3. Let Cφ ⊂ P2 be a non-rational irreducible complex plane curve de-

fined by φ = 0, where φ(x, y, z) is an irreducible homogeneous polynomial of degree

d. Suppose the d intersection points of Cφ with the line {y = αx + γz} are distinct

non-singular points P1, ..., Pd with coordinates Pi = (1, α+ γβi, βi), βi 6= 0. Then up to

multiplication by some constant:

φ(x, y, z) = det((M − αN)x+Ny + (I − γN)z),

where M = diag(−β1, ...,−βd) and N = (nij)i,j with

nii = −
βi

∂φ
∂y

(Pi)

(∂φ
∂x

+ α∂φ
∂y

)(Pi)
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and for i 6= j

nij =
θ[δ](ϕ(Pj)− ϕ(Pi))

θ[δ](0)E(Pj, Pi)

βi − βj√
βi(αdx− dy)(Pi)

√
βj(αdx− dy)(Pj)

.

Here δ is an even theta characteristic such that θ[δ](0) 6= 0, ϕ : X → J(X) is the

Abel-Jacobi map from the desingularizing Riemann surface X of Cφ to its Jacobian

and E(., .) is the prime form on X ×X.

Using this theorem, we find in particular a formula for the discriminant of plane

cubics in terms of theta functions. More precisely, a smooth plane cubic Cφ can be

linearly transformed to a Weierstrass form Eφ by a fixed flex point on the curve Cφ (see

[7, Section 4.4]). Denote by M the linear transformation, the resulting Weierstrass form

Eφ is isomorphic to C/Λ for the lattice Λ coming from the Weierstrass parametrization.

One can write Λ = ω1Z+ω2Z for the complex numbers ω1, ω2 with Im(ω2/ω1) > 0 and

denote by τ = ω2/ω1. We obtain the following result:

Theorem 5.3.4. Let Cφ be a smooth plane curve over C defined by a cubic form φ

and ∆φ be the discriminant of φ, we have

∆φ =
216

det(M)12

(
π

ω1

)12

(θ2(0, τ)θ3(0, τ)θ4(0, τ))8.

This algebraic-analytic relation between discriminants and theta functions is known

but the above approach is new. This approach might be possible to apply to general

plane curves.

Similar formulae for other genus one models are obtained by Theorem 5.3.1. To be

precise, let Cφ be a smooth curve of genus one over C defined by a model φ of degree

n (n = 2, 3, 4) with the corresponding Weierstrass form Eφ defined by ϕn(φ). The

Weierstrass parametrization provides a lattice Λ such that Eφ(C) ∼= C/Λ. We write

Λ = ω1Z + ω2Z with some complex numbers ω1, ω2 satisfying Im(ω2/ω1) > 0. The

following is a consequence of Theorem 5.3.1:

Corollary 5.3.5. Let Cφ be a smooth curve of genus one over C defined by a model φ

of degree n (n = 2, 3, 4) and let ∆φ be the discriminant of Cφ. We have

∆φ = 216α12
n

(
π

ω1

)12

(θ2(0, τ)θ3(0, τ)θ4(0, τ))8,

where α2 = 1, α3 = 1/2 and α4 = 2.

In the case n = 3, this result is slightly different from Theorem 5.3.4 since we are
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using the explicit map ϕ3 to send a cubic to a Weierstrass form instead of the linear

transformation M .
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