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ABSTRACT: This Review flows from past attempts to develop a (rechargeable) battery
technology based on Ca via crucial breakthroughs to arrive at a comprehensive discussion of the
current challenges at hand. The realization of a rechargeable Ca battery technology primarily
requires identification and development of suitable electrodes and electrolytes, which is why we
here cover the progress starting from the fundamental electrode/electrolyte requirements,
concepts, materials, and compositions employed and finally a critical analysis of the state-of-the-
art, allowing us to conclude with the particular roadblocks still existing. As for crucial
breakthroughs, reversible plating and stripping of calcium at the metal-anode interface was
achieved only recently and for very specific electrolyte formulations. Therefore, while much of
the current research aims at finding suitable cathodes to achieve proof-of-concept for a full Ca
battery, the spectrum of electrolytes researched is also expanded. Compatibility of cell
components is essential, and to ensure this, proper characterization is needed, which requires
design of a multitude of reliable experimental setups and sometimes methodology development
beyond that of other next generation battery technologies. Finally, we conclude with
recommendations for future strategies to make best use of the current advances in materials science combined with
computational design, electrochemistry, and battery engineering, all to propel the Ca battery technology to reality and
ultimately reach its full potential for energy storage.
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1. INTRODUCTION

Efficient and readily available energy storage is essential to help
solving some of the grand challenges our modern society is
facing today: air pollution, oil-dependency, and climate change.
The magnitude of the challenge is huge and involves many
interrelated aspects including energy independence, environ-
mental sustainability, economicsand not the least techno-
logical development. Electrochemical energy storage is consid-
ered to be a key technology, and the prevailing lithium-ion
battery (LIB) technology has made possible our society of
portable electronic devices. It also offers a near-term solution for
more sustainable transport with less environmental impact and
stationary energy storage for renewable energies, such as solar
and wind power. While the cost of LIBs has been reduced by 8%
at the pack level annually during the past decade,1 this
technology is now reaching its fundamental limits in terms of
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energy density. In addition, while the quest for even higher
energy densities has for long been the main driving force behind
progress in battery technology, LIBs contain both Ni and Co,
and the risks of limited supply and/or significantly increased
prices cannot be ignored and prompt the development of more
long-term sustainable battery chemistries.2,3 Furthermore, a
transition from metal ion- to metal-anode-based battery
chemistries is appealing, as it can substantially enhance the
figures of merit.4−8 If also more abundant and nontoxic metals
are used, the overall battery technology would also benefit from
reduced cost and lower environmental impact. Moreover, the
concept becomes particularly attractive if multivalent ions are
used as charge carriers, as this in principle enables the capacities
to be doubled as compared to using monovalent-ion charge
carriers such as Li+ or Na+. Alternatively, one can consider that
reaction of only a half of the ions would be needed to achieve the
same capacity.8,9 Combining all of the above: Calcium is the fifth
most abundant element in the Earth’s crust, it is nontoxic, and its
standard reduction potential is −2.87 vs NHE, which combined
with its density of 1.54 g/cm3 and charge capacity of 1.34 Ah/g,
result in a theoretical energy density of 2.06 Ah/cm3. In
comparison, the graphite of today’s LIBs is at a mere 0.97 Ah/
cm3hence a 2-fold increase in this measure is achievable. In
addition, the Ca2+ ion should be more mobile in liquid
electrolytes because of its less polarizing character (charge/
radius ratio) than both Mg2+ and Al3+ ions, which are employed
in battery concepts much more heavily researched. To enable
the reader to more easily understand the (limited) development
of Ca batteries until now, we here first provide a historical
perspective before we turn to the (rapid) progress during the last
4 years.
This Review presents a comprehensive examination of the

requirements and current state-of-the-art of electrolytes and
electrodes for rechargeable Ca batteries. This section contains a
minor historical recollection, section 2 covers the exploration of
active materials and electrolytes, while section 3 deals with the
(un)reliability of experimental setups used and the methodology
development needed, before we assess full-cell layouts and
finally present some concluding remarks.

1.1. Historical Perspective (−2015): A Myriad of Concepts

The first application of calcium at all in batteries was in 1935 but
then as an additive for alloy strengthening the lead grids for Pb−
acid battery cells.10−12 The first report of calcium as the
electroactive element appeared much later, in 1964, and is
related to primary thermal batteries, a technology mostly used in
military and aerospace applications (Figure 1).13 These Ca
batteries contained electrolytes with high melting points (such
as mixtures of metal chlorides), kept at ambient temperature
during storage periods (which may be extremely long) to avoid

self-discharge and thermally activated to deliver power. The Ca/
KCl−LiCl−AgCl−K2CrO4/Ag cells were reported to discharge
at 450 °C for 11 min, despite issues related to the formation of a
Li−Ca alloy at the anode. This type of cell was used in military
applications since World War II.14 Some attempts to modify the
surface of the calcium metal anodes with acetic acid to yield
CaCO3 were reported,

15 despite the chemistry being shown to
be extremely complex involving also corrosion with formation of
both Ca2CrO4Cl and KCaCl3.

16 Efforts to replace the chlorides
by nitrates, with lower melting points, as electrolytes were also
reported.17 A maximum exchange of one electron per mole of
calcium was observed with the formation of a passivation film
most likely consisting of CaO, hindering any fast kinetics. The
addition of halides to the electrolyte was suggested as a way to
break the passivation film and improve the kinetics. Other high-
temperature concepts investigated in these early days involved
the use of a Ca−Si alloy anode coupled to a Ca2+ conducting β″-
alumina solid electrolyte for rechargeable cells operating at 580
°C,18 a Ca−Y alloy anode coupled to a fluoride conducting solid
electrolyte,19 and even a Ca−O2 cell−also using a Ca−Si alloy
anode complement with a zirconia-based electrolyte.20 Despite a
few charge−discharge cycles being reported for the above
systems, the redox mechanism was not unambiguously
ascertained, and no further studies were published.
Staniewicz was the first to report on the electrochemistry of

Ca−SOCl2 as an alternative to the Li−SOCl2 primary cells,
again a battery technology mainly used for military applications,
and presented the impossibility of calcium plating upon cell
reversal as a safety advantage.21 Further studies by Peled et al.
attributed this feature to the formation of a passivation layer
consistingmainly of CaCl2 impermeable to the Ca2+ ions.22−25 A
similar technology with a somewhat higher operation cell
potential was also developed,26,27 but corrosion of the Ca metal
electrodes was found to be an issue; the Ca−SOCl2 cells lost ca.
10% of their capacity after only 2 weeks of storage.28 The
strategy to avoid corrosion and self-discharge was to use
different additives such as Ca(AlCl4)2 formed by reacting Ca
with AlCl3,

21 Sr(AlCl4)2, or Ba(AlCl4)2, changing the
composition of the passivation layer.29 Furthermore, corrosion
of the stainless steel can material was also observed and
attributed to reactivity with calcium metal, in analogy with
lithium metal systems.30 As the calcium-based concepts above
did not provide enough advantages to replace the Li−SOCl2
technology, they never reached the market,31 but this may also
be related to the fact that these batteries are only used in niche
applications (military or very low-temperature environments).
The issues related to electrochemical calcium deposition

discovered in the studies above effectively prevented any further
investigations of secondary, rechargeable, battery technologies
based on calcium metal as the negative electrode. Yet, basic

Figure 1. Timeline of Ca use in battery technologies.
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studies related to the behavior of calcium metal anodes using
organic electrolytes similar to those used at the time of emerging
LIB technology were made by Aurbach et al.32 Their studies
included solvents such as acetonitrile (ACN), tetrahydrofuran
(THF), γ-butyrolactone (gBL), and propylene carbonate (PC)
as well as Ca(ClO4)2 and Ca(BF4)2 salts together with
noncalcium containing salts. The conclusion of this pioneering
work was that the passivation layer formed on calcium metal
does not enable transport of calcium ions, in full agreement with
the results for the SOCl2 battery technology, with the major
consequence being the impossibility to develop any secondary
Ca batteries using these electrolytes, as even if calcium stripping
would be feasible, plating upon charge would not. By the year
2000, when the LIB technology was already well-established in
the market,33 the idea to use metal anodes coupled to
multivalent-ion charge carriers re-emerged as a way to further
boost the energy density. Indeed, proof-of-concept was achieved
for Mg battery cells with metal anodes,34 using magnesium
organohaloaluminate salts in THF or glymes as electrolytes,
which, despite a somewhat narrow electrochemical stability
window of ca. 3 V, enabled reversible Mg plating and stripping.
Yet, no similar electrolytes were available for Ca,8 and hence, the
study of Ca2+ intercalation and the quest for cathodes was not
straightforward, the only possibility being the assembly of cells
using alternative anodes, such as activated carbon.35

The basics of calcium-ion intercalation in transition-metal
compounds were studied in the 1960s−1970s as part of early
intercalation chemistry research.36 This involved crystal
structures exhibiting a van der Waals gap, such as metal sulfides
WS2, TaS2, TiS2, and some metal oxides, e.g., MoO3, and V2O5,
in which intercalation of a wide range of neutral or charged
species was possible, the latter concomitant to reduction of the
transition metal of the host. Despite most studies being devoted
to intercalation of lithium and other alkali ions, attempts to
chemically intercalate other ions such as Ca2+ for comparative
purposes were common, either from aqueous solutions of the
corresponding hydroxides or from the metal dissolved in liquid
ammonia.37−39 Due to the advent of the LIB technology in the
1970s, which concentrated most research efforts to Li+, research
on multivalent systems fell into oblivion, but the field started to
re-emerge in the early 2000s, with a few reports dealing with the
feasibility of calcium intercalation in inorganic compounds.
These included electrochemical studies of hexacyanoferrates
using an aqueous electrolyte40,41 and combining electro-
chemistry and other characterization techniques (mostly
powder X-ray diffraction, or XRD hereafter) with V2O5 as the
host using Ca(ClO4)2 in either ACN or PC as electrolytes.42−44

In the following decade and in line with the growing
awareness about the imperative evolution toward electrification
of transportation and energy storage needs for renewable energy,
the efforts in the area were reinforced. This resulted in
investigations of new concepts such as Ca/S cells,45 which
showed some electrochemical response but lacked reversibility,
andmore exotic alternatives such as liquid metal batteries.46 The
latter concept consists of two liquid metal electrodes separated
by a molten salt electrolyte that self-segregate into three liquid
layers based on immiscibility and density differences. While the
solubility in molten salts and strong reducing power of Ca
preclude its use as metal electrode, calcium containing alloys
melting at moderate temperatures (around 600 °C) seem to
exhibit promising behavior using molten halide electrolytes47−49

given their thermodynamic redox potential,50,51 but much
engineering is needed for this technologydevelopment of

corrosion resistant cell components, effective seals, and thermal
management, and so onbefore any proper practical estimates
can be made.
Reinvestigations of hexacyanoferrates were also made using

both aqueous41 and organic52 electrolytes resulting in a very
reversible electrochemical response and with enhanced capacity
obtained by water addition to the organic electrolytes.53 Despite
some further studies,54,55 indicating minor, if any, modifications
of the host structural framework, the redox mechanism and the
possible role of water molecules, either present in the as
prepared hexacyanoferrates or in the electrolyte, have not yet
been fully elucidated. Interest in intercalation cathodes, such as
those used in the LIB technology and using the vast know-how
created in that field, also re-emerged, but the bottlenecks related
to the differences between Li+ and Ca2+ as charge carriers were
soon clearly realized and hence the need for specific materials
design.56,57

1.2. The Current Era (2016−): Realizing Metal-Anode- and
Organic-Electrolyte-Based Cells

By the end of 2015, the feasibility of reversible calcium metal
plating and stripping was assessed at moderate temperatures
using conventional alkyl-carbonate organic-solvent-based elec-
trolytes.58 Despite issues associated with these electrolytes, this
opened for a more extensive electrode materials screening. With
Ca metal anodes being the most attractive choice, research was
focused on electrolyte formulations enabling better Coulombic
efficiency and, if possible, making operation at room temper-
ature feasible, and at the same time, these were used for
unraveling suitable cathode materials. Yet, alternative anodes
have also been researched; the first calcium graphite
intercalation compound (CaC6) was achieved chemically at
high temperature in 200559 and attempted electrochemically
somewhat later.60 An interest in Ca alloys has been present since
2011,61 but still, most efforts are directed toward cells using
calcium metal anodes and intercalation cathodes.62

Most Ca battery cells are analogous with LIBs on the cathode
side; during the discharge, the charge carrier ion (Ca2+) migrates
from the anode to the cathode through the electrolyte, while the
electrons flow across an external circuit (Figure 2). These

processes are reversed upon charging. Except for a few more
exotic concepts, with air63,64 or sulfur cathodes,45 the redox
mechanism at the cathode involves insertion/deinsertion of
Ca2+

+ + ⇔+ −
+x xCa 2 e Ca Host Ca Hosty x y

2
(1)

where Host represents the cathode active material wherein the
Ca2+ ions are intercalated. For Ca batteries, the main challenge is

Figure 2. Schematic of a Ca battery using a Ca metal anode and an
intercalation cathode.
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the larger size and charge of the Ca2+ ion as compared to the Li+

ion, and to less extent to the Na+ ion, for which many suitable
hosts exist. To date, the cathodes proposed have been very few
and are treated in detail in section 2.3 below.

Figure 3. Left: I−V characteristics of a Ca2+/Ca solid electrolyte interphase (SEI) covered electrode in a SOCl2-based electrolyte (showing “diode-
like” behavior). Reproduced from ref 25 with permission. Copyright [1988] Elsevier. Right: Model for calcium deposition through an SEI of CaCl2.
The ionic current is carried by the anion as a result of the low, close to 0, transport number of Ca2+. Reproduced with permission from ref 21. Copyright
[1980] The Electrochemical Society.

Figure 4. Ellingham−Richardson diagram of the standard free energy of formation for oxides vs temperature, together with the corresponding
equilibrium O2 partial pressure. Reproduced with permission from ref 72. Copyright [2018], University of Cambridge.
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2. ANODES, ELECTROLYTES, AND CATHODES

The choice of active materials together with the electrolyte sets
the theoretical limits in voltage and energy density but also
affects the kinetics (power), life-length, safety, and so on. A
special role is played by the interfaces and in many cases also the
interphases formed between the electrolyte and the electrodes.
While also current collectors and casing materials and so on
affect the final product, these are covered in section 3 dealing
with full-cell design, rather than in separate subsections here.

2.1. Anodes

Several Ca battery anodes have been electrochemically tested,
either in three- or two-electrode cell configurations, this is to say,
with or without a reference electrode distinct to the counter
electrode (Table 1). While the description of cell configurations
is exposed in section 3, this section focuses in the anode side, and
for simplicity, the contents are organized into two subsections;
section 2.1.1 covers Ca metal anodes with the related interfaces,
and section 2.1.2 covers alloys, intercalation materials, and other
alternatives.
2.1.1. Ca Metal Anodes and Interfaces. The use of Ca

metal anodes requires reversible stripping (at discharge) and
plating (at charge). Several unsuccessful attempts to electro-
deposit divalent cations have demonstrated the large difficulties
associated with trying to accomplish this.65 Based on the studies
of Auborn et al. and Behl et al. on electrolytes of inorganic Li
salts, e.g., LiBCl4, LiAlCl4, and so on, in phosphorus oxychloride

(POCl3) and thionyl chloride (SOCl2) vs Li metal anodes,66,67

Peled et al.68 and Staniewicz21 reported on the electrochemical
behavior of the M−SOCl2 (M = Mg or Ca) electrolytes vs the
corresponding metal anodes, with a cell reaction suggested to be
analogous with the Li systems

+ ⇔ + +2M 2SOCl 2MCl SO S2 2 2 (2)

In terms of specific energy density, the Ca−SOCl2 cell
reaction is ca. 300Wh/kg (for sake of comparison, the Li system
is ca. 700 Wh/kg). Although this technology was considered for
the development of primary cells, efforts to electroplate Ca from
SOCl2-based electrolytes were made but failed. Indeed, while a
high current density was recorded upon anodic polarization of a
Ca metal electrode with relatively low overpotential (efficient
stripping), a very high overpotential was recorded upon cathodic
polarization (Figure 3), and solvent reduction led to SO2 gas
being formed. The Coulombic efficiency for the Ca plating
reaction was estimated to be a mere 5%.25 The low reversibility
of the Ca plating/stripping reactions has in general mainly been
attributed to the poor diffusion of divalent cations through the
passivation layer formed (mostly CaCl2) as well as its mixed
ionic conductor nature, which precludes Ca plating (Figure 3).
In contrast, Mg electrodeposition is possible, and the obtained
deposit less prone to corrosion; a Ca deposit is completely
consumed in less than 7 min after plating, whereas Mg
electroplated on Ni appears to be stable for at least 2 h.23,68

Figure 5. Cyclic voltammograms of calcium plating/stripping in (a) 1.5 M Ca(BH4)2 in THF (room temperature, 25 mV/s, working, reference, and
counter electrodes Au, Ca, and Pt, respectively), reproduced from ref 73 with permission, copyright [2018] Nature Publishing Group, in (b) 0.45 M
Ca(BF4)2 in EC:PC (100 °C, 0.5 mV/s, stainless steel working and Ca counter and reference electrodes), reproduced from ref 74 with permission,
copyright [2016] Nature Publishing Group, in (c) 0.25 M Ca[B(hfip)4]2 in DME (room temperature, 80 mV/s, Pt working and Ca counter and
reference electrodes), reproduced from ref 79 with permission, copyright [2019] The Royal Society of Chemistry, and in (d) 0.5 M Ca[B(hfip)4]2 in
DMEwith or without 0.1MNBu4Cl (room temperature, 25 mV/s, Au working andCa counter and reference electrodes), reproduced from ref 78 with
permission, copyright [2019] American Chemical Society.
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While the Ca metal anode is by far the most promising cell
design, the electrochemistry of Ca metal is rather complex,
including the role of the very stable calcium oxide. An Ellingham
diagram69 plots the standard free energy of formation of oxides
with temperature, and it usually also provides the partial
pressure of oxygen at equilibrium (Ellingham−Richarson
diagram, as shown in Figure 4). The standard free energy is
more negative for the more stable oxide; hence, CaO is clearly
more stable than MgO and even Al2O3. The high stability of
CaO is certainly a severe problem to overcome for those aiming
at employing Ca−O2 as the cathode. Since the entropy variation
for the oxide formation is negative, the free energy becomes less
negative as temperature increases. Therefore, it is not surprising
that the first reports on Ca metal anodes in the early 1960s
(section 1) were on cells operated at high temperatures (>450
°C).13−15,17 The electrolyte chemistry was very similar to Ca
metal production; molten salts, typically eutectic mixtures of
CaCl2 and CaF2, were employed and involved electrowinning
and electrorefining processes performed at >850 °C.70 Later on,
the concept of liquid metal electrodes also used higher
temperatures, typically operating at >500 °C.71

Ca batteries are very much dependent on the properties and
performance of the electrolyte/electrode interfaces. ln an early
study by Aurbach et al.,32 the process of calcium plating at the
anode from an organic electrolyte was explored using Ca(BF4)2
and Ca(ClO4)2 as the electrolyte salts and PC, gBL, THF, and
ACN as the solvents. The plating was found by infrared
spectroscopy to be limited by the electrolyte decomposing to
form a passivation layer on top of the Cametal, hence akin to the
solid electrolyte interphase (SEI) formed on graphite in LIBs. In
contrast to LIBs and why the term SEI should not be used here,
among all the different electrolytes studied, none of them
allowed for reversible plating/stripping of calcium, as the
passivation films, mainly composed of CaCO3 and Ca(OH)2,
did not conduct Ca2+ ions. Although these observations severely
stalled the development of Ca metal-anode-based batteries, two
recent studies have indeed reported on successful calcium
plating and stripping using organic electrolytes in the presence of
passivation layers: 1.5 M Ca(BH4)2 in THF73 and 0.45 M
Ca(BF4)2 in EC:PC.

74 The former electrolyte enables reversible
cell performance at room temperature, with an electrochemical
stability window of about 3 V, while the latter offers over 4 V but
demands an elevated temperature (100 °C) (Figure 5). For
Ca(BH4)2 in THF, the passivation layer was found to be entirely

composed of CaH2 formed by the reaction of Ca metal with the
solvent. Unfortunately, the CaH2 passivation layer was found to
continuously grow upon cycling and is highly reactive. Recently,
Ta et al. have performed a systematic fundamental study on the
Ca plating mechanism using this electrolyte and a Au or Pt
rotating disc electrode setup, suggesting a chemical−electro-
chemical deposition mechanism, with the kinetics of the
chemical step (involving hydrogen adsorption) being sub-
strate-dependent and faster with Pt than with Au.75

For the Ca(BF4)2 in EC:PC electrolyte-based cells, the
situation is more complex; several solvent decomposition
products were identified including CaF2 and carboxylates but
not which one(s) that enabled Ca migration.74 Young et al.
investigated possible reduction pathways for EC and Ca(ClO4)2
in EC (thus not the same anion as in the experiment) by means
of DFT and AIMD simulations and concluded that CaCO3,
CaO, and Ca(OH)2 should be the major inorganic components
of the SEI.76 Later on, a detailed study on the passivation layers
formed from Ca(BF4)2 or Ca(TFSI)2 in EC:PC electrolytes
allowed calcium carbonates, fluorides, and borates to be
identifiedwith the latter only being observed for BF4

−-based
electrolytes, the electrolyte in which Ca plating and stripping is
feasible, i.e., no plating is observed for the electrolyte containing
TFSI.77 Further experiments used an electrode prepassivation
step by a BF4

−-based electrolyte. The prepassivation procedure
consisted in polarizing a stainless steel current collector at low
potential in order to produce a borate containing passivation
layer. Subsequently, after a thorough rinsing procedure, the
electrode was transferred to a cell with a TFSI containing
electrolyte.77 Thereby could not only Ca plating be observed,
using the previously inactive Ca(TFSI)2-based electrolyte, but
also an enhanced electrochemical responseca. 4 times higher
current densities. This strongly suggests that the nature of the
passivation layer is key to enable Ca plating and that the
composition of the electrolyte plays a major role in the overall
plating kinetics. Both the cation mobility in the electrolyte and
interfacial phenomena such as desolvation are thus intercon-
nected properties of utmost importance for practical Ca
batteries.
In 2019, two independent studies demonstrated Ca plating

and stripping at room temperature using Ca salts based on
fluorinated alkoxyborate anions and dimethoxy ethane (DME)
as solvent. Coulombic efficiencies between 80 and 90% were
reported together with anodic stabilities above 4 V vs Ca2+/Ca

Figure 6. (a) Capacity vs potential profile from Potentiostatic Intermittent Titration Technique (PITT) of a CaSi2 electrode at 100 °C. Reproduced
from ref 58 with permission from Elsevier, copyright [2016]. (b) Charge−discharge performance of a Sn-expanded graphite Ca-ion cell at different
current densities ranging from 100 to 400 mA g−1. Reproduced from ref 82 with permission from the Nature Publishing Group, copyright [2018].
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and the presence of CaF2 as an electrolyte decomposition
product.78,79 These studies represent a significant step forward
in the development of a room temperature Ca metal-anode-
based battery and should be benchmarked against cathode
materials. Nonetheless, the need for a conditioning protocol
(five cyclic voltammetry cycles at 80mV·s−1)78 or addition of 0.1
M Bu4NCl

79 in order to achieve the high Ca plating/stripping
Coulombic efficiency or to improve cyclability also calls for
additional work on surface passivation and in order to identify
the electroactive species. The possibility/risk of Ca dendrite
growth is also mentioned, as characteristic structures were
observed growing through the separator, and a short circuit was
recorded at a current density of 1 mA.cm−2.78

2.1.2. Alloys, Intercalation Materials, and Other
Alternatives. Alloys are considered a viable alternative to Ca
metal anodes, as they often have both high specific capacity and
low potential.61,80 As expected from the divalent nature of Ca
andMg cations, a similar volume expansion can be calculated for
the formation of AxM(with A =Ca orMg andM= Sn, Si, etc.) as
for the formation of Li2xM, and a similar amount of charge is
stored.61 Si- and Sn-based alloys investigated electrochemically
showed decalciation of CaSi2 to be possible using 0.45 M
Ca(BF4)2 in EC:PC electrolyte at 100 °C, leading to an average
particle diameter size decrease from 7.3 to 2.6 μm.58 A large
voltage hysteresis was, however, observed upon reduction, and
amorphization prevented any confirmation of alloy reformation.
Tang’s group investigated a Sn anode using a 0.8 M Ca(PF6)2 in
EC:PC:DMC:EMC (2:2:3:3 by vol.) electrolyte and a graphite
cathode (employing anion insertion).81,82 Since only two-
electrode cells were assembled, the capacity vs voltage profile of
Sn is not really unambiguously determined, but yet, a much
smaller voltage hysteresis was obtained as compared with the Si
anode (Figure 6). Even though 350 cycles were reported, the
low Coulombic efficiency (ca. 80%) suggests a significant
amount of parasitic reactions, most probably involving electro-
lyte decomposition. In addition, the Ca(PF6)2 salt employed is
known to be quite unstable.83

A systematic screening and high-throughput density func-
tional theory (DFT) investigation of a large number, in total
115, of CaxM alloys was very recently made by Wolverton’s
group.80 The most promising alloy candidates were selected
considering calciation voltage, volume expansion, and specific
capacity. These criteria resulted in a wide range of metals being
considered worthy of further investigation; M = Sn, Si, Sb, Ge,
Al, Pb, Cu, Cd, CdCu2, Ga, Bi, In, Tl, Hg, Ag, Au, Pt, and Pd. Pt
and Au attract special interest, as these metals sometimes are
used as substrates/working electrodes (Table 1), emphasizing
that care must be taken to ensure that alloy formation does not
bias the interpretation. Ca alloys were also considered in thermal
batteries as a way to overcome the high melting point of Ca (842
°C). The operation temperature of such cells could be lower by
using Ca alloys such as Ca−Bi,48 Ca−Sb,84 Ca−Ge,85 and Ca−
Mg.47,51

Not only simple metal alloys are advocated for; two-
dimensional GeP3 was recently investigated by DFT as a
potential anode for several post-Li batteries,86 Ca2+ was found to
preferentially react with GeP3 through a conversion reaction
resulting in a theoretical specific capacity of 658 mAh/g.
Graphite is by far the most representative and studied

insertion anode material for the LIB technology. While fellow
alkali earth metals such as barium (Ba) and strontium (Sr) have
been found to intercalate in graphite rather easily,87 Ca
intercalation using a similar procedure (contact of graphite

with the metal vapor) only leads to superficial intercalation.88 So
far, only dimethyl sulfoxide (DMSO)-solvated Ca has been
intercalated readily into graphite.59 Successful preparation of
CaC6 was, however, claimed by Emery et al. after immersing
graphite in a molten lithium−calcium alloy at 350 °C for 10
days.59 The authors suggested that only Ca is intercalated and
mentioned that the CaC6 crystal structure is unique
(rhombohedral and R3m space group) as compared to other
MC6 compounds having hexagonal symmetry. Wu et al.
assembled a dual-carbon electrode cell using a meso-carbon
microbead (MCMB) anode and an expanded graphite
cathode.89 Upon cycling, reversible shifts of the (002) graphite
diffraction peak were observed as well as a broadening, showing
loss in graphitization degree (Figure 7). Unfortunately, since all

tests were performed using two-electrode cells, no conclusions
can be drawn with respect to the intrinsic performance and
operating voltage of the MCMB anode. Ishikawa et al. proposed
an interesting strategy for Ca insertion by first preparing BC8,

90

which allowed for easier Ca intercalation using the standard
method, something rationalized by the relationship between the
ionization potential of Ca and the electron affinity of BC8.
Borophene, the boron analogue to graphene, and hydrogenated
defective graphene, have both been investigated by DFT for
possible application as Ca battery anode materials.91,92 Higher
binding energies were obtained for Ca than for Mg, Li, and Na,
and specific capacities of 800 and 591 mAh/g were obtained,
individually. Datta et al. investigated the adsorption of Ca (and
Na) on graphene with divacancies and Stone−Wales defects93

and concluded that adsorption is not possible on pristine
graphene but enhanced by increasing the density of defects, with
a calculated capacity of 2900 mAh/g for Ca2+ adsorption. As for
every other high-surface-area anode material, however, it is very
unlikely that graphene can be used in practice, as the side-
reactions taking place would be highly detrimental and result in
an excessive cation inventory loss. In addition, the low-density
graphene-based anodes will result in low volumetric energy
density cells. MXenes have also been considered as anodes for
Ca, K, Na, and Li batteries.94,95 By DFT calculations, the
adsorption energies were found to decrease as the coverage
increased, and a larger effective ionic radius was found to
increase the interaction between the alkali and alkali earth
atoms, penalizing the capacity; 320 mAh/g for Ca2+. However,

Figure 7. (a) XRD patterns of (1) Ca-intercalated BC8 and (2) original
BC8 films. Reproduced from ref 90 with permission from The Chemical
Society of Japan. Copyright [2018]. (b) XRD patterns of an initial, fully
charged, and fully discharged MCMB anode in a Ca dual-carbon
electrode battery (expanded graphite used as cathode) during the initial
cycle. Reproduced from ref 89 with permission from Wiley-VCH.
Copyright [2018].
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MXenes have the common problem of all high-surface-area
anode materials: poor first cycle Coulombic efficiency, i.e., a
large irreversible loss of capacity.
Organic compounds have also been tested as Ca battery

anodes using aqueous electrolytes (Table 1). The aromatic
molecular solid 3,4,9,10-perylenetetracarboxylic dianhydride
(PTCDA) was tested in a three-electrode cell using activated
carbon as the cathode.96 Despite some signatures of reversible
electrochemical activity, XRD studies indicated rapid deterio-
ration/amorphization upon cycling (Figure 8a,b), which was
attributed to the large size of Ca2+, as this behavior was not
observed for Mg2+. For a polyimide (PNDIE) anode and a
copper hexacyanoferrate cathode cell, a stable discharge capacity
of 40 mAh/g (at C/10 rate) was demonstrated for 1000 cycles97

This cycling was, however, performed at a 5C rate, thus
potentially masking parasitic reactions/active material dissolu-
tion issues. Moreover, for most tests using aqueous electrolytes,
the issue of reactivity of protons as well as the role(s) of the
oxygen reduction and/or the hydrogen evolution reactions,
ORR and HER, respectively, is rarely mentioned, even though
the voltage window commonly explored is >1.4 V.

2.2. Electrolytes

Regardless of battery design and concept, the role of the
electrolyte is primarily to efficiently separate the two electrodes,
which is in practice solved by some kind of membrane/separator
layout, and to efficiently transport the ionic charge carrier(s) of
interest between the electrodes.99 Due to the (very) hard acid−
base nature of both theMg2+ and Al3+ cations, the corresponding
multivalent-battery technologies have very special electrolyte
compositions to enable desolvation of the cations at the
electrode/electrolyte interfacesespecially because the sol-
vents are very cumbersome to create and handle.8 In contrast,
Ca battery electrolytes are much more similar to both LIB and
SIB electrolytes, and simple salt-in-solvent concepts using
standard battery solvents from these technologies seem to
provide the needed overall bulk electrolytes propertieslikely
beause Ca2+ is a much softer cation. The remaining open
questions are mainly related to if these suffice to provide ample
Ca2+ transport and exchange at the electrodes.
While Ca battery electrolytes basically must only fulfill the

condition of fast and large enough Ca2+-ion transport, through
the bulk and at the interfaces, to not limit the power
performance of the celland in some cases make it at all
cyclablethere is the additional issue of enough (electro-)

Figure 8. (a) Galvanostatic calciation/decalciation potential profiles of the PTCDA electrode in a two-electrode cell at a current density of 20 mA g−1,
and (b) ex situ XRD patterns of the PTCDA corresponding to the pristine (black), calciated (red), and decalciated (blue) electrode. Reproduced from
ref 96 with permission from the American Chemical Society, copyright [2017]. (c) Charge−discharge profile of PNDIE electrodes in 2.5MCa(NO3)2
aqueous electrolytes with different pH. (d) Capacity stability and Coulombic efficiency of PNDIE at 5C rate (925 mA g−1). (e) Possible reversible
electrochemical redox mechanism of PNDIE. Reproduced from ref 97 with permission from Wiley-VCH, copyright [2017].
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chemical stability. This is due to the electrochemical potential of
Ca being so low and close to Li. From the perspective of
electrolyte and anode compatibility, basically the cathodic
stability of the salt anion(s) and the solvent(s) used, two main
approaches have been employed:

(i) electrolytes that form a passivation layer on Ca metal
anodes by limited decomposition of salt and/or solvents,
i.e., are metastable. The main issue is then Ca2+ mobility
through the passivation layer;

(ii) electrolytes that do not form any passivation layerthus
being intrinsically stable, primarily suited for nonmetallic
anodes, rendering cells with lower energy density.

From the electrolyte vs cathode perspective, both electrolyte
designs above hitherto often have rather limited electrochemical
stability windows (ESWs), in principle hindering the use of
really high-voltage cathodesbut at the same time no practical
Ca cathodes (see section 2.3) exist to date.
Amajor limitation common to all Ca battery electrolytes is the

limited number of Ca salts commercially available. Most work
has so far employed one or more of these five simple Ca salts:
calcium perchlorate, Ca(ClO4)2, calcium tetrafluoroborate,
Ca(BF4)2, calcium bis(trifluoromethanesulfonyl)imide, Ca-
(TFSI)2, calcium nitrate, Ca(NO3)2, and calcium borohydride,
Ca(BH4)2. As the ClO4

− anion is laden with safety issues, the
latter four salts are strongly recommended for any practical
studies. For aqueous electrolytes, the salt of choice has
distinctively been Ca(NO3)2. Up to now, there has been no
systematic investigation on the impact of the nature of the salt in
divalent-cation aqueous systems; the choice of nitrate salt most
probably is rooted in historical reasons.
In 2015, however, Lipson et al.100 reported on the synthesis of

calcium hexafluorophosphate, Ca(PF6)2, salt, and furthermore,
in 2017, Keyzer et al.83 showed a direct anhydrous synthesis
route for the same saltsomething they previously developed
for the Mg analogue. The latter study is particular significant, as
it makes quite an effort targeting the chemical stability of the
PF6

− anionnoting that the chemically softer Ca2+ (as
compared to Mg2+) would have a weaker solvent interaction
and thereby accelerate the anion decomposition by stronger
cation−anion interaction, i.e., ion-pairing. However, the latter is
also weakened by the cation being softer, and to us, it is not clear
what interaction is affected the most: cation−solvent or cation−
anion, calling for computational and spectroscopic local
interaction studies. The synthesis is also significant given that
the PF6

− anion is part of the standard LIB electrolyte design,
stressing further possibilities to create Ca battery electrolytes

using LIB know-how but with the difference that the anion must
comply with cycling vs Ca metal anodes.
Apart from water as the solvent for aqueous electrolytes, more

or less standard LIB solvents such as THF, ACN, gBL, PC,
DMC, DEC, EMC, DMF, dimethoxyethane (DME), and
mixtures of EC and PC have all been applied as matrices for
the above Ca saltseven if not all possible combinations. The
crucial feature of the metastable electrolytes according to (i)
above is that the degradation products arise electrochemically by
reduction, often due both to solvent and salt anion, creating a
covering and stable film onto the anode, i.e., an SEI. These
electrolytes and the truly stable ones are discussed further in
section 2.2.1.
In addition to the standard salt-in-solvent design, there are

designs relying on ionic liquids (ILs) as solvents and also a few
solid-state electrolytes (SSEs), ceramics, and polymers, which
we briefly touch upon in section 2.2.2.
Below, the studies centering on Ca conducting electrolytes so

far are summarized briefly, but many general Ca battery studies
simply use one or two electrolytes without any motivation and
from this extrapolate/generalize. We would therefore like to
stress that for further development, there is a need for work with
the electrolyte in focus to enable:

(i) a better understanding of the reactions at the interfaces
to tailor the SEI (if any),

(ii) a large mapping of salt(s), solvent(s), concentration(s),
and additives and how these alter densities, viscosities,
conductivities, ESWs, Ca2+ transport, etc.,

(iii) a use of more LIB and SIB electrolyte know-how as well as
from Mg and Al batteries.

2.2.1. Liquid Electrolytes. Nonaqueous organic-solvent-
based liquid electrolytes have by far been the prevailing choice
for Ca batteries, even if aqueous electrolytes have been shown to
improve the kinetics of Ca intercalation at the electrolyte/
electrode interface. Systematic electrolyte studies are hitherto
very scarce. We note the early “screening” study by Aurbach et
al.32 investigating the electrochemical behavior of a Ca metal
anode in different organic electrolytes composed of ACN, THF,
gBL, and PC and the salts Ca(ClO4)2 and Ca(BF4)2 and the
similar study by Hayashi et al.42 using Ca(ClO4)2 as the salt and
PC, DMC, DEC, EMC, gBL, DMF, and ACN as solvents. In
contrast, most often a single or at most two different electrolytes
have been employed to study an anode or cathode in half- or full-
cell designs. The three most prominent examples are the studies
on reversible Ca plating and stripping using a Ca metal anode by
Ponrouch et al.74 using different Ca salts in EC:PC, by Wang et

Figure 9. Arrhenius plots (between −10 and 120 °C) for various Li/Na/Ca and Mg salts in EC0.5:PC0.5 with (a) 0.1 M and (b,c) 1 M salt
concentrations. Reproduced from ref 101 with permission from The Electrochemical Society, copyright [2017].
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al.73 employing Ca(BH4)2 in THF, and by the groups of
Nazar78and Fichtner79 using Ca salt based on fluorinated
alkoxyborates anions in DME. These studies are covered
extensively in section 2.1 with respect to the functionality for
the anode and interface creation. We note here, however, that
these research groups used different salt concentrationswith
0.25 M Ca[B(hfip)4]2, 0.45 M Ca(BF4)2, 0.5 M Ca[B(hfip)4]2,
or 1.5 M Ca(BH4)2a far from small design difference and
significant for the electrolyte properties. Another note is that
these electrolytes have a fair concentration of oxygen atoms by
virtue of the carbonate solvents, and combined with the stability
of the CaO (Figure 4), this might have profound effects on the
cyclability of Ca-metal-based cells (see section section 2.1,
Figure 5).
In a recent study, the Ca salt type and concentration was

systematically varied in a matrix of EC:PC.101 The target was
truly electrolyte oriented to connect various fundamental
physicochemical electrolyte properties such as ion conductivity,
viscosity, and the Ca2+ cation solvation by solvent and anions,
with the practical electrochemical performance. It also
compared Ca2+ vs Li+, Na+, and Mg2+ in order to strengthen
the fundamental understanding of the importance of underlying
interactions for the phenomena and correlations observed. It
was deduced that for low salt concentrations (0.1 M), when
almost total ion−ion dissociation can be expected, the divalent
systems are more conductive than the corresponding mono-
valent-cation-based systems, while for higher concentrations
(1.0 M), both the viscosity and the ion-pairing increases
relatively more for the divalent systems, and consequently, the
ion conductivity drops (Figure 9). At elevated temperatures,
such as those used to enable the reversible stripping/plating in
the former studies, however, these differences become less
obvious (Figure 9b,c). Also, the nature of the anions matters
employing the TFSI salt renders more conductive electrolytes
for the 1.0 M system (Figure 9b,c)primarily by less extensive
ion-pairing.
The ionic conductivities were all above the target value often

given for LIB electrolytes (1 mS/cm): ca. 3.5 mS/cm even at
room temperature for the 0.1 M systems and slightly lower, ca.
2.0−2.8 mS/cm for the 1.0 M systems. The differences correlate
with the viscosity of ca. 3 cP increasing to a vast 70 cP, which
again can be mitigated by raising the temperature (Figure 10).
At a molecular level, the differences, especially with respect to

the ion-pairing, can be analyzed by vibrational spectroscopy,
showing that the cation solvation numbers are lowered from 6.7
to 5.3 from 0.1 to 1.0 M Ca(TFSI)2 concentration but also that
Ca2+ has a larger first solvation shell than all other cations (Li/
Na/K/Mg).32 This should affect the mobility in the bulk as well
as the (de)solvation dynamics at the electrolyte/electrode
interfaces.
A note of caution is also needed with respect to the discussion

of ion conductivities above; a 0.1 M M(TFSI)2 electrolyte has
nominally 50% more ions than a 0.1 M MTFSI electrolyte.
Hence, analysis of (cation) transference numbers and not only
the total ion conductivities is crucial.
Comparing the above systems, the EC/PC-based electrolytes

exhibit a 4 V ESW and are thus in principle suited for medium−
high-voltage cathode materials, while the THF-based electrolyte
is more limited (<3 V).
Turning to water, real aqueous electrolytes as well as water

present in conventional aprotic electrolytes have been shown to
stimulate formation of a calcium hydroxide film passivating a Ca
metal anode.32 Hexacyanoferrates were used as cathodes in the

early 2000s,40 and more recently, this system has been
reinvestigated,41 also using nonaqueous electrolytes,52 showing
both a very reversible electrochemical response and enhanced
capacity from the water addition. As an example, ca. 17% of
water in a Ca(ClO4)2 in ACN electrolyte led to enhanced redox
activity, attributed to solvation effects.53 The role of water in the
electrolytes for the intercalation is not fully elucidatedsome
studies point to minor changes in the host.55 We caution for
other events such as proton intercalation,102 electrolyte
decomposition, and/or current collector corrosion, which all
can lead to misleading conclusions/assumptions with respect to
calcium intercalation.
Protic electrolytes have also been employed for Ca−O2

batteries, but to reduce the reactivity of Ca with water, a solvent
mixture of 2:1 methanol:water without any Ca salt inside was
employedas its role is more to transport O2 to the anode103

than to transport any Ca2+.
A bit more fundamental aqueous electrolyte properties were

partly investigated by Wang et al.41 using 1 M Ca(NO3)2 as salt.
The target was fast migration of Ca2+ in electrodes, but Lee et al.
showed more elaborately that highly concentrated aqueous
electrolytes, also known as water-in-salt electrolytes (WISEs),104

are also possible for Ca2+.105 The lowered hydration number, by
increasing the Ca(NO3)2 concentration and thereby a greater
amount of anions coordinating the cation,105,106 diminished the
activation barrier for intercalation, leading to improved cell
cycling performance.
For all the above aqueous electrolytes, the issue of CaO

formation, in contrast to the carbonate-based nonaqueous
electrolytes, is a nonissue, as cells are not targeting Ca metal
anodes.

2.2.2. Other Concepts. As well as there are few modern
studies of alternative Ca battery concepts, the same is true for the
electrolytes employed (disregarding the molten salt electrolytes
covered extensively in section 1.1). Yet, application of solid-state
electrolytes (SSEs)84 and ionic-liquid (IL)-based electrolytes63

has been given some minor attention.

Figure 10. Viscosities for Ca(ClO4)2 in EC:PC electrolytes for the two
salt concentrations (0.1 and 1.0 M) as a function of temperature.
Reproduced from ref 32 with permission from the The Electrochemical
Society, copyright [1991].
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Starting with the latter, the high ionic mobility, large ESWs,
and great solubility power and safety trendslow or no vapor
pressureof ILs have attracted the attention of the battery
community at large as electrolyte solvents. For Ca batteries,
however, we know only of one single study, wherein Shiga et
al.63 investigated a nonaqueous Ca−O2 battery design employ-
ing 0.1 M Ca(TFSI)2 in the IL DEME TFSI and observed Ca
plating/stripping at 60 °C. The CV indicates only a slightly
reversible deposition of Ca, and the SEI formed was by Raman
spectroscopy revealed to have a composition characteristic of
TFSI anion decomposition.
Turning to SSEs, solid CaF2 was used early vs alloys such as

Ca−Bi and Ca−Sb.84,107 Much more recently, metal borohy-
dride electrolytes were investigated byDFT calculations, but in a
comparative study, the Ca2+ diffusion was predicted to be too
slow for practical application.108 Overall, very few papers have

reported on Ca2+ SSEsdespite the current “hype” on ASSBs,
likely due to the difficulty to obtain materials with high-enough
ionic mobility for this multivalent chemistry.
Solid polymer electrolytes (SPEs) containing Ca have been

until now reported at the materials level but not with any real
battery tests, including an early work almost 25 years ago using
“home-made”(!) Ca(TFSI)2 dissolved in a poly(ethylene oxide)
matrix investigating basic properties such as cation coordination,
ion conductivity, phase transformations, and so on.109 We are
aware that continued research on SPEs has been pursued in
several laboratories since then but with no results in the open
literature. A deviation from the SPE concept is gel polymer
electrolytes (GPEs), and very recently, a Ca conducting GPE
based on Ca(NO3)2 and a PEGDA cross-linked network was
presented.110

Figure 11. Some Ca2+ (comparative) intercalation electrode properties calculated by DFT: (a) intercalation voltage vs specific capacity in spinel-
CaT[M2]OO4, reproduced with permission from ref 57, copyright [2015] The Royal Society of Chemistry. The right panel shows the spinel structure.
Color code: O in red, TM in blue, and Ca in green. (b) Diffusion barriers in AxV2O5 for A = alkali or alkali earth cation, adapted with permission from
ref 123, copyright [2014] American Chemical Society. The right panel shows the structure of V2O5 with potential sites for Ca insertion and the two
sites (i) and (ii) involved in the Ca hop. Color code: O in red, TM in blue, and Ca in green. (c) The most stable A0.5TiS2 structures for A = Li, Mg, Na,
K, and Ca. Color code: S in yellow, TM in blue, and Ca in green. Reproduced with permission from ref 128, copyright [2016] American Chemical
Society.
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2.3. Cathodes

As only a few Ca battery cathodes have been successfully tested
electrochemically, this section follows a different layout than for
the anode and electrolyte, and it also emphasizes the role of
computational studies. Section 2.3.1 analyzes the relation
between intercalation and crystal chemistry, which is the base
for Ca-cathode identification/design. The following subsections
discuss targeted cathode properties: the energy density, which is
maximized by increasing both the electrochemical capacity and
the operation potential (section 2.3.2), and the practical power
rates which depend, among other factors, on the Ca mobility in
the cathode (section 2.3.3). Finally, alternatives to intercalation
materials are presented in (section 2.3.4).
2.3.1. Intercalation andCrystal Chemistry. Intercalation,

i.e., reversible insertion into a host with minimal structural
change, is possible for a variety of electrochemically relevant
metal ions (35,36,41,111−113). The basic requirements are an
open framework of interconnected sites wherein the intercalated
ion can diffuse and an electronic band structure able to reversibly
accept/donate electrons.114−118 The high redox potential
needed to enable high cell voltages limits the suitable host
materials to transition-metal (TM) containing compounds, just
as for LIBs. The quest for cathode materials often relies on
chemical intuition, and then, attempts are done to locate trends
for a given host and different intercalated ions
(44,56,57,101,112,119−128). Computational studies have
been particularly important, since DFT permits the exploration
of both existing and virtual materials, i.e., materials not (yet)
made experimentally.129,130 DFT (comparative) studies of Ca2+

include intercalation voltages (57,121−123,131−133) (Figure
11a), migration barriers (56,57,120,123,133) (Figure 11b), and
phase stability (Figure 11c).120,122,128,134 These studies uncover
that trends are not straightforward. For Ca2+, its divalent charge
promises similarities with Mg2+ intercalation chemistry but is
also alike Na+ in size (ionic radii in metal oxides: r(Ca2+)VI = 1.0
Å and r(Na+)VI = 0.99 Å135), resulting in similar site preference.
Is then Ca intercalation reminiscent of Mg and/or Na
intercalation? A plausible answer is that each metal is unique,
and accordingly, the suitable host materials may be substantially
different from one metal ion to other. The relation of
intercalation to crystal chemistry is essential to identify possible
cathode host materials and can be further analyzed looking at the
host materials used as today’s commercial LIB cathodes: olivine-
L iFePO4 , s p i n e l -L iMn2O4 , and l a y e r ed -L iCoO2
(115,117,136,137).
In spinel-LiMn2O4 (Figure 11a), the Mn2O4 framework of

edge-sharing octahedra provides a three-dimensional network of
interconnected tetrahedral sites where the Li ion is located and
can diffuse.138 DFT investigations of virtual spinels
CaT[M2]OO4 (Ca in tetrahedral coordination) predicted some
promising cathode properties (Figure 11a),57 but yet, the
preference of Ca ions for larger sites makes the preparation of
such compounds very unlikely. Indeed, the CaMn2O4 stable
polymorph0.9 eV more stable than the spinelis the
marokite with Ca in 8-fold coordination sites.134,139 While
there are a few nitrides with Ca in tetrahedral coordination,140

CaNiN141 and Ca3N2,
142 the Inorganic Crystal Structural

Database (ICSD) does not include any oxides with Ca in
tetrahedral sites, and the ionic radii of tetrahedral Ca are not
even listed for halides, chalcogenides,143 or oxides.135

Metastable structures with tetrahedral Ca could, however, be
attempted by soft chemistry routes such as cation exchange,
solvothermal, coprecipitation, or sol−gel processes, but even if

CaT[M2]OO4 spinels could be prepared, prolonged battery
cycling might promote the thermodynamically stable structure,
as previously observed for Mg spinels.144−147 Site preference is
certainly a prime difference between the intercalation chemistry
of the larger Ca2+, Na+, or K+ ions and the smaller Li+ or Mg2+

ions, which is also influenced by their charge.
Turning to the olivine LiFePO4, its hexagonal close-packing of

oxygen has two different octahedral sites, M1 and M2,148 where
only the former provides channels for Ca diffusion.149150 The
M1 octahedron geometry is comparatively more distorted and
smaller, whereas the M2 octahedron is more regular and larger.
In LiFePO4, the Li

+ ions occupy the smaller M1 site, and the
Fe2+ cations occupy the M2 site. In olivine-MgFeSiO4 and
MgMnSiO4, some degree of cation mixing is observed,151,152

because of the similarity in the radii and equal charge of the two
cations. In Ca olivines, however, as in the mineral kirschsteinite
CaFeSiO4,

153 the larger Ca2+ occupies the M2 site and is thus
immobile.154 The radii and the oxidation state of the intercalant
and the TM ions combined regulate the cation distribution155

and thus the suitability of given the structural type to intercalate
different metals.
The structure of O3-LiCoO2 (α-NaFeO2 structural type) can

be viewed as “ordered rock salt”, in which layers of octahedrally
coordinated Li+ and Co3+ ions alternate within the cubic close
packed oxygen array. The lithium ions can be reversibly removed
from and reinserted within the triangular lattice of sites formed
by the Li ions in a plane.156−158 Like Li, Na combines with
trivalent TM to form ordered rock-salt type structures with
potential application as cathode materials in Na batteries.159,160

In contrast, Ca2+ and TM ions preferably crystallize in structural
types such as perovskites, postspinels, K4CdCl6, and so on, and
due to cation distribution rules, few ordered rock-salt structures
have been achieved: nanoclusters of CaMnO2 superstruc-
tures161 and layered-Ca0.47CoO2.

162 Cabello et al. prepared the
latter metastable phase (see ref 163 for phase stability in the Ca−
Co−O system) by the Pechini method164 and reported a
reversible capacity of ca. 30−100 mAh/gCaCo2O4 for 30 cycles,
but deeper structural characterization is required to determine
the Ca and Co distribution and its effect on the (low) capacity
and cycling stability.165−167

Other crystal chemistries to analyze are the “traditional”
insertion host materials, such as V2O5, MoO3, and TiS2,

36,168,169

that were explored long ago and found to exhibit a rich
intercalation chemistry for a variety of intercalants. These
materials have been extensively studied for Caespecially
V2O5,

35,43,125,170 a material that intercalates Li,171 Na,172 and
even K.173 Under ambient conditions, V2O5 crystallizes in a
layered structure consisting of VO5-square pyramids sharing
edges and corners (Figure 11b). As layered structures favor
intercalation reactions and the appealing high redox potential of
the V5+/V4+ couple, V2O5 was one of the first materials tested for
Ca intercalation. Pioneering work by Amatucci et al.35 reported
a reversible capacity of 465 mAh/g for V2O5/PC nano-
composites,44 further studied by Hayashi et al.42,43 However,
DFT investigations suggest a more sluggish kinetics for Ca
intercalation than for Li, Na, and evenMg120,123 (Figure 11b and
section 2.3.3), and experiments show formation of protonated
phases (section 3).125,170 Another classical material in
intercalation chemistry, TiS2,

168,174,175 is among the very few
compounds for which reversible Ca intercalation has been
reported.124,176 Recent DFT investigations indicate that distinct
site preference of the intercalant ions drives the intercalation
reaction in TiS2 across different intermediate AxTiS2 phases
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(Figure 11c).128 Thus, Mg and Li occupy the empty octahedral
sites in the interlayer space of the initial O1 lattice (CdI2-type
structure), forming stage compounds as intercalation proceeds.
In contrast, the large intercalants Na, K, and Ca occupy the
prismatic sites in a P3 stacking (Figure 11c) at intermediate
concentrations (x ≈ 0.5), as this intercalant site topology
minimizes the in-plane electrostatic repulsions.128,177,178

Hence, attempting to accomplish Ca battery cathode design
with a large amount of parallelism between Ca and better known
intercalation chemistries (Li, Na, or even Mg) is not really
possible, as the crystal chemical analogies are too intricate.
2.3.2. Energy Density: Voltages and Capacities. In an

insertion reaction, the intercalated ions are incorporated in the
crystalline structure of the host compound, and electrons are
added to its band structure. In a simplified model,169,174,179 the
intercalant metal ions are fully oxidized, donating electrons to
the unoccupied levels of the band structure of the host
compound, which arise from the antibonding d-states of the
TM. Thus, the nature and the oxidation state of the transition-
metal ion are the main determinants of the intercalation voltage,
which depends also on the ionocovalent character of the cation−
anion bond, primarily driven by the nature of the anion and in a
lesser extent by the crystal structure.169,179,180 In short, the Ca
intercalation voltage for a given TM redox couple should follow
the trend known from Li-cathode intercalation materials:
chalcogenides < oxides < poly-oxoanionic.136,179,181

As there is so far very limited experimental data on Ca
intercalation voltages available, DFT calculations have been
extensively used to predict average values for several prospective
materials (57,119,121,124,131−134,147,182). In a first step, the
voltage is usually calculated between the fully intercalated and
deintercalated compounds; this is x = 0, 1 in CaxTiS2,

183 x = 0, 2
in Ca2Fe2O5,

184 x = 0, 3 in Ca3Cr2(SiO4)3,
154 and so forth.While

some oxidation states assumed might not be realisticas the
Mn7+ of fully deinserted Ca3Mn2O7 and Ca4Mn2O7

133this
gives a fast overview of voltage trends. Subsequently, the average
intercalation voltages for any intermediate compositions can be
calculated using structural models of ordered calcium/vacancy
arrangements, as has been done for instance in the perovskites
CaxMO3

132 or the Chevrel phase CaxMo6S8.
182

The DFT-predicted Ca2+ average intercalation voltages for
oxides are similar to those of Li+ (Figure 11a), which is not
surprising taking into account the metals’ similar reduction
potentials. For the Mn3+/Mn4+ couple, the predicted voltages
are 3.8 V (marokite) and 3.1 V (postspinel and spinel),57,134 and
for the Co3+/Co4+ couple, the predicted voltages are 3.3 V
(Ca3Co2O6), 3.2 V (Ca3Co4O9), and 3.8 V (Ca2Co2O5).

185 As
expected, the effect of the anion is critical to tune the
intercalation potential, following the trends widely reported
for Li materials.136,181,186 Covalent hosts display lower voltages
than the more ionic oxides, as evidenced by the predictions for
the series of Chevrel phases: Mo6S8 (2.1 V), Mo6Se8 (2 eV), and
Mo6Te8 (1.4 V).

131 A nice comparison is offered for oxo- vs thio-
spinels,57,121 where the calculated voltages for the Mn3+/Mn4+

couple are 3 V for CaMn2O4 and 1.3 V for CaMn2S4. Similarly,
the inductive effect raises the intercalation voltage in poly-
oxoanionic compounds: the Mn2+/Mn4+ couple is at 3.6 V for
pyroxene-CaMn(SiO3)2 and 3.8 V for kutnahorite-CaMn-
(CO3)2.

154 Unfortunately, any comparison of these DFT
predictions with experimental data is biased by issues related
to the experimental setups (section 3); yet, some reported values
are 3.5 V for Ca3Co2O6

187 (DFT: 3.36 V185), 3.03 V for V2O5
35

(DFT: 3.28 V120), 1.5 V for TiS2
124 (DFT: 1.7 V183), and no

more than 1.3 V for MoO3
188 (DFT: 2.23 V188). The large

discrepancy for the latter supports that side-reactions might be
taking place, as discussed in more detail in section 3.
Overall hosts with intercalation voltages of 2−3 V are

appealing for electrolytes with low to medium anodic stability.
Yet, given that electrolytes with higher anodic stabilities are
developed,78,79 the use of high-voltage cathodes (and here many
oxides and poly-oxoanionic materials are in the 3−4 V range)
would enable high-energy density Ca battery cells, pending the
capacities.
The specific capacity for any intercalation host is dictated by

the amount of Ca2+ that can be cycled between the oxidized and
reduced state and the overall formula weight, and the former
depends on the available crystallographic sites for Ca ions and
the operating redox couples. If one considers for instance the
perovskite structure CaMO3, a frequent structural type for Ca−
transition-metal oxides, looking at the crystallographic sites, the
maximum theoretical capacity corresponds to the exchange of 1
Ca ion per TM, but this would drive the TM to have a formal
oxidation state of +6, which is clearly unrealistic for most cases
(excepted Mo).132 Hence, theoretical capacities should be
calculated considering reasonable TM oxidation states. The
calcium cobalt oxides, Ca3Co2O6, Ca2Co2O5, and Ca3Co4O9, is
another set with the capacity being regulated by the redox couple
(Co4+/Co3+), despite a larger amount of available Ca sites.185 It
is thus most often the oxidation states of the TM ions and not
the available crystallographic sites which determine the
maximum specific capacity for Ca cathodes. In such cases, the
specific capacity is similar to that achievable by Li+ intercalation.
For TiS2, DFT calculations predict a large voltage step at the
stable intermediate Ca0.5TiS2 composition (Figure 11c),128 with
calculated average voltages of 1.7 V (Ti4+/Ti3+) and 0.9 V (Ti3+/
Ti2+).183 Hence, there would be a significant voltage drop if both
redox couples were considered, and Ca insertion is likely limited
to 0.5 mol Ca/TM and the Ti4+/Ti3+ redox couple, delivering a
similar specific capacity as 1 mol Li/TM. The consequence is
that statements found claiming double specific capacity for Ca
materials as compared to their Li analogues should be assessed
carefully. Light TMs able to exchange two or more electrons are
a priori: V3+/V5+, Mn2+/Mn4+, Cr3+/Cr6+, and Mo3+/Mo6+ (not
so light), and thus, their compounds should be the best
candidates to surpass the capacities today achieved for Li
cathodes.
For decades, the dream of the LIB research community has

been to exchange two electrons per TM ion. As exposed by
Goodenough, two redox couples can be accessed where the
cation redox couples are “pinned” at the top of the O 2p bands,
but to take advantage of this possibility, it must be realized in a
framework structure that can accept more than one Li atom per
transition-metal cation.115,180 The latter requirement restricts
the candidate materials, and in the Li-ion battery technology
prompted attention to the Li2MSiO4 silicates (M= Fe,Mn, Co in
tetrahedral sites) which could in theory exchange two electrons
for each TM involving the M3+/M2+ and M4+/M3+

couples.189−191 For these cathodes, the structural collapse
driven by the instability of the tetrahedral TM ion as its
oxidation state varies is a pending issue.190,192 For Ca, this
obstacle seems solvable as Ca2+ combines with octahedral Fe2+

andMn2+ inmajor classes of minerals (pyroxene, garnets, double
carbonates) and certain ternary oxides. Another great challenge
in the LIB community is the effective utilization of the V5+/V4+,
V4+/V3+, and even V3+/V2+ redox couples,117 and this also
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represents a priority route to achieve high-capacity Ca
intercalation.
Realization of theoretical into practical capacities requires that

the crystal and electronic structures are stable within the
compositional limits of the intercalation reaction. Severe
structural rearrangements are a major concern, and in the
limit, irreversible structural phase transformations are a threat
for reversible specific capacity even if they occur at the
microstructure level.193 Unit cell volume variation upon calcium
deinsertion/insertion is a first measure and can be inferred from
preliminary characterization: 18% for CaxTiS2,

124 1% for
CaxMoO3,

188 3% for CaxV2O5,
43 and 3% for CaxNaFePO4F.

194

Small volume variations found experimentally might, however,
also indicate limited Ca insertion or even proton insertion. The
actual amount of intercalation is often unknown, as side-
reactions related to electrolyte decomposition might signifi-
cantly contribute to the observed specific capacity, especially for
tests carried out at high temperature, leading to overestimation
in the value of x. For TiS2 the measured specific capacity is 500
mAh/g, corresponding to an x ≈ 0.9 nominal, while phases with
x ≈ 0.2 and 0.5 are detected by differential absorption
tomography at the Ca L2 edge and XRD, respectively.124

Since the TM oxidation state varies along the charge/
discharge of the battery, the host compound can become
metastable with respect to other crystal structures at
intermediate calcium contents. This is the case of Ca deinsertion
from Ca3Co2O6, for which DFT predicts a cell volume variation
of 3% for 1 mol Ca extraction, which is in good agreement with
experiments.154,187 Regardless of the small volume variation, a
phase transformation occurs upon Ca deinsertion. Ca3Co2O6
crystallizes in the K4CdCl6-type structure

195 where the Co−O
atoms form chains of alternating face-sharing CoO6 octahedra
and CoO6 trigonal prisms along the hexagonal c-axis (Figure
12), separated by eight coordinated calcium atoms that
according with DFT results185 can diffuse in the structure albeit

with sluggish kinetics. It has been demonstrated187 that ca. 0.7
Ca ions can be extracted fromCa3Co2O6 at ca. 3.5 V (Figure 12)
but with a hindered reinsertion process presumably due to a
large Ca desolvation energy at the electrolyte/electrode
interfacehence, not an intrinsic property of the cathode
material itself. The authors also concluded that Ca extraction
results in the formation of a modulated structure with all Co ions
in octahedral coordination,196 and parallel DFT investiga-
tions185 confirmed that the driving force for this phase
transformation is the trend of Co ions to adopt octahedral
coordination according with crystal field stabilization energies.
In addition to this change, DFT indicates that the Ca sublattice
rearranges making it unlikely to insert Ca ions to regain the
initial Ca3Co2O6. Under this perspective, irreveribility is an
intrinsic issue of the material itself. Thus, further investigations
with improved electrolyte formulations are needed to properly
assess the reversible Ca intercalation in Ca2Co2O6.

2.3.3. Diffusion in Host Materials. While the above-
discussed capacity and voltage values determine the specific
energy achievable, basically by thermodynamics, cathodes must
also enable acceptable diffusion rates (kinetics) for the
intercalated Ca2+ ions at any degree of insertion. Note that
diffusivity may vary substantially with the host composition due
to Coulombic repulsion between the diffusing Ca2+ ions and the
TM cations in different oxidation states.149,197 At present,
limited mobility of the Ca2+ ions is one of the major concerns in
multivalent cathode design. Factors determining diffusion are
rooted in crystal chemistry; the pathways should be wide enough
for the ions and exhibit a favorable topology to diminish the
electrostatic interactions between the diffusing Ca2+ cation and
the lattice constituents.
A good ionic diffusion coefficient (D≈ 10−12 cm2 s−1 for a C/

2 rate) is a prerequisite for battery electrode materials. There are
no direct measurements of Ca diffusion coefficients reported,
and estimates from electrochemistry are hampered by the poor

Figure 12. Potential vs capacity profiles from potentiodynamic cycling with galvanostatic acceleration (PCGA) experiments at 100 °C and C/200 rate
in Ca3Co2O6//Ca cells, progressively oxidized (labeled A in red, B in purple, C in blue) or oxidized and reduced (D in green), and corresponding
diffraction patterns (black corresponding to pristine Ca3Co2O6 electrode). The crystal structure of the oxidized Ca2.3Co2O6 phase (corresponding to
sample C) showing an incommensurate modulation is also depicted. Adapted from ref 187, copyright [2018] The Royal Society of Chemistry.
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reliability of testing protocols and problems with the stabilities of
electrolytes and interfaces (section 3). The migration energy
barrier, i.e., the activation energy for an ionic hop, can be used as
proxy,149 and for a reasonable C-rate such as C/2, it should be
<0.525 and <0.650 eV for micrometric and nanosized particles,
respectively.9,56 These barriers can be extracted from DFT
calculations using the nudged elastic band method (NEB),198 as
shown in Figure 11b for a single A ion diffusing in a V2O5 lattice;
the energy landscape along the diffusion path has a maximum at
the saddle point, in this case, a face of the shared triangular face.
In Figure 13, reported calculated energy barriers for Ca

migration in various TM compounds are depicted, and notably,
<0.650 eV has been predicted for some virtual spinel-
CaT[M2]OO4 with Ca occupying the tetrahedral sites.57 Rong
et al. provided useful design guidelines to enhance ionic mobility
in multivalent cathodes and identified the local topology and site
preference as key parameters.56 Hence, a good mobility was
predicted in spinel-CaT[M2]OO4, since the Ca ion would diffuse
from a nonpreferred site (tetrahedral) to a preferred site
(octahedral). Similarly, a barrier as low as 0.2 eV is predicted for
the virtual δ-CaV2O5, where Ca ions occupy a nonpreferred site
(bicapped-tetrahedral).120 However, while such a δ-AV2O5
structure is known for A = Mg and Li, in the stable form of
CaV2O5, the Ca ions adopt an 8-fold coordination.199

Interestingly, the calculated barriers for the latter are >1.5 eV,
in agreement with the unsuccessful attempts to extract Ca ions
from CaV2O5.

125 Combining the above trends leads to the
conclusion that metastable (and in many cases virtual)
compounds are a better research target for unravelling calcium
conducting cathodes. Yet, the already mentioned difficulties in
synthesis, possible instability with cycling, and in general a
voltage penalty are downsides of metastable materials.
In contrast, minerals are stable naturally occurring com-

pounds. The garnet, pyroxene, and dolomite mineral groups all

possess suitable Ca migration pathways, and promising
capacities and voltages have been predicted for garnet-
Ca3Cr3Si3O12 (uvarovite), pyroxene-CaMn(SiO3)2, and double
carbonates-CaMn(CO3)2 (kutnahorite).

154 Nevertheless, their
calculated energy barriers are larger than for oxides (Figure 13),
with a maximum of 4 eV for the pyroxene. A possible reason for
this is the higher concentration of cations in these 3D
polyoxoanionic structures, arising from the transition metals
and the silicate/carbonate groups. Paradoxically, the garnet
structure is well-known for fast Li-ion conductors.202,203 The
hampered Ca mobility excludes not only these minerals but also
the synthetic materials that exhibit these crystal structures. On
the other hand, Lipson et al.194 reported Ca intercalation into
the layered structure of NaFePO4F, boosting expectations of Ca
intercalation in related 2D hosts.
The energy barriers >1.5 eV reported for perovskite-CaMoO3,

α-V2O5, and marokite-CaMn2O4 TM oxides (Figure 13) are in
agreement with these materials being electrochemically inactive
in Ca cells.125,132134 In these oxides, the divalent charge of Ca2+

combines with its size to produce these large energy barriers. As
a comparison, across ions, the migration barriers in α-AxV2O5
(Figure 11b) follow the order Li+ < Mg2+< Na+ < K+ < Ca2+ <
Sr2+.123 The same trend is reported for the marokite-AxMn2O4,
reaching a value of 1.8 eV for Ca2+.122,134 In both V2O5 and
marokite, the diffusing A ions occupy eight-coordinated sites,
which share a triangular face to form a channel running along
one crystallographic direction. Triangular faces of the high-
coordination-number polyhedra in V2O5 and marokite are too
small to enable large cations through. This plays against Ca2+

diffusing better than Mg2+ ions in many inorganic structures.
The larger rectangular faces shared by trigonal prisms seem
more favorable for conduction of large cations (Ca2+, Na+, K+),
as inferred from the experimental diffusion coefficients for
trigonal prismatically vs. octahedrally coordinated Na ions.36,178

Figure 13. Theoretical specific energy vs calculated energy barriers (eV) for proposed Ca hosting TM compounds. The specific energy is estimated
from the calculated average voltage for a particular redox couple and the corresponding theoretical specific capacity. The vertical line denotes the
criterion for good cathode performance (<0.650 eV, see text). The red circles indicate virtual compounds. Data taken from 57, 120, 121, 131−134, 154,
182−185, 200, 201.
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Compared to monovalent cations, multivalent intercalants
will suffer stronger electrostatic interactions with the surround-
ing cations (repulsive) and anions (attractive).56,197 In the
perovskite structure CaMO3 (M = Cr, Mo, Mn, Fe, Co, Ni), the
high energy barrier for Ca migration (2 eV) arises from the face-
sharing between the transition-metal (TM) octahedra and the
empty sites available for Ca diffusion.132 In the related
brownmillerite structure, which has a crystal structure analogous
to the perovskite but with ordered oxygen vacancies, the latter
defines a possible pathway for Ca diffusion, and weaker
electrostatic repulsion lowers the calculated energy barrier
down to 1.3 eV for Ca2Co2O5

185 and 1.0 eV for Ca2Fe2O5,
184

but this is still not low enough to consider them as viable Ca
cathodes.
Chalcogenide networks provide better screening of electro-

static interactions and consequently lower the migration
barriersthose calculated for Mo6S8 (0.8 eV),182 Mo6Se8 (0.5
eV),182 TiS2 (0.72 eV),

124 and TiSe2 (0.4 eV)200 are so far the
lowest reported for existing compounds. For reversible electro-
chemical Ca2+ intercalation in TiS2 (Figure 14),124 the first
phase formed upon reduction is found to be the result of an ion-
solvated intercalation mechanism, with solvent molecule(s)
being cointercalated with the Ca2+ cation. Upon further
reduction, new non-cointercalated calcium containing phases
seem to form to the expense of unreacted TiS2. In the
noncointercalated phases, the Ca ions are likely in trigonal
prismatic sites, in agreement with the above-discussed P3-
structure stabilization for large intercalants128 and forestalling an
enhanced ionic mobility respective to the initial octahedral

coordination. From the combination of experimental and
computational techniques, it was concluded that the cation-
solvated intercalation mechanism improves Ca2+ diffusion, by
both expanding the interlayer space (here the DFT barrier
lowers to 0.5 eV with a more stable transition state denoted as
(ii) in Figure 14a) and the solvent-screened cation charge. In
practice, however, solvent cointercalation should be avoided to
enable high cell energy densities.

2.3.4. Alternative Cathode Materials. The overall
sluggish Ca diffusion in inorganic intercalation host materials
is a major concern for enabling useful high-energy rechargeable
Ca batteries with reasonable power performance. Alternative
cathode concepts are therefore given attention, including
organic electrodes offering mechanical flexibility, mild synthesis
approaches, processability, and ample structural and chemical
tuneability that can result in high specific capacities, up to 500
mAh/g for quinones, at attractive intercalation voltages.204−206

A circular battery economy is viable by preparing the materials
from renewable sources.207,208 The limitations are primarily the
large solubility of active material in electrolytes, capacity fading,
and low rate performance. Even if many advances have been
made within different classes of organic cathodes: carboxylates,
organic radicals, quinones, imides, and so on, for Li and Na
batteries,204−206,209 investigations in organic electrodes for Ca
batteries are so far limited to anodes in aqueous batteries, as
previously discussed in section 2.1.2.96,97

Also, sulfur and air cathodes have been suggested for Ca
batteriesthus, Ca/S and Ca/air batteries, respec-
tively.20,45,103,210 While such cathodes and battery concepts

Figure 14. (a) Calculated energy barrier for Ca diffusion in TiS2. The diffusing Ca ion jump from an occupied to a vacant octahedral site across either
the S−S dumbbell (i) or the intermediate tetrahedral site (ii). (b) Curves from Ca//TiS2 cells cycled at 100 °C and C/200 (blue), C/100 (black), and
C/50 (orange) or at 115 °C and C/50 (pink). Note that the indicated potential is EWE−ECE. (c) SXRD collected at different stages of TiS2 reduction in
Ca cells and the associated refined structural model. For clarity, each pattern has been labeled with the corresponding capacity achieved upon
reduction. Reprinted with permission from ref 124, copyright [2018] American Chemical Society.
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hold promise of very low cost and potentially would be an option
for large scale energy storage, significant bottlenecks remain to
be addressedmany of them covered in the research on Li/S
and Li/air batteries.211 We note the “early” work on Ca/S
resulting in rather high-capacity cells, but primary batteries due
to an irreversible process upon reduction are still not well-
understood.,45 Nevertheless, the large potential, primarily in
terms of cost and energy density, calls for further inves-
tigations.210 The Ca/air concept is truly challenging and besides
early papers discussing the possibility of operating a cell at high
temperature,20 there has been limited research efforts to develop
systems operating at room temperature using a DMSO-based
electrolyte suggested to allow formation of a Ca superoxide.64

Some insoluble side-products were obtained but were not fully
characterized, while the soluble species seem to reoxidize to
oxygen with high Coulombic efficiency despite a high
overpotential and with a reversibility decreasing as a function
of water content in the electrolyte.64 So far, no studies have been
reported dealing with operation of an oxygen electrode using
electrolytes enabling reversible calcium plating and stripping,
despite that some efforts have been reported using ionic-liquid-
based electrolytes.63 Overall it is clear that there is a long way to
go before any reliable proof-of-concept can be achieved and the
true technological prospects are evaluated.103

3. EXPERIMENTAL SETUPS, METHODOLOGY
DEVELOPMENT, AND FULL-CELL ASSESSMENTS

While the previous sections have approached the Ca battery
from a materials perspective, and in many cases, predicted and
theoretical performance is quoted, Table 2 summarizes the
practical achievements to date for different materials and a wide
range of setups. However, before discussing the results in detail,
the experimental protocols are to be covered as developing new
battery chemistries is far from being trivial and the absence of
any reliable standards makes the process tricky. Figure 15
highlights various complexities in the experimental setup of Ca
cell studies and construction.

Starting with electrochemical setups, for technologies such as
LIBs, new electrode materials are simply tested using a standard
electrolyte and vice versa, typically in two-electrode cells with
lithium metal as both the counter and reference electrode (a so-
called half-cell). For less well-studied systems, the use of a
separate reference electrode (through which no current flows) in
a three-electrode cell setup is compulsory to be able to
independently control and monitor the behavior of the
working/counter electrode within the cell and assist in
ascertaining the origin of observed features. The choice of the
reference electrode is, however, not trivial.101 Silver wires have
been often used as pseudo-reference electrodes when testing
new cathode materials, but their potential is highly dependent
on the anion present in the electrolyte. To address this issue,
strategies such as calibration with a well-known standard as Fc+/
Fc or use of a reference electrode cell compartment in which the
wire is in contact with a specific electrolyte have been used.212

While calcium metal would be the first obvious choice as a
counter electrode for cathode development, the fact that
plating/stripping is only viable under very specific conditions
casts severe restrictions on its domain of application. If used in
electrolytes not enabling calcium plating, reduction of the
working electrode would be feasible (if calcium stripping takes
place at the counter electrode), but reoxidation of the working
electrode would result in unknown redox processes at the
counter electrode, most likely related to electrolyte decom-
position, which may affect the electrolyte speciation and the
electrochemical response. Instead, activated carbon has often
been used (Tables 1 and 2), operating through a capacitive
mechanism, but electrode balancing is not trivial and rarely
mentioned. Oversizing the capacitive counter electrode, which
typically has low capacity, vs the electrode material to be
investigated, most often operating through a faradaic redox
mechanism and, hence, higher capacity, can be cumbersome in a
practical cell. Despite a Sn−Ca alloy being reported as a counter
electrode for testing Na0.2MnFe(CN)6, its capacity was very low,
<50 mAh/g, and the electrochemical alloying not fully assessed,

Figure 15. Scheme of a three-electrode Ca metal-anode-based cell setup with key properties to be developed/studied.
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the electrolyte side-reactions were inferred.100 Formation of
crystalline Ca7Sn6 after 300 cycles when using Sn foils as anodes
has been reported82 but also with electrolyte decomposition
products being detected on the electrode surface.
Another factor affecting the electrochemical setup and results

is that very few calcium salts are commercially available, and the
most commonly used salt is Ca(ClO4)2. This salt is typically
hydrated and also difficult to obtain in anhydrous form due to its
explosive nature. This means that many results in the literature
are likely obtained in the presence of a non-negligible amount of
water in the electrolyte, seldom reported in the experimental
sections until very recently, which may result in side-reactions
such as H+/H3O

+ intercalation or water reduction/oxidation.
This in turn can result in some observed “false” electrochemical
capacity, as was reported for Mg2+ intercalation in V2O5.

102

While the Ca(TFSI)2 and Ca(CF3SO3)2 salts also are
commercial but much less used, the synthesis of Ca(PF6)2 was
reported only very recently83,100 but with purity issues due to a
very high tendency of anion hydrolysis. Ca(NO3)2 is the salt
most commonly used in aqueous electrolytes, and again, side-
reactions related to H+/H3O

+ intercalation probably deserve
further investigation, as these have been shown to be an issue for
Zn2+-based aqueous chemistries,213 and there are no major
reasons to believe that the situation would be different for Ca2+.
Moving from pure electrochemical setups, the use of

advanced materials characterization techniques is often
warranted to properly assess and understand the Ca
intercalation reactions, in particular to elucidate the real
intercalation degree and associated structural changes in
cathodes as well the nature and composition of the interfaces
created between anodes and electrolytes.
To properly consider the length scale that can be probed, e.g.,

surface for XPS, bulk for XRD, and atomic for TEM
(transmission electron microscopy), is also a must.214−218

Moreover, the precision and reliability of each technique also
deserves attention as well as if ex situ, in situ, and/or operando
setups are to be preferred. For instance, the amount of
intercalated Ca ions cannot be assessed from the electro-
chemical capacity unless the absence of side-reactions can be
confirmed, including issues such as simple corrosion of current
collectors.219 Chemical analysis techniques such as inductively
coupled plasma (ICP), atomic absorption (AAS), and energy
dispersive (EDS) spectroscopy can possibly be applied, but
these methods may all overestimate the degree of Ca2+ insertion,

as there might be calcium containing electrolyte salt residues or
surface layers resilient to the sample preparation of washing, as
shown for Mg2+ intercalation studies.220 In the absence of
reliable structural determination of the phases involved in the
redox mechanism showing crystal sites and occupation for
calcium ions or in the presence of mixed and/or amorphous
phases, spectroscopic techniques specifically probing calcium
are useful.221 This is especially true if a 3D distribution can be
achieved by tomographya technique which recently enabled
to unambiguously detect reversible calcium intercalation in
TiS2.

124

Also, the polymorphs used can be an issue and not always
under control. V2O5 has attracted a lot of attention for Ca
batteries and despite some studies dealing with samples
prepared in the laboratory, including a xerogel composite
(Table 2), most studies deal with the commercially available
orthorhombic α-V2O5, for which a slight increase of the a cell
parameter was reported in the very first studies of calcium
cells.42,43 The redox process was then assumed to result in a
significant amount of calcium intercalation, but no structural
model was provided. The XRD diffraction pattern is, however,
different from that of the isostructural α-CaV2O5 obtainable by
solid-state synthesis222,223 and also from the δ-polymorph, for
which lower migration barrier was predicted129,224 and which
seems to be unstable with respect to the α-structure. Instead,
there are notable similarities to the patterns observed for some
HxV2O5 and HxV4O10 phases, a fact clearly deserving further
attention.125 Attempts to electrochemically oxidize α-CaV2O5
did not result in any change in the XRD pattern, in agreement
with the high-energy migration barriers for Ca2+ predicted for
this polymorph (discussed in section 2.3).129,224 Combining all
of the above makes us propose that the electrochemical capacity
observed likely is related to electrolyte decomposition and
possibly proton insertion, at least partiallyfurther stressing the
need for combined electrochemical and advanced material
analysis.
In line with the above, the electrochemical reduction ofMoO3

in calcium containing electrolytes has been shown to result in
changes in the Mo oxidation state, and XRD indicates the
formation of a new phase for which the Ca content could not be
fully assessed.225 The authors comment that it exhibits the
Cmcm space group, a space group previously reported for some
HxMoO3 phases.

164,188

Figure 16. Volumetric and gravimetric energy densities for hypothetical calcium metal-based batteries. The straight lines are calculated energy
densities as a function of operation potential and capacities (denoted on the right of each line) of the positive electrode material. All calculations were
made using the model developed by Berg et al.226 Reproduced with permission from ref 225. Copyright 2019 Frontiers.
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Prussian blue analogues (PBAs) present even more complex-
ity, as these materials are known to exhibit variable amounts of
water in their crystal structures. This water is sometimes difficult
to remove, and also, the versatility of PBA structural frameworks
results in difficulties to extract meaningful data of occupation
sites and factors from XRD. Yet, given the good rate
performance reported to date for intercalation of single-valent
ions, especially using aqueous electrolytes,213 further explora-
tion of the mechanisms taking place in divalent systems should
be encouraged.
Last but not least, care should be exercised in generalizing

results achieved for a specific electrolyte. Besides the possibility
of side-reactions occurring due to insufficient (electro-)chemical
stability, there are many other intrinsic issues related to the
electrolyte composition, e.g., viscosityaffecting both ion
transport and wetting of the electrodes, ion−ion and ion−
solvent interactions, (de)solvation dynamics, and so on, which
also may affect the electrode behavior. Recent reports
demonstrate that Ca ions can be extracted from Ca3Co2O6

187

and CaTaN2,
201 but the insertion processes are elusive. Here the

lack of reversibility could be attributed either to, e.g., a difficult
Ca desolvation during discharge or to intrinsic cathode material
properties/decomposition reactions.
Despite the numerous challenges remaining with respect to

the development of functional Ca cells, the promising results of
some chemistries (TiS2, Ca3Co2O6) call for realistic estimates of
(prospective) full-cell figures of merit. To quantify these at the
cell level, the energy-cost model developed by Berg et al.226 was
used.225 Using a scheme of possible operation potentials and
specific capacities of some selected existing or virtual materials,
the energy densities for a set of different cell configurations were
estimated and benchmarked vs other rechargeable battery
technologies, including LIBs (Figure 16). Specific LIB
technologies are depicted with symbols, while the calcium
concepts are represented by straight lines of energy densities as a
function of operating voltage and specific capacity of the
cathodes. The results indicate that the theoretical energy
densities for calcium batteries could easily top the state-of-the-
art LIBs while most likely being cheaper. Overall, even cells with
only moderate operating voltages of 2.1 or 2.5 V and cathode
capacities of 250 or 200 mAh·g−1 would yield higher energy
densities than the best state-of-the-art LIBs. Moreover, for
combinations of 3.0 V/250 mAh·g−1 or 3.5 V/200 mAh·g−1, the
volumetric energy densities would be >1000 Wh·L−1, hence
higher than any of the (prospective) sulfur-cathode-based
battery technologies. The cost-effectiveness for the battery
configurations was also estimated, indicating that calcium
batteries would be on par with state-of-the art graphite/NMC
LIBs even for very high hypothetical calcium cathode material
costs (>80 $·kg−1).

4. CONCLUDING REMARKS
Reviewing the state-of-the-art of rechargeable Ca batteries, we
find that most studies focus on developing inorganic
intercalation host materials possessing TM ions combined
with a variety of simple or complex anions (oxides, sulfides,
hexacyanoferrates, etc.), electrolytes with high anodic stability
able to reversibly plate/strip Cametal efficiently, and the anode/
electrolyte interface. Very few, if any, full-cell studies exist, which
both assures that the reported capacities truly originate in the
redox reactions aimed for and at the same time covers all the
aspects we today take for granted for the LIB technology:
capacity fading at different C-rates and associated Coulombic

efficiencies, calendar/shelf life vs cycle-life assessments, and so
on. Indeed, very few studies are able to even name a target
application due to the incomplete characteristics at hand
which though is natural at this early stage of development.
According to energy-cost models, however, the prospects for the
Ca battery technology are encouraging, and this is further
strengthened by the current technology advancesboth on the
materials and cell levels. Alternative directions such as Ca/O2
and Ca/S batteries might be feasible, but must solve the same
intrinsic bottlenecks associated with air and sulfur electrodes
that are not yet mastered for the corresponding Li, Na, or Mg
technologies and might in some aspects be even more difficult
for Ca-based batteries, e.g., the very stable CaO potentially being
formed.
The battery performance possible to attain certainly depends

on the intrinsic material properties. Along this Review we have,
however, underlined that the actual observation of electro-
chemical activity in laboratory cells requires using appropriate
testing protocols and cell configurationsnot the least when
new chemistries are to be explored. The literature offers several
examples of “failed” experiments dealing with materials not
showing electrochemical activity. This may be due to a diversity
of causes, such as bad inherent properties of the electrode
materials, issues related to electrolyte degradation, or to difficult
Ca desolvation at the interfaces, and therefore exemplifies the
need for improved and a variety of experimental setupsnot the
least complementing the electrochemical by advanced materials
analysis. As long as findings are rationalized and rigorously
discussed, any result (positive or negative) represents a small
step in the long and winding road to the design of new battery
technologies, in general, and calcium-based systems, in
particular. Finally, we would like to stress that since the current
trend of the increasing need of batteries both in sheer amount
but also in terms of diversification, devices, and applications, is
expected to progress more rapidly in the not-so-distant future,
the development of different and complementary battery
technologies to the prevailing LIBs of today is the only long-
term sustainable strategy. Herein, Ca batteries surely have a role
to play.
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M. Rosa Palacıń is a research Professor at the Institut de Cieǹcia de
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