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Abstract
The total number of road crashes in Europe is decreasing, but the number of crashes
involving cyclists is not decreasing at the same rate. To help car drivers avoid
or mitigate crashes while overtaking a cyclist, advanced driver assistance systems
(ADAS) have been developed. To evaluate and further improve these ADAS to
support drivers as they overtake cyclists, we need to understand and model driver
behaviours.

This thesis has two objectives: 1) to extract and analyse cyclist-overtaking from
naturalistic driving data and 2) compare driver behaviour models for overtaking
manoeuvres that can be used in counterfactual simulations for evaluating ADAS
safety benefits.

The drivers’ comfort zone boundaries (CZBs) when overtaking a cyclist were
identified and analysed using naturalistic driving data. Three driver models that
predict when a car driver starts steering away in order to overtake a cyclist were
implemented: a threshold model, an evidence accumulation model, and a model in-
spired by a proportional-integral-derivative controller. These models were tested and
verified using two different datasets, one from a test-track experiment and one from
naturalistic driving data. Model parameters were obtained using a computationally
efficient linear programming.

The results show that, when an oncoming vehicle was present, the drivers were
significantly closer to the cyclist before steering away. This finding confirms that
the presence of an oncoming vehicle is a crucial factor for the safety of the cyclist
and needs to be taken into account for the development of ADAS that maintain safe
distance to the cyclist. Furthermore, the quantification of the CZBs has implications
for the development of ADAS which can estimate the time-to-collision to an oncoming
vehicle or a cyclist to be overtaken, providing timely and acceptable warnings—or
interventions—when drivers exceed their usual CZBs. A comparison of models
shows that all three models are highly variable in detecting steering away time for
different drivers. Furthermore, differences were discovered in detected steering away
time between models fitted to test-track experiments and naturalistic driving data.
Future work may focus on using larger, more diverse datasets and investigating more
advanced models before including them in counterfactual simulations.

Keywords: Traffic safety, overtaking manoeuvres, cyclist, safety benefit, natu-
ralistic data.
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Introductory chapters





Chapter 1

Introduction

The total number of road crashes in Europe is decreasing, but the number of
crashes involving cyclists is not decreasing at the same rate (European Commission
Directorate General for Mobility and Transport, 2018). Meanwhile the number of
cyclists in traffic is increasing, making car-cyclist interactions an important focus for
future traffic-safety improvements (OECD/ITF, 2013). According to the European
Commission’s Annual Accident Report (European Commission Directorate General
for Mobility and Transport, 2018), 8 % of road fatalities in the European Union (EU)
were cyclists. Recent research on car-cyclist crashes in Europe has found that most
fatalities occur when the car is travelling straight and the cyclist is moving in line with
traffic (Wisch et al., 2017). To help the driver avoid or mitigate these car-to-cyclist
crashes, advanced driver assistance systems (ADAS) have been designed to warn
drivers or intervene in critical situations (Lindman, Ödblom, et al., 2010; Zhao et al.,
2019). Safety benefit assessments are performed to investigate the effectiveness of
ADAS in reducing crashes and personal injuries (by, for example, comparing the
number of crashes of the vehicles with and without ADAS, after the systems are
available in production vehicles on the road).

1.1 Safety benefit assessment

Several approaches have been proposed for assessing the expected real-world safety
benefit of ADAS (Carter and Burgett, 2009; Page et al., 2015; Sander, 2018). In
general, a differentiation is made between retrospective and prospective safety benefit
assessments. A retrospective assessment is based on observed real-world data after
the systems are implemented in vehicles. Retrospective assessments have been
performed, by analysing meta-data (Fildes et al., 2015), insurance claims data
(Cicchino, 2017; Doyle et al., 2015; Isaksson-Hellman and Lindman, 2016; Kuehn
et al., 2009), national crash databases (Sternlund et al., 2017; Gårder and Davies,
2006), and naturalistic driving (ND) data (McLaughlin et al., 2008; Noort et al.,
2012). This type of assessment aims to estimate the true effect of the systems, but
it may require a long time until such systems are available in production vehicles
(Eichberger, 2010).
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4 1.2. Driver models

In contrast, a prospective assessment is done before the systems are implemented
in production vehicles (for example, by real-world testing of prototype systems
using test tracks, driving simulator studies, or virtual assessment). Real-world
testing on a test track, physical testing in a controlled environment, is often used
to determine if the system works according to specifications (Edwards et al., 2015;
Nilsson, 2014). This type of testing has the advantage of testing the actual system
in a safe environment, which ensures high physical fidelity; however, the number of
tests is usually limited due to the cost of performing the tests, and the interactions
are typically with dummies and often driven remotely, without a driver in the vehicle.
However, driving simulator studies, in which human drivers interact with the model of
the system being evaluated, cost less (Aust et al., 2013). Further cost reduction can be
obtained using virtual assessment; all components (driver, vehicle, environment) are
modelled. In virtual assessment (Page et al., 2015), often taking form of counterfactual
simulations, a re-analysis of real-world data (crashes or near-crashes) is performed
(Bärgman et al., 2017a; Gorman et al., 2013; Rosen, 2013; Van Auken et al., 2011).
The real-world data used as input in the virtual assessment provide the baseline
scenarios. The baseline scenarios describe the scenario to be analysed without the
ADAS under assessment. They are the basis for the simulation with the ADAS
(Alvarez et al., 2017). The baseline scenarios can be derived from three types of
data: original real-world scenarios (Kusano and Gabler, 2012; Lindman, Ödblom,
et al., 2010; Sander and Lubbe, 2016), modified real-world scenarios (Bärgman et al.,
2017a), and artificial scenarios generated by using, for example, distributions of
crash-contributing factors from real-world scenarios (Dobberstain et al., 2017; Jeong
and Oh, 2017; Yanagisawa et al., 2017). The virtual assessment approach allows a
different number of simulations to be performed (depending on the availability of
the baseline data). It can be applied in the early stages of ADAS development.

1.2 Driver models
In their early development stage, when ADAS are not yet available, models of the
systems, vehicle, environment, and driver are needed for safety benefit assessments
(Page et al., 2015). Driver models used in counterfactual simulations should be
able to describe relevant aspects of driver decisions in the scenario that the ADAS
is intended to address (Markkula, 2015). Driver models have been classified as
conceptual, statistical, or process models (Markkula, 2015; Markkula et al., 2012).
The conceptual models are not defined in rigorous mathematical formulations or
implemented computationally. Instead they explain the driving process and how
drivers interact with the world (some examples are zero-risk theory models (Näätänen
and Summala, 1974), risk control models (Wilde, 1982; Janssen and Tenkink, 1988),
and hierarchical models (Michon, 1985)). Statistical models explain the driver
behaviour as distributions of, for example, reaction times (Green, 2000). Process
models describe the driver reaction based on observed quantities (Macadam, 2003;
McRuer, 1980; Nash et al., 2016). These models produce an output, such as an
action (steering or braking), using recent and past measurements (Markkula, 2015;
Boda, Dozza, et al., 2018). Statistical and process models (both also referred to as
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computational models) are expressed in mathematical terms and are thus suitable
for evaluating scenarios using counterfactual simulations. Depending on the scenario,
existing computational models may not be able to capture relevant factors, and
additional models may need to be developed (Benderius, 2012). It is also important
to note that process models can include components of statistical models (Bärgman
et al., 2017a; Markkula, 2015).

1.3 Data collection methods for modelling driver
behaviour

To study and model driver behaviour and evaluate the models, we need to understand
driver behaviour in the specific scenario which the ADAS is intended to address.
Some studies can provide detailed data about how drivers behave, such as their
choice of speed and the distance they maintain to surrounding objects and they are
use of controls (steering wheel angle, gas and brake pedal).

Test-track (TT) experiment studies are suitable for studying driver behaviour
in interactions with other road users and for designing driver models (Boda, Dozza,
et al., 2018; Kiefer et al., 2003; Najm and D. L. Smith, 2004). These studies use
real vehicles, in specific scenarios, in controlled settings. The participants drive on
a TT while a researcher might sit in the passenger seat. The participants usually
know that they are being tested, but the researchers may or may not reveal the real
purpose of the study. The experiments are typically repeated, and different factors
that may influence the driver behaviour in the specific scenario can be controlled.
The data required to design driver models are collected by a Data Acquisition System
(DAS) installed in the test vehicle(s), which records the driver’s controls, such as
steering wheel angle and gas and brake pedal (Boda, Dozza, et al., 2018; Kiefer
et al., 2003; Najm and D. L. Smith, 2004). Additional detailed data, such as the
positions and speeds of the test vehicle as well as other road users in the scenario, are
also typically recorded. However, in test-track experiments the other road users are
typically inflatable cars or dummies and there are few drivers (e.g. typically 10-50)
in a controlled environment. On the whole these experiments have limited ecological
validity (Green, 2000; Hoffman et al., 2002), which refers to the degree to which the
observed driver behaviour in the experiment reflects "real-world" behaviour patterns
(what drivers typically do) (Shinar, 2017), (p. 50).

With the advent of big data, recent studies (Dingus et al., 2006; SHRP2 TRB,
2015) have emerged that are not performed in a controlled environment but rely,
instead, on naturalistic driving (Shinar, 2017). In contrast to TT experiments, ND
studies collect large amounts of continuous data on normal driving from many drivers,
providing detailed information on how drivers behave in the real world—without the
influence of instructions, predefined routes, and preselected environments (Shinar,
2017). ND data are suitable as input not only for designing driver models but also
for developing and assessing ADAS (Bärgman et al., 2017a).

Other studies that investigate and record information about road crashes after
they have happened (post-hoc) are less suitable for modelling driver behaviour.
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These studies collect information with different levels of detail about crash causation
mechanisms in macroscopic- and microscopic-level databases (Lindman, Isaksson-
Hellman, et al., 2017); they do not collect time-series data of the response process.
Actually, the macroscopic-level databases, which typically only include police-reported
road crashes, only contain information about the crash time and location, and the
person(s) involved (such as hospital care and specific injuries sustained). They do
not contain information about the response process which could be used to model
behaviour. On the other hand, microscopic-level, in-depth databases with crash
reconstructions provide information in a time-series format on pre-crash trajectories.
That is, in-depth databases often include data from a few seconds before the crash,
including vehicle speed, distance between vehicles and driver deceleration and reaction
time. Due to their level of detailed, in-depth databases have been used primarily to
provide input to counterfactual simulations (Lindman, Ödblom, et al., 2010; Sander,
2018). However, as the time-series data in these databases are almost always created
via reconstructions, they are already based on assumptions. This fact makes them
much less suited for use in modelling than, for example, ND data—even though ND
data usually only include near-crashes and normal driving behaviour, with very few
actual crashes.

1.4 Driver behaviour during overtaking

One scenario in which cyclists are exposed to dangerous conflicts is overtaking scenario
on rural roads; car drivers share the same lane as the cyclists and the difference
between speeds of the car and cyclists is large. The research on car-cyclist interactions
while overtaking started long ago (Kroll and Ramey, 1977) and continues to the
present day. During these interactions, drivers try to minimize their risk by choosing
to stay far enough away from potential hazards to feel safe and comfortable—that is,
they strive to remain within their comfort zone (Summala, 2007). Drivers’ comfort
zone boundaries (CZBs) while passing a cyclist have been summarized by lateral
clearance, which is typically defined as the minimum lateral distance between the
cyclist and the vehicle while the vehicle is passing the cyclist (Llorca et al., 2017).
CZBs have implications for timely activations of ADAS, because too early activation
of automated safety system may cause annoyance and too late activation may cause
crashes (Lubbe and Davidsson, 2015).

Factors related to the infrastructure that influence lateral clearance include road
grade, posted speed, and presence and width of a shoulder, as well as the presence of
a cycling lane (Chapman and Noyce, 2012; Feng et al., 2018). Walker et al. (2014)
and Chuang et al. (2013) have shown that bicyclists’ visible characteristics, such
as gender, helmet-wearing, and clothing, also influence the lateral clearance. In
addition, cyclist speed and speed variation have been shown to affect the lateral
clearance (Chuang et al., 2013). Another factor that influences the lateral clearance
is how the overtaking manoeuvre is performed: drivers may keep their vehicle speed
relatively constant (flying strategy) or they may decelerate and follow the cyclist
before passing (accelerative strategy) (Matson and Forbes, 1938).
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Research has also shown that when oncoming traffic is present the lateral clearance
is smaller (Goodridge, 2017; McHenry and Wallace, 1985). In fact, the presence of
oncoming traffic has been identified as the principal factor affecting lateral clearance
(Piccinini et al., 2018; Dozza et al., 2016). The authors (Piccinini et al., 2018)
found a significant correlation between the overtaking strategy and the nominal
time-to-collision (TTC) (between the overtaking and oncoming vehicle): as the TTC
decreased, more drivers used the accelerative strategy, because they had slowed
down and waited for the oncoming vehicle to pass before accelerating to overtake
the cyclist. The study also found that the minimum lateral safety margins were
larger in the accelerative than the flying strategy. Evans et al. (2018) show that the
presence of a vehicle in the adjacent lane, travelling in the same direction as the
vehicle overtaking the cyclist, has the largest effect on reducing the lateral clearance
between a cyclist and an overtaking vehicle on urban and suburban roads.

By dividing the overtaking manoeuvre into four phases (approaching, steering
away, passing, and returning), Dozza et al. (2016) were able to define new CZBs for
the three new phases, analogous to the lateral clearance CZB for the passing phase.
Since then, factors that influence the driver’s CZBs in all four phases have been
studied in different experimental environments. For example, overtaking behaviour in
simulator studies has been investigated by Piccinini et al. (2018). Other approaches
include using an instrumented car (Schindler and Bast, 2015) or bicycle (Dozza et al.,
2016). Semi-naturalistic studies of car-cyclist interactions have been performed by
Parkin and Meyers (2010), Chuang et al. (2013), Dozza et al. (2016), Walker (2007),
Walker et al. (2014), and Evans et al. (2018). These studies used bicycles equipped
with data loggers and sensors (e.g., ultrasonic sensors, lasers, adn LIDAR or a GoPro
video camera) to collect field data from the cyclist’s perspective. Although these
studies were conducted in naturalistic settings, the bicyclists were instructed to ride
on a specific road. Consequently these are not fully naturalistic studies.

1.5 The need for inclusion of driver models for
safety benefit assessment

Cycling has been on the increase as a mobility choice over the past several decades
in Europe (ECF, 2016). As long as cyclists and drivers share the road, or parts of
the road, it is important that they adopt a safe strategy to interact with each other
(Shinar, 2017). In these interactions, it is argued that the driver has the critical
role, either changing the vehicle path or failing to adjust the vehicle position to
accommodate the cyclist (OECD/ITF, 2013). To keep cyclists and drivers safe,
ADAS that address car-to-cyclist scenarios are being developed; as a result guidelines
for their prospective safety benefit assessment through counterfactual simulations
are being proposed (Alvarez et al., 2017; Fahrenkorg et al., 2019; Wimmer et al.,
2019). However, the knowledge about when and how ADAS should intervene in
overtaking scenarios with cyclists is still limited. Recent research highlights the fact
that the inclusion of driver models in ADAS may help produce timely and acceptable
interventions, which in turn may increase their effectiveness (Dozza et al., 2016;
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Lubbe and Davidsson, 2015). Moreover, recent studies have shown that the choice
of driver model has a large effect on the estimated benefit of ADAS (Bärgman et al.,
2017a). Factors that may be important in modelling driver behaviour have already
been indicated, such as the presence of oncoming traffic (Dozza et al., 2016; Farah
et al., 2019; Piccinini et al., 2018), but have not yet been confirmed in naturalistic
driving studies. Because driver behaviour while overtaking cyclists has not yet
been modelled, it is not yet included in the current ADAS or in the counterfactual
simulations which assess them.

1.6 Aim and Objectives
The overall aim of this PhD work is to develop methodologies for the safety benefit
assessment of ADAS that help avoid collisions with cyclists in overtaking scenar-
ios. Specifically, these new methodologies will integrate behavioural models for
interactions among road users. The objectives to achieve this aim are:

1. to extract and analyse overtaking manoeuvres (drivers overtaking cyclists) in
naturalistic driving data;

2. to use the results from the first objective, to develop new and compare existing
models of driver behaviour for overtaking manoeuvres that can be used in
counterfactual simulations of safety benefit from naturalistic data;

3. to design new counterfactual simulation tools that include the driver behaviour
model(s) from the second objective to assess ADAS in cyclist-overtaking sce-
narios; and

4. to apply these new tools to naturalistic driving data, in order to prospectively
estimate the safety benefit of new ADAS that help avoid collisions during
cyclist-overtaking scenarios.

The first two objectives are addressed in this licentiate thesis, while the last two will
be completed later on to achieve the PhD degree.



Chapter 2

Driver models for overtaking a
cyclist

The objectives of this thesis work are to extract and analyse cyclist-overtaking
manoeuvres from naturalistic driving data and compare driver behaviour models for
overtaking manoeuvres that can be used in counterfactual simulations for evaluating
ADAS safety benefits. Metrics that may be important for modelling driver behaviour
while overtaking a cyclist have already been identified through different data collection
methods. This section gives an overview of the data collection methods for modelling
driver behaviour, used in Papers 1 and 2 (Section 2.1) and introduces the work
covered in Paper 1, wherein the metrics are identified by analysing naturalistic driving
data (Section 2.2). Driver models that can be used in counterfactual simulations
are described in Section 2.3. In Section 2.4, an expansion beyond what is covered
in Paper 2 is provided; the aim is to elaborate on how convex programming can be
used to find the parameters for driver models.

2.1 Methodologies for data collection
Data used in Papers 1 and 2 is provided by two types of studies, ND and TT
experiments. These two methods are often complementary—for example, when
studying overtaking events where a driver overtakes a single bicyclist on a straight
rural roads. The UDrive dataset, the largest naturalistic driving study in Europe
(Bärgman et al., 2017b), was used in this study to extract overtaking events. The
UDrive dataset includes data from 120 instrumented passenger cars, with almost
1.8 million kilometres travelled distance in one year of driving in six European
countries. A Data Acquisition System (DAS) installed in the vehicles, registered:
seven camera views (front left, front centre, front right, cabin view, cockpit view,
driver face, and pedals), CAN bus data (vehicle speed, acceleration, steering wheel
angle, and yaw rate), and GPS position. Unlike data from most previous naturalistic
studies (Dingus et al., 2006; SHRP2 TRB, 2015), UDrive recorded continuous signals
from a Mobileye smart camera system (Shashua et al., 2004). Thus the following
information was also collected: the presence and type of other road users (cyclists,
vehicles, and pedestrians) and their distances (lateral and longitudinal) from the

9



10 2.2. Studying driver behaviour during overtaking

instrumented vehicle, as well as the vehicle’s distances to lane edges (adjacent lane
and road shoulder).

The other main dataset used in this study, which contains similar data about
the vehcile and the surrounding road users, was collected on a test-track in Sweden.
In this study, the participants drove a passenger car straight along a test-track,
where they were to overtake a cyclist (represented by a dummy cyclist mounted
on a high-speed platform). In a subset of the experiment, an oncoming vehicle
(represented by a balloon vehicle) was present. The details of the experiment setup
and data from the test-track are described in Rasch et al. (2019), while the detailed
identification of the overtaking manoeuvres and the data from naturalistic driving
are described in Paper 1.

The TT experiments and ND studies have different strengths and weaknesses, as
reported in Section 1.3. Combining them may provide the necessary information to
study driver behaviour in the overtaking scenario.

2.2 Studying driver behaviour during overtaking
Studying data about driver’s overtaking behaviour from two different datasets,
described in Section 2.1, requires well established definitions to make the comparative
analysis easier. This work is based on the four phases of overtaking proposed in
Dozza et al. (2016). Phase 1, approaching, starts when the cyclist is detected by
the sensors; Phase 2, steering away, starts when the vehicle begins to divert from a
collision course; Phase 3, passing, starts when the front of the vehicle is less than
three metres behind the rear of the cyclist; and Phase 4, returning, starts when
the rear of the vehicle is more than three metres in front of the cyclist (see Figure
2.1). In this work we study the first three phases. The following driver CZBs were
quantified: minimum approaching gap (MAG) for Phase 1; minimum distance (MDS)
for Phase 2; lateral clearance (LC) for Phase 3; time-to-collision (TTC) between the
vehicle and the nearest oncoming traffic (when present) at the boundary between
Phases 1 and 2, 2 and 3, and 3 and 4; and TTC to the bicycle at MAG (TTCb), just
before the vehicle initiates Phase 2. The effects of the factors car speed, manoeuvre
type, presence of oncoming traffic, and driver characteristics (age, gender, Arnett
Inventory of Sensation Seeking score) on MAG, MDS, and LC were investigated
using linear mixed-effects models, which incorporate both fixed and random effects
(Bates et al., 2015).

2.3 Computational models of driver behaviour in
the approaching phase

Poor timing or the driver’s failure to see the cyclist, at the end of the approaching
phase (Phase 1, Figure 2.1) can both result in a rear-end collision with the cyclist.
To help the driver avoid a rear-end collision with the cyclist, the ADAS should
incorporate knowledge about typical driver behaviour. The approaching phase of the
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Figure 2.1: Four overtaking phases while driver is overtaking the cyclists.

flying overtaking strategy is further studied in Paper 2. That is, Paper 2 compares
driver models that compute an output value that indicates when a car driver starts
steering away to overtake a cyclist on rural roads, using overtaking data from a TT
study and UDrive. The comparison of driver models is warranted, since the choice
of the driver model has been found to have a large effect on the estimated safety
benefit of ADAS using virtual simulations (Bärgman, Boda, et al., 2017). In Paper
2 three computational models are compared: a threshold model, an accumulator
model, and a model inspired by a proportional-integral-derivative controller.

A threshold model assumes a response threshold at which drivers start responding
to the threat (Kiefer et al., 2003; D. N. Lee, 1976). The response threshold model
has been investigated with different visual cues in a relatively large set of studies.
For example, D. N. Lee (1976) suggested that drivers’ braking in rear-end scenarios
is guided by the optical parameter τ and its derivative τ̇ . Parameter τ is the ratio of
θ to θ̇, where θ is the angular projection of an object on the subject’s retina and θ̇ is
the angular expansion rate (the first derivative of θ). In D. N. Lee (1976), drivers are
assumed to start their braking when τ reaches a specific threshold value. M. Smith
et al. (2001) proposed using θ and θ̇ as the criteria for driver braking in rear-end
collision avoidance, while Kiefer et al. (2003) used an inverse τ threshold.

An alternative to the threshold model is the accumulator type model, which has
been studied in domains such as psychology and neuroscience (Gold and Shadlen,
2001; Gold and Shadlen, 2007; Ratcliff, 1978; Ratcliff and P. L. Smith, 2004), as
well as in driver modelling: see Markkula (2014) and Ratcliff and Strayer (2014).
According to this model type, the driver’s action occurs after accumulation (or
practically, integration), of sensory evidence.

Another type of model is the proportional-integral-derivative (PID) model,

y(t) = KPz̃(t) +KI

∫
z̃(τ)dτ +KD

dz̃(t)
dt (2.1)

where y(t) is the control function, z̃(t) is the measured signal and KP , KI , and
KD are the parameters of the proportional, integral and derivative terms, respectively.
The PID controller model has been extensively used in many domains (Bennett,
1993; O’Dwyer, 2009; Rivera et al., 1986). This type of model has, for example,
been applied also in control models for driver steering behaviour (Donges, 1978;
Donges, 1999; Winner et al., 2016). The proportional term is proportional to the
measured signal. The integral term takes the past values of the measured signal and
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integrates them over time. The derivative term is an estimate of the future trend of
the signal, based on its current rate of change. Using only the proportional term in
(2.1) results in a threshold model, while using only the integral term in (2.1) results
in an accumulator model equivalent.

Given a driver model (for example the PID model discussed above), the next step
is to estimate its parameters so that the model best fits the collected data.

2.4 Parameter estimation

In the literature, different approaches have been used to estimate parameters. This
section will introduce the background of convex programming, related to the contents
of Paper 2, and give an example of its application to tuning the parameters of a
well-known driver model.

Parameters have been tuned by hand by, for example, Gordon and Magnuski
(2006) and Salvucci (2006), while heuristic optimization methods have been used
by Benderius (2012), for example. Heuristic optimization is general and can be
applied without simplifying the studied systems, but it does not guarantee a globally
optimal solution. In contrast, methods that guarantee global optimality often
require intractable computation time that increases exponentially with problem size.
Convex programming methods are an exception, able to solve a convex problem in
polynomial computation time, while simultaneously providing a proof or certificate
that the solution is indeed a global optimum (Boyd and Vandenberghe, 2004) (p.242).
Furthermore, publicly available solvers are available. However, the downside of this
approach is that many optimization problems cannot be cast as convex programs
(Boyd and Vandenberghe, 2004). Convex programming is useful for solving a “relaxed
problem” (see Figure 2.3): a problem that provides a lower bound to the original
non-convex problem, or by solving a subproblem that is locally convex, see Figure
2.2 (Boyd and Vandenberghe, 2004). In this thesis we pursue the latter approach: a
generally non-convex problem of parameter estimation is solved by a combination
of convex programming and a grid search. Parameters that appear in a non-convex
form are gridded within a given range, and for each grid value a convex subproblem
is solved to obtain the remaining parameters. Although the parameters optimised by
convex programming are locally optimal, the parameters obtained by grid search are
generally suboptimal, since the fixed grid resolution typically applied is confined to
specific discrete values of the parameters. Thus solution quality depends on the grid
resolution, which is a trade-off between optimality and computational efficiency.

The convex subproblems encountered in this thesis are of particular forms, a
quadratic program (QP) and a linear program (LP), which may be seen as the
simplest forms of convex programming. The two froms will be described briefly in
the following section.
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Figure 2.2: Illustration of a nonlinear and non-convex function to be minimized.
Within the shaded regions the function is locally convex. The minimum of the
function in the red region is a local optimum, while the minimum in the blue
region is the global solution.

Figure 2.3: Illustration of an optimisation problem with a non-convex feasible
set, illustrated by the blue region. In order to make the problem convex, the
set is relaxed by enlarging it with the red region. The global optimum of the
relaxed problem provides a lower bound (it is always below or equal) to the global
optimum of the original non-convex problem.
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2.4.1 Linear programming
Any optimisation problem that can be stated in the form

min
x

cTx (2.2a)

subject to: Ax ≤ b, x ∈ Rn (2.2b)

is called a linear program (LP). Here x is a vector of n decision variables (i.e.,
quantities controlled by the decision maker). The matrix A ∈ Rm×n and the vectors
c ∈ Rn and b ∈ Rm are given coefficients, where R denotes the set of real values.
The scalar function cTx is called an objective function or a performance index. It
provides a value system for ranking the possible solutions, in order to identify the
optimal solution x∗ that minimises the objective function (2.2a). Equation Ax ≤ b
in (2.2b) enforces m constraints in the problem. The constraints represent physical
or other restrictions on the numerical values that can be assigned to the vector of
decision variables x.

2.4.2 Quadratic programming
Any optimisation problem that can be stated in the form

min
x

1
2x

THx+ cTx (2.3a)

subject to: Ax ≤ b, x ∈ Rn (2.3b)

is called a quadratic program (QP). The decision variables and the coefficients A, b
and c are defined as in the LP formulation (2.2). However, the QP formulation (2.3)
allows an additional quadratic term in the objective, where H ∈ Rn×n

≥0 is a positive
semidefinite matrix. It is clear that a QP is a more general form than an LP, since
by setting H = 0 the QP transforms directly to an LP.

2.4.3 An example of optimal parameter estimation
As an optimisation example of parameter estimation, we revisit the well-known driver
model for steering, proposed by Salvucci and Gray (2004). The model adjust the
steering angle yj(x) as a function of measurements

z̃j(τ) =
[
θ̃nj(τ) θ̃fj(τ)

]T
, τ ∈ [t0, t], j = 1, . . . , Nd (2.4)

that include the visual direction angles to near and far points ahead, denoted by
θ̃nj and θ̃fj, respectively. The symbol˜ is here used to denote measured data from
Nd drivers, over the time interval from t0 to t. Salvucci and Gray (2004) propose a
proportional-integral driver model for steering that consists of a proportional gain to
both the near and far points ahead, and an integral gain to the near point,

yj(x) = KPnθ̃nj(t) +KPfθ̃fj(t) +KIn

∫ t

t0
θ̃nj(τ)dτ (2.5)
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where
x =

[
KPn KPf KIn

]T
(2.6)

are unknown parameters. The goal is to estimate the best values of the parameters
such that the error

‖yj(x)− ỹj(t)‖ (2.7)
between the steering angles yj obtained by the model (2.5) and the measured angles
ỹj for all the drivers j = 1, . . . , Nd is minimised. The function ‖ · ‖ may, in principle,
denote any norm, although in practice norms 1 and 2 are most commonly used.

Parameter estimation with linear programming

Consider norm 1 (or, identically, the mean absolute error)

min
x

1
Nd

Nd∑
j=1
|yj(x)− ỹj(t)|. (2.8)

At first glance, problem (2.8) may appear nonlinear due to the absolute value function.
However, the problem can be formulated as a linear program,

min
x,ej

1
Nd

Nd∑
j=1

ej (2.9a)

subject to: ej ≥ yj(x)− ỹj(t), j = 1, . . . , Nd (2.9b)
ej ≥ −(yj(x)− ỹj(t)), j = 1, . . . , Nd (2.9c)
[xT , e1, . . . , eNd ]T ∈ R3+Nd (2.9d)

with the help of new variables ej and two inequality constraints per driver that
represent the absolute error in a linear form. Let

ω̃nj(t) =
∫ t

t0
θ̃nj(τ)dτ (2.10)

represent the integral, for simplicity, and denote the augmented vector of decision
variables as

x̌ =
[
KPn KPf KIn e1 · · · eNd

]T
(2.11)

By defining coefficients

A =



θ̃n1(t) θ̃f1(t) ω̃n1(t) −1 0 · · ·
−θ̃n1(t) −θ̃f1(t) −ω̃n1(t) −1 0 · · ·
θ̃n2(t) θ̃f2(t) ω̃n2(t) 0 −1 0 · · ·
−θ̃n2(t) −θ̃f2(t) −ω̃n2(t) 0 −1 0 · · ·

... ... ... ... . . .
θ̃nNd(t) θ̃fNd(t) ω̃nNd(t) 0 0 · · · 0 −1
−θ̃nNd(t) −θ̃fNd(t) −ω̃nNd(t) 0 0 · · · 0 −1


(2.12)

b =
[
ỹ1(t) −ỹ1(t) ỹ2(t) −ỹ2(t) · · · ỹNd(t) −ỹNd(t)

]T
(2.13)

c =
[
0 0 0 1/Nd · · · 1/Nd

]T
(2.14)
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problem (2.9) can be written in the standard LP form

min
x̌

cT x̌ (2.15a)

subject to: Ax̌ ≤ b, x̌ ∈ R3+Nd . (2.15b)

Then, the optimal values for the parameters are the first three values in x̌∗, where
x̌∗ is the optimal solution of problem (2.15).

This example showed how convex programming, and in particular linear program-
ming can be used to estimate parameters of driver model.
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Summary of papers

Paper 1

Kovaceva, J., Nero, G., Bärgman, J., Dozza, M. (2019), Drivers overtaking cyclists
in the real-world: evidence from a naturalistic driving study, Safety Science, 119,
199-206, doi: 10.1016/j.ssci.2018.08.022.

Paper 2

Kovaceva, J., Bärgman, J., Dozza, M., Enabling counterfactual analyses to estimate
the safety benefit of advanced driving assistance systems: A comparison of driver
models using naturalistic and test-track data from cyclist-overtaking manoeuvres, to
be submitted to an international scientific journal.
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Paper 1: Drivers overtaking cyclists in the real-world: Evidence from a
naturalistic driving study

Introduction

The total number of road crashes in Europe is decreasing, but the number of
crashes involving cyclists is not decreasing at the same rate. When cars and bicycles
share the same lane, cars typically need to overtake them, creating dangerous con-
flicts—especially on rural roads, where cars travel much faster than bicycles. During
these manoeuvres, drivers try to minimize risk in the complex traffic environment by
staying in their comfort zone while overtaking the cyclist.

Aim

The paper quantified drivers’ comfort zone boundaries (CZBs) and investigated
the combination of factors that affect the CZBs while drivers overtake cyclists in a
naturalistic setting.

Method

This study developed a four-step procedure to identify and extract overtaking
manoeuvres from naturalistic driving data from UDrive. The effects of the factors
car speed, manoeuvre type, presence of oncoming traffic, and driver characteristics
(age, gender, Arnett Inventory of Sensation Seeking score) on CZBs were investigated
using linear mixed-effects models.

Results

The results show that the higher the car speed the larger the CZBs while approaching
and passing, but the presence of an oncoming vehicle significantly decreased the CZB
during passing. The drivers’ age, gender, and Arnett Inventory of Sensation Seeking
score were not found to have a statistically significant impact on the CZBs.

Discussion

The presence of an oncoming vehicle is a crucial factor for the safety and comfort
of the cyclist and needs to be taken into account for the development of advanced
driver-assistance systems that maintain safe clearance to the cyclist. The results
help identify which of the CZBs during an overtaking manoeuvre may be related to
the risk of an accident in different scenarios. For example, the TTC to the oncoming
vehicle at the end of the passing phase might help identify the risk of a head-on
collision with an oncoming vehicle, while TTC to the bicycle in the approaching
phase might estimate the risk for a rear-end collision with the bicycle. The findings
of this study provide implications both for the design of road safety intervention
programs that increase safety for all road users and for the development of advanced
driver-assistance systems that could interact with cyclists.
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Paper 2: Enabling counterfactual analyses to estimate the safety benefit
of advanced driving assistance systems: A comparison of driver models
using naturalistic and test-track data from cyclist-overtaking manoeuvres

Introduction

Advanced driver assistance systems (ADAS) for car-cyclist interactions, as well as
their safety assessments, can be improved by understanding and modelling scenario-
dependent driving behaviours. Previous studies have focused on describing driver
behaviour in these interactions, but different models have not been compared.

Aim

This study compares driver models that compute an output value that indicates
when a car driver starts steering away to overtake a cyclist on rural roads.

Method

Three models are compared: threshold model, accumulator model and a model
inspired by a proportional-integral-derivative controller. These models are tested and
verified using two different datasets, one from a naturalistic driving (ND) study and
one from a test-track (TT) experiment. Two perceptual variables, expansion rate
and inverse tau, are tested as input to the models. A linear cost function is proposed
to obtain the optimal parameters of the models by computationally efficient linear
programming.

Results

The results show that the models based on inverse tau fitted the data better than the
models that include expansion rate. All three models give high variability in detecting
steering away time for different drivers. Furthermore, differences were discovered
in detected steering away time between models fitted to test-track experiment and
naturalistic driving data, and further analysis is required, perhaps using better
models.

Discussion

These tested models have implications for the development of counterfactual simu-
lations, which can estimate the safety benefits of ADAS, such as forward collision
warning and autonomous emergency braking, by simulating realistic driver behaviour.
The linear cost function and the linear programming approach used in this paper
have the potential to be used for parameter optimization of models such as those
used in ADAS.





Chapter 4

Discussion

4.1 Driver behaviour during overtaking
Paper 1 used ND data to investigate factors that affect drivers’ CZBs while they
overtake cyclists. The CZBs discussed below include the minimum distance between
the car and the cyclist in the approaching and steering away phases, the lateral
clearance during the passing phase (LC), the TTC to the cyclist at steering away
(TTCb) and TTC between the car and the oncoming vehicle (when present) at each
of the phase boundaries (see Figure 2.1).

The results of Paper 1 support the findings from the previous studies by Dozza
et al. (2016) and Piccinini et al. (2018), and extend the knowledge about driver
behaviour in car-to-cyclist overtaking scenario in naturalistic driving beyond what
was reported in literature. The findings of Paper 1 show that as car speed increased,
the LC also increased, although not much (0.01 m per 1 km/h). In contrast, neither
Dozza et al. (2016) nor Mehta (2015) found a significant influence of car speed on LC.
However, our findings are in line with cyclists’ expectations that higher speeds require
a larger LC (Llorca et al., 2017). The presence of oncoming vehicles significantly
decreased the LC during the passing phase.

No significant differences were found between the accelerative and flying ma-
noeuvres with respect to the TTCs to the oncoming vehicles at each of the phase
boundaries. For all manoeuvres, the average TTC at the boundary between Phases
3 and 4 was only 1.8 s. This short TTC may not be sufficient to trigger a driver
reaction to a warning in critical situations when the driver doesn’t see the cyclist.
In fact, the literature suggests that perception reaction time is at least one second
(Van Der Horst and Hogema, 1993). This finding may motivate the development of
ADAS that prevent a head-on collision (Clarke et al., 1999) if the driver decides to
perform an overtaking manoeuvre that is unsafe because the TTC to the oncoming
vehicle is too short at the time the driver decides to overtake the cyclist.

Furthermore, TTCb was not found to be significantly different between accelera-
tive and flying manoeuvres. We found TTCb to be 2.1 s, so a warning at 3 s TTC,
which is suggested for warning systems intended to avoid rear-end crashes (S. Lee
et al., 2004), may not be acceptable to drivers. However, delaying this warning may
reduce its effectiveness, thus requiring alternative intervention strategies. Therefore, a
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forward collision warning alone may not be viable for avoiding rear-end collisions with
cyclists, and autonomous emergency braking may be the only alternative solution
(Boda, Dozza, et al., 2018).

Paper 2 used the analysis from Paper 1 to further study the flying overtaking
strategy and to incorporate the findings into a computational driver model. Section
1.4 reported that few models for cyclist-overtaking behaviour exist in the literature.
Therefore, Paper 2 compared existing models to understand which models may be
suitable to describe the approaching phase. The results show that the models based
on inverse τ fitted the data better than the models that included optical expansion
rate, θ̇. However, the models only describe the driver’s action in the approaching
phase of the flying overtaking strategy; future work should extend the models to
cover all overtaking strategies and phases.

Paper 1 showed that the drivers’ age, gender, and score from the Arnett Inven-
tory of Sensation Seeking score, which all drivers completed, did not statistically
significantly influence the CZBs. However, previous research (Farah, 2011; Farah,
2013) indicates that there are behavioural differences in the overtaking manoeuvres
of older compared to younger drivers. It may be that the data sample in Paper 1
was relatively homogeneous in terms of such characteristics, and/or the sample size
was simply too small to show statistical significance. As a result, in Paper 2, the
models are tuned on the data collected from all drivers and provide a single set of
model parameters for an average driver. A possible further improvement would be
to tune the model on each individual driver or on different groups of drivers (e.g.,
young and old, aggressive and calm) when more data are available.

4.2 Models of driver behaviour

Paper 2 demonstrated how the driver behaviour from a model tuned on TT data
can be verified with ND data, and vice versa, to perform model validation. Previous
research (Benderius et al., 2011; Markkula et al., 2012) noted that efforts to compare
and tune driver models have been rather limited. Paper 2 also demonstrates how
linear programming can be used for tuning model parameters in a computationally
efficient way, which ensures that a global minimum solution for the chosen error and
cost function is obtained. However, the process of model validation is not trivial.
Further analysis is needed before including the model in counterfactual simulations.

The parameter fitting approach in Paper 2 is particularly suitable for large
optimization problems, constructed by a large dataset of drivers or large set for
parameter search, and is promising for optimizing model parameter, e.g., those
connected to ADAS, intended for counterfactual simulations. However, not all
problems can be defined by a convex or a linear cost function, and other methods
may need to be used in such cases. Additionally, it may not be possible to transform
the problem as a linear program; in particular, it might not be possible to define a
meaningful error which is the convex function of the parameters.
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4.3 Limitations
Data from UDrive are unique; they are unlike those from previous large naturalistic
studies (Dingus et al., 2006; Hankey et al., 2016), because Mobileye detects interac-
tions with vulnerable road users, as long as they occur in the daytime. As a result,
many automatically identified car-to-cyclist overtaking manoeuvres can be analysed
with high ecological validity. However, there are some limitations to the UDrive data.
As noted, the smart-camera could only detect cyclists in daylight, which prevented
us from investigating CZBs at night, and we can only analyse those cyclists detected
by the camera; we do not know whether there were any false positives (cyclists that
were not detected) in daylight, either. Another limitation is that both the UDrive
and TT datasets had limited generalizability. The drivers were driving only one car
brand and there was limited representation of young and old drivers (Bärgman et al.,
2017a) in the ND data (Paper 1). In the TT data, all drivers were driving the same
car, and the experiment with robots was precisely repeated for each of the drivers
(Paper 2).

The parameter optimization of the models in Paper 2 was carried out using only
data from trials in which drivers steered away. In the future, more situations in which
drivers have not steered should be added to the optimization. Furthermore, the
models were tested with only one cost function. In the future, other cost functions,
parameter constraints, or parameter optimization methods could be compared by
defining different functions (e.g., polynomial, exponential, trigonometric) and different
numbers of parameters (e.g., 2nd or 3rd-order polynomial), and providing more
measurements (e.g., different signals).

In this work, only three types of models were tested, as they have been widely used
in rear-end scenarios. There are other quantitative models that could be compared
which capture more aspects of the steering process (Hildreth et al., 2000; Salvucci,
2006). Furthermore, only two input measurements to the models were used, θ̇ or
inverse τ , supported by the theory of D. N. Lee (1976). In future work, a combination
of these and other types of inputs may be considered e.g. those proposed by Boda,
Lehtonen, et al. (2019). Additional input to the models, which takes into account
the road profile, could be the visual direction angle to a near and far point ahead
(Salvucci and Gray, 2004).

4.4 Future work
In this work, we utilized data from ND and TT datasets, which could, in the future,
be harmonized with crash databases in order to contribute to a further understanding
of injury mechanisms and conditions for cyclist’ crashes, improve and validate driver
models, and assess ADAS using counterfactual simulations. In particular, the data
from crash databases will provide situations to estimate benefits in terms of crash
avoidance and speed reduction and to evaluate true positives (system intervenes
when intervention is needed) and false negatives (missed interventions). The normal
driving events from ND data, non-crashes, can be used for evaluating false positives
(unnecessary interventions) and true negatives (system does not intervene when
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intervention is not needed). Care should, however, be taken when using reconstructed
crashes as input to the driver models.

Furthermore, the in-depth crash data can provide information in cases where
the driver missed to steer avoiding the cyclist. Driver models that address the
steering-away, passing, and returning phases of an overtaking manoeuvre, in addition
to the approaching phase, could be developed to increase the operational design
domain of the ADAS and could be implemented in the counterfactual simulations.

The model comparison from Paper 2 could be extended with other optimization
methods to gain deeper knowledge about the performance of existing models, as
well as to understand the differences between parameter fitting methods. A larger
set of models could be assessed (with multiple parameter fitting techniques as
well), to better determine which models would be best suited for implementation in
counterfactual simulations.

In the future, safety benefit estimation will be developed into software to assure
rapid assessment of the effect of different ADAS algorithms and their comparison.
The assessment of the safety benefit will be on ADAS that can avoid crashes during
all phases of the overtaking manoeuvre, head-on collisions with oncoming traffic,
and side swipes of the cyclist in the passing and returning phases. Finally, in the
future, a method to combine the effects of active and passive safety systems could
be investigated to assess the benefit of an integrated system.
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Conclusions

UDrive naturalistic driving data have given us valuable information about how car
drivers overtake cyclists on rural roads. In Paper 1, we quantified drivers’ Comfort
Zone Boundaries (CZBs) and investigated the combination of factors that affect the
CZBs while drivers overtake cyclists in a naturalistic setting. The results of Paper 1
helped identify which of the CZBs during an overtaking manoeuvre may be related to
the risk for an accident in different scenarios. For example, the TTC to the oncoming
vehicle at the end of the passing phase might help identifying the risk of a head-on
collision with an oncoming vehicle, while the TTC to the bicycle in the approaching
phase might help estimate the risk for a rear-end collision with the bicycle. Thus, the
findings of Paper 1 have implications for the development of ADAS that can measure
the TTC to an oncoming vehicle or a bicyclist to be overtaken, providing timely
and acceptable warnings—or interventions—when drivers exceed their usual CZB. In
addition, drivers’ CZBs are influenced by car speed: the higher the speed the larger
the CZBs (in the approaching and passing phases) maintained by overtaking cars.
This result shows that drivers may have perceptions similar to those of cyclists, who
expect a larger clearance when being overtaken faster. However, the extent to which
drivers increase CZB sufficiently to preserve cyclist safety and comfort as they drive
faster is still to be investigated. It was also found that drivers were significantly
closer to the cyclist when an oncoming vehicle was present, confirming that the
presence of an oncoming vehicle is a crucial factor for the safety of the cyclist. This
result needs to be taken into account when developing ADAS to ensure that drivers
maintain a safe clearance to the cyclist.

Paper 2 used the analysis from Paper 1 to further study the approaching phase
of the flying overtaking strategy and incorporate the findings into a computational
driver model. In Paper 2, the models based on the inverse τ fitted the data better
than the models that included θ̇ according to the values of the cost function. This
may indicate that the drivers are responding to a higher-order variable (higher-order
optical primitive e.g., inverse τ) and are indifferent to changes in the underlying
variables (lower-order primitives, e.g., θ and θ̇) that leave the higher-order variable
the same. This finding may be relevant when deciding which measurements to
include as input to more comprehensive driver models that address all phases of the
overtaking manoeuvres.
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The comparison of the threshold, accumulator and PID models shows that all
three were highly variable at detecting steering away time for different drivers.
Furthermore, differences were discovered in the detected steering away times between
models fitted to test-track experiment and naturalistic driving data. The models
should be further developed as part of the counterfactual simulations.



Bibliography

Alvarez, Stephanie, Yves Page, Ulrich Sander, Felix Fahrenkrog, Thomas Helmer,
Olaf Jung, Thierry Hermitte, Michael Düering, Sebastian Döering, and Olaf Op
den Camp (2017). “Prospective Effectiveness Assessment of ADAS and Active
Safety Systems Via Virtual Simulation: A Review of the Current Practices”.
In: 25th International Technical Conference on the Enhanced Safety of Vehicles
(ESV). Detroit, Michigan, pp. 1–14 (cit. on pp. 4, 7).

Aust, Mikael Ljung, Johan Engström, and Matias Viström (2013). “Effects of for-
ward collision warning and repeated event exposure on emergency braking”. In:
Transportation Research Part F: Traffic Psychology and Behaviour 18, pp. 34–46.
issn: 1369-8478. doi: https://doi.org/10.1016/j.trf.2012.12.010 (cit. on
p. 4).

Bärgman, Jonas, Christian-Nils Boda, and Marco Dozza (2017a). “Counterfactual
simulations applied to SHRP2 crashes: The effect of driver behavior models on
safety benefit estimations of intelligent safety systems”. In: Accident Analysis and
Prevention 102, pp. 165–180. issn: 00014575. doi: 10.1016/j.aap.2017.03.003
(cit. on pp. 4, 5, 8, 25).

Bärgman, Jonas, N. van Nes, M. Christoph, R. Jansen, Heijne V., Dotzauer M., and
O. Carsten (Aug. 2017b). UDrive Deliverable D41.1: The UDrive Dataset and
Key Analysis Results. Tech. rep. Deliverable D.41.1. UDRIVE: EU (cit. on p. 9).

Bates, D., M. Mächler, B. Bolker, and S. Walker (2015). “Fitting linear mixed-effects
models using lme4”. In: J. Stat. Softw 67, pp. 1–48. doi: doi:10.18637/jss.
v067.i01 (cit. on p. 10).

Benderius, Ola (2012). Driver modeling: data collection, model analysis, and opti-
mization. Tech. rep. 2012:11, p. 58 (cit. on pp. 5, 12).

Benderius, Ola, Gustav Markkula, Krister Wolff, and Mattias Wahde (2011). “A
Simulation Environment for Analysis and Optimization of Driver Models”. In:
Digital Human Modeling. Ed. by Vincent G. Duffy. Berlin, Heidelberg: Springer,
pp. 453–462. isbn: 978-3-642-21799-9 (cit. on p. 24).

Bennett, S. (Dec. 1993). “Development of the PID controller”. In: IEEE Control
Systems 13.6, pp. 58–62. issn: 1066-033X. doi: 10.1109/37.248006 (cit. on
p. 11).

Boda, Christian Nils, Marco Dozza, Katarina Bohman, Prateek Thalya, Annika
Larsson, and Nils Lubbe (2018). “Modelling how drivers respond to a bicyclist
crossing their path at an intersection: How do test track and driving simulator
compare?” In: Accident Analysis and Prevention 111.December 2017, pp. 238–250.
issn: 00014575. doi: 10.1016/j.aap.2017.11.032 (cit. on pp. 4, 5, 24).

29

https://doi.org/https://doi.org/10.1016/j.trf.2012.12.010
https://doi.org/10.1016/j.aap.2017.03.003
https://doi.org/doi:10.18637/jss.v067.i01
https://doi.org/doi:10.18637/jss.v067.i01
https://doi.org/10.1109/37.248006
https://doi.org/10.1016/j.aap.2017.11.032


30 Bibliography

Boda, Christian Nils, Esko Lehtonen, and Marco Dozza (2019). “A computational
driver model to predict driver control at unsignalised intersections”. In: IEEE
Transactions on Intelligent Transportation Systems (cit. on p. 25).

Boyd, Stephen and Lieven Vandenberghe (2004). Convex optimization. first. Cam-
bridge University Press, London. isbn: 9780521833783 (cit. on p. 12).

Carter, Arthur A and August Burgett (2009). “Safety Impact Methodology (SIM):
Evaluation of Pre-Production Systems”. In: Proceeding of the 21st International
Technical Conference on the Enhanced Safety of Vehicles (ESV), pp. 1–14 (cit. on
p. 3).

Chapman, Jeremy R. and David A. Noyce (Jan. 2012). “Observations of Driver
Behavior during Overtaking of Bicycles on Rural Roads”. In: Transportation
Research Record: Journal of the Transportation Research Board 2321.1, pp. 38–45.
issn: 0361-1981. doi: 10.3141/2321-06 (cit. on p. 6).

Chuang, Kai Hsiang, Chun Chia Hsu, Ching Huei Lai, Ji Liang Doong, and Ming
Chang Jeng (2013). “The use of a quasi-naturalistic riding method to investigate
bicyclists’ behaviors when motorists pass”. In: Accident Analysis and Prevention
56, pp. 32–41. issn: 00014575. doi: 10.1016/j.aap.2013.03.029 (cit. on pp. 6,
7).

Cicchino, Jessica B. (2017). “Effectiveness of forward collision warning and au-
tonomous emergency braking systems in reducing front-to-rear crash rates”.
In: Accident Analysis and Prevention 99, pp. 142–152. issn: 00014575. doi:
10.1016/j.aap.2016.11.009 (cit. on p. 3).

Clarke, David D., Patrick J. Ward, and Jean Jones (1999). “Processes and counter-
measures in overtaking road accidents”. In: Ergonomics 42.6, pp. 846–867. issn:
00140139. doi: 10.1080/001401399185333 (cit. on p. 23).

Dingus, Thomas et al. (Apr. 2006). The 100-Car Naturalistic Driving Study, Phase II
- Results of the 100-Car Field Experiment. Tech. rep. Washington, DC: NHTSA.
doi: DOTHS810593. url: https://trid.trb.org/view/783477 (cit. on pp. 5, 9,
25).

Dobberstain, Jan, Joerg Bakker, Lei Wang, Tim Vogt, Michiel During, Lukas Stark,
Jason Gainey, Alexander Prahl, Ralph Mueller, and Gael Blondelle (2017). “The
Eclipse Working Group openPASS – an open source approach to safety impact
assement via simulation”. In: 25th International Technical Conference on the
Enhanced Safety of Vehicles (ESV). Detroit, Michigan (cit. on p. 4).

Donges, Edmund (1978). “A Two-Level Model of Driver Steering Behavior”. In:
Human factors 20.6, pp. 691–707 (cit. on p. 11).

Donges, Edmund (1999). “A Conceptual Framework for Active Safety in Road
Traffic”. In: Vehicle System Dynamics 32.2-3, pp. 113–128. issn: 0042-3114. doi:
10.1076/vesd.32.2.113.2089 (cit. on p. 11).

Doyle, Murray, Alix Edwards, and Mattew Avery (2015). “AEB Real World Validation
Using UK Motor Insurance Claims Data”. In: ESV. November, pp. 1–14 (cit. on
p. 3).

Dozza, Marco, Ron Schindler, Giulio Bianchi-Piccinini, and Johan Karlsson (2016).
“How do drivers overtake cyclists?” In: Accident Analysis and Prevention 88,

https://doi.org/10.3141/2321-06
https://doi.org/10.1016/j.aap.2013.03.029
https://doi.org/10.1016/j.aap.2016.11.009
https://doi.org/10.1080/001401399185333
https://doi.org/DOT HS 810 593
https://trid.trb.org/view/783477
https://doi.org/10.1076/vesd.32.2.113.2089


Bibliography 31

pp. 29–36. issn: 00014575. doi: 10.1016/j.aap.2015.12.008 (cit. on pp. 7, 8,
10, 23).

ECF (2016). European Cyclists Federation Cycling Barometer 2013-2015 Comparison.
https://ecf.com/groups/ecf-cycling-barometer-2013-2015-comparison.
[Online; accessed 11-November-2019] (cit. on p. 7).

Edwards, Mervyn, Andrew Nathanson, Jolyon Carroll, Marcus Wisch, Oliver Zander,
and Nils Lubbe (2015). “Assessment of Integrated Pedestrian Protection Systems
with Autonomous Emergency Braking (AEB) and Passive Safety Components”.
In: Traffic Injury Prevention 16.sup1, S2–S11. issn: 1538-9588. doi: 10.1080/
15389588.2014.1003154 (cit. on p. 4).

Eichberger, Arno (2010). Contributions to primary, secondary and integrated traffic
safety. Graz: Verlag Holzhausen GmbH. isbn: 3854931964 (cit. on p. 3).

European Commission Directorate General for Mobility and Transport (2018).
European Commission, Annual Accident Report 2018. https://ec.europa.
eu/transport/road_safety/sites/roadsafety/files/pdf/statistics/
dacota/asr2018.pdf. [Online; accessed 21-November-2019] (cit. on p. 3).

Evans, Isaac, Joshua Pansch, Lila Singer-Berk, and Greg Lindsey (2018). “Factors
Affecting Vehicle Passing Distance and Encroachments While Overtaking Cy-
clists”. In: Institute of Transportation Engineers. ITE Journal 88.5, pp 40–45
(cit. on p. 7).

Fahrenkorg, Felix, Lei Wang, Alexandra Fries, Florian Raisch, and Klaus Kom-
pass (2019). “Prospective safety effectiveness assessment of automated driving
functions–from the methods to the results”. In: ESV 2019 (cit. on p. 7).

Farah, Haneen (2011). “Age and Gender Differences in Overtaking Maneuvers on
Two-Lane Rural Highways”. In: Transportation Research Record: Journal of the
Transportation Research Board 2248.January, pp. 30–36. issn: 0361-1981. doi:
10.3141/2248-04 (cit. on p. 24).

Farah, Haneen (2013). “Modeling drivers’ passing duration and distance in a virtual
environment”. In: IATSS Research 37.1, pp. 61–67. issn: 03861112. doi: 10.
1016/j.iatssr.2013.03.001 (cit. on p. 24).

Farah, Haneen, Giulio Bianchi Piccinini, Makoto Itoh, and Marco Dozza (2019).
“Modelling overtaking strategy and lateral distance in car-to-cyclist overtaking
on rural roads: A driving simulator experiment”. In: Transportation Research
Part F: Traffic Psychology and Behaviour 63, pp. 226–239. issn: 1369-8478. doi:
https://doi.org/10.1016/j.trf.2019.04.026 (cit. on p. 8).

Feng, Fred, Shan Bao, Robert C. Hampshire, and Michael Delp (2018). “Drivers
overtaking bicyclists—An examination using naturalistic driving data”. In: Acci-
dent Analysis and Prevention 115.November 2017, pp. 98–109. issn: 00014575.
doi: 10.1016/j.aap.2018.03.010 (cit. on p. 6).

Fildes, B., M. Keall, N. Bos, A. Lie, Y. Page, C. Pastor, L. Pennisi, M. Rizzi,
P. Thomas, and C. Tingvall (2015). “Effectiveness of low speed autonomous
emergency braking in real-world rear-end crashes”. In: Accident Analysis and
Prevention 81, pp. 24–29. issn: 00014575. doi: 10.1016/j.aap.2015.03.029
(cit. on p. 3).

https://doi.org/10.1016/j.aap.2015.12.008
https://ecf.com/groups/ecf-cycling-barometer-2013-2015-comparison
https://doi.org/10.1080/15389588.2014.1003154
https://doi.org/10.1080/15389588.2014.1003154
https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/statistics/dacota/asr2018.pdf
https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/statistics/dacota/asr2018.pdf
https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/statistics/dacota/asr2018.pdf
https://doi.org/10.3141/2248-04
https://doi.org/10.1016/j.iatssr.2013.03.001
https://doi.org/10.1016/j.iatssr.2013.03.001
https://doi.org/https://doi.org/10.1016/j.trf.2019.04.026
https://doi.org/10.1016/j.aap.2018.03.010
https://doi.org/10.1016/j.aap.2015.03.029


32 Bibliography

Gårder, Per and Michael Davies (2006). “Safety effect of continuous shoulder rumble
strips on rural interstates in Maine”. In: Transportation Research Record 1953,
pp. 156–162. issn: 03611981. doi: 10.3141/1953-18 (cit. on p. 3).

Gold, Joshua I. and Michael N. Shadlen (Jan. 2001). “Neural computations that
underlie decisions about sensory stimuli”. In: Trends in cognitive sciences 5.1,
pp. 10–16. issn: 1879-307X. doi: 10.1016/s1364-6613(00)01567-9 (cit. on
p. 11).

Gold, Joshua I. and Michael N. Shadlen (July 2007). “The Neural Basis of Decision
Making”. In: Annual Review of Neuroscience 30.1, pp. 535–574. issn: 0147-006X.
doi: 10.1146/annurev.neuro.29.051605.113038 (cit. on p. 11).

Goodridge, Steven (2017). Wide Outside Through Lanes:Effective Design of Integrated
Passing Facilities. url: http://www.humantransport.org/bicycledriving/
library/passing/index.htm (cit. on p. 7).

Gordon, T. J. and N. Magnuski (2006). “Modeling Normal Driving as A Collision
Avoidance Process”. In: 8th International Symposium, Advanced vehicle control;
AVEC 06. National Tsing Hua University, Hsinchu, Taiwan (cit. on p. 12).

Gorman, Thomas I., Kristofer D. Kusano, and Hampton C. Gabler (2013). “Model
of fleet-wide safety benefits of Lane Departure Warning systems”. In: IEEE
Conference on Intelligent Transportation Systems, Proceedings, ITSC. The Hague:
IEEE, pp. 372–377. isbn: 9781479929146. doi: 10.1109/ITSC.2013.6728260
(cit. on p. 4).

Green, Marc (2000). “How Long Does It Take to Stop? Methodological Analysis of
Driver Perception-Brake Times”. In: Transportation Human Factors 2.3, pp. 195–
216 (cit. on pp. 4, 5).

Hankey, Jonathan M., Miguel Perez, and Julie McClafferty (2016). Description of
the SHRP2 naturalistic database and the crash, near-crash and baseline dataset.
Tech. rep. 1, pp. 1–217. doi: https://doi.org/10.3929/ethz-b-000238666.
arXiv: arXiv:1011.1669v3 (cit. on p. 25).

Hildreth, Ellen C, Jack M H Beusmans, Constance S Royden, and Erwin R Boer
(2000). “From Vision to Action: Experiments and Models of Steering Control
During Driving”. In: Journal of experimental psychology. Human perception and
performance 26.3, pp. 1106–1132 (cit. on p. 25).

Hoffman, Joshua D, John D Lee, Timothy L Brown, and Daniel V Mcgehee (2002).
“Comparison of Driver Braking Responses in a High-Fidelity Simulator and on a
Test Track”. In: 1803, pp. 59–65. doi: http://dx.doi.org/10.3141/1803-09
(cit. on p. 5).

Isaksson-Hellman, Irene and Magdalena Lindman (2016). “Evaluation of the crash
mitigation effect of low-speed automated emergency braking systems based on
insurance claims data”. In: Traffic Injury Prevention 17.S1, pp. 42–47. issn:
1538957X. doi: 10.1080/15389588.2016.1186802 (cit. on p. 3).

Janssen, Wiel H. and Erik Tenkink (Apr. 1988). “Considerations on speed selection
and risk homeostasis in driving”. In: Accident Analysis & Prevention 20.2, pp. 137–
142. issn: 0001-4575. doi: 10.1016/0001-4575(88)90030-9 (cit. on p. 4).

https://doi.org/10.3141/1953-18
https://doi.org/10.1016/s1364-6613(00)01567-9
https://doi.org/10.1146/annurev.neuro.29.051605.113038
http://www.humantransport.org/bicycledriving/library/passing/index.htm
http://www.humantransport.org/bicycledriving/library/passing/index.htm
https://doi.org/10.1109/ITSC.2013.6728260
https://doi.org/https://doi.org/10.3929/ethz-b-000238666
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/http://dx.doi.org/10.3141/1803-09
https://doi.org/10.1080/15389588.2016.1186802
https://doi.org/10.1016/0001-4575(88)90030-9


Bibliography 33

Jeong, Eunbi and Cheol Oh (2017). “Evaluating the effectiveness of active vehicle
safety systems”. In: Accident Analysis and Prevention 100, pp. 85–96. issn:
00014575. doi: 10.1016/j.aap.2017.01.015 (cit. on p. 4).

Kiefer, R.J., M.T. Cassar, C.A. Flannagan, D.J. LeBlanc, M.D. Palmer, R.K. Deering,
and M.A Shulman (2003). Forward Collision Warning Requirements Project:
Refining the CAMP Crash Alert Timing Approach by Examining “Last-Second”
Braking and Lane Change Maneuvers Under Various Kinematic Conditions. Tech.
rep. January. Washington, DC: National Highway Traffic Safety Administration,
U.S. Department of Transportation, p. 96. url: http//:www.ntis.gov (cit. on
pp. 5, 11).

Kroll, Bonnie and Melvin Ramey (1977). “Effects of Bike Lanes on Driver and
Bicyclist Behavior”. In: Transportation Engineering Journal of ASCE 103.2,
pp. 243–256 (cit. on p. 6).

Kuehn, M., T. Hummel, and J. Bende (2009). “Benefit Estimation of Advanced Driver
Assistance Systems for Cars Derived from real-live accidents”. In: Proceedings
of the 21st International Technical Conference of th Enhanced Safety of Vehicles
Conference (EVS), Stuttgart, Germany, June 15-18, pp. 1–10 (cit. on p. 3).

Kusano, K. D. and H. C. Gabler (2012). “Safety Benefits of Forward Collision Warning,
Brake Assist, and Autonomous Braking Systems in Rear-End Collisions”. In:
Intelligent Transportation Systems, IEEE Transactions on 13.4, pp. 1546–1555
(cit. on p. 4).

Lee, David N (1976). “A Theory of Visual Control of Braking Based on Information
about Time-to-Collision”. In: Perception 5.4. PMID: 1005020, pp. 437–459. doi:
10.1068/p050437. eprint: https://doi.org/10.1068/p050437 (cit. on pp. 11,
25).

Lee, S., E. Olsen, and W. Wierwille (2004). “Comprehensive Examination of Natu-
ralistic Lane-Changes”. In: (cit. on p. 23).

Lindman, Magdalena, Irene Isaksson-Hellman, and Johan Strandroth (2017). “Basic
numbers needed to understand the traffic safety effect of Automated Cars”. In:
IRCOBI Conference 2017, pp. 1–12 (cit. on p. 6).

Lindman, Magdalena, A. Ödblom, E. Bergvall, A. Eidehall, B. Svanberg, and T.
Lukaszewicz (2010). “Benefit Estimation Model for Pedestrian Auto Brake Func-
tionality”. In: Proceedings of 4th International Conference on Expert Symposium
on Accident Research (ESAR), pp. 28–33 (cit. on pp. 3, 4, 6).

Llorca, Carlos, Antonio Angel-Domenech, Fernando Agustin-Gomez, and Alfredo
Garcia (2017). “Motor vehicles overtaking cyclists on two-lane rural roads: Anal-
ysis on speed and lateral clearance”. In: Safety Science 92, pp. 302–310. issn:
18791042. doi: 10.1016/j.ssci.2015.11.005 (cit. on pp. 6, 23).

Lubbe, Nils and Johan Davidsson (June 2015). “Drivers’ comfort boundaries in
pedestrian crossings: A study in driver braking characteristics as a function of
pedestrian walking speed”. In: Safety Science 75, pp. 100–106. issn: 09257535.
doi: 10.1016/j.ssci.2015.01.019 (cit. on pp. 6, 8).

Macadam, Charles C. (Jan. 2003). “Understanding and Modeling the Human Driver”.
In: Vehicle System Dynamics 40.1-3, pp. 101–134. issn: 0042-3114. doi: 10.1076/
vesd.40.1.101.15875 (cit. on p. 4).

https://doi.org/10.1016/j.aap.2017.01.015
http//:www.ntis.gov
https://doi.org/10.1068/p050437
https://doi.org/10.1068/p050437
https://doi.org/10.1016/j.ssci.2015.11.005
https://doi.org/10.1016/j.ssci.2015.01.019
https://doi.org/10.1076/vesd.40.1.101.15875
https://doi.org/10.1076/vesd.40.1.101.15875


34 Bibliography

Markkula, Gustav (2014). “Modeling driver control behavior in both routine and
near-accident driving”. In: Proceedings of the Human Factors and Ergonomics
Society Annual Meeting 58.1, pp. 879–883. doi: 10.1177/1541931214581185.
eprint: https://doi.org/10.1177/1541931214581185 (cit. on p. 11).

Markkula, Gustav (2015). Driver behavior models for evaluating automotive ac-
tive safety: From neural dynamics to vehicle dynamics. Chalmers University of
Technology (cit. on pp. 4, 5).

Markkula, Gustav, Ola Benderius, Krister Wolff, and Mattias Wahde (2012). “A
Review of Near-Collision Driver Behavior Models”. In: Human Factors 54.6.
PMID: 23397819, pp. 1117–1143. doi: 10 . 1177 / 0018720812448474. eprint:
https://doi.org/10.1177/0018720812448474 (cit. on pp. 4, 24).

Matson, T.M. and T.W. Forbes (1938). “Overtaking and Passing Requirements as
Determined from a Moving Vehicle”. In: In: Proceedings of the Highway Research
Board, pp. 100–112 (cit. on p. 6).

McHenry, S R and M J Wallace (Aug. 1985). “Evaluation of Wide Curb Lanes As
Shared Lane Bicycle Facilities. Final Report”. In: (cit. on p. 7).

McLaughlin, Shane B., Jonathan M. Hankey, and Thomas A. Dingus (Jan. 2008).
“A method for evaluating collision avoidance systems using naturalistic driving
data”. In: Accident Analysis & Prevention 40.1, pp. 8–16. issn: 0001-4575. doi:
10.1016/J.AAP.2007.03.016 (cit. on p. 3).

McRuer, D. (May 1980). “Human dynamics in man-machine systems”. In: Automatica
16.3, pp. 237–253. issn: 0005-1098. doi: 10.1016/0005-1098(80)90034-5 (cit.
on p. 4).

Mehta, Kushal (2015). “Analysis of Passing Distances between Bicycles and Motorized
Vehicles on Urban Arterials”. PhD thesis. University of Waterloo (cit. on p. 23).

Michon, J.A. (1985). A critical review of driver behaviour models: What do we know?
What should we do? In Evans L.A. and Schwing R.C. (Eds.). Human Behaviour
and Traffic Safety. Plenum Press, NY (cit. on p. 4).

Näätänen, Risto and Heikki Summala (Dec. 1974). “A model for the role of motiva-
tional factors in drivers’ decision-making”. In: Accident Analysis & Prevention
6.3-4, pp. 243–261. issn: 0001-4575. doi: 10.1016/0001-4575(74)90003-7
(cit. on p. 4).

Najm, Wassim G. and David L. Smith (2004). “Modeling driver response to lead
vehicle decelerating”. In: SAE 2004 World Congress, Paper, pp. 1–10. doi: 10.
4271/2004-01-0171 (cit. on p. 5).

Nash, Christopher J., David J. Cole, and Robert S. Bigler (2016). “A review of
human sensory dynamics for application to models of driver steering and speed
control”. In: Biological Cybernetics 110.2-3, pp. 91–116. issn: 14320770. doi:
10.1007/s00422-016-0682-x (cit. on p. 4).

Nilsson, Jonas (2014). Computational Verification Methods for Automotive Safety
Systems. Tech. rep. Göteborg, Sweden: Chalmers University of Technology (cit. on
p. 4).

Noort, Martijn van, Frederick Faber, and Taoufik Bakri (2012). “EuroFOT Safety
Impact Assessment Method and Results”. In: Transportation Research Board
(cit. on p. 3).

https://doi.org/10.1177/1541931214581185
https://doi.org/10.1177/1541931214581185
https://doi.org/10.1177/0018720812448474
https://doi.org/10.1177/0018720812448474
https://doi.org/10.1016/J.AAP.2007.03.016
https://doi.org/10.1016/0005-1098(80)90034-5
https://doi.org/10.1016/0001-4575(74)90003-7
https://doi.org/10.4271/2004-01-0171
https://doi.org/10.4271/2004-01-0171
https://doi.org/10.1007/s00422-016-0682-x


Bibliography 35

O’Dwyer, Aidan (June 2009). Handbook of PI and PID Controller Tuning Rules. 3rd.
IMPERIAL COLLEGE PRESS. isbn: 978-1-84816-242-6. doi: 10.1142/p575
(cit. on p. 11).

OECD/ITF (2013). Cycling, Health and Safety. Tech. rep. OECD/International
Transport Forum. doi: 10.1787/9789282105955-en (cit. on pp. 3, 7).

Page, Yves et al. (2015). “a Comprehensive and Harmonized Method for Assessing
the Effectiveness of”. In: The 24th International Technical Conference on the
Enhanced Safety of Vehicles (ESV), pp. 1–12 (cit. on pp. 3, 4).

Parkin, John and Ciaran Meyers (Jan. 2010). “The effect of cycle lanes on the
proximity between motor traffic and cycle traffic”. In: Accident Analysis &
Prevention 42.1, pp. 159–165. issn: 0001-4575. doi: 10.1016/J.AAP.2009.07.
018 (cit. on p. 7).

Piccinini, Giulio Bianchi, Claudia Moretto, Huiping Zhou, and Makoto Itoh (2018).
“Influence of oncoming traffic on drivers’ overtaking of cyclists”. In: Transportation
Research Part F: Traffic Psychology and Behaviour 59, pp. 378–388. issn: 1369-
8478. doi: 10.1016/j.trf.2018.09.009 (cit. on pp. 7, 8, 23).

Rasch, Alexander, Christian-Nils Boda, Prateek Thalya, Tobias Aderum, Alessia
Knauss, and Marco Dozza (Nov. 2019). “Drivers overtaking cyclists: How do
the oncoming traffic and the position of the cyclist within the lane influence
maneuvering?” In: International Cycling Safety Conference (Brisbane, Australia).
ICSC, Australia (cit. on p. 10).

Ratcliff, Roger (1978). “A theory of memory retrieval.” In: Psychological Review 85.2,
pp. 59–108. issn: 0033-295X. doi: 10.1037/0033-295X.85.2.59 (cit. on p. 11).

Ratcliff, Roger and Philip L. Smith (2004). “A Comparison of Sequential Sampling
Models for Two-Choice Reaction Time.” In: Psychological Review 111.2, pp. 333–
367. issn: 1939-1471. doi: 10.1037/0033-295X.111.2.333 (cit. on p. 11).

Ratcliff, Roger and David Strayer (2014). “Modelling simple driving tasks with
one-boundary difficusion model”. In: Psychon Bull Rev. 21.3, pp. 577–589. doi:
10.3758/s13423-013-0541-x.Modeling (cit. on p. 11).

Rivera, Daniel E., Manfred Morari, and Sigurd Skogestad (Jan. 1986). “Internal
model control: PID controller design”. In: Industrial & Engineering Chemistry
Process Design and Development 25.1, pp. 252–265. issn: 0196-4305. doi: 10.
1021/i200032a041 (cit. on p. 11).

Rosen, Erik (2013). “Autonomous Emergency Braking for Vulnerable Road Users”.
In: IRCOBI Conference 2013, p. 2013 (cit. on p. 4).

Salvucci, Dario D. (2006). “Modeling Driver Behavior in a Cognitive Architecture”.
In: Human Factors: The Journal of the Human Factors and Ergonomics Society
48.2, pp. 362–380. issn: 0018-7208. doi: 10.1518/001872006777724417 (cit. on
pp. 12, 25).

Salvucci, Dario D. and Rob Gray (2004). “A two-point visual control model of
steering”. In: Perception 33.10, pp. 1233–1248. issn: 03010066. doi: 10.1068/
p5343 (cit. on pp. 14, 25).

Sander, Ulrich (2018). Predicting Safety Benefits of Automated Emergency Braking
at Intersections Virtual simulations based on real-world accident data, p. 250.
isbn: 9789175977805 (cit. on pp. 3, 6).

https://doi.org/10.1142/p575
https://doi.org/10.1787/9789282105955-en
https://doi.org/10.1016/J.AAP.2009.07.018
https://doi.org/10.1016/J.AAP.2009.07.018
https://doi.org/10.1016/j.trf.2018.09.009
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1037/0033-295X.111.2.333
https://doi.org/10.3758/s13423-013-0541-x.Modeling
https://doi.org/10.1021/i200032a041
https://doi.org/10.1021/i200032a041
https://doi.org/10.1518/001872006777724417
https://doi.org/10.1068/p5343
https://doi.org/10.1068/p5343


36 Bibliography

Sander, Ulrich and Nils Lubbe (2016). “Prediction of Accident Evolution by Diversi-
fication of Influence Factors in Computer Simulation : Opportunities for Driver
Warnings in Intersection Accidents”. In: Aktive Sicherheit und Automatisiertes
Fahren - Methodenentwicklung im Expertendialog, p. 29 (cit. on p. 4).

Schindler, R and V Bast (2015). Drivers’ comfort boundaries when overtaking a
cyclist: Set-up and verification of a methodology for field data collection and
analysis. Tech. rep. Gothenburg: Chalmers University of Technology (cit. on p. 7).

Shashua, Amnon, Yoram Gdalyahu, and Gaby Hayun (2004). “Pedestrian detec-
tion for driving assistance systems: single-frame classification and system level
performance”. In: IEEE Intelligent Vehicles Symposium, 2004, pp. 1–6. isbn:
0-7803-8310-9. doi: 10.1109/IVS.2004.1336346 (cit. on p. 9).

Shinar, David (2017). Traffic Safety and Human Behavior. Second. Emerald publish-
ing limited (cit. on pp. 5, 7).

SHRP2 TRB (2015). SHRP 2 | Strategic Highway Research Program 2 (SHRP 2).
http://www.trb.org/StrategicHighwayResearchProgram2SHRP2/Blank2.
aspx. [Online; accessed 27-August-2019] (cit. on pp. 5, 9).

Smith, Matthew, John Flach, Scott Dittman, and Terry Stanard (2001). “Monocular
optical constraints on collision control”. In: Journal of Experimental Psychology:
Human Perception and Performance 27.2, pp. 395–410. issn: 00961523. doi:
10.1037/0096-1523.27.2.395 (cit. on p. 11).

Sternlund, Simon, Johan Strandroth, Matteo Rizzi, Anders Lie, and Claes Tingvall
(2017). “The effectiveness of lane departure warning systems—A reduction in real-
world passenger car injury crashes”. In: Traffic Injury Prevention 18.2, pp. 225–
229. issn: 1538957X. doi: 10.1080/15389588.2016.1230672 (cit. on p. 3).

Summala, Heikki (2007). Towards Understanding Motivational and Emotional Factors
in Driver Behaviour: Comfort Through Satisficing. In: Cacciabue P.C. Modelling
Driver Behaviour in Automotive Environments. Springer, London (cit. on p. 6).

Van Auken, R.M., J.W. Zellner, D.P. Chiang, J. Kelly, J.Y. Silberling, R. Dai,
P.C. Broen, A.M. Kirsch, and Y. Sugimoto (2011). Advanced Crash Avoidance
Technologies Program - Final Report of the Honda-DRI Team Volume I: Executive
Summary and Technical Report. Tech. rep. Washington, D.C.: U.S. DOT NHTSA
(cit. on p. 4).

Van Der Horst, Richard and Jeroen Hogema (1993). “Time-to-collision and collision
avoidance systems”. In: proceedings of The 6th Workshop of the International,
pp. 1–12. issn: 9068072935 (cit. on p. 23).

Walker, Ian (2007). “Drivers overtaking bicyclists: Objective data on the effects
of riding position, helmet use, vehicle type and apparent gender”. In: Accident
Analysis and Prevention 39.2, pp. 417–425. issn: 00014575. doi: 10.1016/j.aap.
2006.08.010 (cit. on p. 7).

Walker, Ian, Ian Garrard, and Felicity Jowitt (Mar. 2014). “The influence of a
bicycle commuter’s appearance on drivers’ overtaking proximities: An on-road
test of bicyclist stereotypes, high-visibility clothing and safety aids in the United
Kingdom”. In: Accident Analysis & Prevention 64, pp. 69–77. issn: 0001-4575.
doi: 10.1016/J.AAP.2013.11.007 (cit. on pp. 6, 7).

https://doi.org/10.1109/IVS.2004.1336346
http://www.trb.org/StrategicHighwayResearchProgram2SHRP2/Blank2.aspx
http://www.trb.org/StrategicHighwayResearchProgram2SHRP2/Blank2.aspx
https://doi.org/10.1037/0096-1523.27.2.395
https://doi.org/10.1080/15389588.2016.1230672
https://doi.org/10.1016/j.aap.2006.08.010
https://doi.org/10.1016/j.aap.2006.08.010
https://doi.org/10.1016/J.AAP.2013.11.007


Bibliography 37

Wilde, Gerald J. S. (Dec. 1982). “The Theory of Risk Homeostasis: Implications
for Safety and Health”. In: Risk Analysis 2.4, pp. 209–225. issn: 0272-4332. doi:
10.1111/j.1539-6924.1982.tb01384.x (cit. on p. 4).

Wimmer, Peter, Michael Düring, Henri Chajmowicz, Fredrik Granum, Julian King,
Harald Kolk, Olaf Op den Camp, Paolo Scognamiglio, and Michael Wagner
(2019). “Toward harmonizing prospective effectiveness assessment for road safety:
Comparing tools in standard test case simulations”. In: Traffic Injury Prevention
20.sup1, S139–S145. issn: 1538-9588. doi: 10.1080/15389588.2019.1616086
(cit. on p. 7).

Winner, Hermann, Stephan Hakuli, Felix Lotz, and Christina Singer (2016). Handbook
of Driver Assistance Systems. Springer International Publishing Switzerland. isbn:
978-3-319-12351-6. doi: 10.1007/978-3-319-12352-3 (cit. on p. 11).

Wisch, Marcus, Markus Lerner, Jordanka Kovaceva, András Bálint, Irene Gohl, Anja
Schneider, János Juhász, and Magdalena Lindman (2017). “Car-to-cyclist crashes
in Europe and derivation of use cases as basis for test scenarios of next generation
advanced driver assistance systems – results from PROSPECT”. In: Enhanced
Safety of Vehicles Conference, pp. 1–15 (cit. on p. 3).

Yanagisawa, Mikio, Elizabeth D. Swanson, Philip Azeredo, and Wassim G. Najm
(2017). Estimation of Potential Safety Benefits for Pedestrian Crash Avoid-
ance/Mitigation Systems. Tech. rep. April. Washington, DC: DOT NHTSA (cit.
on p. 4).

Zhao, Yuqing, Daisuke Ito, and Koji Mizuno (2019). “AEB effectiveness evaluation
based on car-to-cyclist accident reconstructions using video of drive recorder”.
In: Traffic Injury Prevention 20.1, pp. 100–106. issn: 1538957X. doi: 10.1080/
15389588.2018.1533247 (cit. on p. 3).

https://doi.org/10.1111/j.1539-6924.1982.tb01384.x
https://doi.org/10.1080/15389588.2019.1616086
https://doi.org/10.1007/978-3-319-12352-3
https://doi.org/10.1080/15389588.2018.1533247
https://doi.org/10.1080/15389588.2018.1533247




Part II

Appended papers




	Abstract
	Acknowledgments
	Contents
	I Introductory chapters
	1 Introduction
	1.1 Safety benefit assessment
	1.2 Driver models
	1.3 Data collection methods for modelling driver behaviour
	1.4 Driver behaviour during overtaking
	1.5 The need for inclusion of driver models for safety benefit assessment
	1.6 Aim and Objectives

	2 Driver models for overtaking a cyclist
	2.1 Methodologies for data collection
	2.2 Studying driver behaviour during overtaking
	2.3 Computational models of driver behaviour in the approaching phase
	2.4 Parameter estimation
	2.4.1 Linear programming
	2.4.2 Quadratic programming
	2.4.3 An example of optimal parameter estimation


	3 Summary of papers
	4 Discussion
	4.1 Driver behaviour during overtaking
	4.2 Models of driver behaviour
	4.3 Limitations
	4.4 Future work

	5 Conclusions
	Bibliography

	II Appended papers

