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We prove sharp two-sided global estimates for the heat kernel associated with a 
Euclidean sphere of arbitrary dimension.
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r é s u m é

Pour le noyau de la chaleur de la sphère euclidéenne en toute dimension, on démontre 
des estimations globales précises, supérieures et inférieures.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Statement of the result

Let Sd ⊂ R
d+1 be the Euclidean unit sphere of dimension d ≥ 1 equipped with the standard non-

normalized area measure σd. The heat kernel Kd
t (ξ, η) on (Sd, σd) is a function of the geodesic spherical 

distance dist(ξ, η) = arccos〈ξ, η〉, and we write it as Kd
t (·), i.e.,

Kd
t (ξ, η) = Kd

t

(
dist(ξ, η)

)
, ξ, η ∈ Sd.

In this paper we prove the following.
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Theorem 1. Let d ≥ 1 and T > 0 be fixed. For all ϕ ∈ [0, π] and 0 < t ≤ T

c

(t + π − ϕ)(d−1)/2 td/2
exp

(
−ϕ2

4t

)
≤ Kd

t (ϕ) ≤ C

(t + π − ϕ)(d−1)/2 td/2
exp

(
−ϕ2

4t

)

holds with some constants c, C > 0 depending only on d and T .

Analogous sharp bounds of Kd
t (ϕ) for large t are well known; one has

c ≤ Kd
t (ϕ) ≤ C, ϕ ∈ [0, π], t ≥ T,

for any fixed T > 0. This is also a consequence of our estimates for small t together with the semigroup 
property.

Theorem 1 leads to sharp bounds for the derivative ∂ϕKd
t (ϕ). We have the following result which, in 

particular, confirms the intuitively obvious fact that Kd
t is strictly decreasing in [0, π].

Corollary 2. Let d ≥ 1 and T > 0 be fixed. There exist constants c, C > 0 depending only on d and T such 
that for ϕ ∈ [0, π] and 0 < t ≤ T

cϕ(π − ϕ)
(t + π − ϕ)(d+1)/2 td/2+1 exp

(
−ϕ2

4t

)
≤ −∂ϕK

d
t (ϕ) ≤ C ϕ(π − ϕ)

(t + π − ϕ)(d+1)/2 td/2+1 exp
(
−ϕ2

4t

)
,

while for t ≥ T

c e−td ϕ(π − ϕ) ≤ −∂ϕK
d
t (ϕ) ≤ C e−tdϕ(π − ϕ).

The spherical heat kernel is an important object in analysis, probability and physics, among other fields. 
It is the integral kernel of the spherical heat semigroup and thus provides solutions to the heat equation 
based on the Laplace–Beltrami operator on Sd. It is also a transition probability density of the spherical 
Brownian motion. Clearly, these two facts lead to physical significance and applications.

Surprisingly enough, up to our best knowledge an exact global description of the decisive exponential 
behavior of Kd

t (ϕ) for small t has not been established before, except for the simple case d = 1 in which the 
kernel is just a periodization of the Gauss–Weierstrass kernel. The main reason and obstacle seems to be 
the geometry of the sphere that has to be taken into account, but technically is not easy to handle. Indeed, 
intuitively it is clear that the behavior of Kd

t (ϕ) is very different for small ϕ, where the sphere resembles Rd, 
and close to the antipodal point ϕ = π, to which, roughly speaking, the heat can flow along many geodesic 
lines.

The most precise global bounds for Kd
t (ϕ) known so far are only qualitatively sharp. By this we mean 

that the number 4 in the exponential factors in Theorem 1 is replaced by some smaller and larger numbers 
in the lower and upper bounds, respectively; see e.g. Theorems 5.5.6 and 5.6.1 in [6]. A sharp estimate for 
the antipodal point Kd

t (π) was found by Molchanov, see [10, Example 3.1]. For dimensions d = 2, 3 some 
partial results in the spirit of Theorem 1, in particular the upper bound, were obtained by Andersson [1]. In 
this context it is perhaps interesting to note that Nagase [11, Theorem 1.1] found a very precise description 
of the asymptotic behavior of Kd

t (ϕ) as t → 0, for small values of ϕ.
In contrast to qualitatively sharp estimates, genuinely sharp heat kernel bounds are usually much harder 

to prove and appear rarely in the literature; heat kernel estimates on the hyperbolic space [7] is one of 
these sparse instances. The example of Sd shows that this is a difficult problem even for basic and regular 
Riemannian manifolds. In this connection, it is perhaps worth mentioning the recent papers [3,4,8,9] where 
such results were obtained for Dirichlet heat kernels related to Bessel operators in half-lines, the Dirichlet 
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heat kernel in Euclidean balls of arbitrary dimension, and the Fourier–Bessel heat kernel on the interval 
(0, 1). This was achieved by a clever combination of probabilistic and analytic methods.

An interesting aspect of Theorem 1 is its relation with sharp estimates for the ultraspherical, or more 
generally, the Jacobi heat kernel Gα,β

t (x, y); see e.g. [12]. Qualitatively sharp estimates for the Jacobi heat 
kernel were obtained independently in [5] and [12]. Combining our Theorem 1 with the reduction formula 
derived in [12], one can prove genuinely sharp bounds for Gα,β

t (x, y), assuming that α, β ≥ −1/2 and α+ β

is a dyadic number. This leads to the natural conjecture that [12, Theorem A] holds with c1 = c2 = 1/4, 
that is exactly the same constants in the exponential factors as in Theorem 1, and this for all α, β > −1.

2. Outline of the proof

The spherical heat kernel Kd
t (ξ, η) and the associated kernel Kd

t (ϕ) can be expressed explicitly as series 
involving spherical harmonics or ultraspherical polynomials, respectively. But these series oscillate heavily 
and in general cannot be computed, so they are of no use for our purposes. Thus our approach is less direct.

In the first step, we prove Theorem 1 for odd dimensions d = 1, 3, 5, . . .. This is done by exploiting in an 
elementary, though technically involved, way the recurrence relation

Kd+2
t (ϕ) = −etd

2π (sinϕ)−1∂ϕK
d
t (ϕ), d ≥ 1, (1)

together with the well-known fact that K1
t (ϕ) is given by a simple positive series

K1
t (ϕ) = ϑt(ϕ) :=

∑
n∈Z

Wt(ϕ + 2πn). (2)

Here Wt is the one-dimensional Gauss–Weierstrass kernel

Wt(x) = 1√
4πt

e−x2/(4t).

It is worth mentioning that ϑt(ϕ) can be expressed in terms of θ3, one of the celebrated Jacobi theta 
functions. Notice that (1) readily implies Corollary 2 once Theorem 1 is proved.

The formula (1) is a special case of a more general relation satisfied by the ultraspherical heat kernel

∂xG
α,α
t (x, 1) = 2(α + 1)e−t(2α+2)Gα+1,α+1

t (x, 1), α > −1, (3)

since

Kd
t (ϕ) = 1

σd−1(Sd−1)G
d/2−1,d/2−1
t (cosϕ, 1), d ≥ 1, (4)

where σ0(S0) = 2 in case d = 1. The identity (3) follows by a straightforward differentiation of the series 
expressing Gα,α

t (x, 1) in terms of ultraspherical polynomials. Both (3) and (1) can be found e.g. in [2, 
(2.7.13)] and [2, (2.7.15)], respectively, but they were no doubt known earlier, at least as folklore.

In the second step we use the result for odd dimensions to cover all even dimensions d = 2, 4, 6, . . .. This 
is performed by employing a reduction formula for the Jacobi heat kernel [12, Theorem 3.1] that in our 
situation implies via (4)

Kd
t (ϕ) = cd

1∫
K2d−1

t/4

(
arccos

(
v cos ϕ2

))(
1 − v2)(d−3)/2

dv, d ≥ 2, (5)

−1
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with cd = 2−d+1π(d−1)/2/Γ((d − 1)/2). It is worth noting that this step of the proof can be generalized to 
deliver an analogue of Theorem 1 in the Jacobi setting, as mentioned in Section 1.

Summing up, we split the proof of Theorem 1 into the following two results.

Theorem 2.1. Given N ≥ 0, the estimate of Theorem 1 holds for d = 2N + 1.

Theorem 2.2. Let N ≥ 2. If the estimate of Theorem 1 holds in dimension d = 2N − 1, then it also holds in 
dimension d = N .

The proofs of Theorems 2.1 and 2.2 are given in Sections 4 and 5. In both cases it is enough to show the 
result for some T , possibly very small, and one can restrict ϕ to (0, π), since Kd

t (ϕ) is continuous on the 
closed interval [0, π]. Some preparatory results needed to prove Theorem 2.1 are contained in Section 3.

Notation. In what follows we denote by N = {0, 1, . . .} the set of natural numbers. We write x ∧ y for the 
minimum of x and y. Further, we will frequently use the notation X � Y to indicate that X ≤ CY with 
a positive constant C independent of significant quantities. We shall write X � Y when simultaneously 
X � Y and Y � X.

3. Technical preparation

Define differential operators

D = 1
sin z

d
dz , L = 1

z

d
dz .

Observe that L preserves the space of even, entire functions. Let N ∈ N. When writing D, we will often 
need to specify the variable, and for instance the notation DN

z

(
F (vz)

)
will mean that the operator DN is 

applied to the function z �→ F (vz). On the other hand, we write LNF (vx) for LNF evaluated at vx. Denote 
E = πZ \ {0}.

Lemma 3.1. Let F be an even, entire function. Then for N ≥ 1 and v > 0

DN
z

(
F (vz)

)
=

N∑
j=1

v2jLjF (vz)ΦN,j(z), z ∈ C \ E. (6)

Here the functions ΦN,j, j = 1, . . . , N , are even and meromorphic in C with poles only at the points of E, 
and these poles are of order at most 2N − j. Moreover, ΦN,N (z) = (z/ sin z)N .

Proof. When N = 1, (6) is obvious, since

1
sin z

d
dz

(
F (vz)

)
= v2F

′(vz)
vz

z

sin z
.

For the induction step from N to N + 1, we apply Dz to term number j in (6) and use Leibniz’ rule and 
the case N = 1 to evaluate Dz(LjF (vz)). The result is

Dz

(
v2jLjF (vz)ΦN,j(z)

)
= v2j+2Lj+1F (vz) z

sin z
ΦN,j(z) + v2jLjF (vz) 1

sin z
Φ′

N,j(z). (7)

Since ΦN,j is even and analytic in C \ E, so is the function z �→ (sin z)−1Φ′
N,j(z) appearing here, and its 

poles are of order at most 2 +2N−j = 2(N +1) −j. This means that the second term on the right-hand side 
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of (7) fits in the sum in (6) with N replaced by N +1. The same is true for the first term on the right-hand 
side of (7), since z �→ z(sin z)−1ΦN,j(z) has poles of order at most 1 +2N−j = 2(N +1) − (j+1) in E. This 
completes the induction step, because it is easy to verify, also by induction, that ΦN,N (z) = (z/ sin z)N . 
Lemma 3.1 is proved. �
Lemma 3.2. Let j ≥ 1 and M0 > 0 be fixed. Then

(a) Lj(cosh)(z) � 1 uniformly in z ∈ (0, M0] and
(b) |Lj(cosh)(z)| � ez for z > 0.

Proof. Since cosh z =
∑∞

k=0 akz
2k with ak > 0, we see that Lj(cosh)(z) will be of the same form, with 

coefficients ak,j > 0. Thus Lj(cosh)(z) ≥ a0,j > 0, z > 0, and this implies item (a).
To show (b), we may assume that z ≥ 1 because of (a). By induction Lj(cosh)(z) can be seen to be a finite 

linear combination of terms z−m sinh z and z−m cosh z with m ≥ 1. So |Lj(cosh)(z)| � ez for z ≥ 1. �
Lemma 3.3. Let k ∈ N be fixed. Then, for any M0 > 0 there exists v0 > 0 such that

Dk
z

(
cosh(vz)

)
� v2k,

uniformly in z ∈ (0, π/2] and v ≥ v0 satisfying vz ≤ M0.

Proof. The case k = 0 is trivial, so we consider k ≥ 1. Using Lemma 3.1 with F = cosh, we see that for any 
fixed k ≥ 1

Dk
z

(
cosh(vz)

)
=

k∑
j=1

v2jLj(cosh)(vz)Φk,j(z), (8)

and

Φk,k(z) � (π − z)−k, |Φk,j(z)| � (π − z)−2k+j , z ∈ (0, π) (9)

for 1 ≤ j < k. Combining this with Lemma 3.2 (a), we see that the kth term of the sum in (8) dominates 
if v is large enough. This implies the lemma. �

We will also need the following modification of Lemma 3.3.

Lemma 3.4. Let k ∈ N be fixed. Then

∣∣Dk
z

(
cosh(vz)

)∣∣ � evzv2k(π − z)−2k, v ≥ 1, z ∈ (0, π).

Proof. The case k = 0 is trivial, so let k ≥ 1. Using (8), (9) and Lemma 3.2 (b) we infer that

∣∣Dk
z

(
cosh(vz)

)∣∣ �
k∑

j=1
v2jevz(π − z)−2k+j � evzv2k(π − z)−2k,

uniformly in v ≥ 1 and z ∈ (0, π), as desired. �
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4. Proof of Theorem 2.1

In order to prove Theorem 2.1, it is enough to show the following, see (1) and (2).

Theorem 4.1. Let N ∈ N be fixed. There exists t0 > 0 such that

(−D)Nϑt(ϕ) � Wt(ϕ)(t + π − ϕ)−N t−N , ϕ ∈ (0, π), 0 < t ≤ t0.

This result is a straightforward consequence of the following two lemmas.

Lemma 4.2. Let N ∈ N be fixed. There exist M0, t0 > 0 and constants c, C > 0 such that

cWt(ϕ)(π − ϕ)−N t−N ≤ (−D)Nϑt(ϕ) ≤ CWt(ϕ)(π − ϕ)−N t−N

holds for ϕ ∈ (0, π) and 0 < t ≤ t0 satisfying (π − ϕ)/t ≥ M0.

Lemma 4.3. Let N ∈ N be fixed. For any M0 > 0 there exist t0 > 0 and constants c, C > 0 such that

cWt(ϕ)t−2N ≤ (−D)Nϑt(ϕ) ≤ CWt(ϕ)t−2N

holds for ϕ ∈ (0, π) and 0 < t ≤ t0 satisfying (π − ϕ)/t ≤ M0.

The proofs of Lemmas 4.2 and 4.3 will be given in Sections 4.3 and 4.4. First, however, we need two 
crucial intermediate results, Lemmas 4.4 and 4.6 below.

Lemma 4.4. The assertion of Lemma 4.2 is true if ϑt is replaced by Wt, and this with t0 = ∞.

Observe that if Lemma 4.2 (hence also Lemma 4.4) holds with some M0 > 0, then it also holds with 
any larger M0 and the same t0, c, C. This will be frequently used in the sequel without further mention. 
Furthermore, we have the following straightforward consequence of Lemma 4.4, which will be needed in the 
proof of Lemma 4.6.

Corollary 4.5. Let N ∈ N be fixed. There exists t0 > 0 such that

(−D)NWt(ψ) � Wt(ψ)t−N , ψ ∈ (0, π/2], 0 < t ≤ t0.

Lemma 4.6. The assertion of Lemma 4.3 is true if ϑt is replaced by Wt + Wt(· − 2π).

Lemmas 4.4 and 4.6 are proved in Sections 4.1 and 4.2, respectively.

4.1. Proof of Lemma 4.4

For N = 0 there is nothing to prove, so let N ≥ 1. Applying Lemma 3.1 with F = W1 and v = t−1/2 and 
using the identity LjW1 = (−1)j2−jW1, we get

(−D)NWt(ϕ) =
N∑
j=1

(−1)N+j

2j t−jWt(ϕ)ΦN,j(ϕ). (10)



A. Nowak et al. / J. Math. Pures Appl. 129 (2019) 23–33 29
Since ΦN,N (ϕ) � (π − ϕ)−N , ϕ ∈ (0, π), term number N in the above sum is comparable to Wt(ϕ)(π −
ϕ)−N t−N for ϕ ∈ (0, π) and t > 0. Using the bounds |ΦN,j(ϕ)| � (π − ϕ)−2N+j , ϕ ∈ (0, π) for 1 ≤ j < N , 
we see that the remaining terms are controlled by

Wt(ϕ)
N−1∑
j=1

t−j(π − ϕ)−2N+j = Wt(ϕ)(π − ϕ)−N t−N
N−1∑
j=1

( t

π − ϕ

)N−j

,

uniformly in ϕ ∈ (0, π) and t > 0. Choosing M0 large enough, we can make term number N dominate, and 
Lemma 4.4 follows. �
4.2. Proof of Lemma 4.6

For N = 0 the conclusion of Lemma 4.6 is straightforward, so assume N ≥ 1. Letting ψ = π−ϕ, we have 
Dψ = −Dϕ and

Wt(ϕ) + Wt(ϕ− 2π) = Wt(π − ψ) + Wt(π + ψ) = 2e−π2/(4t)Wt(ψ) cosh πψ

2t .

Thus

(−D)N
[
Wt(ϕ) + Wt(ϕ− 2π)

]
= 2e−π2/(4t)

N∑
k=0

(
N

k

)
DN−kWt(ψ)Dk

ψ

(
cosh πψ

2t

)
. (11)

Here ψ/t ≤ M0, and by choosing t0 small we can assume that 0 < ψ ≤ π/2. Then Corollary 4.5 implies that 
for some t0 > 0 and all 0 ≤ k < N

|DN−kWt(ψ)| � Wt(ψ)t−(N−k), ψ ∈ (0, π/2], 0 < t ≤ t0.

Applying Lemma 3.3 (taken with πM0/2 instead of M0 and v = π/(2t)) and making t0 smaller if necessary, 
we get

Dk
ψ

(
cosh πψ

2t

)
� t−2k, 0 ≤ k ≤ N,

uniformly in ψ ∈ (0, π/2] and 0 < t ≤ t0 satisfying ψ/t ≤ M0.
The term with k = N in the sum in (11) is

2e−π2/(4t)Wt(ψ)DN
ψ

(
cosh πψ

2t

)
� e−π2/(4t)Wt(ψ)t−2N .

The terms with k < N in this sum can be made much smaller as t approaches to 0, since they are controlled 
by e−π2/(4t)Wt(ψ)t−N−k. It follows that for sufficiently small t0 > 0

(−D)N
[
Wt(ϕ) + Wt(ϕ− 2π)

]
� e−π2/(4t)Wt(ψ)t−2N ,

uniformly in ψ ∈ (0, π/2] and 0 < t ≤ t0 satisfying ψ/t ≤ M0. Finally, using the relation e−π2/(4t)Wt(ψ) �
Wt(ϕ) for ψ/t ≤ M0, we conclude the proof. �
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4.3. Proof of Lemma 4.2

The case N = 0 is straightforward, so assume that N ≥ 1. We will show that there exists an M1 ≥ 1
such that

∞∑
n=1

∣∣DN
[
Wt(ϕ− 2πn) + Wt(ϕ + 2πn)

]∣∣ � Wt(ϕ)(π − ϕ)−N t−N
(
e−π2/(4t) + e−π(π−ϕ)/t), (12)

uniformly in ϕ ∈ (0, π) and 0 < t ≤ 1 satisfying (π − ϕ)/t ≥ M1.
First observe that

Wt(ϕ− 2πn) + Wt(ϕ + 2πn) = 2e−π2n2/tWt(ϕ) cosh πnϕ

t
, ϕ ∈ (0, π), t > 0, n ≥ 1.

Consequently, using Leibniz’ rule for D we obtain

DN
[
Wt(ϕ− 2πn) + Wt(ϕ + 2πn)

]
= 2e−π2n2/t

N∑
k=0

(
N

k

)
DN−kWt(ϕ)Dk

ϕ

(
cosh πnϕ

t

)
.

Now using Lemma 4.4 and Lemma 3.4 (with v = πn/t) we infer that there exists M1 ≥ 1 such that

∣∣DN
[
Wt(ϕ− 2πn) + Wt(ϕ + 2πn)

]∣∣

� e−π2n2/t
N∑

k=0

Wt(ϕ)(π − ϕ)−(N−k)t−(N−k)eπnϕ/t
(n
t

)2k
(π − ϕ)−2k

� e−π2n2/t+πnϕ/tWt(ϕ)
( t

π − ϕ

)2N(n
t

)4N
� e−π2n2/t+πnϕ/tWt(ϕ)

(n
t

)4N
(13)

holds uniformly in ϕ ∈ (0, π), 0 < t ≤ 1 and n ≥ 1 satisfying (π − ϕ)/t ≥ M1. Summing over n ≥ 2, we get

∞∑
n=2

∣∣DN
[
Wt(ϕ− 2πn) + Wt(ϕ + 2πn)

]∣∣

�
∞∑

n=2
e−π2n(n−1)/tWt(ϕ)

(n
t

)4N
� Wt(ϕ)

∞∑
n=2

e−π2n/(2t) � Wt(ϕ)(π − ϕ)−N t−Ne−π2/t,

uniformly in ϕ ∈ (0, π) and 0 < t ≤ 1 satisfying (π − ϕ)/t ≥ M1.
We now focus on the term with n = 1 in (12). Using (13) we see that

∣∣DN
[
Wt(ϕ− 2π) + Wt(ϕ + 2π)

]∣∣ � e−π2/(2t)Wt(ϕ)t−4N � e−π2/(4t)Wt(ϕ)(π − ϕ)−N t−N ,

uniformly in ϕ ∈ (0, π/2] and 0 < t ≤ 1 satisfying (π − ϕ)/t ≥ M1. Therefore, in order to prove (12) it is 
enough to show that

∣∣DN
[
Wt(ϕ− 2π) + Wt(ϕ + 2π)

]∣∣ � Wt(ϕ)(π − ϕ)−N t−Ne−π(π−ϕ)/t, (14)

uniformly in ϕ ∈ (π/2, π) and 0 < t ≤ 1 satisfying (π − ϕ)/t ≥ 1.
Using (10) and the estimates

|ΦN,j(ϕ± 2π)| � (π − ϕ)−2N+j , ϕ ∈ (π/2, π), 1 ≤ j ≤ N,
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which follow from Lemma 3.1, we obtain

∣∣DNWt(ϕ± 2π)
∣∣ � Wt(ϕ± 2π)(π − ϕ)−N t−N ,

uniformly in ϕ ∈ (π/2, π) and t > 0 satisfying (π − ϕ)/t ≥ 1. Combining this with the relations

Wt(ϕ + 2π) ≤ Wt(ϕ− 2π) = Wt(ϕ)e−π(π−ϕ)/t, ϕ ∈ (0, π), t > 0,

we get (14) and hence also (12).
Next, an application of Lemma 4.4 shows that there exists M2 > 0 such that

(−D)NWt(ϕ) � Wt(ϕ)(π − ϕ)−N t−N ,

uniformly in ϕ ∈ (0, π) and t > 0 satisfying (π − ϕ)/t ≥ M2. Finally, combining this with (12) and the fact 
that e−π2/(4t) + e−π(π−ϕ)/t → 0 as t → 0+ and (π − ϕ)/t → ∞, we see that we can find 0 < t0 ≤ 1 and 
M0 ≥ M1 + M2 such that

(−D)Nϑt(ϕ) � Wt(ϕ)(π − ϕ)−N t−N ,

uniformly in ϕ ∈ (0, π) and 0 < t ≤ t0 satisfying (π−ϕ)/t ≥ M0. This finishes the proof of Lemma 4.2. �
4.4. Proof of Lemma 4.3

Notice that for N = 0 Lemma 4.3 follows in a straightforward way. Therefore we assume N ≥ 1. We first 
prove that for any M0 > 0 there exists t1 > 0 such that

∞∑
n=1

∣∣(−D)N
[
Wt(ϕ + 2πn) + Wt

(
ϕ− 2π(n + 1)

)]∣∣ � Wt(ϕ)t−2Ne−π2/(4t), (15)

uniformly in ϕ ∈ [π/2, π) and 0 < t ≤ t1 satisfying (π − ϕ)/t ≤ M0.
Almost as in the proof of Lemma 4.6, we let ψ = π − ϕ ∈ (0, π/2] and get

Wt(ϕ + 2πn) + Wt

(
ϕ− 2π(n + 1)

)
= Wt

(
(2n + 1)π − ψ

)
+ Wt

(
(2n + 1)π + ψ

)

= 2e−π2(2n+1)2/(4t)Wt(ψ) cosh π(2n + 1)ψ
2t

for t > 0 and n ≥ 1. Using Leibniz’ rule for D, we get

(−D)N
[
Wt(ϕ + 2πn) + Wt

(
ϕ− 2π(n + 1)

)]

= 2e−π2(2n+1)2/(4t)
N∑

k=0

(
N

k

)
DN−kWt(ψ)Dk

ψ

(
cosh π(2n + 1)ψ

2t

)
.

In view of Corollary 4.5, there exists t1 > 0 such that

∣∣DN−kWt(ψ)
∣∣ � Wt(ψ)t−(N−k), ψ ∈ (0, π/2], 0 < t ≤ t1, 0 ≤ k ≤ N.

Further, using the relation

Wt(ψ) � Wt(ϕ)eπ
2/(4t), ψ ∈ (0, π/2], t > 0, ψ/t ≤ M0,
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and Lemma 3.4 (with v = π(2n + 1)/(2t)), we arrive at

∣∣(−D)N
[
Wt(ϕ + 2πn) + Wt

(
ϕ− 2π(n + 1)

)]∣∣

� e−π2(2n+1)2/(4t)
N∑

k=0

Wt(ϕ)eπ
2/(4t)t−(N−k)eπ(2n+1)ψ/(2t)

(n
t

)2k

� e−π2(2n+1)2/(4t)+π2/(4t)+π2(2n+1)/(2t)Wt(ϕ)
(n
t

)2N
,

uniformly in ϕ ∈ [π/2, π), 0 < t ≤ t1 and n ≥ 1 satisfying (π−ϕ)/t ≤ M0. Since (2n +1)2 − 1 − 2(2n +1) =
4n2 − 2 ≥ 2n, n ≥ 1, we see that the left-hand side of (15) is controlled by

∞∑
n=1

e−π2n/(2t)Wt(ϕ)
(n
t

)2N
� Wt(ϕ)

∞∑
n=1

e−π2n/(4t) � Wt(ϕ)t−2Ne−π2/(4t),

uniformly in ϕ ∈ [π/2, π) and 0 < t ≤ t1 satisfying (π − ϕ)/t ≤ M0. This shows (15).
Finally, combining (15) with Lemma 4.6 and using the fact that e−π2/(4t) → 0 as t → 0+ we may choose 

t0 > 0 such that

(−D)Nϑt(ϕ) � Wt(ϕ)t−2N ,

uniformly in ϕ ∈ [π/2, π) and 0 < t ≤ t0 satisfying (π − ϕ)/t ≤ M0. �
5. Proof of Theorem 2.2

The proof reduces to a thorough analysis of a one-dimensional integral. Changing the variable of inte-
gration in (5) and using a basic trigonometric identity leads to the formula

Kd
t (ϕ) = c̃d

(cos ϕ
2 )d−2

π−ϕ/2∫
ϕ/2

K2d−1
t/4 (ψ)

(
cosϕ− cos 2ψ

)(d−3)/2 sinψ dψ, d ≥ 2,

with c̃d = 2−(d−3)/2cd; here cd is as in (5). Therefore, taking into account Theorem 2.1, in order to prove 
Theorem 2.2 it is enough to show that for any N ≥ 2

1
(cos ϕ

2 )N−2

π−ϕ/2∫
ϕ/2

1
(t + π − ψ)N−1 tN−1/2 e

−ψ2/t(cosϕ− cos 2ψ)(N−3)/2 sinψ dψ

� 1
(t + π − ϕ)(N−1)/2 tN/2 e

−ϕ2/(4t),

uniformly in ϕ ∈ (0, π) and 0 < t ≤ T for some fixed T > 0, say T = 1. Moreover, here we can replace the 
upper limit of integration by π/2, since the essential contribution in the last integral comes from integrating 
over the first half of the interval, that is (ϕ/2, π/2). This is seen by reflecting ψ �→ π − ψ and then using 
the simple bound

1
N−1 e

−π(π−2ψ)/t � 1, ψ ∈ (0, π/2), 0 < t ≤ 1.
(t + ψ)
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Changing now the variable of integration ψ = γ + ϕ/2 and then replacing the difference of cosines by a 
product of sines, we see that it is enough to prove that

(π−ϕ)/2∫
0

1
(t + π − γ − ϕ

2 )N−1 tN−1/2 e
−(γ+ϕ/2)2/t[ sin(γ + ϕ) sin γ

](N−3)/2 sin
(
γ + ϕ

2

)
dγ

�
(

cos ϕ2

)N−2 1
(t + π − ϕ)(N−1)/2 tN/2 e

−ϕ2/(4t),

uniformly in ϕ ∈ (0, π) and 0 < t ≤ 1. Since for such ϕ, t and γ ∈ (0, (π − ϕ)/2) one has cos(ϕ/2) � π − ϕ, 
t + π − γ − ϕ/2 � 1, sin(γ + ϕ) � (π − ϕ)(γ + ϕ), sin γ � γ, sin(γ + ϕ/2) � γ + ϕ, this task reduces to 
proving that

(π−ϕ)/2∫
0

[
γ(γ + ϕ)

](N−3)/2
e−γ(γ+ϕ)/t(γ + ϕ) dγ �

[
t ∧ (π − ϕ)

](N−1)/2
,

uniformly in the ϕ and t in question.
Denoting the last integral by I and changing the variable γ(γ + ϕ)/t = s we get

I � t(N−1)/2

(π−ϕ)(π+ϕ)
4t∫

0

s(N−3)/2e−s ds

� t(N−1)/2
(

1 ∧ (π − ϕ)(π + ϕ)
4t

)(N−1)/2

�
[
t ∧ (π − ϕ)

](N−1)/2
,

as desired. Theorem 2.2 follows.

References

[1] D. Andersson, Estimates of the Spherical and Ultraspherical Heat Kernel, Master of Science thesis, Department of Mathe-
matical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden, 2013, pp. 1–36.

[2] D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Grundlehren Math. Wiss., vol. 348, 
Springer, Cham, 2014.

[3] K. Bogus, J. Małecki, Sharp estimates of transition probability density for Bessel process in half-line, Potential Anal. 43 
(2015) 1–22.

[4] K. Bogus, J. Małecki, Heat kernel estimates for the Bessel differential operator in half-line, Math. Nachr. 289 (2016) 
2097–2107.

[5] T. Coulhon, G. Kerkyacharian, P. Petrushev, Heat kernel generated frames in the setting of Dirichlet spaces, J. Fourier 
Anal. Appl. 18 (2012) 995–1066.

[6] E.B. Davies, Heat Kernels and Spectral Theory, Camb. Tracts Math., vol. 92, Cambridge University Press, Cambridge, 
1989.

[7] E.B. Davies, N. Mandouvalos, Heat kernel bounds on hyperbolic space and Kleinian groups, Proc. Lond. Math. Soc. 57 
(1988) 182–208.

[8] J. Małecki, G. Serafin, Dirichlet heat kernel for the Laplacian in a ball, preprint, arXiv :1612 .01833, 2017.
[9] J. Małecki, G. Serafin, T. Zorawik, Fourier–Bessel heat kernel estimates, J. Math. Anal. Appl. 439 (2016) 91–102.

[10] S.A. Molchanov, Diffusion processes and Riemannian geometry, Russ. Math. Surv. 30 (1975) 1–63 (Engl. transl.).
[11] M. Nagase, Expressions of the heat kernels on spheres by elementary functions and their recurrence relations, Saitama 

Math. J. 27 (2010) 25–34.
[12] A. Nowak, P. Sjögren, Sharp estimates of the Jacobi heat kernel, Stud. Math. 218 (2013) 219–244.

http://refhub.elsevier.com/S0021-7824(18)30157-0/bib416E64s1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib416E64s1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib42474Cs1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib42474Cs1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib424D31s1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib424D31s1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib424D32s1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib424D32s1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib434B50s1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib434B50s1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib4461s1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib4461s1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib44614D61s1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib44614D61s1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib4D53s1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib4D535As1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib4Ds1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib4Es1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib4Es1
http://refhub.elsevier.com/S0021-7824(18)30157-0/bib4E6F536As1

	Sharp estimates of the spherical heat kernel
	1 Statement of the result
	2 Outline of the proof
	3 Technical preparation
	4 Proof of Theorem 2.1
	4.1 Proof of Lemma 4.4
	4.2 Proof of Lemma 4.6
	4.3 Proof of Lemma 4.2
	4.4 Proof of Lemma 4.3

	5 Proof of Theorem 2.2
	References


