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Real-Time Constrained Trajectory Planning and Vehicle Control for
Proactive Autonomous Driving with Road Users

Ivo Batkovic1,2, Mario Zanon3, Mohammad Ali2, and Paolo Falcone1

Abstract— For motion planning and control of autonomous
vehicles to be proactive and safe, pedestrians’ and other road
users’ motions must be considered. In this paper, we present
a vehicle motion planning and control framework, based on
Model Predictive Control, accounting for moving obstacles.
Measured pedestrian states are fed into a prediction layer which
translates each pedestrians’ predicted motion into constraints
for the MPC problem.

Simulations and experimental validation were performed
with simulated crossing pedestrians to show the performance of
the framework. Experimental results show that the controller is
stable even under significant input delays, while still maintain-
ing very low computational times. In addition, real pedestrian
data was used to further validate the developed framework in
simulations.

I. INTRODUCTION

Since a decade, autonomous driving technologies have
emerged with the potential for increased safe and efficient
driving [1]. While one can expect autonomous driving tech-
nologies to be deployed first in structured environments
such as highway driving and low-speed parking [2], other
scenarios, such as urban driving, arguably pose a greater
challenge due to the presence of non-autonomous road users,
e.g. pedestrians, cyclists, and other vehicles. Hence, the
research focus needs to be directed to deriving models for
predicting the stochastic behavior of human road users, while
also avoiding collisions with them.

This paper targets the autonomous driving problem in
complex urban environments where road users are present.
The autonomous vehicle needs to drive along a pre-defined
route, while also ensuring that collisions are avoided. There-
fore, it is necessary that the vehicle is provided with infor-
mation about the environment, such as where a road user
will most likely be in the future, in order to be proactive and
plan for a collision-free path. Therefore, the vehicle motion
planning and control needs to be handled in real-time, hence
a low computational complexity is needed.

While safety is the dominating factor when designing driv-
ing trajectories for autonomous driving, passengers’ comfort
also needs to be considered. The main contributing factors

This work was partially supported by the Wallenberg Artificial Intel-
ligence, Autonomous Systems and Software Program (WASP) funded by
Knut and Alice Wallenberg Foundation, and by the COPPLAR project
(VINNOVA. V.P. Grant No. 2015-04849).

1 Ivo Batkovic and Paolo Falcone are with the Mechatronics group at the
Department of Electrical Engineering, Chalmers University of Technology,
Gothenburg, Sweden {ivo.batkovic,falcone}@chalmers.se

2 Ivo Batkovic, and Mohammad Ali are with the research department at
Zenuity AB {ivo.batkovic,mohammad.ali}@zenuity.com

3 Mario Zanon is with the IMT School for Advanced Studies Lucca
mario.zanon@imtlucca.it

Road
Sidewalk
Crosswalk

ld

ldt3t2
t1

t1

t2

t3

XG

YG
δ

lw

XL

YL

Fig. 1. An illustration of a path planning problem. The vehicle needs
to plan a trajectory in time subject to constraints such as road boundaries,
but also moving pedestrians (red circles). The kinematic bicycle model is
depicted in the lower part of the figure.

to ride discomfort are considered to be high levels of jerk
and acceleration [3]. Several methods have been proposed
where these factors are taken in consideration and optimized
for driving scenarios on highways or country roads [4], [5].
Similarly, the work in [6], [7] minimizes jerk profiles under
fixed travel times set beforehand.

For urban driving, [8] presents a framework for trajec-
tory planning by decomposing the problem in spatial path
planning and velocity profile planning. However, the planner
does not consider reactive behaviors such as responding
to dynamic objects in the environment. Other frameworks
[9], [10] use grid or graph-based methods to either plan
paths around pedestrians or stop for them, while making an
assumption that alternative paths exist, which may not always
hold true in urban scenarios. Planners using human comfort
as optimization are also able to plan paths around obstacles
[11], [12], but avoid stopping as it is not always optimal.
Similar to other planners, [13] uses a path-velocity decompo-
sition to generate path and velocity profiles in parallel. While
the planner is able to slow down, or come to a complete stop
for pedestrians, it does not consider pedestrian movements
in time, which might affect the planning capability.

In this paper we provide a general real-time framework to
handle autonomous driving in urban scenarios with pedes-
trian crossing intersections. Unlike the common approach in
literature, we do not decouple the longitudinal and lateral
control of the vehicle. Instead, we solve the trajectory
planning and vehicle control problem simultaneously, with
the assumption that a higher level navigation layer provides
a nominal driving route, e.g. center of the road lane, that
the vehicle needs to track. Model Predictive Control (MPC)
is used to generate optimal trajectories, while considering



other road users by predicting their motion in time. When
considering other road users, other approaches in the litera-
ture often predict the future motion with primitive methods,
e.g. constant velocity or acceleration models. In this paper
we use an environment-aware predictor, developed in [14],
to obtain more accurate future predictions, and unify the
collision avoidance problem simultaneously with the vehicle
motion and control problem.

We ensure collision avoidance by transforming the pre-
dicted motion and uncertainty of other road users into
constraints within the MPC formulation. Doing so, allows
us to plan a trajectory in time, while being proactive and
avoiding collisions with moving road users or other static
obstacles. Fig. 1 shows an example of how predicted pedes-
trian positions can be used for collision avoidance. The red
circles express regions at different planning times that the
vehicle is not allowed to enter. It is important to note that
we aim at addressing a nominal behavior which guarantees
safety and comfort, but which also requires an emergency
layer which would intervene in case something unexpected
happens. The safety layer is the subject of ongoing research.

This paper is structured as follows. In Section II we
introduce the problem formulation and our framework along
with the used vehicle and pedestrian prediction models. The
framework is evaluated, both in simulations and real experi-
ments, for scenarios with simulated pedestrians moving near
an intersection in Section III. Finally, we draw conclusions
and outline future research directions in Section IV.

II. PROBLEM FORMULATION AND FRAMEWORK

An autonomous driving application needs above all to
be safe, and in order safely coexist with a higher level of
riding comfort, the vehicle behavior needs to be proactive. By
predicting the future evolution of the driving environment,
one can incorporate cautiousness to minimize the risk of
collisions with surrounding traffic participants (pedestrians,
cyclists, cars). In the following, we first introduce the system
architecture, then we explain the vehicle and pedestrian
models used in our decision problem. Finally, we present
the reference path generation, cost function, and system
constraints used to formulate our control objectives.

A. System architecture

At each sampling instant, we assume that the vehicle
receives estimated vehicle states x̂0 from an estimator,
previous guesses of state and control input trajectories xg

k

and ug
k respectively, and a path reference ξc and vc from

a nominal path module. State measurements xmeas
k of a

detected pedestrian1 are sent to a module that generates
predictions xped

k of the pedestrian positions in time. The
planner uses the estimated states, the state and control
guesses, the path references, and the pedestrian predictions to
control the vehicle along the path, while avoiding collisions.
This paper focuses on the planner represented as the largest
dashed rectangle in Fig. 2.

1Although our approach can be extended to other road users, for conve-
nience of exposition we’ll refer to pedestrians
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Fig. 2. Representation of the closed loop architecture.

B. Vehicle model

For urban autonomous driving, lateral, longitudinal, and
yaw dynamics are quite fast [15]. Therefore, a kinematic
bicycle model was chosen for its simplicity and comparable
accuracy with a dynamic one [16] in the scenarios considered
in this paper. A sketch of the vehicle model is shown in
Fig. 1.

We model the vehicle motion with states x ∈ R6, and
controls u ∈ R2, defined as

x :=
[
x y v θ δ ω

]>
, u :=

[
a δsp

]>
,

where we denote the position coordinates of the rear wheel in
the absolute reference frame as x, y, the velocity in direction
θ as v, and the steering angle and steering angle rate as δ and
ω, respectively. The acceleration and steering angle setpoint
are denoted respectively by a and δsp, where the setpoint
refers to desired steering angle at the wheel base.

With the chosen state representation, the dynamics are
described by the bicycle equations as

ẋ =



ẋ
ẏ
v̇

θ̇

δ̇
ω̇

 =


v cos θ
v sin θ
a

v/lw tan δ
ω

w2
0(δsp − δ)− 2ζω

 =: f(x,u), (1)

where the only model parameters are: the wheel base lw and
the parameters w0 and ζ, introduced to describe a second
order model of the steering wheel actuator.

For simplicity, we chose to omit the longitudinal jerk in
the model. It could, however, easily be implemented without
any greater complication or performance impact.

C. Pedestrian model

The performance of a planner is predominantly limited
by the accuracy of the information it is provided with:
generating plans with highly inaccurate information about
the surrounding environment will result in suboptimal and
possibly unsafe or conservative plans. Since our planner
solves an optimal control problem over a prediction horizon,
a description of the environment, e.g. pedestrian positions
and road boundaries, are necessary throughout the planning
horizon.

We chose to use the flexible and fairly accurate method
presented in [14] to generate pedestrian predictions needed
for our planner. A simple representation of the road geometry
is used in order to assign possible paths (hereafter referred
to as references), e.g. sidewalks and crosswalks, where a
pedestrian might walk. The pedestrian motion is modeled



using a unicycle model, which is assumed to follow the
reference, thanks to a closed-loop regulator. Process noise
is added to the model, and state uncertainty is predicted
by propagating its covariance. Using the closed-loop system
model, pedestrian trajectories and state covariances can be
predicted along the road geometry.

Moreover, if a pedestrian is walking on a road that has
a bifurcation, e.g. the road splits into multiple walking
paths, the prediction method takes into account all possible
directions and generates predictions along these paths.

D. Problem statement

The objective of the vehicle is to safely follow any given
path as close as possible, while driving comfortably and
satisfying constraints arising from the physical limitations,
but also other road users, e.g pedestrians, cyclists and other
vehicles.

This problem can be formulated as a finite horizon, con-
strained optimal control problem. However, since the vehicle
model and constraints are nonlinear, we are faced with
the following Nonlinear Model Predictive Control (NMPC)
problem

min
x,u

N−1∑
k=0

[
xk − rxk
uk − ruk

]>
Wk

[
xk − rxk
uk − ruk

]
(2a)

+
[
xN − rxN

]>
WN

[
xN − rxN

]
s.t. x0 = x̂0, (2b)

xk+1 = f(xk,uk), (2c)
h(xk,uk) ≤ 0, (2d)

where N is the prediction horizon, Wk is the stage cost
matrix, xk and uk are the state and control input, rxk
and ruk are the state and control input reference, constraint
(2b) enforces that the prediction starts at the current state,
constraint (2c) enforces the system dynamics, and constraint
(2d) enforces constraints such as, e.g. actuator limits and
obstacle avoidance.

With the algorithms described in [17] the Nonlinear Pro-
gram (NLP) (2) can be rewritten using a Sequential Quadratic
Programming (SQP) approach, which sequentially approxi-
mates the NLP with a Quadratic Program (QP) (3). Following
the SQP approach we linearize the system model with a
previous guess (xg

k,u
g
k) and use any numerical discretization

scheme to obtain the sensitivities

Ak =
∂f

∂x

∣∣∣∣
xg
k,u

g
k

, Bk =
∂f

∂u

∣∣∣∣
xg
k,u

g
k

, bk = f(xg
k,u

g
k)− xg

k+1,

for every prediction time step k. The constraints Ck, Dk, dl
k,

du
k CN , dl

N , and du
N can be computed in a similar manner

from the constraints (2d). With the sensitivities, the problem
is then formulated into a QP and solved, where the solution
is used to update the previous guess. This process is either
iterated until convergence, or only done once, thus following
the real time iteration (RTI) scheme [18]. The SQP approach
transforms the problem into the following QP
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Fig. 3. Illustration of generated reference points rxk . The left and right
curves show the reference points obtained by integration with either the
previous velocity profile vgk or the velocity reference rvk . Using the velocity
reference rvk , the generated reference points rxk does not account for the
obstacle (red circle).

min
x,u

N−1∑
k=0

[
xk − rxk
uk − ruk

]> [
Qk Sk
S>k Rk

] [
xk − rxk
uk − ruk

]
(3a)

+
[
xN − rxN

]>
QN

[
xN − rxN

]
s.t. x0 = x̂0, (3b)

xk+1 = Akxk +Bkuk + bk, (3c)

dl
k ≤ Ckxk +Dkuk ≤ du

k (3d)

dl
N ≤ CNxN ≤ du

N . (3e)

The tuning parameters here are the stage cost matrices Qk,
Rk and Sk, and the prediction horizon N . Note that all
matrices in this problem formulation are in general time-
varying.

At every sampling instant, Problem (3) is solved, and only
the first control input u0 is applied to the system. However,
the solutions x and u are used to update the guesses
(xg
k,u

g
k) = (xk+1,uk+1), where k spans the prediction

horizon.

E. Reference generation

The generation of the trajectory reference deserves a
specific discussion, since it is a crucial component of the
control scheme and, as such, has a strong effect on the
closed-loop behavior. In standard MPC implementations, the
reference is updated from one time step to the next by
shifting: (rxk , r

u
k ) = (rxk+1, r

u
k+1). In our setup instead, we

recompute the reference at every time instant in order to
avoid aggressive controller behaviors when the vehicle is
forced to slow down due to the presence of an obstacle.

In particular, rather than relying on a reference trajectory,
we choose a reference path and a reference velocity along
it. The advantage of such choice is that, if the vehicle is
forced to slow down by the presence of an obstacle, the
controller will not try to recover the lost time and instead
it will simply try to bring the vehicle back at the desired
velocity. In our research, we adopt an approach which is
very similar to the one proposed in [19] to address these
issues. Differently from [19], we eliminate the curvilinear
path parameter σ from the problem formulation and we relate
σ̇ to the vehicle’s velocity directly.

We assume that a reference velocity vc(σ) and a curve
ξ(σ) = (xc(σ), yc(σ), θc(σ), δc(σ), ωc(σ), ac(σ), δcsp(σ))
parametrized in the curvilinear coordinate σ are available.
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Fig. 4. Illustration of the regions occupied by the vehicle and pedestrian.
A linear constraint is expressed by the black line, distancing itself with
distance dsafek from the pedestrian.

Using the current position (x0, y0), we define the initial
reference coordinate σ0 by projecting (x0, y0) onto the curve
ξ(σ) such that σ0 = arg minσ ‖(x0, y0)− (xc(σ), yc(σ))‖2.
Then, we define reference points at time kTs by means of
σk = σ(kTs). In order to obtain a meaningful reference in
the presence of obstacles, we propose to use

σk =

∫ t

0

(1− κ(τ)ey(τ))−1v(τ) cos(eψ(τ))dτ, (4)

where κ, ey , and eψ is the curvature, lateral error and
orientation error w.r.t to the path. This guarantees that the
predicted reference accommodates for the presence of ob-
stacles [20]. Using the reference velocity in the computation
of σ(t), instead, would ignore the presence of obstacles and
create the potential for unstable behavior, especially in the
presence of sharp turns. In the context of the RTI scheme,
σ(t) is obtained by integration of the velocity computed at
the previous time instant.

In practice, the curves ξ(σ) and v(σ) might not be avail-
able and the reference generation layer might have access
only to a set of data points ξcp and vcp. Then, a curve
can be obtained by interpolation. In this paper, we use a
simple piecewise linear interpolation and the formula σk+1 =
σk+vgk cos(eψk

)Ts for approximate integration. By selecting
σk according to vgk rather than rvk , the algorithm is able to
account for the presence of obstacles, as explained in Fig. 3.
Note that in the second case, the orientation reference will
refer to a point on the path far from the previously predicted
vehicle position and, therefore, will result in an incorrect
orientation reference and unwanted driving behavior.

Moreover, we assume that the only available data concerns
positions and velocities, such that we need to define suitable
references for the other states and controls. The position
references are obtained as (rxk , r

y
k) = (xc(σk), yc(σk)), while

the heading reference rθk is computed by

rθk = tan−1
(ryk+1 − r

y
k

rxk+1 − rxk

)
, (5)

and the steering angle and steering angle rate references are
set as the initial angle δ0 and zero, respectively, across all
prediction times k. The reference for the control input is set
as zero for the acceleration, and δ0 for the steering setpoint.

F. Cost function

Often, matrices Qk, Rk, and Sk are chosen to have the
diagonal form

Qk = diag(q1, ..., qm),

Rk = diag(r1, ..., rn), S = 0,
(6)

where m and n denote the state and control input dimensions.
As mentioned in Section II-E, in the presence of obstacles,

trying to force the system to catch up with a predefined
evolution of the curvilinear coordinate σ can yield an unde-
sirably aggressive behavior. Therefore, we propose to remove
the term penalizing this deviation from the cost. We do so by
only penalizing the lateral deviation from the path ξc through
the term([

0
1

]> [
cos(−rθk) − sin(−rθk)
sin(−rθk) cos(−rθk)

] [
xk − rxk
yk − ryk

])2

.

Then, matrix Qk becomes

Qk = blockdiag(q1T (−rθk), q2, q3, q4, q5), (7)

with
T (θ) =

[
sin2 θ cos θ sin θ

cos θ sin θ cos2 θ

]
. (8)

With this cost formulation we avoid undesirably aggressive
behavior and we still ensure that the cost matrices are positive
semi-definite.

G. System constraints

The states and control inputs are subject to a set of
constraints, which concerns mainly safety aspects, comfort
and physical limitations of the vehicle, which are formulated
in (3d)-(3e). These consist of the road boundary limits, but
also of occupied areas of predicted pedestrians’ positions.

1) Road boundary constraints: In order to decide on the
lateral bounds of the road, we use the previous guesses xg

to project the positions (xgk, y
g
k) onto the path. Knowing the

projection point (x̂gk, ŷ
g
k), and the orientation θ̂gk, it is possible

to express a lateral bound ld on the path as

∆road− ld ≤ xk sin(−θ̂gk)+yk cos(−θ̂gk) ≤ ∆road + ld, (9)

where ∆road = x̂gk sin(−θ̂gk) + ŷgk cos(−θ̂gk).
2) Pedestrian constraints: Information about future

pedestrian states is provided by a prediction layer out-
side of the MPC framework. The predictions consist of
positions (xpedk , ypedk ), the major and minor axes λak and
λbk corresponding to the covariance ellipse of a Gaussian
probability density function, and the orientation α in a global
frame. With this information, occupied pedestrian regions
are defined in the time domain. Similarly, we define a safety
ellipse around the vehicle that describes the space it occupies.
An illustration is provided in Fig. 4.

The covariance ellipses are linearized using the previous
vehicle positions (xgk, y

g
k) and heading θgk to find the ve-

hicle center (xegok , yegok ). The predicted pedestrian positions
(xpedk , ypedk ) and the vehicle center are used to compute the
safety distances degok and dpedk for the vehicle and pedestrian



using the relative orientation φk. Considering the two safety
distances, we express a linear constraint around the rear
wheel of the vehicle as

∆pedlb ≤ ∆ped

[
xk
yk

]
, (10)

where ∆ped = −
[

cosφk sinφk
]

and

lb =

[
xpedk − dsafek cosφk − (xck − x

guess
k )

ypedk − dsafek sinφk − (yck − y
guess
k )

]
. (11)

The resulting linear constraint, together with a physical
illustration of the parameters, is illustrated in Fig. 4.

III. SIMULATIONS & EXPERIMENTAL VALIDATION

In this section we present results from a traffic scenario
simulation with a crossing pedestrian, and the ego vehicle.
To model the pedestrian, we used a trajectory from the data
set in [14]. To further verify the framework, we also provide
experimental results for a traffic intersection with a simulated
pedestrian.

A. Simulation Setup

The controller was first tested in a simulated intersection
scenario with a real pedestrian trajectory taken from [14]. In
this scenario, the ego vehicle is traveling along a straight road
towards an intersection which a pedestrian is approaching,
see Fig. 5.

We generated sensitivites Ak and Bk and bk with a fourth
order Runge-Kutta method, while ensuring that 5 integrator
steps was sufficiently accurate, with a discretization time of
∆t = 0.05s, and the following parameter values

lw = 2.984m, w0 = 20s−1, ζ = 0.9s−1. (12)

The estimated state x̂0 was obtained by integration, using an
integrator with error control to guarantee the accuracy of the
solution. The vehicle controller used

Qk = blockdiag(2T (−rθk), 0.1, 10, 0.1, 10),

Rk = blockdiag(2, 1), Sk = 0, N = 100,
(13)

and the state and control inputs were subject to the following
constraints

−1 ≤ vk ≤ 20, |δk| ≤ 0.4942, |ωk| ≤ 0.1765,

−2 ≤ ak ≤ 1, |δk,sp| ≤ 0.4942,
(14)

where all values are given in standard SI-units.
Finally, the lateral bound on the road boundary constraint

(9) was set to be ld = 1m. In order to ensure feasibility of
the optimization problem (3), we relax constraint (9) with
an L1-penalty. This will ensure that if there exists a feasible
solution for problem (3), then the relaxed problem yields the
same solution [21, Prop. 6].

B. Experimental Setup

The closed loop controller was experimentally validated
at the Astazero2 test-track outside Gothenburg, Sweden. The
experiment consisted of a traffic scenario including our ego
vehicle, and a simulated walking pedestrian. A simulated
pedestrian was used due to safety reasons. The vehicle
needed to make a 90-degree left turn in the intersection,
while a simulated pedestrian was moving close-by and
could possibly cross. Fig. 7 shows the considered scenario,
where the vehicle needs to drive along the orange line that
represents the center of the driving lane, with an approaching
pedestrian from the right.

1) Test vehicle: The vehicle used in the experiment was
a Volvo XC90 T6 petrol-turbo SUV with the real-time open
source software OpenDLV3 that interfaced sensors and actu-
ators to an external computer for control. A Laptop computer
(i7 2.8GHz, 16GB RAM) running Ubuntu 16.04 as a Virtual
Machine was used to receive sensor data, compute the control
signals, and send actuation requests to the vehicle through
OpenDLV through an ethernet connection. The vehicle was
equipped with a Real Time Kinematic (RTK) GPS receiver
for high accuracy positioning, and the estimated state x̂0 was
obtained with an Extended Kalman Filter (EKF).

2) Experimental Details: The interface between
OpenDLV and the vehicle exhibited a delay of roughly
300ms when sending signals to the steering actuator, but
also reading from it. Therefore the state space vector in (1)
was augmented with additional time-delayed states for the
steering angle to model the input delay. Since we estimated
the steering wheel actuator dynamics, dead reckoning was
used for estimating the steering wheel angle and steering
wheel angle rate. Furthermore, due to safety features in the
vehicle, the actuator limited the steering wheel angle in a
speed-dependent way while in autonomous driving mode.
To model this, we implemented the linear constraint

a1vk + b1δk ≤ c1, a2vk + b2δk ≥ c2. (15)

The sensitivities were generated in the same way as for
the simulation, and used same parameter values as in (12)
and tuning parameters as in (13).

C. Results

We implemented the proposed framework in MATLAB
first for the simulations, and then auto generated the code
into C++, where it was interfaced with OpenDLV for exper-
imental testing. Both implementations used the open source
software ACADO [22] for auto generation of the sensitivities,
and the solver from HPMPC [23] to solve the QP problem
with the RTI scheme.

1) Simulation: Fig. 5 illustrates the open-loop solutions
across different time instants. The MPC controller is gen-
erating control inputs to minimize the deviation from the
reference path and reference velocity rvk = 10m/s. For
time t = 1.25s the open-loop solution is not affected

2See http://www.astazero.com/ for more information
3See https://opendlv.org/ for more information.



by the predicted pedestrian positions, and the controller is
generating inputs just to stay on the path. At time t = 7.5s
the vehicle has adapted its speed and managed to plan a
path around the pedestrian instead of coming to a full stop.
For times t = 10s and t = 12.5s, we can see how the
vehicle finally passes the pedestrian, and the final closed-loop
trajectory. The corresponding closed-loop states and control
inputs are presented in Fig. 6.

The aggressive behavior on the steering rate is due to the
deviation of the actual pedestrian position from the predicted
one. When the vehicle is close to the pedestrian, the control
authority is reduced and such uncertainties result in large
control actions. Future research will investigate approaches
to mitigate these undesirable behaviors.

Lastly, the runtime of the framework in MATLAB resulted
in an average solution time of 22.4ms with a standard
deviation of 2.3ms, and longest timing of 34.1ms.

2) Experiment: Fig. 8 shows the open-loop solutions
across different time instants for the experiments at the test-
track. The same controller from the simulation is used with
the reference velocity rvk = 5m/s. For time t = 13.75s
the open-loop solution is not affected by the pedestrian con-
straints, and the controller is generating inputs only to stay
on the path. For time t = 20s the prediction algorithm prop-
agates pedestrian positions through the intersection, where
one of the predictions is crossing the vehicle’s path. Since
the predicted positions are transformed into constraints, the
vehicle is forced to slow down and make sure that the
pedestrian passes. This can subsequently be seen in times
t = 23.75s through t = 30s. Fig. 9 shows the corresponding
closed-loop states and control inputs.

The computer running the controller sent actuation signals
at a rate of 20Hz. The actual runtime of the framework,
including the pedestrian prediction method, resulted in an
average solution time of 10.3ms, with a standard deviation of
2ms, and longest timing of 19.7ms. Thus, the runtime leaves
a great margin to further increase the algorithmic complexity,
or the sampling rate of the control scheme. In addition, since
the controller ran in a Virtual Machine and not on the native
computer operating system, there is a possibility to further
reduce the computational time.

IV. CONCLUSIONS

In this paper we considered autonomous driving in ur-
ban environments with pedestrian crossings. We propose a
general framework that solves the trajectory planning, and
the longitudinal an lateral vehicle control problem both in
simulations and real experiments. In addition, by combining
predictions of the environment, it is shown that behaviors,
such as slowing down, or stopping for a crossing pedestrian,
are naturally included without any noteworthy increase in
complexity. As shown, the framework already presents real-
time performance, without being highly optimized, except
for the choice of sensitivity generation through ACADO and
the solver provided by HPMPC.

Future work will aim to research situations where pedes-
trians suddenly appear to the framework due to sensor occlu-
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Fig. 5. Scenario with real pedestrian measurements. The blue and red lines
are the road boundary constraints from (9), while the green line and brown
lines are the projected reference (rxk , r

y
k) and and open-loop solution x. The

predicted pedestrian states are depicted as red points, and the uncertainties
as black ellipses. The trailing black and red lines show the traveled path of
the vehicle and pedestrian.
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Fig. 6. Closed loop states from Fig. 5. The first plot shows the velocity
profile and the second plot shows the steering angle (blue line), and steering
angle setpoint (dashed brown line). The last two plots show the acceleration
and steering angle rate.

sion. In addition, we will aim to further verify the framework
in more complex intersections with crossing pedestrians.
Finally, future research will aim at developing a control
scheme with recursive feasibility guarantees, which is robust
to unexpected events.
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