
Understanding Common Automotive Security Issues and Their
Implications

Downloaded from: https://research.chalmers.se, 2024-03-13 10:59 UTC

Citation for the original published paper (version of record):
Lautenbach, A., Almgren, M., Olovsson, T. (2019). Understanding Common Automotive Security
Issues and Their Implications. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 11552: 19-34.
http://dx.doi.org/10.1007/978-3-030-16874-2_2

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Understanding Common Automotive Security
Issues and Their Implications

Aljoscha Lautenbach(�)[0000−0001−5666−9940], Magnus
Almgren[0000−0002−3383−9617], and Tomas Olovsson[0000−0001−9548−819X]

Chalmers University of Technology, Gothenburg, Sweden
{aljoscha, magnus.almgren, tomas.olovsson}@chalmers.se

Abstract This is the authors’ version of this paper. The final authen-
ticated version is available online at https://www.doi.org/10.1007/
978-3-030-16874-2_2.
With increased connectivity of safety-critical systems such as vehicles
and industrial control systems, the importance of secure software rises
in lock-step. Even systems that are traditionally considered to be non
safety-critical can become safety-critical if they are willfully manipulated.
In this paper, we identify 8 important security issues of automotive
software based on a conceptually simple yet interesting example. The
issues encompass problems from the design phase, including requirements
engineering, to the choice of concrete parameters for an API. We then
investigate how these issues are perceived by automotive security experts
through a survey.
The survey results indicate that the identified issues are indeed prob-
lematic in real industry use-cases. Based on the collected data, we draw
conclusions which problems deserve further attention and how the prob-
lems can be addressed. In particular, we find that key distribution is a
major issue. Finally, many of the identified issues can be addressed by
improved documentation and access to security experts.

Keywords: Automotive Application Development · Automotive Security ·
Expert Survey

1 Introduction

Imagine that, while driving on the highway, the driver seat suddenly starts to
slide back and forth, and the seat adjustment controls are not responding. Clearly,
the driver will have problems to drive the car safely: she may be unable to reach
the brakes in a critical moment, or her movement may be so restricted that it
is impossible to steer correctly. Perhaps the driver would be able to handle the
situation for a short time, but after a while she would become fatigued from
having to constantly adjust her body to the changing seat position, which can
lead to dangerous situations. There are many safety-critical systems in a car, but
as this example shows, even not directly safety-critical systems such as the seat
adjustment system can have a negative impact on safety when attacked.

https://www.doi.org/10.1007/978-3-030-16874-2_2
https://www.doi.org/10.1007/978-3-030-16874-2_2


2 Lautenbach, A., Almgren, M., Olovsson, T.

In the last few years, a growing number of cyber security problems have been
discovered in automotive systems. The first systematic security investigations
started early this millennium [24], but only the more recent works by Checkoway
et al. [10,4], Miller and Valasek [13] and others brought the problem to the
attention of a wider audience. Automotive systems face the same challenge as all
embedded systems in the wake of ubiquitous connectivity: their technology was
designed when connectivity was limited, and malicious attackers were not seen as
a serious threat since local access was required to do any damage [9]. Therefore,
security mechanisms are missing and must now be added in retrospect [24]. A first
step to help remedy this situation is the “SAE J3061 Cybersecurity Guidebook
for Cyber-Physical Vehicle Systems” [17].

In general, automotive software engineers are well trained in the safety aspects
of their work, but few have security training. This is complicated by the fact
that, depending on the context, the same terms may have different meanings
across disciplines [3,6,8,12,16]. Without security training, even cyclic redundancy
checks (CRCs) can easily be misconstrued as sufficient for security [25]. More
generally, there is a broad consensus among security experts that implement-
ing secure systems and using cryptographic libraries correctly requires finesse
and training [2,11]. A recent study by Acar et al. [1] showed that the API of
cryptographic libraries has a significant impact on the security of the resulting
application code.

In this paper, we have used a conceptually simple example of a seat control
application and enumerate issues that may arise or questions that need to be
answered in the course of the development. This resulted in eight issues a developer
faces, ranging from the open-ended act of understanding the threats to the much
more concrete choice of key length for encrypted or authenticated data. These
eight issues form the basis for a survey sent to automotive security experts,
and the data is further analyzed before we present our recommendations and
conclusions.

2 Methodology

Considering the design of a simple automotive control application, such as a
seat control application, there are several security issues which arise naturally
during the development process. We chose this simple use-case to capture the
most common issues, and more elaborate use-cases will almost certainly unearth
additional issues. In order to investigate to what extent the identified security
issues are perceived to be problematic, we surveyed automotive security experts.
We also questioned the experts to what extent some given recommendations
address the issues. The survey was distributed to several contacts at seven
automotive original equipment manufacturers (OEMs) and a small number
of consultancy companies. Participation was voluntary and anonymous, and
company affiliations were not tracked to preserve anonymity. This implies that
participant distribution among the companies is unknown. The survey was roughly



Understanding Common Automotive Security Issues and Their Implications 3

structured into four main parts: (a) background questions, (b) introduction of the
contexts, (c) questions for each issue and (d) questions on the recommendations.

In part (a), we asked some demographic questions about the participants’
background. This included questions on their number of years of experience with
automotive systems, security, and safety respectively, and what their primary
work task is (requirements engineering, software development, etc).

In part (b), we explicitly introduced three contexts, since some of the questions
about the security issues can be understood slightly differently depending on
each participant’s interpretation of the context. The presented contexts were:
(1) an independent context (i.e., “in a general sense”), (2) in the context of the
participants’ own work and (3) in the context of a scenario we called “simple
automotive control application (SACA)”. The scenario was described as follows.

You are developing a simple automotive control application (SACA)
that operates on two electronic control units (ECUs), which are connected
via a CAN bus (max bandwidth of 1 Mbit/s). The two ECUs exchange
messages periodically.

In part (c), the questions for each issue were presented. At this point it is
important to point out that the issues were phrased in a neutral way as activities
to avoid leading the subjects. For the same reason, illustrating examples and
elaborations were avoided, with the assumptions that security experts would be
familiar with the various difficulties that accompany each of the chosen issues.
The issues were roughly grouped into the categories of “Design and architecture”,
“Programming” and “Parameters”. The questions for each issue followed a fixed
pattern. There were four questions per issue that can be paraphrased as follows:

1. Importance: How important is “activity X”?

(a) Participants’ experience with automotive systems, security and safety

(b) Participants’ primary work tasks (multiple choice)

Figure 1: Survey participants’ background



4 Lautenbach, A., Almgren, M., Olovsson, T.

2. Difficulty: To what extent do you agree that “X” is a difficult activity?
3. Frequency: How often do you perform “activity X” in your own work?
4. Comments: Do you have recommendations how to simplify/improve “activity

or situation X”? Do you have any other comments? (optional free text)

The questions on importance and difficulty were asked for all three contexts,
while the frequency question was only asked in the context of the person’s own
work. The particularly interesting activities are those which are both important
and difficult. An activity that is both frequent and difficult might also be of some
interest, even if it is not perceived to be important.

3 Survey Participants

In total, eight industry professionals completed the survey.1 Even though this is
a rather low number of participants for a general survey, we argue that given
the very specific target group of automotive security experts, eight is still a
good number in this highly specific context. These are people with considerable
expertise and knowledge of the area (see Fig. 1a). We considered to include
non-experts in the survey, but felt that it would not benefit the quality of the
results, and so it was deemed better to have relevant answers from a small but
targeted group.

One demographic question was about the participants’ experience with au-
tomotive systems, security and safety, and the results are shown in Figure 1a,
emphasizing that our target group has significant experience with security.

Figure 1b shows the distribution of the primary work tasks, which was
a multiple choice question. Nobody answered that they primarily work with
“Testing”, “Academic research” or “Other”, so these options are not shown in
Figure 1b. It is notable that seven out of eight respondents work with either
architecture or requirements engineering, which may introduce a certain bias.
Furthermore, only two respondents indicated that they primarily work with
system, hardware or software development. Much system development happens
at suppliers, so this makes sense.

4 Common Automotive Security Issues

As outlined in Section 2, we identified eight common automotive security issues
by considering the security needs of a simple networked control application, and
we designed a survey with the aim to identify which of these issues may warrant
deeper investigation.

For the importance and difficulty related questions of the survey, we will only
present the answers for the person’s own context, the answers for the other two
contexts are typically similar. In fact, there is a general trend that the importance
of the issues is rated highest for the person’s own work, and importance in the

1As stated earlier, we did not track company affiliations to preserve anonymity.



Understanding Common Automotive Security Issues and Their Implications 5

general context is rated lower than in the SACA scenario. The exact same trend
can be observed for difficulty.

In the following subsections we present the eight identified issues together
with the aggregated survey data, roughly grouped into Design and architecture,
Parameters and Programming. Since the dataset is small, we present the survey
answers per participant in the final subsection, and make some observations
about possible correlations.

4.1 Design and Architecture

Designing secure systems involves several steps, the first of which is to identify
the threats to the system. The next steps are to choose security measures to
counter the identified threats and to implement those security measures. Without
identifying the threats first it is difficult to choose appropriate countermeasures.

D1 Identification of Threats There are many different ways to gather the
security requirements of an application, but they all require some experience and
training. The identification of threats is typically paired with a risk assessment

(a) The number of answers to how important the investigated design issues are

(b) The number of answers to whether the investigated design issues are difficult

(c) The number of answers to how frequent the participants encounter the investigated
design issues in their own work

Figure 2: Survey results for the design related issues



6 Lautenbach, A., Almgren, M., Olovsson, T.

procedure, similar to the way hazard analysis is paired with risk assessment in
safety engineering [7]. Therefore the identification of threats is the first issue to
consider.

Once the threats have been identified and the security measures have been
chosen, it is time to implement them. Many, if not most, security measures
use cryptography in some form. For in-vehicle communication, the question
of symmetric versus asymmetric cryptography is relatively simple to answer:
symmetric cryptography is strongly preferred due to much better performance.
Asymmetric cryptography still has a place in the vehicle for functions where speed
is not critical, e.g., signatures for remote software updates, or when pre-shared
keys are impractical, e.g., when communicating over the internet.

D2 Choice of a Key Distribution Mechanism When symmetric cryptog-
raphy is used, the keys must be available at both communication ends before
communication starts. There are several ways key distribution can be done. One
possibility is to use an out-of-band channel (pre-shared keys). This is usually done
during production. Alternatives are public key schemes such as the Diffie-Hellman
key exchange protocol or certificates.

The choice of the key distribution mechanism has both practical and security
implications. For instance, repair and maintenance is an important criteria to
consider [15]. If an electronic control unit (ECU) breaks, maybe due to an accident,
and keys on that ECU become inaccessible, there must be a way to handle this.
Additionally, the automotive ecosystem includes many multi-tiered suppliers, and
some ECUs that arrive at the vehicle manufacturer for assembly are essentially
black boxes, developed to precise specifications. This raises the questions, who
installs the pre-shared key, and how is it installed on other ECUs that need to
communicate with the ECU?

Survey Results Figures 2a to 2c depict the survey results for design and archi-
tecture issues. As Fig. 2a shows, there is strong agreement among the experts that
these are important issues. There is also strong agreement that key distribution is
a difficult problem to solve, while the opinions on threat identification are slightly
split (Fig. 2b). The answers also indicate that threat identification happens fre-
quently, whereas choosing a key distribution mechanism is rare. This somewhat
reflects that many of the participants work with requirements engineering and
architecture. The high frequency of threat identification may explain why some
disagree that it is a difficult task.

4.2 Parameters

Once the basic design decisions have been made, several parameters have to be
chosen to implement the chosen security mechanisms. Parameter choices can
include the choice of a cryptographic algorithm, choosing an appropriate key
length and choosing a mechanism to ensure freshness.



Understanding Common Automotive Security Issues and Their Implications 7

Pa1 Choice of Suitable Cryptographic Algorithms The choice of a crypto-
graphic algorithm is not always straightforward. Cryptographers constantly try to
find weaknesses in published algorithms, and an algorithm which was considered
secure five years ago may not be so today, although this is often a gradual
process. A good example for gradual deprecation is the SHA-1 cryptographic
hash algorithm: first attacks have already been discovered in 2005 [23], and it has
been considered weak for many years, but the first collision was only publicized
in 2017 [19]. Since automotive products have a lifetime of 10 to 20 years, the
algorithms must be chosen with care. Apart from pure security considerations,
automotive systems have strict requirements for performance, and trade-offs must
be considered.

Pa2 Choosing a Suitable Key Length Once an algorithm has been chosen,
another parameter must be considered: the length of the key (also known as
secret), which is also a factor in the security of the scheme. Once again, the main
consideration is the trade-off between security and overhead: in general, longer

(a) The number of answers to how important the investigated parameter issues are

(b) The number of answers to whether the investigated parameter issues are difficult

(c) The number of answers to how frequent the participants encounter the investigated
parameter issues in their own work

Figure 3: Survey results for the parameter related issues



8 Lautenbach, A., Almgren, M., Olovsson, T.

keys offer greater security, but they also require higher processing power which
can be very limited on a microcontroller. However, in order to judge which key
size is sufficient for what level of security requires a basic understanding of the
algorithm and its weaknesses.

Pa3 How to Implement a Freshness Mechanism In replay attacks, an
attacker records a previous message which is encrypted or authenticated and
resends it to achieve a particular goal. In order to avoid replay attacks, a freshness
mechanism is used. This can be a monotonic counter or a timestamp added to
the message, so that two otherwise identical messages will be different. There are
several practical difficulties with freshness counters or timestamps. For one, a
counter must be chosen appropriately large: once the counter wraps around, a
new key must be used. It is also important that the counters are synchronized
so that only particular counter values are accepted at particular times. Clock
synchronization is a particularly tricky subject.

Survey Results Figures 3a to 3c show the survey results for the parameter
issues. In general, there is consensus that these are important issues (Fig. 3a), but
the responses on the difficulty are more nuanced. There is only slight agreement
that choosing a suitable cryptographic algorithm is difficult, and there is strong
disagreement that choosing a suitable key length is difficult (Fig. 3b). One
participant remarked that for choosing parameters such as key length there are
recommendations from NIST and AUTOSAR which simplify the process, a point
we will return to in the recommendations in Section 5. We assume the availability
of documented recommendations by trusted organizations is the reason for the
perception of key length choice as an easy problem, and to a lesser extent for
the algorithm choice. Another participant pointed out that the possibility for
software updates, which are not universally supported in embedded systems, are
of paramount importance to ensure continued security. For the most part, all
three parameter choices happen rather infrequently (Fig. 3c).

4.3 Programming

At some point, the chosen security measures must be implemented, and various
pitfalls await the developer: from the correct use of APIs over implementation of
cryptographic primitives to programming language pitfalls.

Pr1 Incorrect API Use One such source of difficulty for developing secure
programs is the correct use of APIs. If the application programmer uses an API
incorrectly, this may lead to insecure programs [1,2,5,11,14]. For instance, if
programmers do not understand why an initialization vector is necessary, they
may pass NULL for it, which may be allowed by the API but is semantically
incorrect.



Understanding Common Automotive Security Issues and Their Implications 9

Pr2 Writing Secure C Code In addition to API specific problems, there
are also typical development pitfalls that apply to any program written in the
C programming language. It is easy to write insecure code, e.g., due to faulty
memory management, pointer handling or lack of input validation [18]. These
problems are well known and well documented, and yet they still occur in
practice [21,22]. Since most automotive software is developed in C, writing secure
C code is another programming issue.

Pr3 Implementing Cryptographic Primitives or Libraries In order to
implement security measures that use cryptography, cryptographic libraries or
primitives must be available. However, since automotive systems are highly
heterogeneous and often use minimal libraries, there is a chance developers
may be tempted to implement their own cryptographic primitives. Consider for
example the AUTOSAR standard for automotive software: AUTOSAR defines
interfaces to access cryptographic libraries, but the standard also clearly states
that the underlying implementation is the responsibility of the software vendor.
Cryptographic libraries should always be written by cryptographers or security
experts, otherwise there is a high probability that they are insecure [2,11]. If this

(a) The number of answers to how important the investigated programming issues are

(b) The number of answers to whether the investigated programming issues are difficult

(c) The number of answers to how frequent the participants encounter the investigated
programming issues in their own work

Figure 4: Survey results for the programming related issues



10 Lautenbach, A., Almgren, M., Olovsson, T.

Table 1: Responses per survey participant (see legend below), in the context of
their own work

Primary Experience3

Work Tasks (Auto., Security, Safety) D14 D24 Pa14 Pa24 Pa34 Pr14 Pr24 Pr34

Participant 1 Management 5,4,5 5,4,3 5,3,2 4,4,2 4,4,2 4,3,2 4,4,3 5,4,3 4,4,2
Participant 2 Industrial Research 5,4,1 3,3,3 3,4,2 2,3,2 1,3,2 4,4,2 2,4,2 4,3,2 2,4,2
Participant 3 Architecture 5,4,4 2,4,3 5,4,2 4,4,3 3,3,2 3,3,1 4,4,1 2,3,1 3,4,1
Participant 4 Architecture 4,5,1 5,4,5 5,4,2 3,4,4 3,4,3 2,3,2 2,3,5 4,3,1 5,4,1
Participant 5 Requirements Eng. 5,4,1 5,3,5 5,4,2 3,3,3 2,2,2 4,2,2 3,3,3 3,3,2 1,1,1
Participant 6 Req. Eng., Arch. 3,5,5 2,4,5 4,4,3 4,4,3 2,4,3 4,4,3 2,4,1 4,4,1 2,4,1
Participant 7 Req. Eng, Arch., Dev. 3,5,1 4,4,5 5,4,4 5,4,5 3,3,4 5,4,5 4,4,5 4,4,5 4,4,5
Participant 8 Development 2,3,1 4,4,5 4,4,4 3,4,3 3,4,4 4,4,3 4,4,3 4,4,3 4,4,3

Experience Difficulty Importance Frequency
1 Never Disagree completely Not important Never
2 Less than 1 year Disagree Slightly important Every few years

Legend 3 1 – 3 years Neither agree nor disagree Important Every few months
4 3 – 5 years Agree Extremely important Every few weeks
5 More than 5 years Agree completely Every few days

is not immediately obvious, consider the Debian SSL bug discovered in 2008:
two small, superficially harmless changes by the Debian maintainers significantly
lowered the entropy during SSL key generation, which led to a huge number of
insecure keys. Thus, the implementation of cryptographic primitives or libraries
is the final programming issue we consider.

Survey Results Figures 4a to 4c show the survey results for the programming
related issues, some of which are surprising. Figure 4a shows an outlier for the
importance of correct cryptographic implementations. However, since the context
is the person’s own work, it may simply be that the person never works with
cryptography, and thus finds it unimportant. There is consensus that it is an
important issue in the other contexts, thus supporting this assumption.

Most surprising is that only half of the respondents agree that implementing
cryptographic primitives is a difficult problem (Fig. 4b). We expected complete
agreement here. Two people strongly stated in the comments that you should
never implement your own “crypto”, which may be a hint for the reasoning
behind the results: if you outsource it, it is not difficult. However, even in a
general context several people answered that this is not difficult. Another possible
reason may be hidden in the frequency (Fig. 4c): half of the experts answered
that they never implement cryptographic primitives in their own work.



Understanding Common Automotive Security Issues and Their Implications 11

Table 2: Identified issues
D1 Identification of threats
D2 Choice of a key distribution mechanism
Pa1 Choice of suitable cryptographic algorithms
Pa2 Choosing a suitable key length
Pa3 How to implement a freshness mechanism
Pr1 Incorrect API use
Pr2 Writing secure C code
Pr3 Implementing cryptographic primitives or libraries

4.4 Intra and Inter Question Correlations

So far we have only considered aggregate survey results, but it may also be of
interest to look at the participants’ individual answers to investigate possible
correlations. We will only highlight a few observations here.

Table 1 presents the dataset (in the context of each person’s own work) in a
codified form, and Table 2 summarizes the eight identified issues for easy cross
reference with Table 1. Each row in Table 1 corresponds to the answer of one
survey participant, and each answer is represented by one number, grouped in
triplets. For experience, the triplet represent the answers for automotive, security
and safety experience, respectively. For the eight issues, the triplet represents
the answers for difficulty, importance and frequency, respectively. For instance,
participant 1, who primarily works with management, has more than 5 years of
experience with both automotive systems and safety, and 3 - 5 years of experience
with security.

Studying this data, several interesting observations can be made. For instance,
not one participant has more than 5 years of experience with both automotive
systems and security, hinting at the fact that security is still relatively new in
the automotive industry. It is also worth pointing out that the three participants
with the most security experience collectively answered 20 times that the issues
are extremely important, and 4 times that they are important, indicating a
strong agreement with our claims, averaging at 3.835. For the remaining five
participants, the average is 3.5, still a high level of agreement. Another, perhaps
unexpected, observation is that, compared to the participants with less automotive
experience, more experience in the automotive industry is negatively correlated
to the importance participants ascribe the issues. This may be a side effect of
the first observation, i.e., that participants with less automotive experience have
more experience with security. Either way, the averages are still high, 3.375 for
the group with extensive automotive experience (auto exp = 5), and 3.875 for the
group without (auto exp < 5). Similar analysis shows that the more frequently a
person is involved in a particular activity, the more difficult and important they
rate that activity.

3Triplets in the order: Automotive, Security, Safety
4Triplets in the order: Difficulty, Importance, Frequency



12 Lautenbach, A., Almgren, M., Olovsson, T.

5 Recommendations

As we have seen, security is a pervasive design issue which affects every level of the
development process, and even trivial systems can be dangerous when exploited
by an attacker. Consequently, security must be included in all development steps.
Based on the previously identified issues, we give four recommendations how
automotive software development can be made more secure.

R1 Improve documentation, for instance by adding look-up tables for recom-
mended key lengths, algorithms, MAC length and freshness parameters.

Rationale: Software developers in the automotive industry are usually well
trained in safety, but they often have little or no training in security. As a result,
they may inadvertently introduce security relevant bugs into their code. Therefore,
it should be made as easy as possible for automotive software developers to write
secure code. This can in part be achieved through improved documentation.
For instance, the difficulties in choosing the right key length, choosing the right
cryptographic algorithm and choosing good parameters to guarantee freshness
can be alleviated by adding more security related documentation.

R2 The vehicle manufacturer should develop a process for key management.

Rationale: The topic of key management deserves special attention, because
of its wide ranging implications. If symmetric keys or a public key infrastructure
setup are chosen, the vehicle manufacturer must maintain a central infrastructure
to store and retrieve those keys on demand in a secure manner. The key manage-
ment also needs to be coordinated with suppliers to clarify how and when the
keys are installed. Furthermore, the keys must be accessible to licensed workshops
for repair and maintenance.

R3 Every development team should have access to at least one security expert
and every team should have at least one developer who is trained in security.

Rationale: Some of the identified issues can be alleviated by providing
developer training or by providing access to security or cryptography experts. For
example, for identifying threats at the architectural stage, a security expert should
be available to provide an analysis. For the implementation of cryptographic
libraries, cryptographers should be used, and developers should confirm that the
library they use was developed by experts. Finally, API misuse can obviously be
limited through developer training, too.



Understanding Common Automotive Security Issues and Their Implications 13

Figure 5: Answers to what extent the recommendations address or mitigate
the various issues: positive values indicate a high extent of mitigation, whereas
negative values indicate a low extent of mitigation

R4 Adhere to the MISRA C guidelines.

Rationale: The MISRA C guidelines were developed specifically to make the
C programming language safer to use in critical systems.5 One effective result
of requiring conformance to MISRA C is that all unsafe C library functions are
implicitly forbidden to be used in production code. There are several commercial
compilers which check MISRA C code compliance, but MISRA C contains
many items which can not be checked automatically, or which require additional
formal verification tools. Moreover, bugs which lead to security vulnerabilities
can still happen. For example, it is possible to allocate a fixed-size buffer and
accidentally write beyond its boundaries due to missing or insufficient run-time
checks. Nevertheless, adherence to the MISRA C guidelines strengthens the
security of the code considerably, even more so in combination with formal
verification tools.

Survey results: In order to validate the recommendations, for each recom-
mendation the survey also included the question to which extent it addresses the
issues discussed earlier. The results are summarized in aggregated form in Fig. 5:
if a majority answered “Not at all” or “Slightly”, the issue is depicted with a
negative value, and if a majority answered “Significantly” or “Completely”, the
issue is depicted with a positive value. The results are not surprising. Since R2
(key management) and R4 (MISRA C adherence) address very specific issues,
they are only of value in those particular circumstances, whereas R1 (improve
documentation) and R3 (security experts) help with almost all of the issues. This
also echoes some of the findings of Acar et al. [1].

5There are several other coding guidelines for embedded, safety-critical or secure
software, such as the JPL C Coding Standard, the SEI CERT C Coding Standard,
or The Power of 10 - Rules for Developing Safety Critical Code, but a more detailed
discussion is out of scope for this paper.



14 Lautenbach, A., Almgren, M., Olovsson, T.

6 Related Work

As outlined in the introduction, interest in automotive security has been slowly on
the rise for the last 15 years. Wolf, Weimerskirch and Paar [24] pioneered an initial
analysis, and Koscher et al. [10], Checkoway et al. [4], and Miller and Valasek [13]
demonstrated practical attacks, both local and remote. An added difficulty
stems from the safety-critical nature of automotive engineering and the necessary
integration of safety and security [3,6,8,12,16,25]. Studnia et al. [20] wrote a survey
summarizing many automotive security issues. Similarly, we highlight commonly
encountered security issues, but we additionally investigate how security experts
perceive them.

7 Conclusion

With the increased communication of cyber-physical systems, securing software
is of ever-increasing importance. Even systems which are generally perceived
to have no safety-critical components can pose dangers when exploited by an
attacker. An implication is that the interplay of safety and security must be
examined closer; traditional views of safety may no longer be adequate.

The results of our survey with automotive security experts indicate that three
of the eight issues we discussed are of particular interest. According to our survey,
key distribution is a very important problem that is also very complex and it
should be further investigated. Similarly, the choice and implementation of a
mechanism for freshness is also an important and challenging problem. Both of
these problems have been very well covered by academic research in the last 30
years, so it may be slightly counter-intuitive that they are still difficult to solve
in the automotive context. However, this can be explained with the strongly
constrained requirements for such systems. Threat identification on the other
hand is an interesting problem because it is both an important and a frequent
activity. Since it is a very dynamic activity that is strongly dependent on the
concrete system under review, it will likely remain very important.

Some of the results may not be particularly surprising, but we believe it is
still of value to formally document them in form of this survey. Conversely, some
results were surprising, e.g., that several experts did not consider cryptographic
implementations difficult.

Automotive software developers are typically well trained in addressing safety
requirements, but writing secure software requires additional knowledge and skills.
Consequently, new frameworks, platforms and standards should make it easier to
write secure code, and they should foster an environment which supports secure
development. As the survey results indicate, this can be partially achieved with
supporting documentation to facilitate informed choices about security measures.
However, improved documentation alone is not enough. In order to integrate
security into the entire development process, cultural and organizational changes
are needed. For instance, as the survey results illustrate, having ready access to
security experts should alleviate many of the issues.



Understanding Common Automotive Security Issues and Their Implications 15

In order to achieve such a security conducive environment, several aspects
must come together. First and foremost, there must be organizational support.
Secure development can not be done without a security budget. Then there are
the complex interactions of OEMs and suppliers which must be coordinated.
More documentation how to securely use existing security functions should be
added. Moreover, development processes must be adapted to include security
reviews and security testing. All of the above entails a cultural change, so a
concerted effort of all involved partners in the automotive industry is needed
to secure future vehicles. Finally it can be noted that much of this discussion
probably extends to embedded system development in other domains as well.

Acknowledgments

The research leading to these results has been partially supported by VINNOVA,
the Swedish Governmental Agency for Innovation Systems, through the project
“HoliSec” (2015-06894), and by the Swedish Civil Contingencies Agency (MSB)
through the project “RICS”.

References

1. Acar, Y., Backes, M., Fahl, S., Garfinkel, S., Kim, D., Mazurek, M.L., Stransky, C.:
Comparing the usability of cryptographic APIs. In: Proceedings of the 38th IEEE
Symposium on Security and Privacy (2017)

2. Anderson, R.: Why cryptosystems fail. In: Proceedings of the 1st ACM Conference
on Computer and Communications Security. pp. 215–227. CCS ’93, ACM, New
York, NY, USA (1993)

3. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing 1(1), 11–33 (2004)

4. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental
analyses of automotive attack surfaces. In: Proceedings of the 20th USENIX Security
Symposium. pp. 77–92. San Francisco, CA, USA (Aug 2011)

5. Fahl, S., Harbach, M., Perl, H., Koetter, M., Smith, M.: Rethinking SSL development
in an appified world. In: Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security (CCS). pp. 49–60. ACM (2013)

6. Firesmith, D.G.: Common concepts underlying safety security and survivability
engineering. Tech. Rep. CMU/SEI-2003-TN-033, Software Engineering Institute -
Carnegie Mellon University (Dec 2003)

7. Islam, M.M., Lautenbach, A., Sandberg, C., Olovsson, T.: A risk assessment frame-
work for automotive embedded systems. In: Proceedings of the 2nd ACM Interna-
tional Workshop on Cyber-Physical System Security. pp. 3–14. ACM (2016)

8. Jonsson, E.: Towards an integrated conceptual model of security and dependability.
In: Availability, Reliability and Security, 2006. ARES 2006. The First International
Conference on. pp. 646–653. IEEE (2006)

9. Koopman, P.: Embedded system security. Computer 37(7), 95–97 (2004)



16 Lautenbach, A., Almgren, M., Olovsson, T.

10. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D.,
Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security analysis
of a modern automobile. In: Security and Privacy (SP), 2010 IEEE Symposium on.
pp. 447–462 (May 2010)

11. Lazar, D., Chen, H., Wang, X., Zeldovich, N.: Why does cryptographic software
fail?: A case study and open problems. In: Proceedings of 5th Asia-Pacific Workshop
on Systems. pp. 1–7. APSys ’14, ACM, New York, NY, USA (2014)

12. Line, M., Nordland, O., Røstad, L., Tøndel, I.: Safety vs. security. In: Probabilistic
Safety Assessment and Management (PSAM), Proceedings of the 8th international
Conference on. pp. 685–699. IAPSAM (2006)

13. Miller, C., Valasek, C.: Remote Exploitation of an Unaltered Passenger Vehicle. Tech.
rep., Defcon 23 (Aug 2015), http://illmatics.com/Remote%20Car%20Hacking.pdf

14. Myers, B.A., Stylos, J.: Improving API usability. Communications of the ACM
59(6), 62–69 (2016)

15. Nowdehi, N., Lautenbach, A., Olovsson, T.: In-vehicle CAN message authentication:
An evaluation based on industrial criteria. In: Vehicular Technology Conference
(VTC-Fall), 2017 IEEE 86th. pp. 1–7. IEEE (2017)

16. Piètre-Cambacédès, L., Chaudet, C.: The SEMA referential framework: avoiding
ambiguities in the terms ”security” and ”safety”. International Journal of Critical
Infrastructure Protection 3(2), 55–66 (2010)

17. SAE International: SAE J3061 201601 - Cybersecurity Guidebook for Cyber-
Physical Vehicle Systems (Jan 2016)

18. Seacord, R.C.: Secure Coding in C and C++. Pearson Education (2005)
19. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y., Bianco,

A.P., Baisse, C.: Announcing the first SHA1 collision (2017), https://security.
googleblog.com/2017/02/announcing-first-sha1-collision.html,February

20. Studnia, I., Nicomette, V., Alata, E., Deswarte, Y., Kaaniche, M., Laarouchi, Y.:
Survey on security threats and protection mechanisms in embedded automotive
networks. In: 2013 43rd Annual IEEE/IFIP Conference on Dependable Systems
and Networks Workshop (DSN-W). pp. 1–12 (2013)

21. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: Eternal War in Memory. In: Security
and Privacy (SP), 2013 IEEE Symposium on. pp. 48–62 (May 2013)

22. Van der Veen, V., dutt-Sharma, N., Cavallaro, L., Bos, H.: Memory errors: the past,
the present, and the future. In: Proceedings of the 15th International Symposium
on Research in Attacks, Intrusions, and Defenses (RAID). pp. 86–106. Springer
(2012)

23. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.)
Advances in Cryptology – CRYPTO 2005: 25th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 14-18, 2005. Proceedings. pp.
17–36. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

24. Wolf, M., Weimerskirch, A., Paar, C.: Security in automotive bus systems. In:
Proceedings of the Workshop on Embedded Security in Cars (ESCAR) (Nov 2004)

25. Zalman, R., Mayer, A.: A secure but still safe and low cost automotive communica-
tion technique. In: Proceedings of the 51st Annual Design Automation Conference.
pp. 1–5. DAC ’14, ACM, New York, NY, USA (2014)

http://illmatics.com/Remote%20Car%20Hacking.pdf
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html, February
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html, February

	Understanding Common Automotive Security Issues and Their Implications
	Introduction
	Methodology
	Survey Participants
	Common Automotive Security Issues
	Design and Architecture
	D1 Identification of Threats
	D2 Choice of a Key Distribution Mechanism
	Survey Results

	Parameters
	Pa1 Choice of Suitable Cryptographic Algorithms
	Pa2 Choosing a Suitable Key Length
	Pa3 How to Implement a Freshness Mechanism
	Survey Results

	Programming
	Pr1 Incorrect API Use
	Pr2 Writing Secure C Code
	Pr3 Implementing Cryptographic Primitives or Libraries
	Survey Results

	Intra and Inter Question Correlations

	Recommendations
	Related Work
	Conclusion


