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ABSTRACT Raster image correlation spectroscopy (RICS) is a fluorescence image analysis method for extracting the
mobility, concentration, and stoichiometry of diffusing fluorescent molecules from confocal image stacks. The method works
by calculating a spatial correlation function for each image and analyzing the average of those by model fitting. Rules of thumb
exist for RICS image acquisitioning, yet a rigorous theoretical approach to predict the accuracy and precision of the recovered
parameters has been lacking. We outline explicit expressions to reveal the dependence of RICS results on experimental param-
eters. In terms of imaging settings, we observed that a twofold decrease of the pixel size, e.g., from 100 to 50 nm, decreases the
error on the translational diffusion constant (D) between three- and fivefold. For D ¼ 1 mm2 s�1, a typical value for intracellular
measurements, �25-fold lower mean-squared relative error was obtained when the optimal scan speed was used, although
more drastic improvements were observed for other values of D. We proposed a slightly modified RICS calculation that allows
correcting for the significant bias of the autocorrelation function at small (<<50 � 50 pixels) sizes of the region of interest. In
terms of sample properties, at molecular brightness E ¼ 100 kHz and higher, RICS data quality was sufficient using as little
as 20 images, whereas the optimal number of frames for lower E scaled pro rata. RICS data quality was constant over the
nM–mM concentration range. We developed a bootstrap-based confidence interval of D that outperformed the classical least-
squares approach in terms of coverage probability of the true value of D. We validated the theory via in vitro experiments of
enhanced green fluorescent protein at different buffer viscosities. Finally, we outline robust practical guidelines and provide
free software to simulate the parameter effects on recovery of the diffusion coefficient.
SIGNIFICANCE Raster image correlation spectroscopy is a fluorescence microscopy method increasingly used in the
life and material sciences to estimate the mobility, concentration, and binding ratio of diffusing molecules from confocal
laser scanning image series. Here, a theoretical framework is laid out to predict the optimal values of microscope image
acquisition parameters (e.g., scan speed, pixel size, image size, probe brightness) to quantify molecular properties with the
highest accuracy and precision and benchmarked against both simulated and experimental data. With this new
information, quantitatively justified rules of thumb for raster image correlation spectroscopy experimenters are provided.
For efficient and widespread application, an easy-to-use and open source software is shared to make such predictions
per se.
INTRODUCTION

Since the introduction of image correlation spectroscopy
(ICS) (1), the family of image correlation spectroscopy
methods has grown richer with the appearance of novel var-
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iants of previous techniques. All ICS methods analyze the
fluctuations of the fluorescence signal to quantify relevant
parameters of the processes that cause the fluctuations.
These methods can be classified based on whether fluctua-
tions are considered in time and/or in space. Temporal
ICS (TICS) enables the examination of diffusion-related
processes (2,3) by studying the correlation of the fluores-
cence fluctuations over time for each pixel of an image
time series. Raster ICS (RICS) was first introduced in (4)
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RICS Performance Evaluation
as a method to study molecular transport in solution and in
cells. RICS registers both the temporal and the spatial inten-
sity fluctuations by scanning a laser beam over a sample and
exploits the fast pixel-to-pixel and line-to-line sampling to
analyze the fluctuations on a faster timescale than TICS.
The fluorescence intensity fluctuations are caused by the dy-
namics of the particles, including, but not limited to, diffu-
sion, flow, and binding. In addition, they are influenced by
possible sources of noise such as dark current and shot
noise. In RICS, the fluorescence fluctuations autocorrelation
function is mainly used to determine macroscopic phenom-
enological parameters such as the diffusion coefficient and
the concentration of the molecule of interest. These param-
eter estimates can be obtained by fitting the model autocor-
relation function to the empirical autocorrelation computed
from a series of images. It is well-known that RICS is sen-
sitive to the choice of experimental parameters. For
example, the scan speed should be adjusted to the movement
of the probe considered. Guidelines on how to set crucial
instrumental and sample parameters for acquiring RICS
data have been published (5,6). However, the relationship
between the various instrumental and molecular parameters
and the accuracy and precision in the determination of
the diffusion coefficient has not been comprehensively
investigated.

This is in contrast to the numerous studies devoted to
the statistical accuracy of the nonimaging variant fluores-
cence correlation spectroscopy (FCS) (7). In the seminal
work by Koppel (8), a theoretical analysis of the statistical
accuracy of FCS was presented under the assumptions of
uniform illumination profile, relatively high concentration
of the molecule of interest, and an exponential correlation
function. Subsequently, (9) extended Koppel’s work to a
two-dimensional (2D) Gaussian illumination profile and
low concentrations. Later on, (10) showed that Koppel’s
formula was capable of predicting the standard deviation
(SD) of the FCS correlation function for sufficiently sim-
ple systems but failed for complex systems such as mix-
tures of particles. Moreover, (10) highlighted that proper
weighting of the correlation function is fundamental in
parameter estimation. Thus, they experimentally computed
the SD of the correlation function in FCS from the inten-
sity traces in different ways. Later on, (11) derived analyt-
ical equations for the bias and variance of the FCS
correlation function and validated and used them as a
way to optimize the experimental conditions. In all the
FCS studies mentioned above, the focus was on the deriva-
tion of the signal/noise ratio of an FCS experiment,
defined as the ratio of the correlation function/its SD.
The signal/noise ratio cannot be directly translated to the
statistical determination of the parameter estimates
because the correlation function is nonlinear in the param-
eters of interest. To this end, (12) adopted a maximum
likelihood method to estimate the probability of choosing
a particular value of the diffusion coefficient against the
correct one. This method was used as a measure of accu-
racy of FCS as a function of concentration, brightness, and
measurement time.

One would expect many of the considerations for FCS to
also hold for RICS. However, RICS is characterized by
scanning parameters such as pixel dwell time and line
time, which are not applicable to FCS. The main advantage
of RICS over FCS is the spatial correlation introduced by
the scanning beam, which can be used to generate diffusion
and concentration maps over the sample.

In this work, we introduce RICS performance evaluation
(RICSPE), a method that allows researchers to evaluate the
accuracy of RICS given a set of experimental settings and
to choose the optimal imaging conditions for an experi-
ment. In Theory, we first briefly recall the fundamentals
of RICS and provide analytical formulae for the bias (accu-
racy) and variance (precision) of the empirical correlation
function, which play a major role in RICSPE. Next, we
introduce a measure for assessing the accuracy and preci-
sion of the diffusion coefficient estimate, the mean-squared
relative error, to evaluate the performance of RICS. In
the Results, we compare the outcomes obtained by the
RICSPE method to the results obtained by molecular
Monte Carlo simulations and experiments. Next, we study
the effect of changing the different experimental parame-
ters on the diffusion coefficient estimate. We reveal the
dependence of RICS results on the probe concentration,
brightness, scan speed, pixel size, size of the region of in-
terest (ROI) expressed in pixels, number of frames in the
RICS experiment, point spread function (PSF) waist, and
measurement time. We confirm our findings with in vitro
experiments of enhanced green fluorescent protein at
different buffer viscosities. Finally, practical guidelines
for the RICS user are summarized in the Conclusions;
see Tables 2 and 3.
MATERIALS AND METHODS

Theory

Below, we present the theoretical framework needed to evaluate the

effect of the imaging conditions on the determination of the diffusion

coefficient. First, we outline the background theory of RICS. Second,

we introduce analytical formulae for the deviations, both random and

systematic, of the empirical correlation function computed from a stack

of images from the ideal correlation function, obtained from an experi-

ment with unlimited measurement time. These deviations, discussed

in Bias and Variance of the Empirical Correlation Function and thor-

oughly determined in the Supporting Materials and Methods, quantify

how well the empirical correlation function approximates the ideal one.

Third, we propose a simple measure, namely the mean-squared relative

error, to assess how well the diffusion coefficient is determined by a

set of experimental settings and to compare different imaging conditions.

Lastly, we introduce a, to our knowledge, new method to generate

realizations of the empirical correlation function in RICSPE. For the

convenience of the reader, a list of the most important symbols is given

in the Supporting Materials and Methods. A graphical user interface

(GUI) is made available in a repository; see the rest of the Materials
Biophysical Journal 118, 1900–1914, November 19, 2019 1901
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and Methods for more details. The GUI provides a user-friendly environ-

ment to perform the RICSPE analysis, and no understanding of the math-

ematical details or familiarity with the underlying programming language

is required.

Principles of RICS

In this section, we briefly recall the RICS theory. More details can be found

in (4,13,14). Consider fluorescently labeled, noninteracting particles under-

going diffusion and excited by a laser with an intensity profile approxi-

mated by a three-dimensional (3D) Gaussian function

Ið~rÞ ¼ Iðx; y; zÞ ¼ I0e
�
2ðx2þy2Þ

w2 e�
2z2

a2w2 ; (1)
Gðx;jÞ ¼
1

ðX � xÞðY � jÞ
XX�x

i¼ 1

XY�j

j¼ 1
dFði; jÞdFðiþ x; j þ jÞ� 1

XY

XX

i¼ 1

XY

j¼ 1
Fði; jÞ

�2
; (4)
where I0 is the central intensity of the laser beam, w is the radius at

which the intensity in the focal plane has fallen by a factor e�2, and a

is the ratio between the radius at which the intensity along the

optical axis has fallen by a factor e�2/w. Because of the dynamics of

the particles, the fluorescence intensity F(x, y) of the pixel (x, y) will fluc-

tuate. The fluctuations dF(x, y) ¼ F(x, y) � hFi, where h i indicates

spatial average, are analyzed by means of the autocorrelation function

(ACF)

GRICSðx;jÞ ¼ hdFðx; yÞdFðx þ x; yþ jÞi
hFi2 ; (2)

where x and j are the x and y axis spatial increments in number of pixels,

respectively. For a simple model assuming isotropic 3D diffusion of nonin-

teracting particles, the expected correlation function at spatial lag (x, j) is

given by (4)

gDðx;jÞ ¼ 1

N
exp

("
� ðSxÞ2 þ ðSjÞ2
w2 þ 4D

���tpxþ tlj
�� �
#)

�
�
1þ 4D

���tpxþ tlj
�� �

w2

��1

�
�
1þ 4D

���tpxþ tlj
�� �

a2w2

��1
2

:

(3)

Here, N is the average number of particles in the observation volume,

D is the diffusion coefficient, S is the pixel size, tp the pixel dwell time,

and tl the line time. The function gD is referred to as the infinite time

ACF because it represents the limit approached by the ACF obtained

from an experiment as the measurement time goes to infinity and for a

large enough image size yielding very long spatial lags. For simplicity,

we omit the factor that accounts for the geometry of the observation vol-

ume. This factor depends on the model used to approximate the PSF of

the microscope, and widely used models include 3D Gaussian and 2D
1902 Biophysical Journal 118, 1900–1914, November 19, 2019
Gaussian-Lorentzian functions. We refer to (15) for more details on

this subject.

Bias and variance of the empirical correlation function

Because the empirical ACF is an estimator of the infinite time limit ACF, it

is crucial to study its statistical properties because these will determine how

well the parameters can be estimated. In particular, we investigate the accu-

racy, i.e., systematic deviation (bias) of the estimator from its expected

value, and precision, describing the spread (variance) of a set of measure-

ments of the empirical ACF, that are used in the method described in the

next section to evaluate the uncertainties of the estimated diffusion

coefficient.

The estimator of the ACF, based on one image with X pixels along a line

and Y lines, is (see (1))
which is typically calculated from the inverse Fourier transform of the

power spectrum of the image. To derive approximations of the bias and

variance of G(x, j), we Taylor-expand the denominator of G(x, j) (see

Eq. S19 for details) and express the moments of dF(i, j) in terms

of the experimental parameters (see Eqs. S26–S28). We describe the

effect of the dependence bias, i.e., the deviation of the empirical ACF

from the infinite time limit ACF due to the statistical dependence of

the numerator and denominator in Eq. 4, and the estimation bias, intro-

duced when the average intensity hFi is substituted by the estimated

average intensity ð1 =XYÞPX
i¼1

PY
j¼1Fði; jÞ (see (16,17)). In particular,

see Eq. S21; the dependence bias depends on the third moments of the

intensity fluctuations dF(i, j). Ignoring the higher-order terms, it can be

written as

Biasðx;jÞ ¼ hGðx;jÞi� gDðx;jÞ ¼
¼ � 2

XYðX � xÞðY � jÞhFi3XX�x

i¼ 1

XY�j

j¼ 1

XX
k¼ 1

XY
l¼ 1

hdFði; jÞdFðiþ x; jþjÞdFðk; lÞi:

(5)

The estimation bias of the normalized ACF, reported in (5,18), cannot

be treated analytically. Hence, we rely on simulations and analytical

formulae for the unnormalized ACF (see Eq. S15 for details) to study

in which experimental conditions the estimation bias is considerable.

The estimation bias, in general, can be alleviated by sufficient sampling,

which in RICS corresponds to a sufficiently large ROI. We discuss

in Effect of the Size of the ROI when the estimation bias is relevant

and propose a simple way to correct for it, which we call modified

RICS. In modified RICS, in the calculations of the ACF, the average

intensity is computed as the average value of all the pixels in the ROI

in all images instead of only averaging the pixels in the ROI of a partic-

ular image as in standard RICS. The mathematical details are presented

in the section ‘‘Bias and Variance’’ in the Supporting Materials and

Methods.
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Similarly, one can express the variance of G(x, j) as a function of mo-

ments of the fluorescence fluctuations, namely (ignoring the higher-order

terms)
VarðGðx;jÞÞ ¼ 1

ðX � xÞ2ðY � jÞ2hFi4(XX�x

i¼ 1

XY�j

j¼ 1

XX�x

k¼ 1

XY�j

l¼ 1

Mhpði; jÞpðiþ x; j þ jÞpðk; lÞpðk þ x; lþ jÞiþ

þ
X

ðk;lÞsði;jÞ
N2q4g2

2g1ðk � i; l� jÞ2þ

þ
X

ðk;lÞsðiþx;jþjÞ

ði;jÞsðkþx;lþjÞ

N2q4g2
2g1ðk þ x� i; lþ j� jÞg1ðk � x� i; l� j� jÞ

þðX � xÞðY � jÞ
	
hFi

�
q
g2

g1

þ 1

�
2

þ2ðX � xÞðY � jÞNq2g2g1ð2x; 2jÞ
	
hFi

�
q
g2

g1

þ 1

�
�
:

(6)
Here, M is the number of particles in the sample volume V, q is the mo-

lecular brightness (the average number of detected photons per particle per

dwell time), g1(x, j) ¼ NgD(x, j) is the normalized correlation function for

diffusion, gk ¼ ðR IkðrÞ dr =UÞ ¼ ð1 =2k ffiffiffiffiffi
2k

p Þ is the normalized k-th

moment of the laser intensity profile with U ¼ pð3=2Þw3a corresponding

to the observation volume per position of the laser, and p(i, j) is the detected

photon count at pixel (i, j) in the image emitted from a single particle. The

moments of p can be expressed in terms of higher-order correlation func-

tions for diffusion; see Eqs. S29–S31 and (9). In particular, the contribution

of shot noise, the unavoidable noise caused by the stochastic nature of the

photon detection (19), is presented in the last two lines of Eq. 6. Fig. S6

shows that the simulation- or experiment-based and theoretical variances

of G(x, j) are very similar. We conclude that at least for the typical param-

eter values used, Eq. 6 can accurately predict the variance of the empirical

correlation function. A generalization of Eq. 6 to the case in which back-

ground noise and dark current contributions are included is discussed in

the Supporting Materials and Methods, Eq. S35.

Mean-squared relative error

Let the true diffusion coefficient be D0 and let ðbD1;.; bDnÞ be a sample of

the estimated diffusion coefficients by using RICS in n repetitions of the

same experiment or molecular Monte Carlo simulation. Let (tp, tl, S, w,

a, N, l, I0, X, Y) be the set of molecular and instrumental parameters, in

which the image size is X � Y pixels and l accounts for the photon yield

of the particles per unit of time, the absorption coefficient, and the detection

efficiency. To evaluate the performance of RICS, we define the mean-

squared relative error (MSRE) as

MSRE ¼ 1

n

Xn

k¼ 1

�bDk � D0

D0

�2

; (7)
which depends on the molecular and instrumental parameters. In general, a

systematic deviation of the estimated diffusion coefficient or an increased

variance would lead to a larger value of the MSRE. When comparing
two sets of experimental settings, one should prefer the one with a smaller

MSRE. Together with the MSRE, we consider the kernel density estimate

of the probability density P(DjD0) for the sample ðbD1;.; bDnÞ. Intuitively,
P(DjD0)dx describes the probability of obtaining an estimate of the diffu-

sion coefficient in the infinitesimal interval [D, Dþ dx] when the true value

is D0. The kernel density estimation (20) is a standard nonparametric

method to estimate the probability density function, providing a visualiza-

tion of the properties of a sample and simpler interpretation of the value of

the MSRE; see Fig. 1. The bandwidth h in the kernel density estimator is

chosen according to Scott’s rule, i.e., h ¼ ð4s5=3nÞð1=5Þ, where s is the

SD of the sample and n the sample size; see (20). As an example, in

Fig. 1, kernel density estimates of the estimated diffusion coefficients are

presented for a wide range of typical values of the pixel dwell time. To pro-

duce the kernel density estimates we use the estimated values for the diffu-

sion coefficient obtained by RICSPE, see RICSPE below. The MSRE

corresponding to the samples underlying the densities shown is reported

in the insert to Fig. 1 and will be used to measure the goodness of the exper-

imental setting.

RICSPE

In this section, we introduce an alternative method to the experiments and

molecular Monte Carlo simulations used throughout the Results to generate

a sample of estimated diffusion coefficients ðbD1; .; bDnÞ. We call this

method, described in detail in steps 1 and 2 below, RICSPE. RICS analysis

assumes that the observed empirical correlation function G(x, j) provides

an estimate of the infinite time limit gD0
(x, j) up to measurement errors.

Mathematically, this can be formulated as

Gðx;jÞ ¼ gD0
ðx;jÞ þ eðx;jÞ;

~e ¼ ½eðx1;j1Þ;.; eðx max;j maxÞ� � Nð0;SÞ; (8)
Biophysical Journal 118, 1900–1914, November 19, 2019 1903



FIGURE 1 The kernel density estimate of the probability density

P(DjD0 ¼ 1) for different pixel dwell times tp and tl ¼ 200tp when

D0 ¼ 1 mm2 s�1, S ¼ 0.05 mm, w ¼ 0.2 mm, a ¼ 5, X ¼ Y ¼ 200, N ¼
1.74, and lI0 ¼ 1000 kHz. Each sample contains 2000 observations, and

each observation is obtained by fitting the mean ACF of a stack of 20

frames. The different colors correspond to different pixel dwell times. To

see this figure in color, go online.

Longfils et al.
where �N(0, S) indicates that~e follows a multivariate normal distribution

with covariance matrix S and xmax and jmax are the maximal spatial lags

considered. The diffusion coefficient estimate is then the minimizer of

the weighted sum of squared residuals

bD ¼ argmin
D

X
x;j

�
Gðx;jÞ � gDðx;jÞ

sðx;jÞ
�2

; (9)

where sðx;jÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Gðx;jÞ�p

. In the next section, we present an analytic

formula to compute the elements of S; see Eqs. 6 and S24. Let us now fix

the number of repetitions Nrep of the simulation. The number of images in

one simulation, Nframes, varies from dozens to hundreds of images. We can

generate samples of estimated diffusion coefficients ðbD1;.; bDN rep
Þ as

follows:

1) For the lags considered, compute S according to Eqs. 6 and S24. Draw

independent~ek � N(0, S) for k ¼ 1,..., Nrep.

2) Compute Gk(x, j)¼ gD0
ðx;jÞ þ Ek(x, j) for each x and j and perform a

least-squares fit to obtain

bDk ¼ argmin
D

X
x;j

�
Gkðx;jÞ � gDðx;jÞ

sðx;jÞ
�2

; (10)

as done in RICS.
Because the correlation function is almost symmetric, we fit only the pos-

itive quadrant of it. The MSRE is called empirical MSRE if the sample

ðbD1;.; bDnÞ comes from n repetitions of the same molecular Monte Carlo

simulation and theoretical MSRE if the sample ðbD1;.; bDnÞ is obtained by
RICSPE.
Computer programs and molecular Monte Carlo
simulations

In the main simulation study, particle trajectories were simulated using

Gaussian random walk (discrete-time Brownian motion) in a box. The pa-
1904 Biophysical Journal 118, 1900–1914, November 19, 2019
rameters in the simulations were kept close to the experimental settings,

except for the brightness in some simulations. Typical values for the bright-

ness in experiments are between 5 and 300 kHz; however, we sometimes

used a value of 1000 kHz to reduce the computational cost of the simula-

tions because we could, in this way, achieve the same average signal with

a lower number of simulated particles. In the analysis, the measurement

time does not include time lost because of retracing the laser beam between

consecutive images. The time the beam is moving without scanning de-

pends on the microscope manufacturer. The analysis we performed can

be adjusted to the microscope specifications. There are many parameters

involved, and the values are specified later case by case. The side of the

box was extended by at least 2 mm on each side of the image, and periodic

boundary conditions were used to avoid edge effects. All simulations were

performed using the software Pulsed Interleaved Excitation Analysis with

MATLAB (PAM) (21). The PAM software generates RICS data by simu-

lating the diffusion of the particles combined with the raster scan of the

laser beam at a certain scan speed. More information about the software

PAM, together with its manual, can be found at https://pam.readthedocs.

io/en/latest/. The PAM software was also used to analyze experimental

data. The experimental images are preprocessed with a moving average

to remove possible artifacts and inhomogeneities. In the moving average,

each frame is averaged with the previous and subsequent two frames.

From the preprocessed images, the mean ACF is computed, and parameter

estimates are obtained by nonlinear least-square fitting of the theoretical

model in Eq. 3, in which an offset is included to correct for a possible base-

line of the ACF. We consider 20 lags in each direction when fitting the cor-

relation function, and, as is typically done in RICS experiments, G(0, 0) is

not used in the fit because it is corrupted by shot noise. For the experiments,

two types of confidence intervals for the diffusion coefficient are reported:

least-squares confidence intervals obtained from the residuals of the least-

squares fitting and bootstrap confidence intervals obtained by resampling a

stack of images. More details can be found in Confidence Intervals below.

Both the source code and a GUI to run the RICSPE method are available

at https://gitlab.com/PAM-PIE/PAM or at https://gitlab.com/Longfils/

raster-image-correlation-spectroscopy-performance-evaluation. A brief

description of the GUI is presented in the Supporting Materials and

Methods. The analysis and simulations were performed on a computer

with an Intel i7-5600 dual-core processor running at 2.6 GHz using 16

Gb of random-access memory.
Bootstrap

The bootstrap technique (22) can be used to obtain estimates of bias and SD

of the diffusion coefficient estimated by RICS. Typically, one RICS exper-

iment comprises a series of frames. In our simulations and experiments, the

number of frames Nframes varies between 20 and 400. The bootstrap method

consists of drawing the same number Nframes of images with replacement

from the original set of images and estimating the diffusion coefficient

by using RICS based on this new sample. The sampling procedure is

repeated Nboot times, where Nboot is between 50 and 250, leading to Nboot

estimates of the diffusion coefficient, namely D1,..., DN boot
. The empirical

MSRE of a simulation can be computed by replacing n by Nboot andbD1;.bDn by D1,..., DN boot
in Eq. 7.
Confidence intervals

In this manuscript, we use two types of confidence intervals, which we call

least-squares confidence intervals and bootstrap confidence intervals. The

former ones are defined as the approximate confidence region of the

nonlinear model, the RICS ACF, in which the nonlinearity is partially taken

into account by considering the Jacobian matrix evaluated at the minimizer

of the least squares (23). Moreover, the confidence region as constructed

from the Jacobian are symmetric, whereas in general, the confidence re-

gions for nonlinear models are not. The latter ones are obtained by

https://pam.readthedocs.io/en/latest/
https://pam.readthedocs.io/en/latest/
https://gitlab.com/PAM-PIE/PAM
https://gitlab.com/Longfils/raster-image-correlation-spectroscopy-performance-evaluation
https://gitlab.com/Longfils/raster-image-correlation-spectroscopy-performance-evaluation
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bootstrapping the stack of images as follows: suppose we have a series of

Nframes images. We can draw a new stack of images by drawing Nframes im-

ages with replacements from the original stack of frames. In such a way, we

can generate a number Nboot of stacks and estimate the diffusion coefficient

from each one of them. This procedure leads to a sample D1,..., DN boot
that

can be used to estimate the variability of the diffusion coefficient estimate;

see (24) for more details.
Experiments

Before imaging, an eight-well chambered coverslip (Lab-Tek Chambered

Cover glass; Thermo Fisher Scientific, Waltham, MA) was incubated for

30 min with 1 mg/mL bovine serum albumin (Sigma-Aldrich, Overijse,

Belgium) to prevent nonspecific adhesion of the dye and washed twice

with the measurement buffer. Depending on the experiment, the dye was

Atto488-COOH (ATTO-TEC, Siegen, Germany) diluted in phosphate-

buffered saline (PBS), enhanced green fluorescent protein (eGFP) dis-

solved in PBS, or eGFP dissolved in PBS buffer containing 46% (w/w)

sucrose (VWR, Leuven, Belgium) with a viscosity of 10.28 mPa , s at

20�C. Two microscopes were used for the RICS experiments. The com-

mercial instrument was a Zeiss LSM880 confocal laser scanning micro-

scope (Carl Zeiss, Jena, Germany) equipped with a Zeiss C-Apochromat

63�/1.2 W Korr objective. Atto488-COOH and eGFP were excited with

a 488 nm Ar-ion laser (3.6 mW in the sample, S170C microscope slide

power sensor; Thorlabs, Munich, Germany). An MBS488 dichroic mirror

was used. Emitted light was registered between 489 and 695 nm using the

Zeiss Quasar GaAsP detector operated in photon-counting mode. Pixel

size was constant at 50 nm, with an image resolution of 256 by 256 pixels

(digital zoom 10.5, image size 12.85 by 12.85 mm). For each measurement,

between 20 and 400 frames were acquired at 10 mm above the coverslip

with a varying pixel dwell time and line time, as specified in the Results.

The custom microscope was built around an inverted microscope (IX71;

Olympus Belgium, Berchem, Belgium). A galvanometric mirror scanner

(TILL Yanus IV digital scanner; FEI Munich, Gr€afelfing, Germany) was

used to generate raster-scanned images. Here, a 485 nm laser diode

(LDH-D-C-485; Picoquant, Berlin, Germany) pulsing at 20 MHz (PDL

828 Sepia2; Picoquant) was cleaned up with a bandpass filter (Chroma

ET485/20�, F49-482; AHF Analysentechnik, T€ubingen, Germany).

Next, the laser was coupled into a single-mode polarization maintaining

optical fiber (PMC-400Si-2.6- NA012-3-APB-150-P; Sch€afterþKirchhoff,

Hamburg, Germany) using a 60FC-4- RGBV11-47 fiber coupler

(Sch€afterþKirchhoff). Light was collimated using a collimator with xyz

adjustable lens (60FC-L-4-RGBV11-47; Sch€afterþKirchhoff), the linear

polarization was cleaned up (CCM1- PBS251; Thorlabs, Dachau, Ger-

many), and light was reflected via a 3-mm-thick polychroic mirror

(Chroma zt405/488/561/640rpc, F73-410; AHF Analysentechnik) into

the microscope’s back port through the galvo. Imaging was controlled

via in-house-developed software (C#; Microsoft Visual Studio). Inside

the microscope body, the light was reflected upwards (3-mm-thick Full

Reflective Ag Mirror, F21-005; AHF Analysentechnik, mounted in a total

internal reflection fluorescence Filter Cube for BX2/IX2, F91-960; AHF

Analysentechnik) to the objective lens (UPLSAPO-60XW; Olympus).

Sample emission transmitted through the polychroic mirror was focused

through a 50 mm pinhole (P50S; Thorlabs) via an achromatic lens

(AC254-150-A-ML; Thorlabs) and collimated again (AC254-50-A-ML;

Thorlabs). Next, the emission was reflected on (H560LPXR, F48-559;

AHF) and transmitted through (H507LPXR, F48-507) two dichroic mir-

rors, and emission was filtered (HQ 525/50; Chroma) and focused

(AC254- 50-A-ML; Thorlabs) on an avalanche photodiode (t-SPAD; Pico-

quant). The detector was connected to a time-correlated single-photon-

counting device (Hydraharp 400; Picoquant) and powered using a power

supply (DSN-102; Picoquant). The laser power was 5 mW for both

eGFP and Atto488 data sets, measured between the polychroic mirror

and the galvo (LabMax Top, Coherent, Santa Clara, CA), �40% reached

the sample. Again, for each measurement, between 20 and 400 frames
were acquired at 10 mm above the coverslip. The scanned area was 200

by 200 pixels at a pixel size of 48 nm.
RESULTS

We present the results obtained from both simulations and
experiments, validating the theory developed for the statis-
tical properties of the empirical ACF. In Theoretical against
Empirical MSRE, we show that the theoretical MSRE,
obtained by RICSPE, provides a good approximation of
the empirical MSRE, obtained by molecular Monte Carlo
simulations. Next, we investigate the effects of the different
imaging conditions on the estimation of the diffusion coef-
ficient. We complement the simulation study with in vitro
experiments of eGFP at different buffer viscosities and sum-
marize our findings in Tables 2 and 3. Last, we examine the
confidence intervals for the diffusion coefficient.
Theoretical against empirical MSRE

In Theory, we defined the MSRE (see Eq. 7) as a measure to
evaluate the performance of RICS as a function of the mo-
lecular and instrumental parameters. The MSRE captures
information about the precision and accuracy of a samplebDk , k ¼ 1,..., n of estimated diffusion coefficients. The
MSRE can be calculated from n repetitions of the same mo-
lecular Monte Carlo simulation or experiment, and we refer
in this case to the MSRE as empirical MSRE. However,
evaluating the performance of RICS via the empirical
MSRE is time-consuming. We introduced the RICSPE
method to obtain the theoretical MSRE, which allows us
to make inferences about the effect of the different experi-
mental parameters on the RICS analysis. We start by study-
ing the relationship between the theoretical and empirical
MSRE to verify that the theoretical MSRE can be used in
place of the empirical one to estimate the optimal imaging
settings for RICS. In Fig. 2 A, the MSREs from repeated
molecular Monte Carlo simulations, from bootstrap of the
same simulations, and from RICSPE are shown for different
pixel dwell times and under the same conditions as the ones
used in Fig. 1. Here, tl is equal to 200 tp. The kernel density
estimates corresponding to Fig. 2 A are shown in Fig. 2, B
and C for the cases characterized by tp ¼ 5 ms and tp ¼
120 ms, respectively. The distributions, obtained by RICSPE
(black) or by repetitions of the same molecular Monte Carlo
simulation (blue), are close to each other, indicating that the
RICSPE method can be used to estimate the distribution of
the estimated diffusion coefficient. We conclude that the
theoretical MSRE provides a good approximation of the
empirical MSRE. Moreover, Fig. 2 C shows that the distri-
bution of the estimated diffusion coefficient becomes nar-
rower for the optimal pixel dwell time (tp ¼ 120 ms) as
compared to the suboptimal case in Fig. 2 B (tp ¼ 5 ms).
Lastly, in Fig. 2 D, we show the potential of RICSPE by
Biophysical Journal 118, 1900–1914, November 19, 2019 1905



FIGURE 2 (A) Comparison of the theoretical

MSRE (black cross) and the empirical MSRE ob-

tained from 20 repetitions of the same simulation

(blue circle) and by bootstrapping the simulation

(red dot) as a function of the pixel dwell time.

The line time is given by tl ¼ 200tp. Here, X ¼
Y ¼ 200, S ¼ 0.05 mm, w ¼ 0.2, a ¼ 5, N ¼
1.74, lI0 ¼ 1000 kHz, and D ¼ 1 mm2 s�1. Each

molecular Monte Carlo or RICSPE simulation con-

sists of 20 frames. Each simulation has been boot-

strapped 250 times, and the number of samples

generated by RICSPE is Nrep ¼ 2000. (B) A com-

parison of the kernel density estimates of the diffu-

sion coefficient obtained by RICSPE (black) from

n ¼ 20 repetitions of the same molecular Monte

Carlo simulation (blue) and by bootstrapping the

simulation (red) corresponding to the MSRE in

(A) with tp ¼ 5 ms. An example of the diffusion co-

efficient estimate provided by RICS is plotted in

green. (C) Comparison of the kernel density esti-

mates of the diffusion coefficient obtained by

RICSPE (black) from n ¼ 20 repetitions of the

same molecular Monte Carlo simulation (blue)

and by bootstrapping the simulation (red) corre-

sponding to the MSRE in (A) with tp ¼ 120 ms.

An example of the diffusion coefficient estimate

provided by RICS is plotted in green. (D) A com-

parison of the theoretical MSRE for different scan speeds. Each simulation consists of the minimum of 100 frames and the number of frames that can be

collected during 3 min, whereas all the other parameters are equal to those in (A). The white color corresponds to physically impossible settings because

the time between two consecutive lines here is strictly smaller than the time to scan one line. To see this figure in color, go online.
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comparing the MSRE of a wide range of combinations of
pixel dwell times and line times.

Because many parameters are involved in the calculation
of the experimental correlation function, we now investigate
how changing the values of these parameters affects the
determination of the diffusion coefficient.
Effect of the scan speed

In general, the ACF in RICS lies between two extreme
cases, each of which brings little information about diffu-
sion. The first extreme case is when the scan speed is too
slow compared to the movement of the particles and the
ACF decays to zero immediately; see Fig. 3 A. The second
extreme case is when the scan speed is too fast compared to
the movement of the probes and the shape of the ACF re-
sembles the one of the PSF; see Fig. 3 B. In these two
extreme cases, the MSRE will likely be high because the
ACF holds little information about diffusion. Fig. 3 C shows
the behavior of the MSRE as a function of the pixel dwell
time when 100 frames are collected. For D ¼ 1 mm2 s�1

(see Fig. 3 C), the scan speed giving the minimal MSRE
is achieved for a pixel dwell time of 120 ms and a line
time of 24 ms. In Fig. 1, the probability distribution of the
estimated diffusion coefficient computed by RICSPE is
plotted as a function of pixel dwell time. We note that for
a fixed number of frames per experiment, any pixel dwell
time equal to or longer than 20 ms leads to comparable re-
sults. For D ¼ 1 mm2 s�1, there is approximately a factor
1906 Biophysical Journal 118, 1900–1914, November 19, 2019
of 25 between the MSRE for a simulation with pixel dwell
time of 5 ms and a line time of 1 ms and the optimal scan
speed characterized by a pixel dwell time of 120 ms and
a line time of 24 ms. The effect of the scan speed for D ¼
0.1, 10, 100, 400 mm2 s�1 is described in detail in the Sup-
porting Materials and Methods.

Although on many microscopes, the pixel dwell time and
line time cannot be chosen independently, we can still
perform simulations with different combinations to see if
it is advantageous for RICS. In Fig. 2 D, we compare
many pairs of pixel dwell times and line times. We consider
here a measurement time of 3 min and a maximum of 100
frames. We note that the MSRE is almost constant on
each row because changing the pixel dwell time does not
influence the estimation of the diffusion coefficient. In
Fig. 3 B, the infinite time 2D ACF is shown for tp ¼
240 ms and tl ¼ 48 ms, where the red lines highlight the
cross sections of the 2D ACF in the x- and y-direction.
Fig. 3 E shows that all values of the pixel dwell time consid-
ered give an ACF in the x-direction that is barely distin-
guishable from the PSF. Again, for the y-direction, we
observe that the MSRE is smallest when the ACF is signif-
icantly different from the PSF and the zero ACF, i.e., for line
times of 4–8 ms, as shown in Fig. 3 F.

The effect of the scan speed for a fixed measurement time,
which limits the number of images we can collect, is studied
in detail in the Supporting Materials and Methods; see
Fig. S8. Here, we do not include the dark time at the begin-
ning and end of each line in the measurement time. The



FIGURE 3 (A) Infinite time 2DACF G(x, j) when the scan speed is too slow compared to the movement of the particles; (B) infinite time 2DACF G(x, j)

when the fast scan speed is too fast compared to the movement of the particles; (C) and theoretical MSRE for different scan speeds and diffusion coefficients.

The parameters used in this case are X¼ Y¼ 200, S¼ 0.05 mm, w¼ 0.2, a¼ 5, N¼ 1.74, lI0¼ 1000 kHz, and tl¼ 200tp. The number of samples generated

by RICSPE is Nrep¼ 2000, and each simulation consists of 100 frames; (D) infinite time 2DACFG(x, j) forD¼ 1 mm2 s�1, X¼ Y¼ 200, S¼ 0.05 mm, tp¼
240 ms, tl ¼ 48 ms, w¼ 0.2, a¼ 5, and N¼ 1.74. The red lines represent the cross sections G(x, 0) and G(0, j) in the x- and y-directions, respectively. (E) A

cross sectionG(x, 0) of the infinite time ACF in the x-direction for different combinations of pixel dwell time and line time. The legend reports the pixel dwell

time in ms and the line time in ms of each curve. The parameters used in this case are the same as in (B) except for tp and tl. (F) Cross section G(0, j) of the

infinite time ACF in the y-direction for different combinations of pixel dwell time and line time. The legend reports the pixel dwell time in ms and the line time

in ms of each curve. The parameters used in this case are the same as in (D) except for tp and tl. (G) MSRE as a function of the size X ¼ Y of the ROI for a

fixed number of pixels scanned. Here, the parameters are the same as in (A) except that tp ¼ 5 ms, tl ¼ 1 ms and we consider four 200 � 200 pixels frames,

sixteen 100 � 100 pixels frames, and sixty-four 50 � 50 pixels frames, equivalent to a total of 1.6 � 105 pixels scanned and corresponding measurement

times of 0.8, 1.6, and 3.2 s. Each simulation consists of Nframes frames and has been bootstrapped 250 times. (H) Cross sections of the ACF in the x-direction

computed in different ways for 20 � 20 pixels ROI as reported in the legend. Here, S ¼ 0.05 mm, tp ¼ 5 ms, tl ¼ 1 ms, w ¼ 0.2, a ¼ 5, N ¼ 1.74, lI0 ¼
1000 kHz, D ¼ 1 mm2 s�1, and Nframes ¼ 400. (I) Theoretical MSRE as a function of the pixel size. Here, all the parameters expect for the pixel size and the

scan speed (tp ¼ 5 ms, tl ¼ 1 ms) are the same as in (C). Each simulation consists of Nframes ¼ 20 frames. To see this figure in color, go online.
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reduced number of images collected worsens the perfor-
mance of scan speed with a pixel dwell time longer than
40 ms irrespective of the value of the diffusion coefficient.
Effect of the size of the ROI

To study the effect of a larger ROI size, it is important to
decrease the number of frames pro rata so as to keep the total
number of analyzed pixels constant. When doing this,
increasing the ROI size does not significantly improve the
MSRE (Fig. 3 G).

Considering a small ROI could be beneficial if it gives ac-
cess to a better combination of pixel dwell time and line
time for a particular value of the diffusion coefficient.
Otherwise, large ROIs are advantageous, as previously
demonstrated in (5,6). In experiments, often one would
like to map the diffusion coefficient locally by repeating
the RICS analysis on small regions (18,25). For very small
regions, of size at most 50 � 50 pixels, the estimated ACF
deviates considerably from the infinite time limit ACF
(18) because of the estimation bias; see Fig. 3 H (red
line). We demonstrate here and in the section ‘‘Bias of the
ACF: dependence and estimation biases’’ in the Supporting
Materials and Methods that the observed bias is caused by
the estimation of hFi by ð1 =XYÞPX

i¼1

PY
j¼1Fði; jÞ. In fact,

when we estimate the ACF using the true value of hFi, we
do not observe any deviation from the infinite time limit
ACF for any ROI size (R6 � 6 pixels or 300 � 300 nm);
see Fig. 3 H (blue line) and Fig. S4, C and D. To correctly
retrieve information about diffusion for small regions, we
propose a simple method (modified RICS) to correct for
the estimation bias in the section ‘‘Bias of the ACF: depen-
dence and estimation biases’’ in the Supporting Materials
and Methods. Fig. 3 H (green line) shows that the modified
Biophysical Journal 118, 1900–1914, November 19, 2019 1907
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RICS analysis eliminates the bias in the estimated ACF. In
Fig. S4, we show that the modified RICS analysis corrects
for the bias for ROIs as small as 6 � 6 pixels. Finally, in
Fig. S5, we compare the estimated diffusion coefficient
based on the standard RICS analysis (Fig. S5 A) and the es-
timate based on the modified RICS analysis (Fig. S5 B). It is
clear that the proposed method provides more accurate esti-
mates for the diffusion coefficient for small ROIs.
Effect of the pixel size

Pixel size is an important parameter when performing an
RICS experiment. The spatial correlation term in the ACF
is introduced when the pixel size is smaller than the diam-
eter of the PSF. We recall that the waist of the observation
volume is denoted by w, and here, w¼ 0.2 mm. Furthermore,
the observation volume is microscope-dependent, and it
must be calibrated before performing the experiment. In
Fig. 3 F, we can see that the MSRE grows exponentially
as a function of pixel size and that halving the pixel size
reduces the MSRE by approximately a factor of 5 for
D ¼ 1 mm2 s�1 and by approximately a factor of 3 for
D ¼ 10 mm2 s�1 (data not shown). In particular, pixel sizes
larger than 100 nm or for the general microscope sizes larger
than ðw =2Þ should be avoided. At the same time, decreasing
the pixel size while all the other parameters are kept con-
stant has the effect of decreasing the total region scanned,
which could lead to larger artifacts because of effects such
as photobleaching. The pixel size 100 nm could be used if
the number of frames in the simulation or experiment is
100 or more. The larger pixel sizes lead to an ACF that
will be nonzero only at short lags. For example, consider
the case in which the value of the ACF at lag (9, 0) is
1908 Biophysical Journal 118, 1900–1914, November 19, 2019
10% of its amplitude, i.e., G(9, 0) ¼ 0.1G(0, 0), with a pixel
size of 50 nm. Then, if we would consider the same exper-
iment but with a pixel size of 150 nm, the value of the ACF
will be 10% of its amplitude at lag (3, 0), i.e., G(3, 0) ¼
0.1G(0, 0).
Effect of the brightness

In Figs. 4 A and S15, the MSRE does not change signifi-
cantly when the brightness is greater than 100 kHz, and
we conclude that the brightness plays a role in the estima-
tion of the diffusion coefficient only if the count per parti-
cle per second is low (<100 kHz). In Fig. S15, we can
notice that the MSRE increases steeply when the brightness
changes from 10 to 1 kHz. We recommend having the
average photon count E per particle per second larger
than 5 kHz or an average pixel intensity greater than
0.03 counts per pixel. If this is not possible, we suggest
increasing the number of frames in the image series and
therefore the total measurement time. For example,
comparing the MSRE values in Figs. 4 A and S15 for the
case ε ¼ 10 kHz, we can see that the MSRE is �0.08
when the number of frames is 20 (Fig. 4 A) and �0.02
when the number of frames is 100 (Fig. S15), given that
all the other parameters are fixed. The measurement time
should be chosen so that the experiment is not affected
by photobleaching or small drift.
Effect of the concentration

The concentration of particles in RICS experiments typi-
cally ranges between 1 nM and 1 mM. We observe (see
Fig. 4 B) that when the concentration is of the order
FIGURE 4 Comparison of the theoretical MSRE

(square) and the empirical MSRE obtained from

20 repetitions of the same simulation (star) and

by bootstrapping the simulation (circle). The com-

mon parameters used in the two panels are X¼ Y¼
200, S ¼ 0.05 mm, tp ¼ 5 ms, tl ¼ 1 ms, w ¼
0.2 mm, a ¼ 5, D ¼ 1 mm2 s�1, and Nframes ¼ 20.

Each simulation has been bootstrapped 250 times,

and the number of samples generated by RICSPE

is Nrep ¼ 2000. (A) MSRE as a function of

the brightness lI0. Here, N ¼ 1.74. (B) MSRE as

a function of the concentration with lI0 ¼
1000 kHz is shown. (C) 95% (nominal value) con-

fidence intervals from the least-square fitting for

X ¼ Y ¼ 200, S ¼ 0.05 mm, tp ¼ 5 ms, tl ¼
1 ms, w ¼ 0.2 mm, a ¼ 5, N ¼ 1.74, lI0 ¼
1000 kHz, D ¼ 10 mm2 s�1, and Nframes ¼ 100;

(D) confidence intervals from bootstrapping from

the same simulations as in (C).
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0.1 nM, the predicted distribution of the estimated diffusion
coefficient by RICSPE deviates from the observed distribu-
tion obtained by repetitions of the same molecular Monte
Carlo simulation but is of the same magnitude. This is a lim-
itation of RICSPE because it does not capture the effect of
very low concentrations (�0.1 nM) on the determination
of the diffusion coefficient. We have not performed molec-
ular Monte Carlo simulations with concentrations higher
than 13 nM because of the computational cost. The MSRE
of RICSPE is essentially independent of the concentration
of the particles; see Figs. 4 B and S16. Note that the differ-
ence in the magnitude of the MSRE is due to the number
of ACFs averaged in each repetition of the simulation. In
Fig. 4 B, 20 ACFs have been used, and in Fig. S16, 100
ACFs were used. At low concentrations, the background
and dark current contributions become relevant. In partic-
ular, the fluorescence intensity F can be decomposed as
F ¼ Fp þ Noise, where Fp denotes the signal from the par-
ticles and Noise the contribution of any source of noise un-
correlated with Fp. Then, the denominator in Eq. 4 is
incorrect, and one should consider statistical weighting
(26,27) to filter out the noise or normalizing the ACF by
the square of hFpi ¼ hFi� hNoisei.
Confidence intervals

It is common practice in RICS to report, together with the
point estimate, the confidence interval for the estimated
parameters. In particular, the confidence interval can pro-
vide information about the variability of the parameter
when it is not possible to obtain an estimate of the standard
error from repetitions of the same experiment. Although
confidence intervals are easily interpreted by the RICS
user, they are only approximate confidence intervals, and
their confidence level is, in general, not known. Thus,
even if in RICS the confidence intervals at given confidence
levels are typically considered, the actual confidence level
can be much smaller, as the following brief simulation
study shows. To investigate the true level for the two types
of confidence intervals, least-squares and bootstrap confi-
dence intervals, we repeat the same simulation 100 times
and compute the proportion p of the confidence intervals
that contain the true value of the diffusion coefficient. We
report the results in Figs. 4, C and D and S17 and S18
and Table 1. Even though this simulation study is limited,
TABLE 1 Estimated Level for the 95%Confidence Intervals for

Different Values of the Diffusion Coefficient

D (mm2 s�1)

Observed Level

of the Least-Squares

Confidence Interval (%)

Observed Level

of the Bootstrap

Confidence Interval (%)

1 11 75

10 15 96

100 27 92
it is clear that the least-squares confidence intervals under-
estimate the variability of the diffusion coefficient. The
confidence intervals as obtained by bootstrapping are bet-
ter, see Table 1, even though we can observe a lower con-
fidence level for the case D ¼ 1 mm2 s�1 than the claimed
95% level. We observe (see Fig. S17) that the lower confi-
dence level is caused by a tendency to underestimate the
diffusion coefficient. Hence, it is preferable to report the
bootstrap-based confidence intervals, although care must
be taken when the variability of the diffusion coefficient
for RICS has not been estimated from repetitions of the
same experiment.
Experimental results

We now look at the experiments, in light of the conclusions
we have drawn above regarding the effect of the different
parameters on the estimated diffusion coefficient. We
show one sample frame, the mean ACF, and the weighted
residuals of the fitting for one experiment of eGFP in
PBS and sucrose for the scan speed characterized by
tp ¼ 16.1 ms and tl ¼ 3.9 ms; see Fig. 5. In Fig. 5, G
and H, the RICS estimates from the experiments with
different scan speeds of eGFP in sucrose and PBS are
shown. We have three repetitions of each scan speed, and
in Fig. 5, G and H, the corresponding estimated diffusion
coefficients and their 95% confidence intervals are pre-
sented, in which squares indicate confidence intervals ob-
tained from the nonlinear fitting and circles indicate the
bootstrap confidence intervals. Note that the stated level
of 95% of the confidence intervals does not correspond
to the true level. The confidence level is a general issue
of nonlinear models. In our case, the confidence intervals,
obtained from either the nonlinear fitting procedure or
bootstrap, are often too narrow; see Confidence Intervals
above. If we extrapolate from the results of the analysis
based on simulation (see Fig. 3 A), the optimal combina-
tion of pixel dwell time and line time would be tp ¼
16.1 ms and tl ¼ 3.9 ms, respectively. Note that the exper-
iments have been performed with about the same measure-
ment time, implying that the experiments with large pixel
dwell time in Fig. 5, G and H are based on a smaller
number of frames. According to the recommendations
given in the previous sections, for a diffusion coeffi-
cient of about 10 mm2 s�1, the optimal results should be
obtained with a line time for a fixed measurement time be-
tween 1 and 4 ms. In particular, we can observe that in
Fig. 5, G and H, the confidence intervals for experiments
performed with a long line time are wider than those per-
formed with optimal or close to optimal line time. Simi-
larly, for a diffusion coefficient of about 100 mm2 s�1,
the important parameter is the pixel dwell time. In
Fig. 5, G and H, the most precise estimates of the diffusion
coefficient are obtained with a pixel dwell time of 16 ms.
This result is in agreement with the recommendation of
Biophysical Journal 118, 1900–1914, November 19, 2019 1909
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FIGURE 5 (A) Zoomed 40 � 40 pixels region from a sample frame from the experiment of eGFP in PBS collected with the custom microscope corre-

sponding to the results in the first row of Table S1. The parameters are X ¼ Y ¼ 200, S ¼ 48 nm, tp ¼ 16.1 ms, tl ¼ 3.9 ms, w ¼ 0.21 mm, a ¼ 4.7,

N¼ 0.8, and lI0¼ 20 kHz; (B) the mean ACF has been calculated from the stack of images; (C) the mean ACF was fitted and color-coded using the weighted

residuals at each lag; (D) zoomed 40 � 40 pixel region from a sample frame from the experiment of eGFP in sucrose collected with the custom microscope

corresponding to the results in the first row of Table S2. The parameters are X ¼ Y ¼ 200, S ¼ 48 nm, tp ¼ 16.1 ms, tl ¼ 3.9 ms, w ¼ 0.21 mm, a ¼ 4.7, N ¼
0.8, and lI0 ¼ 18 kHz; (E) the mean ACF has been calculated from the stack of images; (F) the mean ACF was fitted and color-coded using the weighted

residuals at each lag. (G) Results for repeated experiments of eGFP in PBS for different scan speeds. The same results are shown in Table S1. (H) Results for

experiments of eGFP in sucrose for different scan speeds. The same results are shown in Table S2. We present point estimates for the diffusion coefficient and

two types of confidence intervals: least-squares confidence intervals (cross) and bootstrap confidence intervals (circle). Observe that the indicated level of

95% of the confidence intervals does not correspond to the true level; see Table 1. The bars have been displaced to avoid overlap, and the correct pixel dwell

time is indicated by the color. To see this figure in color, go online.
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using in this case a pixel dwell time between 5 and 20 ms
obtained from the simulation study.
DISCUSSION

In this work, we presented analytical formulae for the bias
and the variance of the empirical ACF of RICS. The vari-
ance for the ACF of RICS derived in this work and the vari-
ance for the ACF of FCS (Eq. 21; (11)) show many
similarities but also some differences. These differences
1910 Biophysical Journal 118, 1900–1914, November 19, 2019
prevent extrapolating the published results of FCS to
RICS. The comparison of the results obtained from the
derived expression for the variance of RICS and the results
from experiments and simulations (Figs. S6 and S7) validate
the formulae developed in this work. We proposed the
MSRE as a measure of the combined effects of accuracy
and precision of RICS. The MSRE has the advantage of
penalizing equally small absolute deviations below and
above the correct value D0. Although the MSRE maximal
value for large absolute deviations of D below D0 is 1,
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this does not pose a limitation to its usefulness because a
value of the MSRE close to 1 is a strong indication that
such experimental settings should be avoided. In (12), it
was shown that the error of the estimated diffusion coeffi-
cient in FCS is a function of logðD =D0Þ. Nonetheless, the
use of the logarithm of the ratio would penalize more under-
estimation than overestimation, introducing an asymmetry
that we think is not desirable in this context.

We found that the dependence bias of the ACF is
negligible for RICS experiments, even for small ROI
(%50 � 50 pixels). In particular, increasing the number of
collected pixels by changing the size of the ROI and the
measurement time made the bias of the ACF presented in
Eq. 5 less important. On the other hand, the estimation
bias cannot be ignored for ROI of size %50 � 50 pixels.
Thus, we proposed the modified RICS analysis to correct
for the estimation bias. In actual experiments, other sources
of possible bias may occur, such as photobleaching, dye
blinking, and sample drift, that we did not consider here.
Such bias, as opposed to the bias discussed here in detail,
will most likely not become negligible even by sufficient
sampling. A possible extension of our work to include the
bias because of photobleaching, dye blinking, and sample
drift could be used to develop a correction of the bias, for
example, by including the bias in the mean of the error terms
in Eq. 8. Then, if an approximation of this bias is available,
it is straightforward to generate the biased measurement er-
rors from the multivariate normal distribution.

The main advantage of RICSPE compared to the molec-
ular Monte Carlo simulation is that we do not need to simu-
late raster images, which are more computationally
demanding than simulation of the ACFs. For example, to
perform one molecular Monte Carlo simulation with the
typical settings used in RICS takes approximately 2 h and
20 min. To realistically evaluate the accuracy and precision
of the estimated diffusion coefficient, at least 10 repetitions
of such a simulation would be required, i.e., more than 20 h
total. RICSPE takes, under the same conditions, about 1 h
and 40 min. Moreover, RICSPE scales extremely well in
the number of repetitions, number of frames in one stack,
and concentration. In fact, in RICSPE, we do not simulate
diffusing particles, and thus, increasing the concentration
does not change the computational cost of the analysis.
On the other hand, one molecular Monte Carlo simulation
with concentration greater than or equal to 100 nM takes
�7 days. Although molecular Monte Carlo simulation
time scales linearly in the number of repetitions and frames
used, RICSPE has a sublinear scaling because of the fact
that most of the time is spent on computing the covariance
matrix of the ACF, which is common for all repetitions.

In the Results, we presented recommendations on the
choice of the scan speed, pixel size, concentration, bright-
ness, and size of the ROI. Previously published guidelines
(6) recommended the use of pixel dwell times in the range
of 8–20 ms and to use
tp <
w2

4D
(11)

to obtain a successful RICS experiment. With such pixel

dwell time values, the ACF will be nonzero in at least the
scanning direction. However, Eq. 11 limits the possible
values of the pixel dwell time that can be used in an experi-
ment only when the diffusion coefficient is relatively high
(>10 mm2 s�1). As an example, let the lateral waist of the
PSF bew¼ 0.2 mm. Then, forD¼ 0.1 mm2 s�1, the condition
in Eq. 11 becomes tp < 100 ms; for D ¼ 1 mm2 s�1, it be-
comes tp < 10 ms; for D ¼ 10 mm2 s�1, it becomes tp <
1 ms; and for D ¼ 100 mm2 s�1, it becomes tp < 100 ms.
Our conclusion is that for slowly diffusing particles (D ¼
0.1–1 mm2 s�1), the crucial parameter is the line time rather
than the pixel dwell time; see Figs. 3 and S9. The line time
depends on the pixel dwell time and the retracing time of
the beam, which is dependent on the microscope. Eq. 11 as-
sures that the ACF is nonzero at least for short lags, but one
needs a similar bound to guarantee that the correlation func-
tion is also distinguishable from the PSF. The RICSPE
method provides a practical way to check that the scan speed
is neither too fast nor too slow. Furthermore, Eq. 11 does not
provide any quantification of the difference in the estimated
diffusion coefficient when using two pixel dwell times satis-
fying the condition in Eq. 11, whereas we show that the
MSRE has this potential. ForD¼ 10 mm2 s�1, RICSPE indi-
cated that, among the cases tested, a line time tl ¼ 1, 2, 3 ms
would be recommended. Although these recommendations
satisfied the condition in Eq. 11 and the pixel dwell times
were approximately in the range 8–20 ms as suggested in
(6), Fig. S10 showed that most of the information about the
dynamics of the particles lies in the y-direction of the ACF.
For D > 10 mm2 s�1, RICSPE recommended using tp ¼ 5,
10, 20 ms, in line with the guidelines presented in (6).

We concluded that the RICS autocorrelation function in
the case of a single fluorescent species diffusing in a homo-
geneous medium contains information on diffusion mostly
in one of the two directions; see Figs. 3 and S9–S12. How-
ever, RICS in general exploits information on different time-
scales. For example, if we considered a mixture of particles
with different diffusion coefficients or a heterogeneous
medium, then the multiple timescales (microseconds be-
tween adjacent pixels in the x-direction, milliseconds be-
tween adjacent pixels in the y-direction, and seconds
between consecutive frames) present in RICS would allow
us to study diffusion in such complex diffusion processes.
A global analysis of RICS over different scan speeds, called
multiple scan speed intensity correlation spectroscopy
(msICS) (28), has been developed. The main advantage of
msICS over RICS lies in the possibility of applying this
method when little a priori information of the diffusion in
the sample is available. In such a situation, selecting the
correct scan speed would be difficult. However, a proper
comparison between msICS and RICS with comparable
Biophysical Journal 118, 1900–1914, November 19, 2019 1911
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experiments, e.g., with a similar total measurement time,
has been missing. Our results suggest that there exists an
optimal range of scan speeds for RICS depending on the
value of the diffusion coefficient. Thus, it is possible that
such optimal settings would outperform a global analysis
in RICS for a single diffusing species. Nonetheless, the
msICS approach exploits a series of scan speeds, allowing
the extraction of information on different timescales, which
could be desirable when studying mixtures of diffusing spe-
cies. RICSPE can be generalized to study samples contain-
ing two noninteracting species having different diffusion
coefficients by considering weighted sums of Eq. 6 with
different parameters. RICSPE can in theory be used to
find out whether the two diffusion coefficients can be
resolved and possibly provide guidelines on the experi-
mental settings for a given mixture of particles. This could
be the subject of a future study.

As discussed above, Eq. 11 ensures a nonzero temporal
correlation. Similarly, to have spatial correlation between
adjacent pixels, it is important that the pixel size is smaller
than the radius of the PSF. Previous recommendations for
designing an RICS experiment (6) suggest having the pixel
size at least four to five times smaller than the radius w of the
PSF. We tested the effect of oversampling the PSF, and we
find an improvement between using a pixel size smaller
than ðw =4Þ as compared to pixel sizes larger than ðw =2Þ.
In terms of number of images and size of the ROI, we ob-
tained similar results as in (6).

When the RICSPE method introduced here is used, the
concentration of particles did not seem to matter as long as
we are in the typical range 1 nM–1mMof concentrations suit-
able for RICS. However, with concentrations on the order of
0.1 nM, the RICSPE method underestimated the variability
of the estimated diffusion coefficient. Although RICS still
provided good estimates of the diffusion coefficient, these
estimates started to be less precise compared to the other
concentrations considered. Thus, further investigation is
needed. Finally, for an RICS experiment on a homogeneous
TABLE 2 Summary of the Recommended Range of Values for the

Parameter Impact Range of Values

Brightness medium 102–103 kHz counts per particle per second

for solution experiments. 10 kHz counts per par

per second for cell measurements.

Concentration low 1 nM–1 mM

Fluorescence

intensity

medium Average photons per pixel R0.03.

ROI medium R200 � 200 for RICS or R16 � 16 for local

RICS with bias correction (modified RICS)

Pixel size high Pixel size < ðw =4Þ.

Scan speed high See Table 3.
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sample, we recommend choosing the largest number of
pixels in a line X and number of lines Y that allow for the
optimal combination of pixel dwell time and line time found
as described above. In fact, Fig. 3 G showed that for a fixed
number of pixels scanned, the ROI did not play a role, but for
a fixed measurement time, it did; see Fig. S14. However,
when mapping diffusion locally by applying RICS on small
regions, we recommend using the correction introduced in
modified RICS. Our guidelines are summarized in Tables 2
and 3. When planning an RICS experiment, the parameters
that mostly affect the accuracy and precision of RICS are,
in descending order of importance, the scan speed, pixel
size, brightness, and size of the ROI. In general, if the condi-
tion regarding the brightness in Table 2 cannot be met or
when locally mapping diffusion by repeating the analysis
on small ROIs, the deterioration in the performance of
RICS, in terms of the precision and accuracy of the estimated
diffusion coefficient, can be compensated for by increasing
the number of frames as long as the longer measurement
time does not lead to some unwanted effects (such as photo-
bleaching or sample drift).

An analysis similar to the one proposed here for RICS can
be carried out for other ICS methods such as TICS, spatio-
temporal image correlation spectroscopy (STICS) (29), and
pair correlation function (30). The formulae necessary for
the analysis presented in this manuscript can be adapted
from the ones derived in the Supporting Materials and
Methods. We expect the effect of the common parameters
on the precision and accuracy of the estimated diffusion co-
efficient to be similar in all ICS methods. In ICS methods,
the sampling time interval, i.e., the time between successive
data points, should be adjusted according to the movement
of the particles. For example, in RICS, the sampling time in-
terval is characterized by the combination of pixel dwell
time and line time, whereas for TICS or STICS, the sam-
pling time corresponds to the time between consecutive
frames. We think that corresponding plots as in Fig. 3,
E and F for TICS and STICS could provide a powerful
Parameters Considered Here

Further Comments

ticle

If this recommended condition cannot be met, consider increasing

the number of frames while avoiding photobleaching and other

common problems of long measurement times.

The concentration does not seem to affect the RICS performance, at

least not in the concentration range 1–10 nM. Further

investigation at high concentrations (>10 nM) is needed.

This condition can be met by increasing the brightness (laser power/

probe), the concentration, or the pixel dwell time.

.

Recommended to use the largest image size that allows the

combination of pixel dwell time and line time reported in Table 3.

RICS can provide good results as long as the pixel size is smaller

than or equal to ðw =2Þ if at least 100 images are collected. The

value of w has to be calibrated for the microscope. This condition

and Eq. 11 are sufficient to guarantee a nonzero ACF.



TABLE 3 Summary of the Optimal Scan Speed for Different Values of the Diffusion Coefficient

D (mm2 s�1) Measurement Time ¼ N
Measurement Time ¼ 3 Min, Not Taking into

Account the ‘‘Dead Time’’ of the Microscope Comments

0.1 tl is 24 or 48 ms tl is 12, 24, or 48 ms Avoid using line times less than or equal to 2 ms

1 tl is 24 or 48 ms tl is 4 or 8 ms

10 tl is 1, 2, or 4 ms tl is 1, 2, or 4 ms

100 tp is 5, 10, or 20 ms tp is 5, 10, or 20 ms

400 tp is 5, 10, or 20 ms tp is 5, 10, or 20 ms Pixel dwell times of 1 ms could work as well.

Avoid using pixel dwell times greater than or

equal to 120 ms.

The column with infinite measurement time refers to an experiment in which having a long measurement time is not problematic. The column with limited

measurement time does not take into account the time spent on retracing the beam between frames. In case this ‘‘dead time’’ is accounted for, the number of

photons collected will decrease accordingly.

RICS Performance Evaluation
tool to qualitatively determine whether a sampling time
would allow for correct determination of the parameters.
Similarly, as we discussed for RICS, the pixel size may
not be crucial as long as the PSF is oversampled by at least
a factor of 4. Furthermore, the effect of the concentration of
the probe should be the same in RICS, TICS, and STICS. In
general, increasing the number of data points sampled, e.g.,
the number of frames in TICS or the number of frames and
the size of the ROI in RICS and STICS, improves the accu-
racy and precision of the estimated diffusion coefficient, at
the cost of a longer measurement time.

The analysis for arbitrary-region RICS (ARICS) (25) is
more complex to perform. In fact, ARICS considers ROIs
of any shape, and typically, the shape is defined manually
or by using a mean filter. However, such ROIs cannot be
known before performing an experiment or a simulation.
Nonetheless, the general recommendation that a larger
ROI provides more precise estimates still holds. We recom-
mend using an ROI that allows sufficient sampling in the di-
rection of the ACF that contains most of the information
about the dynamics of the system. We can also conclude
that in the case of a heterogeneous sample in which RICS
analysis would be done locally in small regions by dividing
the image into small nonoverlapping regions, the increase in
the error of the estimated diffusion coefficient due to the
small ROI could be counterbalanced by increasing the num-
ber of frames in the experiment (18) and adopting the
correction in modified RICS. Alternatively, local RICS
(18) can be used to locally map the diffusion coefficient af-
ter a calibration step based on simulated data. To investigate
the results of ARICS, we suggest visualizing, together with
the diffusion map, a map of the standard errors of the esti-
mated diffusion coefficient computed by bootstrapping the
data set.

A typical step in RICS experiments is the preprocessing
of the images by means of a moving average to remove
spatial inhomogeneities. The number of frames to be aver-
aged should be chosen to be the maximum such that these
inhomogeneities do not move significantly during the scan-
ning of the frames. If we average over more frames, we can
obtain a better estimate of the spatial inhomogeneities
because the fluctuations of the signal due to the dynamics
of the particles cancel out in the moving average procedure
as long as they are immobile.

RICS can be used on a confocal laser scanning micro-
scope with analog detection to determine the diffusion coef-
ficient. Nonetheless, a few precautions must be taken. First,
analog detectors can introduce unwanted correlations be-
tween adjacent pixels in the x-direction, in particular for
short pixel dwell times (14). Thus, it is recommended to
either avoid using such fast scan speeds or leave out the cor-
rupted points G(0, j) of the ACF in the x-direction during
the fitting. In terms of the recommendations given here,
for slow-diffusing particles D % 1mm2 s�1, the correlation
on the x¼ 0 line of the ACF G(x, j) is not crucial to recover
the diffusion coefficient; see Figs. 3 E and S9. However, for
fast-diffusing particles (D R 100 mm2 s�1), we recommend
using a fast scan speed because it is the x-direction of the
ACF that holds information about diffusion; see Figs. S11
and S12. In such a case, we suggest performing a prestudy
by collecting images and optically preventing any light
from reaching the detector to check the effect of the corre-
lated noise.
CONCLUSIONS

In this work, we propose the RICSPE method as an alterna-
tive to molecular Monte Carlo simulations to investigate the
effect of different experimental settings on the accuracy and
precision of the estimated diffusion coefficient. RICSPE is
based on the simulation of autocorrelation functions, from
which a sample of the estimated diffusion coefficients can
be obtained by mimicking the RICS analysis. To demon-
strate the potential of RICSPE, we show the effect, in
decreasing order of importance, of the scan speed, pixel
size, brightness, the size of the ROI, and concentration on
the performance of RICS. We propose a correction for the
deviation of the ACF on small regions, which we call modi-
fied RICS, that helps in mapping diffusion locally in the
sample. Additionally, we advise RICS users to be cautious
when reporting confidence intervals for the diffusion coeffi-
cient. We provide a GUI to run RICSPE through a reposi-
tory. We suggest that the RICS user list, for the particular
microscope, all the possible combinations of pixel dwell
Biophysical Journal 118, 1900–1914, November 19, 2019 1913
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time and line time for a certain ROI. Then, given an estimate
of the magnitude of the diffusion coefficient and the probe
brightness obtained either in a prestudy or from the litera-
ture, fill in the corresponding fields in the RICSPE GUI.
The program will recommend the best combination of pixel
dwell time and line time for the experimental condition
used as input. Afterwards, if the variability of the diffusion
coefficient is still large, one can change the measurement
time and the number of frames to check their minimal values
to reduce such variability below a predetermined level. We
believe that the recommendations presented here could help
RICS users in their daily research.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2019.09.045.
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1. Petersen, N. O., P. L. Höddelius, ., K. E. Magnusson. 1993. Quanti-
tation of membrane receptor distributions by image correlation spec-
troscopy: concept and application. Biophys. J. 65:1135–1146.

2. Kolin, D. L., S. Costantino, and P. W. Wiseman. 2006. Sampling ef-
fects, noise, and photobleaching in temporal image correlation spec-
troscopy. Biophys. J. 90:628–639.

3. Wiseman, P. W. 2013. Image correlation spectroscopy: Mapping corre-
lations in space, time, and reciprocal space. In Fluorescence Fluctua-
tion Spectroscopy (FFS), Part A, volume 518 of Methods in
Enzymology. Academic Press, pp. 245–267.

4. Digman, M. A., C. M. Brown,., E. Gratton. 2005. Measuring fast dy-
namics in solutions and cells with a laser scanning microscope. Bio-
phys. J. 89:1317–1327.

5. Brown, C. M., R. B. Dalal,., E. Gratton. 2008. Raster image correla-
tion spectroscopy (RICS) for measuring fast protein dynamics and con-
1914 Biophysical Journal 118, 1900–1914, November 19, 2019
centrations with a commercial laser scanning confocal microscope.
J. Microsc. 229:78–91.

6. Rossow, M. J., J. M. Sasaki, ., E. Gratton. 2010. Raster image corre-
lation spectroscopy in live cells. Nat. Protoc. 5:1761–1774.

7. Elson, E. L., and D. Magde. 1974. Fluorescence correlation spectros-
copy. I. Conceptual basis and theory. Biopolymers. 13:1–27.

8. Koppel, D. E. 1974. Statistical accuracy in fluorescence correlation
spectroscopy. Phys. Rev. A. 10:1938–1945.

9. Qian, H. 1990. On the statistics of fluorescence correlation spectros-
copy. Biophys. Chem. 38:49–57.

10. Wohland, T., R. Rigler, and H. Vogel. 2001. The standard deviation in
fluorescence correlation spectroscopy. Biophys. J. 80:2987–2999.

11. Saffarian, S., and E. L. Elson. 2003. Statistical analysis of fluorescence
correlation spectroscopy: the standard deviation and bias. Biophys. J.
84:2030–2042.

12. Enderlein, J., I. Gregor, ., J. Fitter. 2005. Statistical analysis of diffu-
sion coefficient determination by fluorescence correlation spectros-
copy. J. Fluoresc. 15:415–422.

13. Digman, M. A., and E. Gratton. 2009. Analysis of diffusion and bind-
ing in cells using the RICS approach.Microsc. Res. Tech. 72:323–332.

14. Gielen, E., N. Smisdom,., M. Ameloot. 2009. Measuring diffusion of
lipid-like probes in artificial and natural membranes by raster image
correlation spectroscopy (RICS): use of a commercial laser-scanning
microscope with analog detection. Langmuir. 25:5209–5218.

15. Ivanchenko, S., and D. C. Lamb. 2011. Fluorescence correlation spec-
troscopy: principles and developments. In Supramolecular Structure
and Function 10. J. Brnjas-Kraljevi�c and G. Pifat-Mrzljak, eds.
Springer, pp. 1–30.

16. Fuller, W. 1996. Introduction to Statistical Time Series. John Wiley &
Sons, Hoboken, NJ.

17. Marriott, F. H. C., and J. A. Pope. 1954. Bias in the estimation of au-
tocorrelations. Biometrika. 41:390–402.

18. Scipioni, L., M. Di Bona,., L. Lanzanó. 2018. Local raster image cor-
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