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ABSTRACT
We study the dynamic engine-generator optimal control

problem with a goal of minimizing fuel consumption while
delivering a requested average electrical power. By using an
infinite-horizon formulation and explicitly minimizing fuel
consumption, we avoid issues inherent with penalty-based
and finite-horizon problems. The solution to the optimal
control problem, found using dynamic programming and the
successive approximation method, can be expressed as in-
stantaneous non-linear state-feedback. This allows for triv-
ial real-time control, typically requiring 10–20CPU instruc-
tions per control period, a few bytes of RAM, and 5–20KiB
of nonvolatile memory. Simulation results for a passenger
vehicle indicate a fuel consumption improvement in the re-
gion of 5–7% during the transient phase when compared
with the class of controllers found in the industry. Bench-
tests, where the optimal controller is executed in native
hardware, show an improvement of 3.7%, primarily limited
by unmodeled dynamics. Our specific choice of problem for-
mulation, a guaranteed globally optimal solution, and triv-
ial real-time control resolve many of the limitations with
the current state of optimal engine-generator controllers.

1 Introduction
Engine-generator (gen-set) systems are used in a wide

range of applications, from the drivetrain in a series-hybrid

passenger vehicle to the larger diesel-electric locomotive and
natural gas power plants. Regardless of application a gen-
set fundamentally consists of a combustion engine mechan-
ically connected to an electric machine, whose purpose is
to convert a combustible fuel into electrical power. One
particularly relevant attribute of a well-designed gen-set is
it’s fuel efficiency, i.e. how efficiently consumed fuel is con-
verted to electrical power. In this paper we will consider
the gen-set of a series-hybrid passenger vehicle and specifi-
cally a method of improving its fuel efficiency (though this
method can easily be extended to other applications). In
particular, we will focus on methods that include transient
operation, i.e. where the gen-set engine speed is allowed to
vary over time.

One method of generating a fuel-efficient control scheme
is to formulate the objective as an optimal control problem,
and then use a method from the field of optimal control to
solve the problem. The specific formulation of the optimal
control problem and the method used to solve it is crucial.
In this paper we will require the solution to

1. accurately capture our intent of minimizing fuel con-
sumption,

2. be (close to) the globally optimal solution, and
3. allow for real-time control with low computational de-

mand.

Previous work in transient gen-set control covers a range
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of different optimal control formulations, solution methods,
and with varying degrees of real-time applicability.

If we first consider the formulation of the optimization
problem, some have elected to use quadratic penalty-based
formulations that balance the quadratic gen-set losses and
quadratic deviation from requested power [4, 6]. Though a
conventional formulation, this results in the gen-set gener-
ally never delivering exactly the requested power. Further-
more, this formulation does not generally minimize fuel con-
sumption (as the minimand is quadratic losses and power
deviation, not consumed fuel). One alternative formulation
is to apply strict equality constraints to the delivered power
at all times [3]. This is suitable for applications where there
is a true requirement to deliver a given power at every point
in time, however, as described in their paper this is at cost
of potential infeasibility as well as reducing the range of per-
missible control actions, virtually guaranteeing a higher fuel
consumption compared to the case where delivered power is
allowed to vary during the transient phase. A third option
is to use an explicit minimum-fuel problem formulation [5].
This choice unequivocally matches our intent, but has the
potential of leading to a problem formulation that is difficult
to numerically solve.

The specific method used to solve the optimization
problem is another aspect relevant to consider. The gradi-
ent descent method [4] is a traditional method, but requires
a differentiable problem formulation and is not guaranteed
to return a globally optimal solution. The multiple shooting
and sequential quadratic programming method [5] is more
sophisticated, but is still subject to the same fundamental
limitations. An alternate approach is the use of stochas-
tic optimization, e.g. a genetic algorithm [6]. This avoids
the need for a differentiable problem formulation and is less
likely to be trapped in a local optimal solution, but is typ-
ically computationally demanding and has no global opti-
mality guarantee. One attractive option is to use a method
based on Pontryagin’s maximum principle or dynamic pro-
gramming, as these typically are ensured to give the globally
optimal solution. An example of this is seen in [3], though
the specific method used requires hours of computational
time to solve a problem that covers 10 seconds of opera-
tion.

Finally, it is worth considering how well (if at all) so-
lution methods can translate into real-time control. One
straightforward method is to limit equilibrium operation to
a small number of discrete points [6], allowing for storing
pre-computed trajectories and applying them during run-
time. Though effective, this scales poorly with the number
of equilibrium points, as we will typically need to store the
optimal control trajectories over time for every combina-
tion of equilibrium points. Alternatively, domain-specific
knowledge can be used to implement real-time methods
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FIGURE 1: Series-hybrid vehicle drivetrain, the gen-set con-
sists of the combustion engine and electrical machine.
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FIGURE 2: Gen-set dynamic model overview.

that approximate the behavior of the computed optimal
solutions [3, 4]. Though this can lead to very efficient real-
time control methods, we are no longer guaranteed optimal-
ity while also requiring extensive knowledge of the specific
problem to be solved.

In this paper we will introduce a method that addresses
many of the current limitations. In particular, we will for-
mulate the optimization problem as an explicit fuel con-
sumption minimization problem, constrained to deliver a
given average electrical power over an infinite time hori-
zon which we solve using dynamic programming, ensuring a
(close-to) globally optimal solution. The infinite time hori-
zon is useful both as it ensures us that fuel consumption
is balanced between the transient and stationary phase, as
well as giving a solution that can be formulated as state-
feedback. This ultimately allows for implementing real-time
optimal control using a bare minimum of computational
power (on the order of 5–20KiB of nonvolatile memory, a
few bytes of RAM, and 10–20 CPU instructions per control
period).

2 Problem formulation
In this paper we will study the gen-set of a series-hybrid

vehicle, as illustrated in Fig. 1. In particular, we will model
the gen-set as a combustion engine directly connected to
an electrical machine, with dynamics that arise from the
moment of inertia of moving parts (illustrated in Fig. 2).

In the gen-set, we model the combustion engine (CE)
as consuming fuel at a rate

ṁ(t) = fC (ω (t) , τC (t)) , (1)
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i.e. a function of the instantaneous torque τC (t) and
crankshaft angular speed ω (t). Similarly, the electric ma-
chine (EM) delivers or consumes electric power as

PE (t) = fE (ω (t) , τE (t)) (2)
=−τE(t)ω(t)−fE,loss(ω(t), τE(t)), (3)

for a given instantaneous torque τE (t) and crankshaft speed
ω (t). We will view τE and τC as control inputs that should
ultimately be selected in a way that minimizes the fuel con-
sumption of the gen-set.

Note that we assume fC and fE are instantaneous func-
tions of the current crankshaft velocity and their respective
torques, without any additional dynamics. This instan-
taneous formulation allows for determining them by using
standard experimentally obtained equilibrium maps (i.e. by
experimentally measuring the fuel massflow and delivered
electrical power respectively at a wide range of operating
points). We will return to the validity of this assumption
in Subsection 4.1. Furthermore, note that (3) implies that
we can view the EM as an ideal mechanical to electrical
converter (with power given by −ω(t)τE(t)), with all non-
frictional losses lumped into fE,loss. For brevity, we will no
longer explicitly state the time-dependence of the previous
terms.

We lump all frictional components in the CE and EM
together to form τf (ω), which is typically non-linear. This
implies that we can view τC and τE as indicated torques
rather than crankshaft torques. Similarly, we lump together
all inertial terms forming a net moment of inertia J . This
gives a net continuous-time dynamic gen-set model

ω̇ = 1
J

(
τC + τE + τf (ω)

)
, (4)

i.e. a non-linear first-order dynamic system. Note that the
nonlinearity of τf implies that (4) is generally a non-linear
differential equation.

This specific choice of modeling and sign notation im-
plies that a negative EM torque will apply a retarding
torque to the crankshaft and deliver electrical power. Sim-
ilarly, for positive EM torques the EM will tend to accel-
erate the crankshaft and thus consume electrical power. In
steady-state operation, where the gen-set delivers electrical
power, we will thus have τC > 0, τE < 0, and PE > 0.

Assume that we will ultimately implement real-time
control using a digital controller with a fixed sample rate
ts, where the control signals τC and τE are held constant
between sample times (zero-order hold). For convenience,

we will use the notation

ωk ≡ ω (kts) (5a)
τC,k ≡ τC (kts) (5b)
τE,k ≡ τE (kts) (5c)

to indicate the discrete-time crankshaft speed and torques
respectively. Using a numerical ODE solver we can solve
(4) for a given initial condition and torques over time ts,
allowing us to introduce a discrete-time dynamic equation

ωk+1 = f
(
ωk, τC,k, τE,k

)
(6)

where f is given by the ODE solver.
We can now introduce the optimization problem we ul-

timately wish to solve as

(τ∗C , τ∗E) = argmin
τC ,τE

lim
N→∞

N∑
k=0

fC
(
ωk, τC,k

)
· ts (7a)

subject to

ωk+1 = f
(
ωk, τC,k, τE,k

)
(7b)

1
N

N∑
k=0

fE
(
ωk, τE,k

)
= Ptgt (7c)

g
(
ωk, τC,k, τE,k

)
≤ 0, (7d)

i.e. over an infinite horizon minimize fuel consumption,
while delivering a given average power Ptgt, and demand-
ing the CE and EM torques and crankshaft velocity lie in
a permissible range given by g. Note that though the sum
in (7a) grows arbitrarily large with increasing N , the mini-
mand (τ∗C , τ∗E) is for this problem well-defined [1], as fC · ts
is finite (the CE can only consume a finite amount of fuel
in finite time).

Note that the choice of an infinite horizon (N →∞)
obviates the need for determining a control and prediction
horizon commonly found in finite-horizon problem formula-
tions (e.g. traditional model predictive control (MPC)).

In this paper we have studied a conventional direct-
injection turbocharged gasoline combustion engine coupled
with a permanent-magnet synchronous electric machine.
These are representative examples of gen-set components
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that could be found in a typical light-duty series-hybrid.
The functions fC and fE are approximated by empirically
measuring the physical fuel flow and delivered electrical
power respectively for a large set of equilibrium operating
points. Similarly, τf is determined by measuring the torque
required to motor the unloaded crankshaft (i.e. τC , τE are
set to 0) while maintaining a constant speed using an ad-
ditional external EM. The function g is defined to give box
constraints for the permissible state and control signals as

g (ω,τC , τE) =


0 if 0≤ ω ≤ 750

and 0≤ τC ≤ 390
and −150≤ τE ≤ 150

1 else.

(8)

Illustrations of the combustion engine’s normalized in-
dicated specific fuel consumption, the electric machine’s ef-
ficiency (defined as ηEM ≡ (|fE |−fE,loss)/|fE |, and the net
friction τf are shown in Fig. 3.

3 Method
Minimum Horizon Dynamic Programming (MHDP), a

method recently developed by the authors [2], is a method
based on dynamic programming and the successive ap-
proximation method for solving general average-constrained
infinite-horizon nonlinear optimal control problems of form

(x∗,u∗) = argmin
x,u

lim
N→∞

N∑
k=0

c(xk,uk) (9a)

subject to

xk+1 = fd (xk,uk) (9b)

1
N

N∑
k=0

fa (xk,uk) = α (9c)

g (xk,uk)≤ 0 (9d)

where xk ∈ Rn and uk ∈ Rm are the k’th state and control
variables respectively. Ultimately, MHDP determines the
optimal controls u∗ in the sense that (9a) is minimized while
respecting the system dynamics and constraints.

It can be shown that under some mild assumptions, for
problems of form (9a), that the optimal control u∗ to ap-
ply at any given time solely depends on the current system

(a) CE fuel consumption.

(b) EM electrical power.

(c) Net crankshaft friction.

FIGURE 3: Plots of normalized CE fuel consumption, EM ef-
ficiency, and τf . As the CE and EM are modeled as friction-
less devices the crankshaft torques can be views as indicated
rather than brake-specific torques.

4 Copyright c© 2019 by ASME



state [2]. Essentially, there exists a function fsf : Rn→ Rm
such that u∗k = fsf(xk). Typically fsf is referred to as an
optimal control policy or optimal non-linear state feedback.
MHDP generates an approximation of fsf and returns a
look-up table with the optimal controls to apply for a given
set of discrete state values. Once fsf is known this allows
for near-trivial on-line control, as the controller can sim-
ply look up the tabulated state value (typically using some
form of interpolation if the current system state lies between
tabulated values) and apply the resulting control signal.

Though a detailed description of the MHDP method
is beyond the scope of this paper, an overview of the pa-
rameters required by the method can aid in understanding
and interpreting the generated results. Given a non-linear
(but well-behaved) cost c, system dynamics fd, averaging
function fa, a demanded average α, and general constraints
g MHDP can return the optimal control policy associated
with (9). Furthermore, MHDP requires selecting a given
state and control quantization; more densely sampled points
will give a more accurate approximation of fsf, but gen-
erating the state-feedback law will take longer as well as
requiring more memory in the real-time controller (as the
optimal control policy table will contain more entries). Fi-
nally, an additional consequence of the MHDP method is
that the generated optimal control policies are not explic-
itly parameterized by the average constraint α (Ptgt in our
application), but by another scalar parameter λ analogous
to a Lagrange multiplier. We resolve this in this paper by
searching for values of λ that give the desired average power
levels.

Returning to our specific problem, solving (7) with
MHDP will generate the optimal control policies

(τ∗C (ω,Ptgt) , τ∗E (ω,Ptgt)) , (10)

which we can view as the optimal torques τ∗C and τ∗E to
apply tabulated by different crankshaft speeds ω and the
target-power Ptgt.

A block diagram illustrating the final controller con-
struction is shown in Fig. 4. As is shown, the requested
power Ptgt is fed into the tabulated control laws τ∗C , τ∗E
along with the current crankshaft speed ω, giving a closed-
loop non-linear state-feedback controller.

For our specific problem (7) the real-time system need
only perform a two-dimensional interpolation operation ev-
ery sample. This typically takes on the order of 10–20
CPU instructions and (using the parameters to be pre-
sented shortly in Table 1) requires a look-up-table consum-
ing approximately 13KiB (as NPtgt ·Nω = 6560 entries are
required, using 16-bit words gives ≈ 13KiB), both of which
are trivially performed in virtually any embedded system.

FIGURE 4: Net closed-loop block diagram.

TABLE 1: MHDP parameters used for (7).

Parameter Value Unit Description

ts 50 ·10−3 s Sample time

∆τ 4 Nm Torque
quantization

NPtgt 80 - Number of evenly
spaced equilibrium

power levels.

Nω 82 - Number of evenly
spaced discretized

states.

4 Results
We have solved (7) using MHDP (taking approximately

12 hours with a standard desktop PC) with the configura-
tion listed in Table 1, where the state and control signals
have been discretized by evenly spacing them in the range
allowed by (8). The specific choice of parameters in Table 1
was chosen to give a torque and crankshaft speed quantiza-
tion that is on par with the measurement accuracy of the
system.

Illustrations of the optimal CE and EM torques for rep-
resentative target powers are shown in Fig. 5a and Fig. 5b.
These plots illustrate the low computational demand of the
on-line controller — the optimal control is given simply by
consulting the stored torque corresponding to the current
crankshaft speed and desired power.

Studying Fig. 5a and Fig. 5b allows us to come to some
conclusions about the optimal control policy. For instance,
for the 37 kW and 62 kW target power the EM will accel-
erate the gen-set when the crankshaft speed is less than
approximately 200 rad/s. We speculate that this is due to
the slightly lower efficiency of the CE at low speeds, as is
seen in Fig. 3a, and it is thus optimal to spend as little time
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(a)

(b)

FIGURE 5: Optimal CE and EM torques for representative
target powers.

as possible in this region. Furthermore, for the specific case
of a 0 kW setpoint, τC = 0, i.e. the combustion engine is set
to consume no fuel. In the event that ω 6= 0 then τE < 0,
which we can interpret as the optimal policy being to de-
celerate the crankshaft to zero speed while converting as
much as possible of the crankshaft’s stored kinetic energy
to electrical energy.

In order to evaluate the performance of the optimal
controller generated by MHDP we have chosen to compare
it to a traditional gain-scheduled proportional controller. In
this paper we will use a controller with control law

 τC,P (ω,ω∗EQ

)
τE,P

(
ω,ω∗EQ

)= clamp

 τ∗C,EQ

(
ω∗EQ

)
τ∗E,EQ

(
ω∗EQ

)+

 kp

(
ω∗EQ

)
−kp

(
ω∗EQ

)(ω−ω∗EQ
) (11a)

ω∗EQ = f∗ω (Ptgt) . (11b)

Here, f∗ω (Ptgt) is a function that gives the equilibrium
crankshaft speed that consumes the least fuel for a given

target power Ptgt. τ∗C,EQ and τ∗E,EQ are functions that re-
turn the torques needed to keep the system stationary at
the equilibrium speed (which can be viewed as feed-forward
terms), clamp is the clamping function that limits τC,P and
τE,P to the permissible values given in (8), and kp is a pa-
rameterized controller gain (which can be viewed as a pro-
portional feed-back gain term). Due to the system’s dynam-
ics (4), the structure of (11) ensures that the gen-set will
asymptotically approach the optimal operating point but
will likely be sub-optimal during the transient approach.

The specific value of the controller gain kp is critical
for the performance of the closed-loop system. With small
values a large amount of time is spent operating in regions
with low efficiency, while large values will tend to apply
very large torques which also typically reduces efficiency.
In order to give a fair comparison between the optimal and
proportional controllers, we have selected kp to give a step
response time from standstill (ω = 0) to the target speed
(ω = ω∗EQ) that takes an equally long time as the optimal
solution (see Fig. 6). Note that we have now implicitly
made our proportional controller to some degree optimal —
it is unlikely that a real-world controller would happen to
be optimally tuned and would presumably consume even
more fuel than the results shown below.

Note that this specific choice of a gain-scheduled pro-
portional controller ensures that the gen-set will deliver the
same electrical power and consume fuel at the same rate
when at equilibrium operation. In all following compar-
isons we will thus only consider the transient phase, as it
is only in this region where the optimal controller has any
potential for improvement.

In all the following results, we have chosen to use the
piecewise-constant setpoint function

Ptgt (t) =
{
P 0≤ t≤ T
0 else,

(12)

where T is chosen to be large enough to bring the gen-set
to near-equilibrium operation. We have chosen this spe-
cific setpoint function as this allows us to fairly compare
gen-set controllers. A full drive-cycle simulation would re-
quire choosing a specific torque-split controller (i.e. when
and how much power to draw from the battery and gen-
set respectively), the choice of which will greatly influence
the total system behavior. Furthermore, we can note that
only steps in power will give a truly optimal control signal,
as the problem formulation (9) assumes a constant average
power constraint. We speculate however that slowly-varying
power demands will also be near-optimal (as no significant
dynamics are excited). To limit the scope of this paper we
will thus only consider the simple power step (12).
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FIGURE 6: Step response from standstill to equilibrium
crankshaft speed for optimal and proportional controllers.
For fairness, the proportional controller gain is set to make
the system reach equilibrium at the same time as the opti-
mal controller.

In Fig. 7 we can study the operating points for the CE
and EM for the optimal controller (7) and the traditional
controller (11). We can see that though both controllers
reach the same equilibrium operation point (indicated by
xEQ), their paths to the equilibrium point are different. In
particular, in Fig. 7a we can see that the proportional con-
troller generates a trajectory that happens to pass through
a region with poor efficiency (ω = 75, τC = 280), a region
the optimal controller avoids entirely.

As both controllers bring the gen-set to the same oper-
ating point in the same time we can numerically compare
them by studying their effective efficiency (i.e. delivered
electrical energy per consumed fuel mass)

η =
∫∞

0 fE dt∫∞
0 fC dt

. (13)

Note that as Ptgt = 0 for t > T , (13) can be viewed as a
measure of the efficiency of the gen-set during solely tran-
sient operation, and indicates the gen-set efficiency both for
an increase and decrease in target power.

As the controllers do not necessarily deliver the same
amount of energy during the transient phase, the time T in
(12) is adjusted separately for each controller until the total
delivered power is identical.

In essence, both controllers will start and end at the
same crankshaft speed, reach the same equilibrium speed
at the same time, and deliver the same amount of energy

over the whole cycle. The controller’s freedom lies in the
choice of transient torques, as well as when electrical power
is delivered.

Fig. 8 shows the efficiency improvement during the
transient phase of operation, with fuel savings on the or-
der of 2–7%. We believe that the large variation in effi-
ciency gains is primarily due to the traditional controller
sometimes performing fairly well (e.g. at 52 kW) and some-
times poorly (e.g. for ≤ 45 kW) compared to the optimal
controller. We can see an indication of this in Fig. 7, where
in Fig. 7a the proportional controller’s trajectory passes
through an inefficient region, while in Fig. 7c the propor-
tional controller’s trajectory happens to be closer to the
optimal trajectory.

4.1 Bench-test results
In this section we verify the previous results by imple-

menting and evaluating the optimal controller in a physical,
real-time, control system.

We have performed this test using a light-duty plug-in
hybrid electric vehicle with dynamometers mounted on all
wheels as shown in Fig. 9. We use the same problem for-
mulation as in the previous section, i.e. solve for (7), (8),
with an additional constraint limiting the electrical power to
15 kW due to the vehicle’s relatively small inverter. Math-
ematically we can demand this by adding

|fE | ≤ 15 ·103

as a constraint to (8).
Notably, due to the minimal computational load of im-

plementing the optimal control policy as given by MHDP,
the entire control loop is performed natively in the vehi-
cle’s engine control unit without any support from external
hardware (as shown in Fig. 4). In these tests we have gener-
ated state-feedback control laws for 102 discrete crankshaft
speeds over the gen-set’s operating range (using linear inter-
polation to determine τC and τE for intermediate crankshaft
speeds) and two power levels (Ptgt = P and Ptgt = 0). τ∗C
and τ∗E were stored as 32-bit floating point values, giving
a total nonvolatile memory consumption of 1.6KiB. Tests
have shown that the on-line controller consumes on the or-
der of 10–15 CPU cycles per sample, which is similar to that
of the existing (suboptimal) controller. We have compared
the optimal controller with a controller of form (11), which
is comparable to controllers used in the industry.

We have tested the vehicle’s gen-set for a setpoint power
of P = 15 kW, with a corresponding equilibrium crankshaft
speed of 205 rad/s. Due to resource limitations only a sin-
gle (15 kW) power level was evaluated. In Fig. 10 we can
view ensemble plots of the CE and EM torque for several
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(a) (b)

(c) (d)

FIGURE 7: Typical CE and EM transient operating point trajectories.

repeated tests, with an associated average efficiency im-
provement of 3.7%. The difference in equilibrium speed in
Fig. 10c is an artifact of the test-bench, but has little effect
on the results as the CE efficiency is virtually identical for
ω = 200 and ω = 210. Notably, the structure of the propor-
tional controller gives a solution that tends to load the CE
more at speeds where it is inefficient (0.5≤ t≤ 1).

There are several potential avenues of further improv-
ing the fuel consumption of the optimal controller beyond
the results seen in this test setup. One significant limitation
is the gen-set’s EM inverter power constraint. This limits
the permissible operating points to a small portion of the
theoretical speed/torque space. For these tests we also have
allowed the engine to rest at idle between steps to P (rather

than allowing it to reach a standstill) to avoid activating
the existing engine start-up routines. Furthermore, there
are several unmodeled sources of dynamics in this physical
setup, the turbocharger among others. Finally, the func-
tions fC , fE , and τf only accurately model equilibrium op-
eration, while we have implicitly assumed that they hold
during transient operation. We ultimately have a trade-off
between model accuracy and the computational load of the
controller (whose non-volatile memory usage scales expo-
nentially with the number of state variables).
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FIGURE 8: Efficiency improvement (delivered energy per
consumed fuel mass) for the optimal controller compared
to the proportional controller.

FIGURE 9: Test-bench setup. A conventional passenger ve-
hicle is used with the same CE and EM as shown in Fig. 3.

(a)

(b)

(c)

FIGURE 10: Ensemble plots of CE and EM torque and
crankshaft speed ω from bench-tests.
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5 Conclusions
We have shown that an optimal gen-set controller that

takes transient dynamics into account can effectively be im-
plemented and run in real-time. Minimizing the consumed
fuel using a dynamic programming method with an infinite
horizon ensures that the optimal control policy captures the
true intent of the problem studied in this paper; minimize
fuel consumption while delivering a requested equilibrium
power. This also avoids issues with penalty-based methods,
does not require any gradients to be known, and is guar-
anteed to be close to the globally optimal solution. Using
the MHDP method, which is based on dynamic program-
ming and the successive approximation method, allows us
to off-line easily construct a state-feedback control law with
very low on-line computational demand (on the order of 10–
20CPU instructions and 5–20 KiB of consumed memory).

Simulation results show that a gen-set in a typical light-
duty vehicle can expect a fuel consumption improvement
on the order of 5–7% during transient operation when com-
pared to current industry-standard controllers. Bench-tests
displayed a fuel consumption improvement of 3.7%, indi-
cating that the simulation results are fairly representative.
This reduction of fuel consumption may be further increased
by using more sophisticated models, in particular a combus-
tion engine fuel consumption model that takes additional
transient dynamics, such as a turbocharger, into account.

Relevant future work includes studying the efficacy of
the proposed method for the more ultimately relevant case
of a whole-vehicle drive cycle. The choice of torque-split
controller (i.e. when and how much power is drawn from
the gen-set and battery respectively) as well as the selected
drive cycle will heavily influence the net effectiveness of the
proposed gen-set controller, and should thus be prudently
chosen.
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